JP2002079600A - Anti-reflection laminate - Google Patents

Anti-reflection laminate

Info

Publication number
JP2002079600A
JP2002079600A JP2000268173A JP2000268173A JP2002079600A JP 2002079600 A JP2002079600 A JP 2002079600A JP 2000268173 A JP2000268173 A JP 2000268173A JP 2000268173 A JP2000268173 A JP 2000268173A JP 2002079600 A JP2002079600 A JP 2002079600A
Authority
JP
Japan
Prior art keywords
refractive index
group
antireflection laminate
silica sol
low refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000268173A
Other languages
Japanese (ja)
Other versions
JP4590705B2 (en
Inventor
Toshiaki Yoshihara
俊昭 吉原
Toru Okubo
透 大久保
Koichi Ohata
浩一 大畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2000268173A priority Critical patent/JP4590705B2/en
Publication of JP2002079600A publication Critical patent/JP2002079600A/en
Application granted granted Critical
Publication of JP4590705B2 publication Critical patent/JP4590705B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an anti-reflection laminate which shows a low refractive index, excellent physical properties such as hardness, anti-flaw resistance and adhesion to a base material and is manufactured at a low cost in good productivity. SOLUTION: An anti-reflection laminate comprises a base material such as glass, a plastic or the like and a film of a low refractive index composition having a nano-porous structure formed at least on one surface of the base material wherein a haze value of the film of the low refractive index composition is not more than 1% and shows 10 point average roughness Rz in a small region of 4 μm square of not more than 100 nm and a mathematical average roughness Ra of 2 to 10 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、反射防止積層体に
関するもので、ガラスやプラスチックなどの透明基材な
どに塗工して、光学多層膜が形成された反射防止積層体
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antireflection laminate, and more particularly to an antireflection laminate having an optical multilayer film formed by coating a transparent substrate such as glass or plastic.

【0002】[0002]

【従来の技術】従来、ガラスやプラスチックなどの基材
に、酸化チタンや酸化ケイ素などの無機酸化物を蒸着法
あるいはスパッタ法などのドライコーティングによって
薄膜を形成して反射防止膜などの光干渉による光学多層
膜を形成する方法が知られている。しかし、このような
ドライコーティングプロセスでは装置が高価で、成膜速
度が遅く、生産性が高くないなどの課題を有している。
これに対して、金属アルコキシドなどを出発組成物とし
て、基材に塗工して光学多層膜を形成する方法が知られ
ており、高屈折率材料としては、TiやZrなどのアル
コキシドを用い、一方、低屈折率材料としては、ケイ素
系アルコキシドあるいはケイ素アルコキシドの一部をエ
ポキシ基やアルキル基など他の有機置換基に置き換えた
有機ケイ素化合物、いわゆるシランカップリング剤など
を用いる方法が提案されている。しかし、これらの塗膜
では、加熱重合に高温、長時間を必要とするため生産性
に問題があった。また、ある程度の低い屈折率を得るこ
とはできるが、硬度や耐擦傷性、基材との密着性などの
物理的強度が不十分であり、光学多層膜は最外層に使用
されるため、実用に耐えることができないといった欠点
を有していた。
2. Description of the Related Art Conventionally, a thin film is formed on a base material such as glass or plastic by an inorganic oxide such as titanium oxide or silicon oxide by a dry coating such as a vapor deposition method or a sputtering method, and the thin film is formed by light interference such as an antireflection film. A method for forming an optical multilayer film is known. However, such a dry coating process has problems such as an expensive apparatus, a low film formation rate, and low productivity.
On the other hand, a method of forming an optical multilayer film by coating a substrate with a metal alkoxide or the like as a starting composition is known. As the high refractive index material, an alkoxide such as Ti or Zr is used. On the other hand, as a low refractive index material, a method using a silicon-based alkoxide or an organic silicon compound in which a part of a silicon alkoxide is replaced with another organic substituent such as an epoxy group or an alkyl group, a so-called silane coupling agent or the like has been proposed. I have. However, these coating films require a high temperature and a long time for heat polymerization, and thus have a problem in productivity. In addition, although a certain low refractive index can be obtained, physical strength such as hardness, abrasion resistance, and adhesion to the substrate is insufficient, and the optical multilayer film is used as the outermost layer. Had the drawback that it could not withstand the heat.

【0003】これらを改善するために、例えば特開平9
ー220791号公報等で示されているように、ケイ素
アルコキシドを出発物質としたシリカゾルと反応性有機
ケイ素化合物(シランカップリング剤や末端に反応基を
有するジメチルシリコーンなど)との複合材料などが提
案されている
In order to improve these, for example, Japanese Patent Application Laid-Open
-220791, a composite material of a silica sol starting from a silicon alkoxide and a reactive organic silicon compound (such as a silane coupling agent or a dimethyl silicone having a reactive group at a terminal) is proposed. Has been

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
の酸化ケイ素(SiO2)系複合膜組成物も所望の物性
を得ようとすると加熱に長時間を要するもので、アクリ
ロイル基などの重合性不飽和基を含有する有機ケイ素化
合物も記載されているが、いずれもアクリロイル基が1
個乃至は2個の単官能あるいは2官能性の化合物であ
り、光(電子線(EB)も含む)重合しても高い架橋密度
が得られない。硬度や耐擦傷性などの物理的強度を向上
させようとすると、上記複合膜成分中にシリカ成分以外
の成分、例えはアクリル系化合物を複合し、アクリル成
分比率を高くする必要がある。そうすると、光学特性を
決定するケイ素系などのアルコキシドを出発組成物とす
るシリカ成分の体積比が減少して、低屈折率化をはかる
ことができないという欠点を有する。従来から、光学多
層膜の低屈折率化と、硬度や耐擦傷性、基材との密着性
などの物理的特性とが両立できる組成物は見出されてい
ない。
However, these silicon oxide (SiO 2 ) -based composite film compositions also require a long time for heating in order to obtain desired physical properties, and polymerizable unsaturated compounds such as acryloyl groups. An organosilicon compound containing a acryloyl group is also described.
Or two or more monofunctional or bifunctional compounds, and a high crosslink density cannot be obtained by photopolymerization (including electron beam (EB)). In order to improve physical strength such as hardness and scratch resistance, it is necessary to increase the acrylic component ratio by combining components other than the silica component, for example, an acrylic compound in the composite film component. In this case, the volume ratio of a silica component starting from an alkoxide such as a silicon-based alkoxide that determines optical properties is reduced, and there is a drawback that the refractive index cannot be reduced. Heretofore, no composition has been found that can achieve both a low refractive index of the optical multilayer film and physical properties such as hardness, scratch resistance, and adhesion to a substrate.

【0005】本発明は、上記課題に鑑みてなされたもの
で、低屈折率を有し、かつ硬度や耐擦傷性、基材との密
着性などの物理的強度にも優れ、安価で、生産性に優れ
た反射防止積層体を提供することを目的とする。
The present invention has been made in view of the above problems, has a low refractive index, has excellent physical strength such as hardness, abrasion resistance, and adhesion to a substrate, and is inexpensive. An object of the present invention is to provide an antireflection laminate having excellent properties.

【0006】[0006]

【課題を解決するための手段】上記課題を達成するた
め、請求項1記載の発明は、ガラス、プラスチックなど
の基材の少なくとも片面に、ナノポーラス構造を有する
低屈折率組成物被膜が形成された反射防止積層体におい
て、前記低屈折率組成物被膜のヘイズが1%以下であ
り、かつ5μm四方の微小領域における10点平均粗さ
Rzが100nm以下でかつ算術平均粗さRaが 2〜
10nmであることを特徴とする反射防止積層体であ
る。
According to the first aspect of the present invention, a low refractive index composition film having a nanoporous structure is formed on at least one surface of a substrate such as glass or plastic. In the antireflection laminate, the low-refractive-index composition film has a haze of 1% or less, a 10-point average roughness Rz in a 5 μm-square minute region of 100 nm or less, and an arithmetic average roughness Ra of 2 to 2.
An antireflection laminate having a thickness of 10 nm.

【0007】請求項2記載の発明は、請求項1に記載の
反射防止積層体において、前記低屈折率組成物被膜が、
平均粒径が5〜100nmの無機超微粒子と、分子中に
ビニル基、アクリロイル基、メタクリロイル基などの重
合可能な不飽和結合を少なくとも3個以上を有するアク
リル系化合物とを主成分とすることを特徴とする。
According to a second aspect of the present invention, in the antireflection laminate according to the first aspect, the low refractive index composition coating film comprises:
An inorganic ultrafine particle having an average particle size of 5 to 100 nm, and an acrylic compound having at least three or more polymerizable unsaturated bonds such as a vinyl group, an acryloyl group, and a methacryloyl group in a molecule. Features.

【0008】請求項3記載の発明は、請求項1に記載の
反射防止積層体において、前記低屈折率組成物被膜が、
請求項2記載の前記低屈折率組成物被膜の成分に、さら
に一般式(A) R’X Si(OR)4-X(R:ア
ルキル基、R’:末端にビニル基、アクリロイル基、メ
タクリロイル基などの重合可能な不飽和結合を有する官
能基、xは0<x<4の置換数)で表される有機ケイ素
化合物、およびその加水分解物とが含まれてなることを
特徴とする。
According to a third aspect of the present invention, in the antireflection laminate according to the first aspect, the low refractive index composition coating film comprises:
3. The composition of the low refractive index composition coating according to claim 2, further comprising a compound represented by the following general formula (A): R ′ X Si (OR) 4-X (R: alkyl group, R ′: vinyl group, acryloyl group, methacryloyl at a terminal) A functional group having a polymerizable unsaturated bond such as a group, x is an organosilicon compound represented by 0 <x <4), and a hydrolyzate thereof.

【0009】請求項4記載の発明は、請求項1〜3のい
ずれか1項に記載の反射防止積層体において、前記無機
超微粒子が、50〜100nmの範囲の粒径が10%以
上有するシリカゾル粒子であって、低屈折率組成物被膜
中のシリカゾル粒子の含有量が40〜80%であること
を特徴とする。
According to a fourth aspect of the present invention, there is provided the antireflection laminate according to any one of the first to third aspects, wherein the inorganic ultrafine particles have a particle size in the range of 50 to 100 nm of 10% or more. Particles, wherein the content of the silica sol particles in the low refractive index composition coating film is 40 to 80%.

【0010】請求項5記載の発明は、請求項1〜4のい
ずれか1項に記載の反射防止積層体において、前記アク
リル系化合物が、3官能以上のアクリルモノマーおよび
その変性体で、平均分子量が200〜1000であるこ
とを特徴とする。
According to a fifth aspect of the present invention, in the antireflection laminate according to any one of the first to fourth aspects, the acrylic compound is a trifunctional or more functional acrylic monomer or a modified product thereof, and has an average molecular weight of Is from 200 to 1,000.

【0011】請求項6記載の発明は、請求項1〜5のい
ずれか1項に記載の反射防止積層体において、前記低屈
折率組成物を形成する有機ケイ素化合物が、 一般式(B) CH2=CHCOO−(CH)n−Si(OR)4 (R:アルキル基、xは0<x<4の置換数、nはn<
5の整数)で表されるアクリロイル基含有ケイ素化合物
であって、シリカゾル粒子にあらかじめ修飾されてなる
ことを特徴とする。
According to a sixth aspect of the present invention, in the antireflection laminate according to any one of the first to fifth aspects, the organosilicon compound forming the low refractive index composition is represented by the general formula (B) CH 2 = CHCOO- (CH) n -Si (OR) 4 (R: alkyl group, x is the number of substitutions of 0 <x <4, n is n <
Acryloyl group-containing silicon compound represented by the formula (1), characterized in that silica sol particles have been modified in advance.

【0012】請求項7記載の発明は、請求項1〜6のい
ずれか1項に記載の反射防止積層体において、前記アク
リロイル基含有ケイ素化合物が、シリカゾル粒子/アク
リロイル基含有ケイ素化合物のモル比で1/0.04〜
1/0.25(重量換算で90/10〜60/40wt
%相当)の範囲を満たす比率で、シリカゾル粒子の表面
を修飾していることを特徴とする。
According to a seventh aspect of the present invention, in the antireflection laminate according to any one of the first to sixth aspects, the acryloyl group-containing silicon compound has a molar ratio of silica sol particles / acryloyl group-containing silicon compound. 1 / 0.04 ~
1 / 0.25 (90 / 10-60 / 40wt in weight conversion)
% Of the silica sol particles at a ratio that satisfies the range of (%).

【0013】<作用>本発明によれば、無機微粒子とバ
インダーとからなる低屈折率組成物被膜の表面粗さが、
原子間力顕微鏡による測定で、5μm四方の微小領域に
おける10点平均粗さRzが100nm以下でかつ算術
平均粗さRaが 2〜10nmになるように形成するこ
とで光散乱の影響を受けずに、透明性を保持した(ヘイ
ズが低い値の)まま、表面を微細なナノオーダーの凹凸
を有するナノポーラス構造の低屈折率層を形成すること
ができるものであり、ナノオーダーの凹凸を有するナノ
ポーラス構造を形成することで、被膜中に空気孔を取り
込み、見掛けの屈折率を低下させるものである。
<Action> According to the present invention, the surface roughness of the low refractive index composition coating comprising inorganic fine particles and a binder is as follows:
As measured by an atomic force microscope, a 10-point average roughness Rz in a small area of 5 μm square is 100 nm or less and an arithmetic average roughness Ra is 2 to 10 nm, so that it is not affected by light scattering. It is possible to form a nanoporous low refractive index layer having fine nano-order irregularities on the surface while maintaining transparency (having a low haze value), and a nanoporous structure having nano-order irregularities. By forming, air holes are taken into the film, and the apparent refractive index is reduced.

【0014】低屈折率組成物として、シリカゾル粒子と
末端にビニル基、アクリロイル基、メタクリロイル基な
どの重合可能な不飽和結合を複数個有する多官能アクリ
ル化合物を主成分とすることで、塗膜形成後に紫外線
(UV)あるいは電子線(EB)照射により塗膜中のア
クリロイル基などの重合可能な不飽和結合基の光重合に
よる架橋により硬化するものであり、組成物中のシリカ
ゾルの粒子径およびバインダーである多官能アクリル化
合物の比率を制御することで、適度のナノポーラス構造
を形成することができる。組成物自身が低屈折率成分と
して機能するものではあるが、ナノポーラス構造によ
り、材料自身の屈折率(シリカの屈折率1.45程度、
アクリル成分の屈折率 1.50程度)では到達できな
い低屈折率化(1.40以下)をはかることができるも
のである。
The low-refractive index composition is mainly composed of a silica sol particle and a polyfunctional acrylic compound having a plurality of polymerizable unsaturated bonds such as a vinyl group, an acryloyl group, and a methacryloyl group at a terminal. It is cured by crosslinking by photopolymerization of a polymerizable unsaturated bond group such as an acryloyl group in a coating film by irradiation of ultraviolet (UV) or electron beam (EB) later, and the particle diameter and binder of silica sol in the composition By controlling the ratio of the polyfunctional acrylic compound, an appropriate nanoporous structure can be formed. Although the composition itself functions as a low refractive index component, the refractive index of the material itself (the refractive index of silica is about 1.45,
It is possible to reduce the refractive index (1.40 or less) which cannot be achieved by the refractive index of the acrylic component (about 1.50).

【0015】また、硬度、耐擦傷性等の物理的強さは、
通常、アクリル基などの導入量によって決定されるもの
であり、これらのアクリル基成分は、通常、シリカ成分
などに比べると屈折率がやや高く、アクリル成分が増加
すると強度は向上するが、屈折率が高くなってしまう。
本発明の低屈折率組成物は、特定の多官能アクリル化合
物を用いることで、少ないバインダー量でも強度を発現
させるものである。なかでも、アクリル化合物として、
分子量が大きなプレポリマーではなく、ジペンタエリス
トールヘキサアクリレート(DPHA)などの3官能以
上の多官能アクリルモノマー用いることで、より均質で
架橋密度の高いハイブリッド膜を形成することができ
る。さらに、アクリロイル基を含有した有機ケイ素化合
物による複合化(粒子修飾化)で、より被膜の架橋密度
を向上させることができる。分子レベルで均一なハイブ
リッド構造を呈しているので、シリカゾルなどの低屈折
率化成分の体積比が大きく、ナノポーラス構造を呈して
いても充分な強度を発揮できるもので、硬度が高く、耐
擦傷性にも優れ、従来の低屈折率組成物からなる反射防
止積層体の欠点を大幅に改善することができ、低屈折率
化と高強度化の両立可能な反射防止積層体を提供するも
のである。
The physical strength such as hardness and scratch resistance is as follows:
Usually, it is determined by the introduction amount of an acrylic group and the like.These acrylic group components usually have a slightly higher refractive index than a silica component and the like, and the strength increases with an increase in the acrylic component. Will be higher.
The low-refractive-index composition of the present invention exhibits strength even with a small amount of binder by using a specific polyfunctional acrylic compound. Above all, as an acrylic compound,
By using a trifunctional or higher-functional polyfunctional acrylic monomer such as dipentaerythritol hexaacrylate (DPHA) instead of a prepolymer having a large molecular weight, a more uniform hybrid film having a higher crosslink density can be formed. Furthermore, the crosslink density of the coating can be further improved by complexing (particle modification) with an acryloyl group-containing organosilicon compound. Since it has a uniform hybrid structure at the molecular level, the volume ratio of the low refractive index component such as silica sol is large, and it can exhibit sufficient strength even if it has a nanoporous structure, high hardness, scratch resistance The present invention is to provide an anti-reflection laminate which can significantly improve the drawbacks of conventional anti-reflection laminates made of a low refractive index composition and can achieve both low refractive index and high strength. .

【0016】[0016]

【発明の実施の形態】以下、本発明の一実施の形態につ
いて詳細に説明する。本発明の反射防止積層体は、ガラ
ス、プラスチックなどの基材の少なくとも片面に、ナノ
ポーラス構造を有する低屈折率組成物被膜が形成された
反射防止積層体において、前記低屈折率組成物被膜のヘ
イズが1%以下であり、かつ5μm四方の微小領域にお
ける10点平均粗さRzが100nm以下でかつ算術平
均粗さRaが 2〜10nmであることを特徴とするも
のである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail. The antireflection laminate of the present invention is an antireflection laminate in which a low-refractive-index composition coating having a nanoporous structure is formed on at least one surface of a substrate such as glass and plastic, and the haze of the low-refractive-index composition coating is provided. Is 1% or less, and 10-point average roughness Rz is 100 nm or less and arithmetic arithmetic roughness Ra is 2 to 10 nm in a minute region of 5 μm square.

【0017】本発明における表面粗さの算術平均粗さR
aおよび10点平均粗さRzおよびその計算はJIS-
B0601の定義に準じた。原子間力顕微鏡などによっ
て測定される微小領域、微小スケールにおける表面粗さ
のことである。本発明における反射防止積層体は、可視
領域の光学干渉を利用した反射防止層であるため、おお
よそ積層される被膜の膜厚が100nm〜200nm程
度であり、連続した膜で、光散乱の影響がでない程度の
表面粗さである必要があり、凹凸の差が大き過ぎたり、
凸凹の頻度が高過ぎると被膜のヘイズの増加および強度
の低下を引き起こすので、Rzが100nm以下で、か
つRaが2〜10nmの範囲が好適である。
Arithmetic mean roughness R of surface roughness in the present invention
a and 10-point average roughness Rz and their calculation are based on JIS-
According to the definition of B0601. Surface roughness in a minute area or a minute scale measured by an atomic force microscope or the like. Since the anti-reflection laminate in the present invention is an anti-reflection layer using optical interference in the visible region, the thickness of the film to be laminated is approximately 100 nm to 200 nm, and the effect of light scattering is a continuous film. It is necessary that the surface roughness is not so large, the difference in unevenness is too large,
If the frequency of the irregularities is too high, the haze of the coating increases and the strength decreases. Therefore, it is preferable that Rz is 100 nm or less and Ra is 2 to 10 nm.

【0018】本発明の反射防止積層体は、前記低屈折率
組成物被膜が、平均粒径が5〜100nmの無機超微粒
子と、分子中にビニル基、アクリロイル基、メタクリロ
イル基などの重合可能な不飽和結合を少なくとも3個以
上を有するアクリル系化合物とを主成分とし、前記無機
超微粒子が、50〜100nmの範囲の粒径が10%以
上有するシリカゾル粒子であって、低屈折率組成物被膜
中のシリカゾル粒子の含有量が40〜80%であること
を特徴とする。低屈折率組成物は、無機微粒子とバイン
ダーとからなるもので、無機微粒子としては、MgF2
などのフッ化物、酸化珪素などの低屈折率粒子が例示さ
れ、またバインダーとしては、メラミン樹脂、ウレタン
樹脂などが例示される。しかし、本発明の反射防止積層
体は、通常LCDディスプレイなどの表示装置の最外層
に装着され、使用されるもので、耐擦傷性などの強度が
必要とされるものでこれらを解決するためには特定の低
屈折率組成物が必要となる。
In the antireflection laminate of the present invention, the low-refractive-index composition film is formed by polymerizing an inorganic ultrafine particle having an average particle diameter of 5 to 100 nm with a vinyl group, an acryloyl group, a methacryloyl group or the like in a molecule. An acrylic compound having at least 3 unsaturated bonds as a main component, wherein the inorganic ultrafine particles are silica sol particles having a particle size in the range of 50 to 100 nm of 10% or more, and a low refractive index composition coating film; The content of the silica sol particles therein is 40 to 80%. Low refractive index composition may consist of the inorganic fine particles and a binder, the inorganic fine particles, MgF 2
Examples of the binder include low refractive index particles such as fluoride and silicon oxide, and examples of the binder include melamine resin and urethane resin. However, the antireflection laminate of the present invention is usually mounted on the outermost layer of a display device such as an LCD display and used, and is required to have strength such as abrasion resistance. Requires a specific low refractive index composition.

【0019】 本発明において用いられるシリカゾル粒子
としては、平均粒径が5〜100nmの粒子径のシリカ
粒子が溶媒中に分散されたもので、ケイ酸ナトリムなど
のケイ酸アルカリからイオン交換等でアルカリを除去し
たり、酸で中和したりする方法で得られるシリカゾルで
あって、水性でも、有機溶剤置換された有機溶媒系シリ
カゾルでも特に限定されないが、アクリルモノマーとの
相溶性やプラスティック基材への塗工適性などから有機
溶媒系のものが望ましい。5nm以下は製造が困難であ
り、100nm以上では光の散乱のため透明性が損なわ
れる。ナノポーラス構造とするためには粒子とバインダ
ーとの比率が重要であり、本発明の低屈折率組成物被膜
中の全シリカ粒子成分が30〜80wt%、さらに好適
には40〜70wt%含有されていることがが望まし
く、30wt%以下では所望の屈折率が得られにくく、
80%以上では十分な強度を発現できなくなる。なかで
も、粒径が50〜100nmである大粒子径成分が10
wt%以上、さらに好適には20wt%以上含有される
ことで、最適なナノポーラス構造とすることができるも
のであって、10wt%以下では効果が少ない。
[0019] Silica sol particles used in the present invention
Is a silica having an average particle diameter of 5 to 100 nm
Particles dispersed in a solvent, such as sodium silicate
The alkali from the alkali silicate by ion exchange, etc.
Or silica sol obtained by neutralizing with acid
Organic solvent-based organic solvent
Although it is not particularly limited even in the case of a kasol, the
Organic due to compatibility and suitability for coating on plastic substrates
Solvent-based ones are preferred. It is difficult to manufacture below 5 nm.
Above 100 nm, transparency is impaired due to light scattering.
It is. Particles and binders are required to achieve a nanoporous structure
Is important, and the low refractive index composition coating of the present invention is
The total silica particle component in the composition is 30 to 80% by weight, more preferably.
Should contain 40 to 70 wt%.
If it is less than 30 wt%, it is difficult to obtain a desired refractive index,
If it is 80% or more, sufficient strength cannot be exhibited. in
Also has a large particle size component having a particle size of 50 to 100 nm.
wt% or more, more preferably 20 wt% or more.
By doing so, the optimal nanoporous structure can be obtained.
Therefore, if the content is 10 wt% or less, the effect is small.

【0020】本発明で用いられる多官能アクリル化合物
としては、その分子中にビニル基、アクリロイル基やメ
タクルロイル基など重合可能なの不飽和結合を少なくと
も3個以上有するものであって、例えばジペンタエリス
リトールヘキサアクリレート(DPHA)などのアクリ
ルモノマー類と、これらのモノマーの変性体、および誘
導体などが使用できる。なかでも、DPHA、ペンタエ
リスリトールトリアクリレート(PETA)、あるいは
PETAとヘキサメチレンジイソシアネート(HDI)
などのジイソシアネートとの反応生成であるプレポリマ
ーなど多官能アクリルモノマー類およびその変性体など
で、平均分子量200〜1000のものであれば、シリ
カゾルとの相溶性も良く、被膜形成時に相分離すること
なく、架橋密度の高い、均質で透明なハイブリッド被膜
が形成できる。
The polyfunctional acrylic compound used in the present invention has at least three polymerizable unsaturated bonds such as vinyl group, acryloyl group and methacryloyl group in the molecule, for example, dipentaerythritol hexane. Acrylic monomers such as acrylate (DPHA), and modified and derivative products of these monomers can be used. Among them, DPHA, pentaerythritol triacrylate (PETA), or PETA and hexamethylene diisocyanate (HDI)
Polyfunctional acrylic monomers such as prepolymers formed by reaction with diisocyanates and modified products thereof, and those having an average molecular weight of 200 to 1,000, have good compatibility with silica sol and phase separation during film formation. In addition, a homogeneous and transparent hybrid film having a high crosslinking density can be formed.

【0021】さらに、本発明の反射防止積層体におい
て、上記の低屈折率組成物被膜の成分に、 一般式(A) R’X Si(OR)4-X (R:アルキル基、R’:末端にビニル基、アクリロイ
ル基、メタクリロイル基などの重合可能な不飽和結合を
有する官能基、xは0<x<4の置換数)で表される有
機ケイ素化合物、およびその加水分解物とが含まれてな
ることを特徴とする。アクリロイル基含有有機ケイ素化
合物としては、ビニルトリメトキシチタン、メタクリロ
キシトリイソプロポキシチタネート、メタクリロキシプ
ロピルトリイソプロポキシジルコネートなどが例示され
る。なかでも、(3ーアクリロキシプロピル)トリメト
キシシランなどに代表される 一般式(B) CH2=CHCOO−(CH)n―Si(OR)4 (R:アルキル基、xは0<x<4の置換数、nはn<
5の整数)で表されるアクリロイル基含ケイ素化合物が
好適である。これらの有機金属ケイ素化合物は組成物中
にp−トルエンスルホン酸などの有機酸触媒を含有させ
ることで、塗工後に大気中の水分でもって加水分解反応
させて被膜形成しても良いし、またあらかじめ水(塩酸
などの触媒を含む)を添加し加水分解反応させたものを
用いることもできる。その際に、有機ケイ素化合物の加
水分解物が、その有機ケイ素化合物の全アルコキシル基
を加水分解させるのに必要な水の量の1/8〜7/8の
量の水で部分加水分解されたものであるとすることで安
定な組成物を得ることができ、余分な水を残すことなく
特別な分離精製せずに用いることができる。
Furthermore, in the antireflection laminate of the present invention, the components of the low refractive index composition film described above include the general formula (A) R ′ X Si (OR) 4-X (R: alkyl group, R ′: A functional group having a polymerizable unsaturated bond such as a vinyl group, an acryloyl group, or a methacryloyl group at the terminal; x is an organic silicon compound represented by 0 <x <4); and a hydrolyzate thereof. It is characterized by becoming. Examples of the acryloyl group-containing organosilicon compound include vinyltrimethoxytitanium, methacryloxytriisopropoxytitanate, and methacryloxypropyltriisopropoxyzirconate. Above all, general formula (B) represented by (3-acryloxypropyl) trimethoxysilane and the like CH 2 CHCHCOO— (CH) n —Si (OR) 4 (R: alkyl group, x is 0 <x < The number of substitutions of 4, n is n <
An acryloyl group-containing silicon compound represented by an integer of 5) is preferred. These organometallic silicon compounds may contain an organic acid catalyst such as p-toluenesulfonic acid in the composition to form a film by a hydrolysis reaction with atmospheric moisture after coating, or Water (including a catalyst such as hydrochloric acid) previously added and subjected to a hydrolysis reaction may be used. At that time, the hydrolyzate of the organosilicon compound was partially hydrolyzed with 1/8 to 7/8 of the amount of water required to hydrolyze all the alkoxyl groups of the organosilicon compound. As a result, a stable composition can be obtained, and the composition can be used without leaving extra water and without special separation and purification.

【0022】上記の有機ケイ素化合物の加水分解物の調
整は、アクリル化合物と余分な水との副反応を抑制した
り、ケイ素化合物の加水分解率をコントロールして、ケ
イ素化合物ポリマーの成長を抑制したり、相溶性を高め
ることで、相分離を抑制し、均質で分子架橋密度が高
く、分子レベルのハイブリッド膜を形成至らしめるもの
である。これらのハイブリッド系組成物の組み合わせ
は、一般に公知ではあるが、本発明の組成物は単なる組
み合わせではなく、マトリックスであるコート組成物の
無機のネットワークと無機フィラーとの相溶性、親和性
が高く、単に有機樹脂中に分散するより、より良い分散
状態、フィラーとマトリックスとの密着性が高い被膜が
得られる材料系で、通常の添加効果よりも高い効果が得
られるものであり、特に、これらのアクリロイル基含有
ケイ素化合物の添加の際に、シリカゾル粒子と前出の一
般式(A)の有機ケイ素化合物を別の系にて混合反応さ
せ、あらかじめ粒子表面に修飾させると、バインダー成
分となるアクリル化合物の量を減少しても十分な強度を
得られるなどの効果が大きくなりナノポーラス構造が、
本発明の反射防止積層体の組成物には好適である。
The above-mentioned preparation of the hydrolyzate of the organosilicon compound suppresses the side reaction between the acrylic compound and excess water or controls the hydrolysis rate of the silicon compound to suppress the growth of the silicon compound polymer. In addition, by increasing the compatibility, the phase separation is suppressed, and a uniform, high molecular crosslink density and a molecular level hybrid film are formed. Combinations of these hybrid compositions are generally known, but the composition of the present invention is not a simple combination, but has high compatibility and affinity between the inorganic network and the inorganic filler of the coat composition as a matrix, Rather than simply dispersing in an organic resin, a better dispersion state, a material system capable of obtaining a coating having a high adhesion between the filler and the matrix, which is capable of achieving a higher effect than a normal addition effect, When the acryloyl group-containing silicon compound is added, the silica sol particles and the organosilicon compound of the above general formula (A) are mixed and reacted in another system to modify the surface of the particles in advance. Even if the amount is reduced, the effect of obtaining sufficient strength increases, and the nanoporous structure becomes
It is suitable for the composition of the antireflection laminate of the present invention.

【0023】上記粒子表面の修飾方法は、塩酸、有機酸
の存在下で両者を混合し、有機金属のアルコキシド基と
粒子表面のOH基とを反応させることで容易に処理され
るものであり、特別に分離精製することなく、そのまま
他の成分を添加してコーティング組成物を調整すること
ができる。なかでも、アクリロイル基含有ケイ素化合物
を粒子修飾する際に、アルコールやケトン系などの有機
溶媒中でp−トルエンスルホン酸などのスルホン酸触媒
下で反応させるのが修飾効率が良好で溶媒中への水の混
入を防止することができ好適である。
The above-mentioned method of modifying the particle surface is easily treated by mixing both in the presence of hydrochloric acid and an organic acid, and reacting an alkoxide group of an organic metal with an OH group on the particle surface. The coating composition can be adjusted by adding other components as they are without special separation and purification. Above all, when modifying particles of the acryloyl group-containing silicon compound, it is preferable that the reaction is carried out in an organic solvent such as an alcohol or a ketone under a sulfonic acid catalyst such as p-toluenesulfonic acid, so that the modification efficiency is good, and It is preferable because water can be prevented from being mixed.

【0024】さらに、シリカゾル粒子とアクリロイル基
含有ケイ素化合物との比率をシリカゾル粒子/アクリロ
イル基含有ケイ素化合物のモル比が1/0.04〜1/
0.25(重量換算で90/10〜60/40wt%相
当)とすることで、ナノポーラス構造と強度の両立する
ことができ好適である。本発明におけるナノポーラス構
造とは、光の散乱の影響を受けないほどの微細な空隙を
意味するもので、空隙の形態は閉じられたもの、開かれ
たものでも特に限定されるものではない。上記空隙は、
物理的にはある大きさを有するものであるが微細かつ不
定形の場合が多く、電子顕微鏡などでは直接観察されな
いことも多い。その場合には光学的な手法で屈折率を測
定すると、多成分系における加成性から逸脱する現象が
観察されることでナノポーラス構造と推定した。例え
ば、屈折率1.45のシリカ粒子と屈折率1.52のア
クリルバインダーを用いた場合、通常50/50vol
%の混合物ではほぼ中間的屈折率である1.47〜1.
49の間になることが観察される。本発明のようなナノ
ポーラス構造の場合はこれよりも小さくなり、見掛け屈
折率が1.45以下、粒径によっては1.35以下と大
きく加成性から逸脱する現象が見られる。これらの現象
は、被膜がナノポーラス構造を呈していること、すなわ
ち微細な空隙が存在することで見掛けの屈折率が低下し
たためと推測されるもので、本発明の低屈折率組成物も
この屈折率測定手法によりバインダー比率を変えた組成
物の屈折率を測定することで、ナノポーラス構造を呈し
ているとして定義したもので、ポーラス構造の形態や、
その組成物被膜の膜厚方向の分布(例えば、表面方向に
傾斜構造を有するなど)など特に限定されるものではな
い。
Further, the ratio of the silica sol particles to the acryloyl group-containing silicon compound is adjusted so that the molar ratio of silica sol particles / acryloyl group-containing silicon compound is 1 / 0.04 to 1 /
By setting it to 0.25 (corresponding to 90/10 to 60/40 wt% in terms of weight), it is possible to achieve both a nanoporous structure and strength, which is preferable. The nanoporous structure in the present invention means a fine void that is not affected by light scattering, and the shape of the void is not particularly limited, whether it is closed or open. The gap is
Although it has a certain physical size, it is often fine and irregular, and is often not directly observed with an electron microscope or the like. In that case, when the refractive index was measured by an optical method, a phenomenon deviating from the additivity in the multi-component system was observed, so that the nanoporous structure was presumed. For example, when silica particles having a refractive index of 1.45 and an acrylic binder having a refractive index of 1.52 are used, usually 50/50 vol.
% Of the mixture has an intermediate refractive index of about 1.47 to 1.47.
It is observed to be between 49. In the case of a nanoporous structure as in the present invention, the phenomenon becomes smaller and the apparent refractive index is 1.45 or less. These phenomena are presumed to be due to the fact that the coating has a nanoporous structure, that is, the apparent refractive index has been reduced due to the existence of fine voids. By defining the refractive index of the composition with the binder ratio changed by the measurement method, it is defined as exhibiting a nanoporous structure, and the form of the porous structure,
There is no particular limitation on the distribution of the composition film in the thickness direction (for example, having a gradient structure in the surface direction).

【0025】UV照射による硬化を行う際には、ラジカ
ル重合開始剤を添加すると好適であり、ベンゾインメチ
ルエーテルなどのベンゾインエーテル系開始剤、アセト
フェノン、2、1- ヒドロキシシクロヘキシルフェニル
ケトン、などのアセトフェノン系開始剤、ベンゾフェノ
ンなどのベンゾフェノン系開始剤など特に限定されるも
のではない。
For curing by UV irradiation, it is preferable to add a radical polymerization initiator, such as a benzoin ether-based initiator such as benzoin methyl ether, or an acetophenone-based initiator such as acetophenone, 2,1-hydroxycyclohexylphenyl ketone. The initiator and the benzophenone-based initiator such as benzophenone are not particularly limited.

【0026】上述した各成分をいくつか組み合わせてコ
ーティング組成物に加えることができ、さらに、物性を
損なわない範囲で、分散剤、安定化剤、粘度調整剤、着
色剤など公知の添加剤を加えることができる。
Some of the above-mentioned components can be combined and added to the coating composition. Further, known additives such as a dispersant, a stabilizer, a viscosity modifier and a colorant are added as long as the physical properties are not impaired. be able to.

【0027】また、本発明の反射防止積層体は、最外層
に設置されるため、表面の汚れ防止、指紋などの汚れの
易拭き取り性などのいわゆる防汚性が要求される。その
場合、フッ素系添加剤やシリコーン系添加剤などいわゆ
る防汚剤を添加することができる。なかでも、フッ素含
有アクリル化合物、あるいはフッ素含有シランカップリ
ング剤などが被膜成分と反応性を有するため好適であ
る。
Since the antireflection laminate of the present invention is provided on the outermost layer, it is required to have so-called antifouling properties such as prevention of surface dirt and easy wiping of dirt such as fingerprints. In that case, a so-called antifouling agent such as a fluorine-based additive or a silicone-based additive can be added. Among them, a fluorine-containing acrylic compound, a fluorine-containing silane coupling agent, and the like are preferable because they have reactivity with the coating components.

【0028】コーティング組成物の塗布方法には、通常
用いられる、ディッピング法、ロールコティング法、ス
クリーン印刷法、スプレー法など従来公知の手段が用い
られる。被膜の厚さは目的の光学設計にあわせて、液の
濃度や塗工量によって適宜選択調整することができる。
As a method for applying the coating composition, conventionally known means such as a dipping method, a roll coating method, a screen printing method, and a spray method are used. The thickness of the coating can be appropriately selected and adjusted depending on the concentration of the liquid and the amount of coating in accordance with the intended optical design.

【0029】本発明の低屈折率組成物は、ガラスやプラ
スチックフィルムなど特に限定されるものではなく、さ
らに必要に応じて各種ハードコート剤、高屈折率材料、
低屈折率材料、セラミック蒸着膜と積層することが可能
で、また必要に応じて組成比を変えて積層することも可
能である。
The low refractive index composition of the present invention is not particularly limited, such as glass and plastic films. Further, if necessary, various hard coat agents, high refractive index materials,
It is possible to laminate with a low refractive index material and a ceramic vapor deposition film, and it is also possible to laminate with changing the composition ratio as needed.

【0030】[0030]

【実施例】本発明の反射防止積層体を具体的な実施例を
あげて説明する。
EXAMPLES The antireflection laminate of the present invention will be described with reference to specific examples.

【0031】<実施例1>表面にUV硬化樹脂ハードコ
ート(HC)層(5μm)を設けた80μm厚のトリア
セチルセルロース(TAC)フィルムを基材として、下
記に示したコーティング組成物の各成分の固形分で、B
成分60重量部とD成分40重量部の割合になるように
組み合わせて調液して、紫外線(UV)硬化の開始剤と
してアセトフェノン系開始剤を重合成分に対して2%添
加し、コーティング組成物を作成した。そのコーティン
グ組成物をバーコーターにより塗布し、乾燥機で100
℃−1min乾燥し、高圧水銀灯により1000mJ/
cm2の紫外線を照射して硬化させ、光学膜厚(nd=
屈折率n*膜厚d(nm))がnd=550/4nmに
なるよう適宜濃度調整をして低屈折率被膜を形成し、試
験用の試験体を得た。そして、下記に示す評価試験方法
に基づいて試験体を評価し、その結果を表1に示した。
Example 1 Each component of the coating composition shown below was based on a 80 μm thick triacetyl cellulose (TAC) film having a UV-curable resin hard coat (HC) layer (5 μm) on the surface. The solid content of B
A solution was prepared by combining 60 parts by weight of the component and 40 parts by weight of the D component, and an acetophenone-based initiator was added as an ultraviolet (UV) curing initiator in an amount of 2% based on the polymerization component. It was created. The coating composition was applied by a bar coater and dried by a drier.
℃ -1min dried, 1000mJ /
The film is cured by irradiating it with ultraviolet light of cm 2 , and the optical film thickness (nd =
A low-refractive-index coating was formed by appropriately adjusting the concentration so that the refractive index (n * thickness d (nm)) became nd = 550/4 nm, to obtain a test specimen. Then, the test pieces were evaluated based on the following evaluation test methods, and the results are shown in Table 1.

【0032】<実施例2>コーティング組成物として、
A成分30重量部、B成分30重量部、D成分40重量
部の割合になるように組み合わせて調液して、コーティ
ング組成物の低屈折率被膜を形成した以外は実施例1と
同様にして試験用の試験体を得た。そして、実施例1と
同様に試験体を評価し、その結果を表1に示した。
Example 2 As a coating composition,
A mixture was prepared in a ratio of 30 parts by weight of the component A, 30 parts by weight of the component B, and 40 parts by weight of the component D to prepare a solution, and the same procedure as in Example 1 was carried out except that a low refractive index film of the coating composition was formed. A test specimen for the test was obtained. Then, the test pieces were evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0033】<実施例3>コーティング組成物として、
C成分80重量部、D成分20重量部の割合になるよう
に組み合わせて調液して、コーティング組成物の低屈折
率被膜を形成した以外は実施例1と同様にして試験用の
試験体を得た。そして、実施例1と同様に試験体を評価
し、その結果を表1に示した。
Example 3 As a coating composition,
A test specimen was prepared in the same manner as in Example 1 except that a solution was prepared by combining the components in a proportion of 80 parts by weight of the component C and 20 parts by weight of the component D to form a low refractive index film of the coating composition. Obtained. Then, the test pieces were evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0034】<比較例1>コーティング組成物として、
A成分70重量部、D成分30重量部の割合になるよう
に組み合わせて調液して、コーティング組成物の低屈折
率被膜を形成した以外は実施例1と同様にして試験用の
試験体を得た。そして、実施例1と同様に試験体を評価
し、その結果を表1に示した。
<Comparative Example 1> As a coating composition,
A test specimen was prepared in the same manner as in Example 1 except that a solution was prepared by combining the components in a proportion of 70 parts by weight of the component A and 30 parts by weight of the component D to form a low refractive index film of the coating composition. Obtained. Then, the test pieces were evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0035】<比較例2>コーティング組成物として、
D成分40重量部、E成分60重量部の割合になるよう
に組み合わせて調液して、コーティング組成物の低屈折
率被膜を形成した以外は実施例1と同様にして試験用の
試験体を得た。そして、実施例1と同様に試験体を評価
し、その結果を表1に示した。
<Comparative Example 2> As a coating composition,
A test specimen for testing was prepared in the same manner as in Example 1 except that a solution was prepared by combining the components in a proportion of 40 parts by weight of the D component and 60 parts by weight of the E component to form a low refractive index film of the coating composition. Obtained. Then, the test pieces were evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0036】<コーティング組成物の各成分> (A成分)平均粒径10〜15nmのシリカゾル/ME
K溶媒 (B成分)平均粒径50〜70nmのシリカゾル/ME
K溶媒 (C成分)平均粒径50〜70nmのシリカゾルにモル
比で1/0.08(重量比で約80/20)(3ーアク
リロキシプロピル)トリメトキシシランを混合し、触媒
としてpトルエンスルホン酸をアクリルシランに対して
重量比で1%添加し室温で3時間攪拌し反応させ修飾さ
せた複合ゾル。 (D成分)DPHAのMEK希釈溶液。 (E成分)平均粒径150nmのシリカゾル/MEK溶
<Each component of coating composition> (Component A) silica sol / ME having an average particle size of 10 to 15 nm
K solvent (B component) Silica sol with an average particle size of 50 to 70 nm / ME
K solvent (Component C) A silica sol having an average particle size of 50 to 70 nm is mixed with 1 / 0.08 (about 80/20 by weight) (3-acryloxypropyl) trimethoxysilane in a molar ratio, and p-toluene is used as a catalyst. Composite sol modified by adding 1% by weight of sulfonic acid to acrylic silane and stirring at room temperature for 3 hours to react. (D component) A diluted solution of DPHA in MEK. (E component) Silica sol / MEK solvent having an average particle size of 150 nm

【0037】<評価試験方法> (1)表面粗さ 原子間力顕微鏡AFM(SPI13700:セイコー電
子製)を用い走査範囲5μm四方にて測定した。 (2)光学特性反射率 分光光度計により入射角5で550nmにおける反射率
を測定した。 (3)ヘイズ プラスチックの光学的特性試験方法JIS−K7105
に準じて、ヘイズを測定した。 (4)密着性 塗料一般試験法JIS−K5400のクロスカット密着
試験方法に準じて塗膜の残存数にて評価した。 (5)鉛筆硬度 塗料一般試験法JIS−K5400の鉛筆引っかき値試
験方法に準じて塗膜の擦り傷にて評価した。 (6)耐擦傷試験 スチールウール#0000により、250g/cm2
荷重で往復5回擦傷試験を実施、目視による傷の外観を
検査した。評価は、傷なし◎、かるく傷あり○、かなり
傷つく△、著しく傷つく×の4段階とした。
<Evaluation Test Method> (1) Surface Roughness The surface roughness was measured using an atomic force microscope AFM (SPI13700: manufactured by Seiko Denshi) in a scanning range of 5 μm square. (2) Optical property reflectance The reflectance at 550 nm at an incident angle of 5 was measured by a spectrophotometer. (3) Haze plastic optical property test method JIS-K7105
The haze was measured according to the following. (4) Adhesion The paint was evaluated based on the number of remaining paint films according to the cross-cut adhesion test method of JIS-K5400. (5) Pencil hardness The paint was evaluated for scratches on the coating film according to the Pencil Scratch Value Test Method of JIS-K5400. (6) Scratch Resistance Test Five reciprocal scratch tests were performed with a steel wool # 0000 under a load of 250 g / cm 2 to visually inspect the appearance of the scratch. The evaluation was made in four stages: 傷 without damage, あ り with slight damage, △ with considerable damage, and x with severe damage.

【0038】[0038]

【表1】 [Table 1]

【0039】表1に示すように、実施例1〜3は反射率
が1.5%以下と低く、なおかつ密着性、硬度、耐擦傷
性など強度面にも優れるが、比較例1のシリカゾルの平
均粒径の小さいものだけを用いた系では表面粗さRaが
1nmと平滑で、屈折率が1.46と低くならずに低屈
折率化がはかれない。また、比較例2のシリカゾルの平
均粒径の大きなものを用いた系では表面粗さも大きくな
り、反射率は低いものの、ヘイズも4.5%と白く曇っ
た被膜となった。また、耐擦傷性が劣っていることがわ
かる。
As shown in Table 1, the reflectances of Examples 1 to 3 were as low as 1.5% or less and excellent in strength such as adhesion, hardness, and scratch resistance. In a system using only those having a small average particle diameter, the surface roughness Ra is as smooth as 1 nm, and the refractive index is not reduced to 1.46, so that the refractive index cannot be reduced. In the system using the silica sol having a large average particle diameter of Comparative Example 2, the surface roughness was large and the reflectance was low, but the haze was 4.5%. Further, it can be seen that the scratch resistance is inferior.

【0040】[0040]

【発明の効果】以上述べたように、本発明の反射防止積
層体は、シリカゾル粒子とアクリル基含有ケイ素化合物
ならびに多官能アクリルモノマーからなる低屈折率組成
物を、基材に塗布し、ナノスケールの表面粗さを制御し
た低屈折率組成物被膜を形成し、無機と有機化合物の分
子レベルのハイブリッド構造を呈した被膜とすること
で、ナノポーラス構造による低屈折率という光学特性
と、硬度、耐擦傷性等の物理的特性とを兼ね備えた反射
防止積層体を提供することが可能となった。従って、本
発明の反射防止積層体は、ディスプレイ等の反射防止膜
として基材の最外層に形成され、過酷な環境や取り扱い
にも充分に耐えられるものである。
As described above, the antireflection laminate of the present invention is obtained by applying a low refractive index composition comprising silica sol particles, an acrylic group-containing silicon compound and a polyfunctional acrylic monomer to a substrate, By forming a low-refractive-index composition coating with controlled surface roughness and forming a coating exhibiting a molecular-level hybrid structure of inorganic and organic compounds, the optical properties of a low refractive index due to the nanoporous structure, hardness, and resistance It has become possible to provide an antireflection laminate having physical properties such as abrasion. Therefore, the antireflection laminate of the present invention is formed on the outermost layer of the substrate as an antireflection film for a display or the like, and can sufficiently withstand a severe environment and handling.

【0041】また、本発明の反射防止積層体は、従来の
蒸着法あるいはスパッタ法などのドライコーティングに
よって薄膜を形成して反射防止膜を形成する方法に比較
して、装置コストも比較的安価で、成膜(塗工)速度も
10倍以上で生産性も高く、製造も容易である。
The antireflection laminate of the present invention has a relatively low apparatus cost as compared with a conventional method of forming a thin film by dry coating such as a vapor deposition method or a sputtering method to form an antireflection film. The film forming (coating) speed is 10 times or more, the productivity is high, and the production is easy.

【0042】さらに、本発明の反射防止積層体は、被膜
を形成する低屈折率組成物が光照射等で硬化するため、
低温での塗工が可能で、フィルム等の巻き取り塗工で作
成することができるので安価に、大量生産できるといっ
た効果を奏するものである。
Further, in the antireflection laminate of the present invention, the low refractive index composition for forming a film is cured by light irradiation or the like.
Coating at a low temperature is possible, and it can be produced by winding coating of a film or the like, so that there is an effect that mass production can be performed at low cost.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09D 183/07 C09D 183/07 G02B 1/11 C08L 101:00 // C08L 101:00 G02B 1/10 A Fターム(参考) 2K009 AA04 BB02 BB11 BB28 CC06 CC09 CC24 CC35 CC42 DD02 DD05 DD06 4F006 AA02 AB24 AB54 AB76 BA14 CA05 DA04 4F100 AA20B AG00A AH06B AJ06 AK01A AK25B AK52B BA02 CA30 DE01B DJ00B JA20B JB14B JK14B JM01B JN06 JN18B JN30B YY00B 4J038 DL022 DL032 DM022 FA121 GA01 GA02 GA15 HA446 KA20 MA14 NA11 NA12 NA17 NA19 PA17 PB08 PC03 PC08──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C09D 183/07 C09D 183/07 G02B 1/11 C08L 101: 00 // C08L 101: 00 G02B 1/10 A F-term (Reference) 2K009 AA04 BB02 BB11 BB28 CC06 CC09 CC24 CC35 CC42 DD02 DD05 DD06 4F006 AA02 AB24 AB54 AB76 BA14 CA05 DA04 4F100 AA20B AG00A AH06B AJ06 AK01A AK25B AK52B BA02 CA30 J01BJJBJJBJJBJB20J01 FA121 GA01 GA02 GA15 HA446 KA20 MA14 NA11 NA12 NA17 NA19 PA17 PB08 PC03 PC08

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】ガラス、プラスチックなどの基材の少なく
とも片面に、ナノポーラス構造を有する低屈折率組成物
被膜が形成された反射防止積層体において、前記低屈折
率組成物被膜のヘイズが1%以下であり、かつ5μm四
方の微小領域における10点平均粗さRzが100nm
以下でかつ算術平均粗さRaが 2〜10nmであるこ
とを特徴とする反射防止積層体。
1. An antireflection laminate in which a low refractive index composition film having a nanoporous structure is formed on at least one surface of a substrate such as glass or plastic, wherein the haze of the low refractive index composition film is 1% or less. And a 10-point average roughness Rz in a small area of 5 μm square is 100 nm.
An antireflection laminate characterized by having an arithmetic average roughness Ra of 2 to 10 nm or less.
【請求項2】前記低屈折率組成物被膜が、平均粒径が5
〜100nmの無機超微粒子と、分子中にビニル基、ア
クリロイル基、メタクリロイル基などの重合可能な不飽
和結合を少なくとも3個以上を有するアクリル系化合物
とを主成分とすることを特徴とする請求項1に記載の反
射防止積層体。
2. The low-refractive-index composition coating having an average particle size of 5
Claims: 1. An inorganic ultrafine particle having a size of from 100 to 100 nm and an acrylic compound having at least three polymerizable unsaturated bonds such as a vinyl group, an acryloyl group and a methacryloyl group in a molecule. 2. The anti-reflection laminate according to 1.
【請求項3】前記低屈折率組成物被膜が、請求項2記載
の前記低屈折率組成物被膜の成分に、さらに 一般式(A) R’X Si(OR)4-X (R:アルキル基、R’:末端にビニル基、アクリロイ
ル基、メタクリロイル基などの重合可能な不飽和結合を
有する官能基、xは0<x<4の置換数)で表される有
機ケイ素化合物、およびその加水分解物とが含まれてな
ることを特徴とする請求項1に記載の反射防止積層体。
3. The low-refractive-index composition coating according to claim 2, further comprising the general formula (A) R ′ X Si (OR) 4-x (R: alkyl) Group, R ′: a functional group having a polymerizable unsaturated bond such as a vinyl group, an acryloyl group or a methacryloyl group at a terminal, x is an organic silicon compound represented by 0 <x <4), and a hydrolyzate thereof. The antireflection laminate according to claim 1, further comprising a decomposition product.
【請求項4】前記無機超微粒子が、50〜100nmの
範囲の粒径が10%以上有するシリカゾル粒子であっ
て、低屈折率組成物被膜中のシリカゾル粒子の含有量が
40〜80%であることを特徴とする請求項1〜3いず
れか1項に記載の反射防止積層体。
4. The inorganic ultrafine particles are silica sol particles having a particle diameter in the range of 50 to 100 nm of 10% or more, and the content of the silica sol particles in the low refractive index composition coating is 40 to 80%. The antireflection laminate according to any one of claims 1 to 3, wherein
【請求項5】前記アクリル系化合物が、3官能以上のア
クリルモノマーおよびその変性体で、平均分子量が20
0〜1000であることを特徴とする請求項1〜4のい
ずれか1項に記載の反射防止積層体。
5. The acrylic compound is a trifunctional or higher functional acrylic monomer or a modified product thereof, and has an average molecular weight of 20.
The antireflection laminate according to any one of claims 1 to 4, wherein the number is from 0 to 1,000.
【請求項6】前記有機ケイ素化合物が 一般式(B) CH2=CHCOO−(CH)n−Si(OR)4 (R:アルキル基、xは0<x<4の置換数、nはn<
5の整数)で表されるアクリロイル基含有ケイ素化合物
であって、シリカゾル粒子にあらかじめ修飾されてなる
ことを特徴とする請求項1〜5のいずれか1項に記載の
反射防止積層体。
6. The organic silicon compound represented by the general formula (B): CH 2 CHCHCOO— (CH) n —Si (OR) 4 (R: alkyl group, x is a substitution number of 0 <x <4, n is n <
The acryloyl group-containing silicon compound represented by (an integer of 5), which is previously modified with silica sol particles, and is an antireflection laminate according to any one of claims 1 to 5.
【請求項7】前記アクリロイル基含有ケイ素化合物が、
シリカゾル粒子/アクリロイル基含有ケイ素化合物のモ
ル比で1/0.04〜1/0.25(重量換算で90/
10〜60/40wt%相当)の範囲を満たす比率で、
シリカゾル粒子の表面を修飾していることを特徴とする
請求項1〜6のいずれか1項に記載の反射防止積層体。
7. The acryloyl group-containing silicon compound,
The molar ratio of silica sol particles / acryloyl group-containing silicon compound is from 1 / 0.04 to 1 / 0.25 (90 /
10 to 60/40 wt%).
The antireflection laminate according to any one of claims 1 to 6, wherein the surface of the silica sol particles is modified.
JP2000268173A 2000-09-05 2000-09-05 Anti-reflection laminate Expired - Fee Related JP4590705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000268173A JP4590705B2 (en) 2000-09-05 2000-09-05 Anti-reflection laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000268173A JP4590705B2 (en) 2000-09-05 2000-09-05 Anti-reflection laminate

Publications (2)

Publication Number Publication Date
JP2002079600A true JP2002079600A (en) 2002-03-19
JP4590705B2 JP4590705B2 (en) 2010-12-01

Family

ID=18754981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000268173A Expired - Fee Related JP4590705B2 (en) 2000-09-05 2000-09-05 Anti-reflection laminate

Country Status (1)

Country Link
JP (1) JP4590705B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003011292A (en) * 2001-07-03 2003-01-15 Bridgestone Corp Wear-resistant film and laminated body
JP2004300172A (en) * 2003-03-28 2004-10-28 Dainippon Printing Co Ltd Coating composition, its coating film, anti-reflection membrane, antireflection film and image display apparatus
WO2004113966A1 (en) * 2003-06-18 2004-12-29 Asahi Kasei Kabushiki Kaisha Antireflective film
JP2005266782A (en) * 2004-02-16 2005-09-29 Fuji Photo Film Co Ltd Anti reflection film, polarizer using it, picture display device using them, and manufacturing method of anti reflection film
JP2005283611A (en) * 2004-03-26 2005-10-13 Dainippon Printing Co Ltd Antireflection film
WO2005097483A1 (en) * 2004-03-31 2005-10-20 Dai Nippon Printing Co., Ltd. Antireflective multilayer body
JP2006047903A (en) * 2004-08-09 2006-02-16 Canon Inc Polarized beam splitter and projection device having the same
WO2006022427A1 (en) * 2004-08-27 2006-03-02 Fujifilm Corporation Anti-reflection film and polarizing plate and image display comprising same
JP2006139254A (en) * 2004-11-11 2006-06-01 Ind Technol Res Inst Antireflective coating composition, antireflection film, and fabrication method thereof
JP2006145709A (en) * 2004-11-18 2006-06-08 Hitachi Ltd Antireflecting membrane, optical component using antireflecting membrane, image forming apparatus using antireflecting membrane
JP2006182937A (en) * 2004-12-28 2006-07-13 Kuraray Co Ltd Curable resin composition and antireflection material
JP2006265530A (en) * 2005-02-28 2006-10-05 Toray Ind Inc Coating material and optical article using same
JP2007065523A (en) * 2005-09-02 2007-03-15 Hitachi Displays Ltd Display panel, display device, and apparatus having the same
JP2007507342A (en) * 2003-05-20 2007-03-29 ディーエスエム アイピー アセッツ ビー.ブイ. Method for coating a nanostructured surface, nanostructured coating, and article comprising the coating
JP2008081743A (en) * 2007-10-16 2008-04-10 Toppan Printing Co Ltd Low refractive index coating agent and antireflection film
US7695781B2 (en) 2004-02-16 2010-04-13 Fujifilm Corporation Antireflective film, polarizing plate including the same, image display unit including the same and method for producing antireflective film
JP2011133905A (en) * 2011-03-03 2011-07-07 Toppan Printing Co Ltd Anti-reflection stack
CN102153290A (en) * 2010-12-03 2011-08-17 中国科学院上海硅酸盐研究所 Method for preparing porosity-adjustable nano porous antireflection film by doping organic template
JP2011202104A (en) * 2010-03-26 2011-10-13 Teijin Dupont Films Japan Ltd Hard coat film
WO2012121858A1 (en) 2011-03-09 2012-09-13 3M Innovative Properties Company Antireflective film comprising large particle size fumed silica
JP2014048410A (en) * 2012-08-30 2014-03-17 Dainippon Printing Co Ltd Optical film
JP2016219545A (en) * 2015-05-18 2016-12-22 旭化成株式会社 Coating film for solar cell
WO2017117093A1 (en) 2015-12-30 2017-07-06 3M Innovative Properties Company Processing tape for optical articles
US11312874B2 (en) 2016-03-09 2022-04-26 Lg Chem, Ltd. Antireflection film
CN115782323A (en) * 2018-03-06 2023-03-14 日本板硝子株式会社 Glass laminate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748527A (en) * 1993-08-06 1995-02-21 Sumitomo Osaka Cement Co Ltd Optical meterial having antireflection layer and production thereof
JPH08244178A (en) * 1995-03-09 1996-09-24 Dainippon Printing Co Ltd Antireflection film containing ultra-fine particles, polarizing plate and liquid crystal display unit
JPH11352314A (en) * 1998-06-10 1999-12-24 Teijin Ltd Highly transparent heat ray reflection film
JP2000009907A (en) * 1998-06-18 2000-01-14 Fuji Photo Film Co Ltd Antireflection film and image display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748527A (en) * 1993-08-06 1995-02-21 Sumitomo Osaka Cement Co Ltd Optical meterial having antireflection layer and production thereof
JPH08244178A (en) * 1995-03-09 1996-09-24 Dainippon Printing Co Ltd Antireflection film containing ultra-fine particles, polarizing plate and liquid crystal display unit
JPH11352314A (en) * 1998-06-10 1999-12-24 Teijin Ltd Highly transparent heat ray reflection film
JP2000009907A (en) * 1998-06-18 2000-01-14 Fuji Photo Film Co Ltd Antireflection film and image display device

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4731743B2 (en) * 2001-07-03 2011-07-27 株式会社ブリヂストン Abrasion resistant film and laminate
JP2003011292A (en) * 2001-07-03 2003-01-15 Bridgestone Corp Wear-resistant film and laminated body
JP2004300172A (en) * 2003-03-28 2004-10-28 Dainippon Printing Co Ltd Coating composition, its coating film, anti-reflection membrane, antireflection film and image display apparatus
JP2007507342A (en) * 2003-05-20 2007-03-29 ディーエスエム アイピー アセッツ ビー.ブイ. Method for coating a nanostructured surface, nanostructured coating, and article comprising the coating
KR101114798B1 (en) * 2003-05-20 2012-03-05 디에스엠 아이피 어셋츠 비.브이. Nano-structured surface coating process nano-structured coatings and articles comprising the coating
WO2004113966A1 (en) * 2003-06-18 2004-12-29 Asahi Kasei Kabushiki Kaisha Antireflective film
US7604866B2 (en) 2003-06-18 2009-10-20 Asahi Kasei Kabushiki Kaisha Antireflection film
CN100375908C (en) * 2003-06-18 2008-03-19 旭化成株式会社 Antireflective film
US7695781B2 (en) 2004-02-16 2010-04-13 Fujifilm Corporation Antireflective film, polarizing plate including the same, image display unit including the same and method for producing antireflective film
JP2010156982A (en) * 2004-02-16 2010-07-15 Fujifilm Corp Antireflection film, polarizing plate using the same, and image display apparatus using them
JP2005266782A (en) * 2004-02-16 2005-09-29 Fuji Photo Film Co Ltd Anti reflection film, polarizer using it, picture display device using them, and manufacturing method of anti reflection film
JP4580774B2 (en) * 2004-02-16 2010-11-17 富士フイルム株式会社 Antireflection film, polarizing plate using the same, and display device using them
JP2005283611A (en) * 2004-03-26 2005-10-13 Dainippon Printing Co Ltd Antireflection film
JP4632403B2 (en) * 2004-03-26 2011-02-16 大日本印刷株式会社 Antireflection film
JP4544952B2 (en) * 2004-03-31 2010-09-15 大日本印刷株式会社 Anti-reflection laminate
JP2005313593A (en) * 2004-03-31 2005-11-10 Dainippon Printing Co Ltd Anti-reflective laminated body
WO2005097483A1 (en) * 2004-03-31 2005-10-20 Dai Nippon Printing Co., Ltd. Antireflective multilayer body
JP2006047903A (en) * 2004-08-09 2006-02-16 Canon Inc Polarized beam splitter and projection device having the same
JP4510547B2 (en) * 2004-08-09 2010-07-28 キヤノン株式会社 Polarization separating element and projection apparatus having the same
WO2006022427A1 (en) * 2004-08-27 2006-03-02 Fujifilm Corporation Anti-reflection film and polarizing plate and image display comprising same
US7659352B2 (en) 2004-11-11 2010-02-09 Industrial Technology Research Institute Antireflective coating composition, antireflection film, and fabrication method thereof
JP2006139254A (en) * 2004-11-11 2006-06-01 Ind Technol Res Inst Antireflective coating composition, antireflection film, and fabrication method thereof
JP2006145709A (en) * 2004-11-18 2006-06-08 Hitachi Ltd Antireflecting membrane, optical component using antireflecting membrane, image forming apparatus using antireflecting membrane
CN100465664C (en) * 2004-11-18 2009-03-04 株式会社日立制作所 Anti-reflecting membranes, a method for producing the membranes and their use for optical members display apparatus, optical storage media and solar energy converting devices
JP2006182937A (en) * 2004-12-28 2006-07-13 Kuraray Co Ltd Curable resin composition and antireflection material
JP2006265530A (en) * 2005-02-28 2006-10-05 Toray Ind Inc Coating material and optical article using same
US8248562B2 (en) 2005-09-02 2012-08-21 Hitachi Displays, Ltd. Display panel having an antireflection layer
JP2007065523A (en) * 2005-09-02 2007-03-15 Hitachi Displays Ltd Display panel, display device, and apparatus having the same
JP2008081743A (en) * 2007-10-16 2008-04-10 Toppan Printing Co Ltd Low refractive index coating agent and antireflection film
JP2011202104A (en) * 2010-03-26 2011-10-13 Teijin Dupont Films Japan Ltd Hard coat film
CN102153290A (en) * 2010-12-03 2011-08-17 中国科学院上海硅酸盐研究所 Method for preparing porosity-adjustable nano porous antireflection film by doping organic template
JP2011133905A (en) * 2011-03-03 2011-07-07 Toppan Printing Co Ltd Anti-reflection stack
WO2012121858A1 (en) 2011-03-09 2012-09-13 3M Innovative Properties Company Antireflective film comprising large particle size fumed silica
US9310527B2 (en) 2011-03-09 2016-04-12 3M Innovative Properties Company Antireflective film comprising large particle size fumed silica
JP2014048410A (en) * 2012-08-30 2014-03-17 Dainippon Printing Co Ltd Optical film
JP2016219545A (en) * 2015-05-18 2016-12-22 旭化成株式会社 Coating film for solar cell
WO2017117093A1 (en) 2015-12-30 2017-07-06 3M Innovative Properties Company Processing tape for optical articles
US10703943B2 (en) 2015-12-30 2020-07-07 3M Innovative Properties Company Processing tape for optical articles
US11312874B2 (en) 2016-03-09 2022-04-26 Lg Chem, Ltd. Antireflection film
CN115782323A (en) * 2018-03-06 2023-03-14 日本板硝子株式会社 Glass laminate

Also Published As

Publication number Publication date
JP4590705B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
JP2002079600A (en) Anti-reflection laminate
US20090004462A1 (en) Inorganic-Organic Hybrid Nanocomposite Antiglare and Antireflection Coatings
KR101009821B1 (en) Coating composition for antireflection, antireflection film and method for preparing the same
JP4380752B2 (en) Method for manufacturing antireflection laminate
JP4292634B2 (en) Method for manufacturing antireflection laminate
WO2005085913A1 (en) Antireflection film and process for producing the same
CN105263967A (en) Curable composition comprising siloxane oligomer and inorganic microparticles
WO2002077116A1 (en) Surface-treating agent comprising inorganic/organic composite material
TW200813172A (en) UV-curable antireflective coating composition, antireflective coating film using the same, and its manufacturing method
KR101268700B1 (en) Liquid curable composition, cured film, and antistatic layered product
JP4736234B2 (en) Method for manufacturing antireflection laminate
JP4866811B2 (en) Antireflection film
JP4759780B2 (en) Low refractive index composition, low refractive index film, optical multilayer film and antireflection film
JP4747421B2 (en) Anti-reflection laminate
JP2001164117A (en) High-refractive-index composition and antireflection laminate
CA2421465A1 (en) Coating compositions
JPH03145602A (en) Laminate and production thereof
JP2000356705A (en) High refractive index composition and optical film comprising the same
JP5124892B2 (en) Low refractive index composition for coating and optical multilayer film comprising the composition
JP2002243907A (en) Antireflection film and image display
JP4590665B2 (en) High refractive index composition, high refractive index film and antireflection film
JP2000336313A (en) Coating composition having high refractive index
JP4748132B2 (en) Method for manufacturing antireflection laminate
US20040039094A1 (en) Coating compositions
JP4649690B2 (en) Antireflection laminate and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees