JP4627861B2 - Thermal CVD equipment for forming graphite nanofiber thin films - Google Patents

Thermal CVD equipment for forming graphite nanofiber thin films Download PDF

Info

Publication number
JP4627861B2
JP4627861B2 JP2000308978A JP2000308978A JP4627861B2 JP 4627861 B2 JP4627861 B2 JP 4627861B2 JP 2000308978 A JP2000308978 A JP 2000308978A JP 2000308978 A JP2000308978 A JP 2000308978A JP 4627861 B2 JP4627861 B2 JP 4627861B2
Authority
JP
Japan
Prior art keywords
substrate
gas
processed
thermal cvd
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000308978A
Other languages
Japanese (ja)
Other versions
JP2002115072A (en
Inventor
義昭 阿川
博之 深沢
晴邦 古瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2000308978A priority Critical patent/JP4627861B2/en
Publication of JP2002115072A publication Critical patent/JP2002115072A/en
Application granted granted Critical
Publication of JP4627861B2 publication Critical patent/JP4627861B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、基板上にグラファイトナノファイバー薄膜を形成するための熱CVD装置に関する。
【0002】
【従来の技術】
グラファイトナノファイバー薄膜は、例えば、平面ディスプレー(電界放出型ディスプレー)やCRTの電子管球の代用として電子発光素子を必要とする部品上に形成される。グラファイトナノファイバー薄膜を形成するには、例えば熱CVD(Chemical vapor deposition)装置が使用され、このような熱CVD装置は特願2000−89468号明細書から知られている。
【0003】
該熱CVD装置は真空雰囲気の形成を可能とする真空チャンバーを備えている。該真空チャンバー内部には、ガラスやSiなどの基板であってFeやCoが蒸着されたものが装着される基板ホルダーが配設されている。また、真空チャンバーの上部壁面には、被処理基板に対向して石英ガラスなどの耐熱性ガラスからなる赤外線透過窓が設けられている。この透過窓の外側には加熱手段である複数本の赤外線ランプが配設されている。そして、該赤外線ランプによって被処理基板を加熱しつつ、真空チャンバーの側壁に設けられた1箇所のガス導入口から真空チャンバーに、例えば水素ガスと一酸化炭素との混合ガスを導入することで該基板上にグラファイトナノファイバー薄膜を成長させる。
【0004】
【発明が解決しようとする課題】
ここで、被処理基板上に膜厚分布が均一なグラファイトナノファイバー薄膜を形成するには、被処理基板をその全面に亘って均等に加熱すると共に、真空チャンバーに導入される混合ガスが所定の温度以上に加熱されることなく被処理基板全体に均等に到達させる必要がある。このため、上述の装置では、真空チャンバーの上部の赤外線ランプの他に、基板ホルダーに抵抗加熱式ヒータを付設すると共に、真空チャンバー側壁に設け得るガス導入口の位置を適宜設計しているが、1箇所からのガス導入ではグラファイトナノファイバー薄膜の膜圧分布を制御するのは困難な場合が多い。この場合、成膜室の側壁にガス導入口を複数設け、これらのガス導入口から混合ガスを成膜室内に導入することが考えられる。ところが、これでは、200mm×200mm程度の略正方形基板やφ200mm程度の円形基板はともかく、例えば1m×1mサイズのような大きな被処理基板やA4サイズのような矩形の被処理基板に対してグラファイトナノファイバー薄膜の膜厚分布が均一になるようにガス導入口の配設位置を適切に設計することは困難である。
【0005】
そこで、本発明の課題は、被処理基板のサイズや外形に関係なく、膜厚分布の均一なグラファイトナノファイバー薄膜の形成を可能とするCVD装置を提供することにある。
【0006】
【課題を解決するための手段】
この課題を解決するために本発明のCVD装置は、真空チャンバー内に配設した基板ホルダーに付設した第1加熱手段と、該基板ホルダーに装着される被処理基板に対向して真空チャンバーの上部に設けた第2加熱手段とを備え、第1及び第2の加熱手段で被処理基板全体を均等に加熱しつつ、真空チャンバー内に炭素含有ガスと水素ガスとの混合ガスを導入することで該基板上にグラファイトナノファイバー薄膜を形成するように構成され、混合ガスの導入が、基板ホルダーに装着される被処理基板の高さ位置より下側であって、被処理基板をその外周の近傍で囲繞するように設けられたガス噴射ノズル手段を介して行われ、真空チャンバー外部のガス源に接続されたガス噴出ノズル手段はその内部にガス流路を有すると共に、その上面に、ガス流路に連通する複数のガス噴射口が列設されていることを特徴とする。
【0007】
本発明によれば、真空チャンバーの上側の第1加熱手段に加えて、第2加熱手段によって被処理基板を加熱することで、その全体に亘って均等に加熱できる。そして、混合ガスは、被処理基板をその外周の近傍で囲繞するように設けたガス噴出ノズル手段の上面に列設された複数のガス噴射口から一旦上方に向かって噴出され、被処理基板の上方全体に亘って均一に拡散し、次いで、下方に向かって均等に下降し、被処理基板全体に亘って一様に到達する。このため、被処理基板が比較的大きな寸法を有していたり、矩形の外形を有していても、被処理基板のサイズや外形に関係なく該被処理基板上に膜厚分布の均一なグラファイトナノファイバー薄膜を形成できる。
【0008】
【発明の実施の形態】
図1を参照して、例えば、A4サイズの矩形の被処理基板S上にグラファイトナノファイバー薄膜を形成する熱CVD装置1は、ロードロック室11と成膜室12とを備え、ロードロック室11と成膜室12とはゲートバルブ13を介して接続されている。ロードロック室11は、ガラスやSiなどの被処理基板Sであって、成膜面にFeやCoなどの金属薄膜が形成されたものを一旦真空雰囲気に曝すことで、被処理基板表面の水分等を除去する役割を果たす。このため、該ロードロック室11には、真空ポンプ111が接続されていると共に、その真空度をモニターする真空計112が配設されている。また、該ロードロック室11には、被処理基板Sを搬送する搬送アーム15が設けられている。該搬送アーム15は、サーボモータ(図示せず)を備えた回転軸151の上端に固着された第1アーム152と、各第1アーム152の他端に枢支された第2アーム153と、該第2アーム153の他端に枢支されると共に、被処理基板Sを下側から支持するフォーク状の支持部を備えた第3アーム154とからなる。そして、第2及び第3の各アーム153、154を旋回させることで搬送アーム15は伸縮自在となる。また、被処理基板Sの受渡等のため回転軸151は短いストロークで昇降自在である。この搬送アーム15によって外部から被処理基板Sをロードロック室11に収容し、所定の真空度(例えば、0.01Torr程度)まで真空排気した後、ゲートバルブ13を開けて、所定の真空度(例えば、0.01Torr程度)に真空排気した成膜室12に被処理基板Sを搬送する。そして、搬送アーム15が再びロードロック室11に戻ると、ゲートバルブ13が閉じる。
【0009】
成膜室12の底面には、搬送アーム15によって搬送されてきた被処理基板Sが装着される基板ホルダー121が設けられている。基板ホルダー121は、被処理基板Sが装着される基板支持部121aであって、被処理基板Sより大きな面積を有するものと、該基板支持部を支持する複数本の支柱121bとからなる。ここで、被処理基板Sの均等な加熱を達成するため、基板支持部121aには、第1加熱手段である抵抗加熱式ヒータ121cが組み込まれている。
【0010】
また、成膜室12の上部壁面には、被処理基板Sに対向して石英ガラスなどの耐熱性ガラスからなる赤外線透過窓122が設けられている。この透過窓122の外側には、所定の配列を有してなる第2加熱手段である複数本の赤外線ランプ17が配設され、抵抗加熱式ヒータ121cと相俟って被処理基板Sをその全面に亘って均等に加熱する。そして、該成膜室12にもまた、ロードロック室11と同様に、真空雰囲気の形成が可能であるように真空ポンプ123が設けられていると共に、その真空度をモニターする真空計124が配設されている。また、真空ポンプ123をバイパスする配管がバルブ123cを介在させて設けられている。
【0011】
さらに、成膜室12には混合ガス供給系18が接続されている。該混合ガス供給系18は、バルブ181aからガス流量調節器181b、圧力調整器181c及びバルブ181dを介して一酸化炭素などの炭素含有ガスボンベ181eにガス配管にて直列に連なっている炭素含有ガス供給系181と、バルブ182aからガス流量調節器182b、圧力調整器182c及びバルブ182dを介して水素ガスボンベ182eにガス配管にて直列に連なっている水素ガス供給系182からなる。そして、炭素含有ガス供給系181と水素ガス供給系182とは、バルブ181a、182aと成膜室12との間で合流し、成膜室12内に炭素含有ガスと水素ガスとの混合ガスが導入される。ここで、グラファイトナノファイバー薄膜を形成するのに、炭素含有ガスの他に水素ガスを用いるのは、気相反応における希釈及び触媒作用のためである。
【0012】
ところで、混合ガス供給系18を介して混合ガスを成膜室12に導入する場合、従来のCVD装置のように、被処理基板Sの上方に位置して該成膜室12の側壁に設けた1箇所のガス導入口から混合ガスを導入するのでは、比較的大きな基板や矩形の基板に対してグラファイトナノファイバー薄膜の膜厚分布を均一にするのは困難である。そこで、本実施の形態では、混合ガスの導入を、被処理基板Sの高さ位置より下側であって、被処理基板Sをその外周の近傍で囲繞するように設けたガス噴射ノズル手段19を介して行なうこととした。
【0013】
図2及び図3を参照して、環状のガス噴射ノズル手段19はその内部に混合ガス流路191を備え、その上面には、該ガス流路191に連通する複数個のガス噴射口192が列設されている。また、ガス噴射ノズル手段19の上面には、ガス流路191に通じる継手を備えた混合ガス供給部193が設けられ、混合ガス供給系18のガス配管の一端が接続されている。ここで、このようにガス噴射ノズル手段19を形成した場合、赤外線ランプ17によって被処理基板Sと共にガス噴射ノズル手段19自体も加熱され得る。そして、該ガス噴射ノズル手段19の表面温度が所定の温度以上になると、そこにグラファイトナノファイバー薄膜が成長し得る。グラファイトナノファイバー薄膜が成長するとコンタミネーションの原因になるので、ガス噴射ノズル手段19を頻繁にクリーニング或いは交換する必要が生じる。このため、本実施の形態では、ガス噴射ノズル手段19を、熱伝導率の高い金属材料である銅から形成し、成膜室12の底部壁面に面接触させて配設した。そして、成膜室12の外壁の周囲に冷却水ライン20を蛇行して配設し、グラファイトナノファイバー薄膜形成プロセスを行っている間、冷却水ライン20に冷却水を流すことで成膜室12の外壁を冷却可能とした。これにより、ガス噴射ノズル手段19は、グラファイトナノファイバー薄膜が成長する温度以下の温度に保持される。なお、本実施の形態では、ガス噴射ノズル手段19を環状としたが、成膜室12内に混合ガスを均一に噴射し得るものであればその外形は問わない。また、ガス噴射ノズル手段19の配設位置に対応して、成膜室12の底面から基板ホルダー121の基板支持部121aまでの高さ寸法は、ガス噴射ノズル手段19のガス噴射口192から上方に向かって噴出された混合ガスが赤外線ランプ17で所定温度以上に加熱されることなく、被処理基板Sに到達するように定寸されている。また、成膜室12の外壁の周囲に冷却水ライン20を蛇行して配設したが、成膜室12の外壁を覆う水冷ジャケットにしてもよい。
【0014】
次に、上記装置を使用したグラファイトナノファイバー薄膜形成プロセスについて説明する。
【0015】
被処理基板Sとして、EB蒸着法によりガラス基板上にFeを100nmの厚さで蒸着したものを使用する。このようにFeが蒸着された被処理基板Sを、ロードロック室11の外側から搬送アーム15によって該ロードロック室11に一旦収納し、真空ポンプ111を起動して真空計112で測定しながら0.01Torr程度まで真空排気を行う。それに併せて、成膜室12も、真空ポンプ123を起動して真空計124で測定しながら0.01Torr程度になるまで真空排気を行う。そして、ロードロック室11及び成膜室12が所定の真空度に達した後、所定の時間が経過するとゲートバルブ13を開けて成膜室12の基板ホルダー121の基板支持部121a上に被処理基板Sを装着する。この状態で、一酸化炭素ガスボンベ181eと水素ガスボンベ182eとの元栓を開き、圧力調整器181c、182cにより約1気圧(絶対圧力)に調整し、そしてバルブ181a、182aを開き、ガス流量調節器181b、182bにより、一酸化炭素ガスと水素ガスとの混合ガス(CO:H2=30:70のガス比)を約1000sccm程度に調整して、成膜室12内に、被処理基板ホルダー121の下方から、ガス噴射ノズル手段19を介して導入し、ガス置換を行った。この時、真空ポンプ123を停止し、真空ポンプ123の前後に設けたバルブ123a、123bを閉状態にしてバイパス配管のバルブ123cを開状態にしておき、成膜室12がほぼ大気圧(760Torr)となるようにした。この場合、赤外線ランプ17及び抵抗加熱式ヒータ121cを付勢して被処理基板Sを500℃に均等に加熱した状態で混合ガスを導入した。
【0016】
そして、成膜室12内の圧力が大気圧になった後、500℃で10分間にわたって、熱CVD法により該基板上でグラファイトナノファイバーの成長反応を行った。一酸化炭素ガスが被処理基板S上に達すると、一酸化炭素が解離し、被処理基板上に蒸着されたFe薄膜上にのみグラファイトナノファイバー薄膜が形成した。
【図面の簡単な説明】
【図1】本発明のCVD装置の構成を概略的に示す図
【図2】図1のII−II線に沿った断面図
【図3】ガス噴射ノズル手段の部分斜視図
【符号の説明】
1 熱CVD装置
11 成膜室
121 基板ホルダー
121c 抵抗加熱式ヒータ(第1加熱手段)
17 赤外線ランプ(第2加熱手段)
19 ガス噴射ノズル手段
191 ガス流路
192 ガス噴射口
S 被処理基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermal CVD apparatus for forming a graphite nanofiber thin film on a substrate.
[0002]
[Prior art]
The graphite nanofiber thin film is formed, for example, on a part that requires an electroluminescent element as a substitute for a flat display (field emission display) or an electron tube of a CRT. In order to form a graphite nanofiber thin film, for example, a thermal CVD (Chemical vapor deposition) apparatus is used, and such a thermal CVD apparatus is known from Japanese Patent Application No. 2000-89468.
[0003]
The thermal CVD apparatus includes a vacuum chamber that enables formation of a vacuum atmosphere. Inside the vacuum chamber, there is disposed a substrate holder on which a substrate made of glass, Si, or the like and deposited with Fe or Co is mounted. An infrared transmission window made of heat-resistant glass such as quartz glass is provided on the upper wall surface of the vacuum chamber so as to face the substrate to be processed. A plurality of infrared lamps serving as heating means are arranged outside the transmission window. Then, while heating the substrate to be processed by the infrared lamp, for example, a mixed gas of hydrogen gas and carbon monoxide is introduced into the vacuum chamber from one gas inlet provided on the side wall of the vacuum chamber. A graphite nanofiber thin film is grown on a substrate.
[0004]
[Problems to be solved by the invention]
Here, in order to form a graphite nanofiber thin film having a uniform film thickness distribution on the substrate to be processed, the substrate to be processed is heated uniformly over the entire surface, and a mixed gas introduced into the vacuum chamber is a predetermined amount. It is necessary to uniformly reach the entire substrate to be processed without being heated above the temperature. For this reason, in the above-mentioned apparatus, in addition to the infrared lamp at the top of the vacuum chamber, a resistance heater is attached to the substrate holder, and the position of the gas inlet that can be provided on the side wall of the vacuum chamber is appropriately designed. In many cases, it is difficult to control the film pressure distribution of the graphite nanofiber thin film by introducing gas from one place. In this case, it is conceivable that a plurality of gas inlets are provided on the side wall of the film forming chamber, and a mixed gas is introduced into the film forming chamber from these gas inlets. However, in this case, for example, a graphite nano-sized substrate such as a large substrate of 1 m × 1 m or a rectangular substrate of A4 size, for example, a square substrate of about 200 mm × 200 mm or a circular substrate of about φ200 mm. It is difficult to appropriately design the arrangement position of the gas inlet so that the film thickness distribution of the fiber thin film becomes uniform.
[0005]
SUMMARY OF THE INVENTION An object of the present invention is to provide a CVD apparatus capable of forming a graphite nanofiber thin film having a uniform film thickness distribution regardless of the size and outer shape of the substrate to be processed.
[0006]
[Means for Solving the Problems]
In order to solve this problem, a CVD apparatus according to the present invention includes a first heating means attached to a substrate holder disposed in a vacuum chamber, and an upper portion of the vacuum chamber facing a substrate to be processed mounted on the substrate holder. And introducing a mixed gas of carbon-containing gas and hydrogen gas into the vacuum chamber while uniformly heating the entire substrate to be processed by the first and second heating means. A graphite nanofiber thin film is formed on the substrate, and the introduction of the mixed gas is below the height position of the substrate to be processed mounted on the substrate holder, and the substrate to be processed is in the vicinity of the outer periphery thereof. The gas injection nozzle means connected to the gas source outside the vacuum chamber has a gas flow path inside and is provided on the upper surface thereof. A plurality of gas injection port communicating with the gas passage, characterized in that it is the column set.
[0007]
According to the present invention, by heating the substrate to be processed by the second heating means in addition to the first heating means on the upper side of the vacuum chamber, the entire substrate can be heated uniformly. Then, the mixed gas is temporarily ejected upward from a plurality of gas ejection ports arranged on the upper surface of the gas ejection nozzle means provided so as to surround the substrate to be processed in the vicinity of the outer periphery thereof. It diffuses uniformly over the entire upper part, then descends downward uniformly, and reaches uniformly over the entire substrate to be processed. Therefore, even if the substrate to be processed has a relatively large dimension or a rectangular outer shape, the graphite having a uniform film thickness distribution on the substrate to be processed regardless of the size or outer shape of the substrate to be processed Nanofiber thin film can be formed.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Referring to FIG. 1, for example, a thermal CVD apparatus 1 that forms a graphite nanofiber thin film on an A4-sized rectangular substrate to be processed S includes a load lock chamber 11 and a film formation chamber 12. And the film forming chamber 12 are connected through a gate valve 13. The load lock chamber 11 is a substrate to be processed S such as glass or Si, and a film on which a metal thin film such as Fe or Co is formed is once exposed to a vacuum atmosphere, whereby moisture on the surface of the substrate to be processed. It plays the role of removing etc. Therefore, a vacuum pump 111 is connected to the load lock chamber 11 and a vacuum gauge 112 for monitoring the degree of vacuum is provided. The load lock chamber 11 is provided with a transfer arm 15 for transferring the substrate S to be processed. The transfer arm 15 includes a first arm 152 fixed to the upper end of a rotary shaft 151 having a servo motor (not shown), a second arm 153 pivotally supported on the other end of each first arm 152, The third arm 154 is pivotally supported by the other end of the second arm 153 and includes a fork-like support portion that supports the substrate S to be processed from below. Then, by rotating the second and third arms 153 and 154, the transfer arm 15 can be expanded and contracted. Further, the rotary shaft 151 can be raised and lowered with a short stroke for delivery of the substrate S to be processed. The substrate S is externally accommodated in the load lock chamber 11 by the transfer arm 15 and evacuated to a predetermined degree of vacuum (for example, about 0.01 Torr), then the gate valve 13 is opened and a predetermined degree of vacuum ( For example, the substrate to be processed S is transferred to the film forming chamber 12 evacuated to about 0.01 Torr). When the transfer arm 15 returns to the load lock chamber 11 again, the gate valve 13 is closed.
[0009]
On the bottom surface of the film forming chamber 12, a substrate holder 121 is provided on which the substrate to be processed S transferred by the transfer arm 15 is mounted. The substrate holder 121 includes a substrate support portion 121a on which the substrate to be processed S is mounted, and has a larger area than the substrate to be processed S, and a plurality of support columns 121b that support the substrate support portion. Here, in order to achieve uniform heating of the substrate S to be processed, a resistance heating heater 121c, which is a first heating means, is incorporated in the substrate support 121a.
[0010]
An infrared transmission window 122 made of heat-resistant glass such as quartz glass is provided on the upper wall surface of the film forming chamber 12 so as to face the substrate S to be processed. A plurality of infrared lamps 17 as second heating means having a predetermined arrangement are disposed outside the transmission window 122, and the substrate S to be processed is coupled with the resistance heater 121c. Heat evenly over the entire surface. The film forming chamber 12 is also provided with a vacuum pump 123 so that a vacuum atmosphere can be formed, and a vacuum gauge 124 for monitoring the degree of vacuum, as with the load lock chamber 11. It is installed. In addition, a pipe that bypasses the vacuum pump 123 is provided with a valve 123c interposed.
[0011]
Further, a mixed gas supply system 18 is connected to the film forming chamber 12. The mixed gas supply system 18 supplies a carbon-containing gas connected in series through a gas pipe from a valve 181a to a carbon-containing gas cylinder 181e such as carbon monoxide via a gas flow rate regulator 181b, a pressure regulator 181c, and a valve 181d. A system 181 and a hydrogen gas supply system 182 connected in series from a valve 182a to a hydrogen gas cylinder 182e through a gas flow rate regulator 182b, a pressure regulator 182c, and a valve 182d through a gas pipe. The carbon-containing gas supply system 181 and the hydrogen gas supply system 182 merge between the valves 181a and 182a and the film formation chamber 12, and a mixed gas of carbon-containing gas and hydrogen gas is formed in the film formation chamber 12. be introduced. Here, the hydrogen gas is used in addition to the carbon-containing gas to form the graphite nanofiber thin film because of dilution and catalysis in the gas phase reaction.
[0012]
By the way, when the mixed gas is introduced into the film forming chamber 12 through the mixed gas supply system 18, it is provided on the side wall of the film forming chamber 12 so as to be positioned above the substrate S to be processed as in the conventional CVD apparatus. If the mixed gas is introduced from one gas introduction port, it is difficult to make the film thickness distribution of the graphite nanofiber thin film uniform over a relatively large substrate or rectangular substrate. Therefore, in the present embodiment, the gas injection nozzle means 19 is provided so as to introduce the mixed gas below the height position of the substrate S to be processed and to surround the substrate S to be processed in the vicinity of the outer periphery thereof. It was decided to do it through.
[0013]
2 and 3, the annular gas injection nozzle means 19 includes a mixed gas flow path 191 therein, and a plurality of gas injection ports 192 communicating with the gas flow path 191 are formed on the upper surface thereof. It is lined up. Further, on the upper surface of the gas injection nozzle means 19, a mixed gas supply unit 193 having a joint leading to the gas flow path 191 is provided, and one end of a gas pipe of the mixed gas supply system 18 is connected. Here, when the gas injection nozzle means 19 is formed in this way, the gas injection nozzle means 19 itself can be heated together with the substrate S to be processed by the infrared lamp 17. Then, when the surface temperature of the gas injection nozzle means 19 becomes a predetermined temperature or higher, a graphite nanofiber thin film can grow there. Since the growth of the graphite nanofiber thin film causes contamination, the gas injection nozzle means 19 needs to be frequently cleaned or replaced. For this reason, in this embodiment, the gas injection nozzle means 19 is formed from copper, which is a metal material having high thermal conductivity, and is disposed in surface contact with the bottom wall surface of the film forming chamber 12. Then, the cooling water line 20 is meandered around the outer wall of the film forming chamber 12, and the cooling water is allowed to flow through the cooling water line 20 during the graphite nanofiber thin film forming process. The outer wall of can be cooled. Thereby, the gas injection nozzle means 19 is hold | maintained at the temperature below the temperature at which a graphite nanofiber thin film grows. In the present embodiment, the gas injection nozzle means 19 is annular, but the outer shape is not limited as long as the mixed gas can be uniformly injected into the film forming chamber 12. Further, the height dimension from the bottom surface of the film forming chamber 12 to the substrate support part 121a of the substrate holder 121 is upward from the gas injection port 192 of the gas injection nozzle unit 19 corresponding to the arrangement position of the gas injection nozzle unit 19. The gas mixture is sized so as to reach the substrate S to be processed without being heated to a predetermined temperature or higher by the infrared lamp 17. Further, although the cooling water line 20 is meandered around the outer wall of the film forming chamber 12, a water cooling jacket that covers the outer wall of the film forming chamber 12 may be used.
[0014]
Next, a process for forming a graphite nanofiber thin film using the above apparatus will be described.
[0015]
As the substrate to be processed S, one obtained by depositing Fe with a thickness of 100 nm on a glass substrate by an EB vapor deposition method is used. The substrate to be processed S on which Fe is deposited in this manner is temporarily stored in the load lock chamber 11 by the transfer arm 15 from the outside of the load lock chamber 11, and the vacuum pump 111 is activated to measure 0 with the vacuum gauge 112. Evacuate to about 01 Torr. At the same time, the film forming chamber 12 is also evacuated to about 0.01 Torr while starting the vacuum pump 123 and measuring with the vacuum gauge 124. Then, after the load lock chamber 11 and the film forming chamber 12 reach a predetermined degree of vacuum, when a predetermined time elapses, the gate valve 13 is opened and the substrate support 121a of the substrate holder 121 of the film forming chamber 12 is processed. A substrate S is mounted. In this state, the main plugs of the carbon monoxide gas cylinder 181e and the hydrogen gas cylinder 182e are opened, adjusted to about 1 atm (absolute pressure) by the pressure regulators 181c and 182c, and the valves 181a and 182a are opened and the gas flow rate regulator 181b. , 182b, the mixed gas of carbon monoxide gas and hydrogen gas (CO: H 2 = 30: 70 gas ratio) is adjusted to about 1000 sccm, and the substrate holder 121 to be processed is placed in the film formation chamber 12. From below, gas was introduced through the gas injection nozzle means 19 to perform gas replacement. At this time, the vacuum pump 123 is stopped, the valves 123a and 123b provided before and after the vacuum pump 123 are closed, and the bypass piping valve 123c is opened, so that the film forming chamber 12 is almost at atmospheric pressure (760 Torr). It was made to become. In this case, the mixed gas was introduced in a state where the infrared lamp 17 and the resistance heater 121c were energized to uniformly heat the substrate to be processed S to 500 ° C.
[0016]
Then, after the pressure in the film formation chamber 12 became atmospheric pressure, a growth reaction of graphite nanofibers was performed on the substrate by a thermal CVD method at 500 ° C. for 10 minutes. When the carbon monoxide gas reached the substrate to be processed S, the carbon monoxide was dissociated, and a graphite nanofiber thin film was formed only on the Fe thin film deposited on the substrate to be processed.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing the configuration of a CVD apparatus according to the present invention. FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1. FIG. 3 is a partial perspective view of gas injection nozzle means.
DESCRIPTION OF SYMBOLS 1 Thermal CVD apparatus 11 Deposition chamber 121 Substrate holder 121c Resistance heating type heater (first heating means)
17 Infrared lamp (second heating means)
19 Gas injection nozzle means 191 Gas flow path 192 Gas injection port S Substrate to be processed

Claims (1)

熱CVD装置において、真空チャンバー内に配設した基板ホルダーに付設した第1加熱手段と、該基板ホルダーに装着される被処理基板に対向して真空チャンバーの上部に設けた第2加熱手段とを備え、第1及び第2の加熱手段で被処理基板全体を均等に加熱しつつ、真空チャンバー内に炭素含有ガスと水素ガスとの混合ガスを導入することで該基板上にグラファイトナノファイバー薄膜を形成するように構成され、
混合ガスの導入が、基板ホルダーに装着される被処理基板の高さ位置より下側であって、被処理基板をその外周の近傍で囲繞するように設けられたガス噴射ノズル手段を介して行われ、真空チャンバー外部のガス源に接続されたガス噴出ノズル手段はその内部にガス流路を有すると共に、その上面に、ガス流路に連通する複数のガス噴射口が列設されていることを特徴とする熱CVD装置。
In the thermal CVD apparatus, a first heating means attached to a substrate holder disposed in the vacuum chamber, and a second heating means provided on the upper portion of the vacuum chamber facing the substrate to be processed mounted on the substrate holder. A graphite nanofiber thin film is formed on the substrate by introducing a mixed gas of carbon-containing gas and hydrogen gas into the vacuum chamber while uniformly heating the entire substrate to be processed by the first and second heating means. Configured to form,
The introduction of the mixed gas is performed through a gas injection nozzle means provided so as to be lower than the height position of the substrate to be processed mounted on the substrate holder and to surround the substrate to be processed in the vicinity of the outer periphery thereof. The gas ejection nozzle means connected to the gas source outside the vacuum chamber has a gas flow path therein, and a plurality of gas injection ports communicating with the gas flow path are arranged on the upper surface thereof. A characteristic thermal CVD apparatus.
JP2000308978A 2000-10-10 2000-10-10 Thermal CVD equipment for forming graphite nanofiber thin films Expired - Lifetime JP4627861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000308978A JP4627861B2 (en) 2000-10-10 2000-10-10 Thermal CVD equipment for forming graphite nanofiber thin films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000308978A JP4627861B2 (en) 2000-10-10 2000-10-10 Thermal CVD equipment for forming graphite nanofiber thin films

Publications (2)

Publication Number Publication Date
JP2002115072A JP2002115072A (en) 2002-04-19
JP4627861B2 true JP4627861B2 (en) 2011-02-09

Family

ID=18789211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000308978A Expired - Lifetime JP4627861B2 (en) 2000-10-10 2000-10-10 Thermal CVD equipment for forming graphite nanofiber thin films

Country Status (1)

Country Link
JP (1) JP4627861B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4765584B2 (en) * 2004-12-01 2011-09-07 日新電機株式会社 Carbon nanotube formation method and apparatus
JP2007314908A (en) * 2006-05-25 2007-12-06 Ulvac Japan Ltd Method for forming graphite nanofiber, method for producing field electron emission display device, and method for forming carbon nanotube

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176526A (en) * 1993-12-20 1995-07-14 Toray Ind Inc Thin film forming device
JP3363759B2 (en) * 1997-11-07 2003-01-08 キヤノン株式会社 Carbon nanotube device and method of manufacturing the same

Also Published As

Publication number Publication date
JP2002115072A (en) 2002-04-19

Similar Documents

Publication Publication Date Title
JP5247528B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, substrate processing method, and gas introducing means
JP3386651B2 (en) Semiconductor device manufacturing method and semiconductor manufacturing apparatus
US5246500A (en) Vapor phase epitaxial growth apparatus
EP1383160B1 (en) Gaseous phase growing device
JPH021116A (en) Heat treatment apparatus
EP2294244B1 (en) Thermal gradient enhanced chemical vapour deposition.
JP2670515B2 (en) Vertical heat treatment equipment
JP4677088B2 (en) Thermal CVD equipment for forming graphite nanofiber thin films
JP4627861B2 (en) Thermal CVD equipment for forming graphite nanofiber thin films
JP4063661B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
KR100393751B1 (en) How to make a film
CN110512281B (en) Method for rapidly preparing silicon carbide
JP4703844B2 (en) Thermal CVD equipment for forming graphite nanofiber thin films
JP4627860B2 (en) Thermal CVD equipment for forming graphite nanofiber thin films
JP4627863B2 (en) Thermal CVD equipment for forming graphite nanofiber thin films
JP3738494B2 (en) Single wafer heat treatment equipment
JP4677087B2 (en) Thermal CVD equipment for forming graphite nanofiber thin films
JP4456341B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
JP4252142B2 (en) Gas processing device and purge mechanism of raw material supply system used therefor
JP3706510B2 (en) Temperature control method in plasma CVD apparatus
JP3070567B2 (en) Vertical reduced pressure vapor phase growth apparatus and vapor phase growth method using the same
JP3093716B2 (en) Vertical vacuum deposition equipment
JPH0521867Y2 (en)
JPH06140343A (en) Cvd device and film growth method using thereof
JPS5838604Y2 (en) Reduced pressure vapor phase growth equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4627861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250