JP2001164117A - High-refractive-index composition and antireflection laminate - Google Patents

High-refractive-index composition and antireflection laminate

Info

Publication number
JP2001164117A
JP2001164117A JP34737399A JP34737399A JP2001164117A JP 2001164117 A JP2001164117 A JP 2001164117A JP 34737399 A JP34737399 A JP 34737399A JP 34737399 A JP34737399 A JP 34737399A JP 2001164117 A JP2001164117 A JP 2001164117A
Authority
JP
Japan
Prior art keywords
refractive index
particles
composition
group
high refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34737399A
Other languages
Japanese (ja)
Inventor
Toshiaki Yoshihara
俊昭 吉原
Koichi Ohata
浩一 大畑
Yoshimi Inaba
喜己 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP34737399A priority Critical patent/JP2001164117A/en
Publication of JP2001164117A publication Critical patent/JP2001164117A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an antireflection laminate which exhibits a high antireflection performance and excellent physical strengths, is low in cost, and is excellent in productivity and to provide a method for producing the same. SOLUTION: A high-refractive-index composition is used which comprises crystalline high-refractive-index superfine particles (e.g. titanium oxide), an organosilicon compound represented by the formula: R'xSi(OR)4-x [R is an alkyl; R' is a functional group having a polymerizable unsaturated bond (e.g a vinyl, acryloyl, or methacryloyl group) at the end; and x is higher than 0 but lower than 4] [e.g. (3-acryloxypropyl)trimethoxysilane], etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は反射防止積層体に関
するもので、ガラスやプラスチックなどの透明基材など
に選択透過、あるいは吸収膜などの光学多層膜形成可能
な高屈折率組成物およびその組成物からなる反射防止性
積層体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antireflection laminate, and more particularly to a high refractive index composition capable of selectively transmitting to a transparent substrate such as glass or plastic, or forming an optical multilayer such as an absorption film, and the composition thereof. The present invention relates to an antireflection laminate made of a material.

【0002】[0002]

【従来の技術】従来、ガラスやプラスチックなどの基材
に、酸化チタンや酸化ケイ素などの無機酸化物を蒸着法
あるいはスパッタ法などのドライコーティングによって
薄膜を形成して反射防止膜などの光干渉による光学多層
膜を形成する方法が知られている。しかし、このような
ドライコーティングプロセスでは装置が高価で、成膜速
度が遅く、生産性が高くないなどの課題を有している。
2. Description of the Related Art Conventionally, a thin film is formed on a base material such as glass or plastic by an inorganic oxide such as titanium oxide or silicon oxide by a dry coating such as a vapor deposition method or a sputtering method, and the thin film is formed by light interference such as an antireflection film. A method for forming an optical multilayer film is known. However, such a dry coating process has problems such as an expensive apparatus, a low film formation rate, and low productivity.

【0003】これに対して金属アルコキシドなどを出発
組成とし、基材に塗工して光学多層膜を形成する方法が
知られており、高屈折率材料としてはTiやZrなどの
アルコキシドを用い、低屈折率材料としてはSiなどの
アルコキシドやF系のアクリル化合物などを用いる方法
が提案されている。
On the other hand, there is known a method of forming an optical multilayer film by coating a base material with a metal alkoxide or the like as a starting composition, and using an alkoxide such as Ti or Zr as a high refractive index material. As a low refractive index material, a method using an alkoxide such as Si or an F-based acrylic compound has been proposed.

【0004】しかしこれらの塗膜では、乾燥重合に高
温、長時間を必要とするため生産性に問題がある。また
ある程度の反射防止膜を得ることはできるが、硬度や耐
擦傷性、基材との密着性などの物理的強度が不十分であ
り、光学多層膜は最外層に使用されるため、強度が不十
分では実用に耐えることができないといった欠点を有し
ている。
However, these coating films require a high temperature and a long time for dry polymerization, and thus have a problem in productivity. Although some degree of anti-reflection film can be obtained, the physical strength such as hardness, scratch resistance, and adhesion to the substrate is insufficient, and the optical multilayer film is used as the outermost layer. If it is insufficient, it has a drawback that it cannot withstand practical use.

【0005】これらを改善するために、金属アルコキシ
ドとアクリル化合物との複合材料などが提案されている
(特開平8−297201など)。
[0005] In order to improve these, a composite material of a metal alkoxide and an acrylic compound has been proposed (Japanese Patent Application Laid-Open No. 8-297201).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、これら
の複合膜組成物は、硬度や耐擦傷性などの物理的強度を
向上させようとするとアクリル系モノマー成分比率を高
くする必要があり、高屈折率層では、光学特性を決定す
るTi系などのアルコキシドを出発組成とする高屈折率
酸化物や高屈折率微粒子などの体積比が抑制され高屈折
率化をはかることができないという欠点を有し、低屈折
率層では、シリカのアルコキシドやシリカゾル粒子など
の体積比が抑制され、低屈折率化ができないという欠点
を有し、この材料を用いた反射防止膜では十分な強度
(硬度や耐擦傷性、密着性などの物理的強度)を維持し
かつ反射防止性能に優れる積層体は見出されていない。
However, in these composite film compositions, it is necessary to increase the ratio of acrylic monomer components in order to improve physical strength such as hardness and abrasion resistance. The layer has a disadvantage that the volume ratio of a high-refractive-index oxide or a high-refractive-index fine particle starting from an alkoxide such as a Ti-based compound that determines optical properties is suppressed, and a high refractive index cannot be achieved. The low refractive index layer has a disadvantage that the volume ratio of silica alkoxide and silica sol particles is suppressed, and the refractive index cannot be reduced. The antireflection film using this material has a sufficient strength (hardness and scratch resistance). , Physical properties such as adhesion, etc.) and excellent in antireflection performance have not been found.

【0007】そこで、本発明は、高い反射防止性能を有
しかつ物理的的強度にも優れ、安価で、生産性に優れた
反射防止積層体およびその製法を提供することを目的と
する。
Accordingly, an object of the present invention is to provide an antireflection laminate having high antireflection performance, excellent physical strength, low cost, and excellent productivity, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】上述の課題を達成すべく
検討した結果、酸化チタンなどの結晶性高屈折超微粒子
と(3−アクリロキシプロピル)トリメトキシシランな
どに代表される一般式(A)R’x Si(OR)
4-x (R:アルキル基、R’:末端にビニル基、アクリ
ロイル基、メタクリロイル基などの重合可能な不飽和結
合を有する官能基、xは0<x<4の置換数、)で表せ
る有機ケイ素化合物と、さらにジペンタエリストリール
ヘキサアクリレート(DPHA)などに代表される多官
能アクリル化合物を主成分とする組成物にてUV硬化型
有機無機ハイブリド膜を形成することで課題を解決でき
ることを見出した。
As a result of investigations to achieve the above-mentioned object, crystalline high refraction ultrafine particles such as titanium oxide and a compound represented by the general formula (A) represented by (3-acryloxypropyl) trimethoxysilane and the like are obtained. ) R ' x Si (OR)
4-x (R: an alkyl group, R ': a functional group having a polymerizable unsaturated bond such as a vinyl group, an acryloyl group, or a methacryloyl group at a terminal, x is an organic group represented by 0 <x <4) The problem can be solved by forming a UV-curable organic-inorganic hybrid film using a composition containing a silicon compound and a polyfunctional acrylic compound represented by dipentaerythryl hexaacrylate (DPHA) as a main component. I found it.

【0009】さらに、プラスチックやガラスなどの基材
の少なくとも一方に、ハードコート層/高屈折率層/低
屈折率層あるいはハードコート層/中屈折率層/高屈折
率層/低屈折率層を順次積層してるなる多層構成の反射
防止膜が形成された積層体において、本発明の高屈折率
組成物を高屈折率層とすること、その上、低屈折率層も
同様のUV硬化型の有機無機ハイブリッド膜にて形成す
ることで、反射防止積層体としても光学性能と強度の両
立を可能とする積層体が得られることを見出した。
Further, a hard coat layer / high refractive index layer / low refractive index layer or a hard coat layer / medium refractive index layer / high refractive index layer / low refractive index layer is formed on at least one of the substrates such as plastic and glass. In the laminate in which the antireflection film having a multilayer structure formed by sequentially laminating, the high refractive index composition of the present invention is a high refractive index layer, and the low refractive index layer is also a similar UV curable type. It has been found that by forming an organic-inorganic hybrid film, a laminate that can achieve both optical performance and strength can be obtained as an antireflection laminate.

【0010】本発明のハイブリッド系組成物は、粒子と
シランカップリング剤とアクリル系バインダーを用いて
おり、ハードコート組成物としては公知の技術の組合せ
ではあるが、粒径の制御、特定組成の材料を用いて有機
無機ハイブリッド膜を形成したり、特定比率にて表面修
飾することで、光学薄膜として、最適な材料設計条件を
見出すに至り、強度と光学性能の両立可能な本発明の組
成物ならびにその組成物からなる反射防止積層体を提供
するものである。
[0010] The hybrid composition of the present invention uses particles, a silane coupling agent and an acrylic binder, and is a combination of known techniques as a hard coat composition. By forming an organic-inorganic hybrid film using a material or by modifying the surface at a specific ratio, it is possible to find the optimal material design conditions as an optical thin film, and the composition of the present invention that can achieve both strength and optical performance And an antireflection laminate comprising the composition.

【0011】酸化チタンなどの高屈折微粒子、シリカゾ
ル微粒子などの無機微粒子とアクリロイル基含有ケイ素
化合物、さらに分子中にビニル基、アクリロイル基、メ
タクリロイル基などの重合可能な不飽和結合を少なくと
も3個以上を有するアクリル系化合物とを主成分とする
ことで、塗膜形成後にUVあるいはEB照射によるアク
リロイル基などの重合可能な不飽和結合基の光(EB)
重合による架橋硬化するものであり、特定の材料を特定
組成比率で用い、該粒子を表面修飾して用いたりさらに
アクリル化合物を3官能以上とすることで被膜の架橋密
度が高くでき十分な強度を得ることができるものであ
る。
Inorganic fine particles such as fine particles of high refractive index such as titanium oxide and fine particles of silica sol and an acryloyl group-containing silicon compound, and at least three or more polymerizable unsaturated bonds such as vinyl group, acryloyl group and methacryloyl group in the molecule. Having an acrylic compound as the main component, the light (EB) of a polymerizable unsaturated bond group such as an acryloyl group by UV or EB irradiation after coating film formation
Cross-linking and curing by polymerization, using a specific material in a specific composition ratio, surface-modifying the particles or using an acrylic compound with three or more functionalities can increase the cross-linking density of the coating and provide sufficient strength. What you can get.

【0012】請求項に即して本発明を繰り返するなら、
請求項1記載の発明においては、平均粒径5〜50nm
の結晶性の酸化チタン、酸化ジルコニウム、酸化亜鉛、
酸化インジウムから選ばれる高屈折超微粒子とR’x
i(OR)4-x (R:アルキル基、R’:末端にビニル
基、アクリロイル基、メタクリロイル基などの重合可能
な不飽和結合を有する官能基、xは0<x<4の置換
数)、およびその加水分解物の少なくとも1種と分子中
にビニル基、アクリロイル基、メタクリロイル基などの
重合可能な不飽和結合を少なくとも3個以上を有するア
クリル系化合物とを主成分とすることを特徴とする高屈
折率組成物を提供するものである。
If the present invention is repeated according to the claims,
In the first aspect of the present invention, the average particle size is 5 to 50 nm.
Crystalline titanium oxide, zirconium oxide, zinc oxide,
High refractive ultrafine particles selected from indium oxide and R ' x S
i (OR) 4-x (R: alkyl group, R ': functional group having a polymerizable unsaturated bond such as a vinyl group, acryloyl group, methacryloyl group at the terminal, x is 0 <x <4) And an acrylic compound having at least three or more polymerizable unsaturated bonds such as a vinyl group, an acryloyl group, and a methacryloyl group in the molecule, and at least one hydrolyzate thereof. To provide a high refractive index composition.

【0013】請求項2記載の発明においては、前記高屈
折率組成物において、前記高屈折率微粒子が40〜80
wt%含有されかつ、前記アクリル系化合物が3官能以
上のアクリルモノマーおよびその変性体で、平均分子量
が200〜1000であることを特徴とする請求項1記
載の高屈折率組成物を提供するものである。
In the invention according to claim 2, in the high refractive index composition, the high refractive index fine particles are 40 to 80 fine particles.
2. The high refractive index composition according to claim 1, wherein the high refractive index composition is an acrylic monomer containing 3 wt% or more and the acrylic compound having a functionality of 3 or more and a modified product thereof having an average molecular weight of 200 to 1,000. It is.

【0014】請求項3記載の発明においては、前記高屈
折率組成物を形成するR’x Si(OR)4-x がCH2
=CHCOO−(CH)n−Si(OR)4 (R:アル
キル基、xは0<x<4の置換数、nはn<5の整数)
であって、高屈折微粒子にあらかじめ修飾されてなるこ
とを特徴とする請求項1、2何れか記載の高屈折率組成
物を提供するものである。
In the invention according to claim 3, R ' x Si (OR) 4-x forming the high refractive index composition is CH 2.
= CHCOO- (CH) n-Si (OR) 4 (R: alkyl group, x is the number of substitutions of 0 <x <4, n is an integer of n <5)
3. The high refractive index composition according to claim 1, wherein the high refractive index fine particles are modified in advance.

【0015】請求項4記載の発明においては、前記CH
2 =CHCOO−(CH)n−Si(OR)4 が修飾粒
子に対して比率が、粒子/CH2 =CHCOO−(C
H)n−Si(OR)4 のモル比で1/0.03〜1/
0.17(重量換算で90/10〜60/40wt%相
当)であることを特徴とする請求項1〜3何れかに記載
の高屈折率組成物を提供するものである。
In the invention described in claim 4, the CH
2 = CHCOO- (CH) n- Si (OR) 4 ratio with respect to the modified particles, the particles / CH 2 = CHCOO- (C
H) The molar ratio of n-Si (OR) 4 is from 1 / 0.03 to 1 /
The high refractive index composition according to any one of claims 1 to 3, wherein the composition is 0.17 (equivalent to 90/10 to 60/40 wt% in terms of weight).

【0016】請求項5記載の発明においては、前記CH
2 =CHCOO−(CH)n−Si(OR)4 を粒子修
飾する際に、pトルエンスルホン酸などのスルホン酸触
媒下で反応させてなることを特徴とする請求項4に記載
の高屈折率組成物を提供するものである。
In the invention according to claim 5, the CH
5. The high refractive index according to claim 4, wherein when the particles are modified with 2 CHCHCOO— (CH) n—Si (OR) 4 , they are reacted under a sulfonic acid catalyst such as p-toluenesulfonic acid. It provides a composition.

【0017】請求項6記載の発明においては、基材の少
なくとも一方に、ハードコート層/高屈折率層/低屈折
率層あるいはハードコート層/中屈折率層/高屈折率層
/低屈折率層を順次積層してるなる多層構成の反射防止
膜が形成された積層体において、該高屈折率層が請求項
1〜5の何れか1項記載の高屈折率組成物からなること
を特徴とする反射防止積層体を提供するものである。
In the sixth aspect of the present invention, at least one of the substrates has a hard coat layer / high refractive index layer / low refractive index layer or a hard coat layer / medium refractive index layer / high refractive index layer / low refractive index. In a laminate in which a multi-layered antireflection film formed by sequentially laminating layers is formed, the high refractive index layer is made of the high refractive index composition according to any one of claims 1 to 5. The present invention provides an antireflection laminate having the following characteristics.

【0018】請求項7記載の発明においては、請求項6
記載の反射防止積層体において前記低屈折率層が平均粒
径が5〜100nmのシリカゾルとR’x Si(OR)
4-x(R:アルキル基、R’:末端にビニル基、アクリ
ロイル基、メタクリロイル基などの重合可能な不飽和結
合を有する官能基、xは0<x<4の置換数)、および
その加水分解物と分子中にビニル基、アクリロイル基、
メタクリロイル基などの重合可能な不飽和結合を少なく
とも3個以上を有するアクリル系化合物とを主成分とす
る低屈折率組成物からなることを特徴とする反射防止積
層体を提供するものである。
According to the seventh aspect of the present invention, in the sixth aspect,
In the antireflection laminate described above, the low refractive index layer has a silica sol having an average particle size of 5 to 100 nm and R ′ x Si (OR).
4-x (R: an alkyl group, R ': a functional group having a polymerizable unsaturated bond such as a vinyl group, an acryloyl group, or a methacryloyl group at a terminal, x is 0 <x <4, the number of substitutions) Vinyl group, acryloyl group,
Another object of the present invention is to provide an antireflection laminate comprising a low refractive index composition containing, as a main component, an acrylic compound having at least three polymerizable unsaturated bonds such as a methacryloyl group.

【0019】請求項8記載の発明においては、請求項7
記載の反射防止積層体において前記低屈折率組成物がシ
リカゾル粒子を30〜80wt%含有し、かつ前記アク
リル系化合物が3官能以上のアクリルモノマーおよびそ
の変性体で、平均分子量が200〜1000からなるこ
とを特徴とする反射防止積層体を提供するものである。
In the invention according to claim 8, claim 7
In the antireflection laminate described above, the low refractive index composition contains 30 to 80% by weight of silica sol particles, and the acrylic compound is a trifunctional or more functional acrylic monomer and a modified product thereof, and has an average molecular weight of 200 to 1,000. It is intended to provide an antireflection laminate characterized by the above.

【0020】請求項9記載の発明においては、請求項
7、8何れか記載の反射防止積層体において、前記低屈
折率組成物中にシリカゾル粒子が30〜80wt%以上
含有され、なかでも平均粒径が50〜100nmのシリ
カゾル粒子が10〜60wt%含有されてなることを特
徴とすると請求項1、2何れかに記載の反射防止積層体
を提供するものである。
According to a ninth aspect of the present invention, in the antireflection laminate according to any one of the seventh and eighth aspects, the low refractive index composition contains 30 to 80% by weight or more of silica sol particles, and among others, the average particle size The antireflection laminate according to any one of claims 1 and 2, wherein the silica sol particles having a diameter of 50 to 100 nm are contained in an amount of 10 to 60 wt%.

【0021】請求項10記載の発明においては、請求項
7〜9何れか記載の反射防止積層体において前記低屈折
率組成物を形成する有機ケイ素化合物がCH2 =CHC
OO−(CH)n −Si(OR)4 (R:アルキル基、
xは0<x<4の置換数、nはn<5の整数)であっ
て、シリカ粒子にあらかじめ修飾されてなることを特徴
とする反射防止積層体を提供するものである。
In the tenth aspect, the organosilicon compound forming the low refractive index composition in the antireflection laminate according to any one of the seventh to ninth aspects is CH 2が CHC.
OO— (CH) n —Si (OR) 4 (R: alkyl group,
x is a substitution number of 0 <x <4, and n is an integer of n <5), and provides an antireflection laminate characterized by being modified in advance with silica particles.

【0022】請求項11記載の発明においては、請求項
10記載の反射防止積層体においてCH2 =CHCOO
−(CH)n −Si(OR)4 が修飾粒子に対して比率
が、粒子/CH2 =CHCOO−(CH)n −Si(O
R)4 のモル比で1/0.04〜1/0.25(重量換
算で90/10〜60/40wt%相当)であることを
特徴とする反射防止積層体を提供するものである。
According to the eleventh aspect of the present invention, in the antireflection laminate of the tenth aspect, CH 2 CHCOO
The ratio of — (CH) n —Si (OR) 4 to modified particles is as follows: particles / CH 2 CHCHCOO— (CH) n —Si (O
R) The molar ratio of 4 is 1 / 0.04 to 1 / 0.25 (corresponding to 90/10 to 60/40 wt% in terms of weight) to provide an antireflection laminate.

【0023】請求項12記載の発明においては、請求項
10、11何れか記載の反射防止積層体において前記C
2 =CHCOO−(CH)n −Si(OR)4 を粒子
修飾する際に、pトルエンスルホン酸などのスルホン酸
触媒下で反応させてなることを特徴とする請求項5に記
載の反射防止積層体を提供するものである。
According to a twelfth aspect of the present invention, in the antireflection laminate according to any one of the tenth and eleventh aspects, the C
6. The anti-reflection method according to claim 5, wherein when H 2 CHCHCOO— (CH) n —Si (OR) 4 is subjected to particle modification, it is reacted under a sulfonic acid catalyst such as p-toluenesulfonic acid. A laminate is provided.

【0024】[0024]

【発明の実施の形態】本発明の一実施例を詳細に説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described in detail.

【0025】本発明の組成物は、酸化チタンなどの高屈
折微粒子と末端にビニル基、アクリロイル基、メタクリ
ロイル基などの重合可能な不飽和結合を有する有機ケイ
素化合物と分子中にビニル基、アクリロイル基、メタク
リロイル基などの重合可能な不飽和結合を少なくとも3
個以上を有するアクリル系化合物とを主成分とする組成
物からなるものてあり、これを基材に塗工し、加熱乾燥
し、被膜を形成した後、UVなどの光照射を施すことで
高屈折率被膜を形成可能とするものである。
The composition of the present invention comprises a highly refractive fine particle such as titanium oxide, an organic silicon compound having a polymerizable unsaturated bond such as a vinyl group, an acryloyl group or a methacryloyl group at a terminal, and a vinyl group or an acryloyl group in a molecule. And at least 3 polymerizable unsaturated bonds such as methacryloyl groups.
It is composed of a composition mainly composed of at least one acrylic compound and is applied to a substrate, dried by heating, and after forming a film, it is highly irradiated by UV or other light irradiation. This enables a refractive index coating to be formed.

【0026】高屈折率組成物中に含まれる各成分につい
て以下に詳述する。
Each component contained in the high refractive index composition will be described in detail below.

【0027】本発明において用いられる高屈折率微粒子
は、湿式合成法、気相合成法などで合成される超微粒子
であり、高屈折率成分であれば特に限定されないが、結
晶性の酸化チタン、酸化ジルコニウム、酸化亜鉛、酸化
インジウムから選ばれる高屈折超微粒子が屈折率が高
く、化学的に安定で製造も容易であり好適である。これ
ら微粒子の平均粒径は5nm以下では微粒子の結晶性が
低下して屈折率を高くできずまた粒子の生産性も悪い、
50nm以上では光散乱により膜の透明性が損なわれる
ので不適である。
The high refractive index fine particles used in the present invention are ultrafine particles synthesized by a wet synthesis method, a gas phase synthesis method or the like, and are not particularly limited as long as they have a high refractive index component. High-refractive ultrafine particles selected from zirconium oxide, zinc oxide and indium oxide are preferable because they have a high refractive index, are chemically stable, and are easy to produce. When the average particle size of these fine particles is 5 nm or less, the crystallinity of the fine particles is reduced, so that the refractive index cannot be increased and the productivity of the particles is poor.
When the thickness is 50 nm or more, the transparency of the film is impaired by light scattering, which is not suitable.

【0028】これらの高屈折率成分の含有量は、目的と
する屈折率にあわせて適宜調整することができるが、反
射防止積層体の高屈折率組成物として用いる場合は40
〜80%が好適で、40%以下では高屈折率化がはかれ
ず、80%以上では十分な強度を発現できないので不適
である。
The content of these high refractive index components can be appropriately adjusted according to the target refractive index.
If it is less than 40%, the refractive index cannot be increased, and if it is more than 80%, it is not suitable because sufficient strength cannot be exhibited.

【0029】本発明において用いられる、末端にビニル
基、アクリロイル基、メタクリロイル基などの重合可能
な不飽和結合を有する有機ケイ素化合物とは一般式
(A)R’x Si(OR)4-x (R:アルキル基、
R’:末端にビニル基、アクリロイル基、メタクリロイ
ル基などの重合可能な不飽和結合を有する官能基、xは
0<x<4の置換数、)で表せる有機ケイ素化合物(以
下化合物Aと称す)であって、ビニルトリメトキシチタ
ン、メタクリロキシトリイソプロポキシチタネート、メ
タクリロキシプロピルトリイソプロポキシジルコネート
などが例示される。
The organosilicon compound having a polymerizable unsaturated bond such as a vinyl group, an acryloyl group or a methacryloyl group at the terminal used in the present invention is represented by the general formula (A) R ' x Si (OR) 4-x ( R: an alkyl group,
R ′: a functional group having a polymerizable unsaturated bond such as a vinyl group, an acryloyl group, or a methacryloyl group at a terminal, and x is an organic silicon compound (hereinafter referred to as compound A) represented by 0 <x <4. And examples thereof include vinyltrimethoxytitanium, methacryloxytriisopropoxytitanate, and methacryloxypropyltriisopropoxyzirconate.

【0030】なかでも(3−アクリロキシプロピル)ト
リメトキシシランなどに代表されるCH2 =CHCOO
−(CH)n−Si(OR)4 (R:アルキル基、xは
0<x<4の置換数、nはn<5の整数)で表せるアク
リロイル基含ケイ素化合物(以下化合物Bと称す)が好
適である。
Among them, CH 2 CHCHCOO represented by (3-acryloxypropyl) trimethoxysilane and the like
An acryloyl group-containing silicon-containing compound represented by-(CH) n-Si (OR) 4 (R: alkyl group, x is the number of substitutions of 0 <x <4, n is an integer of n <5) (hereinafter referred to as compound B) Is preferred.

【0031】これらの有機金属ケイ素化合物は組成物中
にp−トルエンスルホン酸などの有機酸触媒を含有させ
ることで、塗工後に大気中の水分でもって加水分解反応
させて被膜形成しても良いし、またあらかじめ水(塩酸
などの触媒を含む)を添加し加水分解反応させたものを
用いることもできる。
These organometallic silicon compounds may be coated with an organic acid catalyst such as p-toluenesulfonic acid in the composition to form a film by a hydrolysis reaction with atmospheric moisture after coating. Alternatively, water (including a catalyst such as hydrochloric acid) added in advance and subjected to a hydrolysis reaction may be used.

【0032】その際に、有機ケイ素化合物の加水分解物
が、該有機ケイ素化合物の全アルコキシル基を加水分解
させるのに必要な水の量よりも1/8〜7/8の量の水
で部分加水分解されたものであるとすることで安定な組
成物を得ることができ、余分な水を残すことなく特別な
分離精製せずに用いることができる。
At this time, the hydrolyzate of the organosilicon compound is partially removed with water in an amount 1/8 to 7/8 of the amount of water required to hydrolyze all the alkoxyl groups of the organosilicon compound. By being hydrolyzed, a stable composition can be obtained, and can be used without leaving extra water and without special separation and purification.

【0033】上記の調整は、アクリル化合物と余分な水
との副反応を抑制したり、ケイ素化合物の加水分解率を
コントロールして、ケイ素化合物ポリマーの成長を抑制
したり、相溶性を高めることで、相分離を抑制し均質で
分子架橋密度が高く、分子レベルのハイブリッド膜を形
成至らしめるものである。
The above adjustment is performed by suppressing a side reaction between the acrylic compound and excess water, controlling the hydrolysis rate of the silicon compound, suppressing the growth of the silicon compound polymer, and increasing the compatibility. It is intended to suppress the phase separation and to form a homogeneous, high molecular crosslink density and a molecular level hybrid film.

【0034】特にこれらのアクリロイル基含有ケイ素化
合物の添加の際に、無機微粒子と化合物Aを別の系にて
混合反応させ、あらかじめ粒子表面に修飾させると、バ
インダー成分となるアクリル化合物の量を抑制しても十
分な強度を得られるなどの効果が大きくなり本発明の組
成物には好適である。
In particular, when the acryloyl group-containing silicon compound is added, the inorganic fine particles and the compound A are mixed and reacted in another system to modify the surface of the particles in advance, thereby suppressing the amount of the acrylic compound serving as a binder component. Even so, the effect of obtaining a sufficient strength is increased, which is suitable for the composition of the present invention.

【0035】表面修飾の方法は、塩酸、有機酸の存在下
で両者を混合し、有機金属のアルコキシド基と粒子表面
のOH基とを反応させることで容易に処理されるもので
あり、特別に分離精製することなく、そのまま他の成分
を添加してコーティング組成物を調整することができ
る。
The surface modification method is a method in which both are mixed in the presence of hydrochloric acid and an organic acid and easily treated by reacting an alkoxide group of an organic metal with an OH group on the particle surface. Without separating and purifying, the coating composition can be prepared by adding other components as they are.

【0036】なかでもアクリロイル基含有ケイ素化合物
を粒子修飾する際に、アルコールやケトン系などの有機
溶媒中でpトルエンスルホン酸などのスルホン酸触媒下
で反応させるのが修飾効率が良好で溶媒中への水の混入
を防止することができ好適である。
In particular, when the acryloyl group-containing silicon compound is subjected to particle modification, it is preferable that the reaction is carried out in an organic solvent such as an alcohol or a ketone under a sulfonic acid catalyst such as p-toluenesulfonic acid, so that the modification efficiency is good and the solvent is transferred into the solvent. This is preferable because it is possible to prevent the mixing of water.

【0037】さらに無機微粒子粒子とアクリロイル基含
有ケイ素化合物との比率をシリカゾル粒子/アクリロイ
ル基含有ケイ素化合物のモル比が1/0.03〜1/
0.17(重量換算で90/10〜60/40wt%相
当)とすることでハイブリッド膜の強度を向上させるこ
とができ好適である。
Further, the ratio of the inorganic fine particles to the acryloyl group-containing silicon compound is adjusted so that the molar ratio of silica sol particles / acryloyl group-containing silicon compound is 1 / 0.03 to 1 /
By setting it to 0.17 (corresponding to 90/10 to 60/40 wt% in terms of weight), the strength of the hybrid membrane can be improved, which is preferable.

【0038】また本発明に用いられる、アクリル化合物
とは、その分子中にビニル基、アクリロイル基やメタク
ルロイル基など重合可能なの不飽和結合を少なくとも3
個以上有するものであって、例えばDPHAなどのモノ
マー類と、これらのモノマーの変性体、および誘導体、
などが使用できる。
The acrylic compound used in the present invention is a compound having at least three polymerizable unsaturated bonds such as a vinyl group, an acryloyl group and a methacryloyl group in the molecule.
One or more, for example, monomers such as DPHA, and modified products and derivatives of these monomers;
Etc. can be used.

【0039】なかでもDPHA、PETA、PETAと
HDIなどのジイソシアネートとの反応生成であるプレ
ポリマーなど多官能アクリルモノマー類およびその変性
体などで平均分子量200〜1000のものであれば、
有機ケイ素化合物の加水分解物と相溶性が良く、被膜形
成時に相分離することなく、架橋密度の高い、均質で透
明なハイブリッド被膜が形成できる。
Among them, DPHA, PETA, polyfunctional acrylic monomers such as prepolymers produced by reaction of PETA with diisocyanates such as HDI, and modified products thereof having an average molecular weight of 200 to 1000,
It has good compatibility with the hydrolyzate of the organosilicon compound, and can form a homogeneous and transparent hybrid film having a high crosslinking density without phase separation during film formation.

【0040】これらのハイブリッド系組成物の組み合わ
せは、粒子を修飾してバインダーと混合するという概念
としては一般に公知ではあるが、本発明のハイブリッド
系組成物の組み合わせは、単なる組み合わせではなく、
マトリックスであるコート組成物の無機のネットワーク
と無機フィラーとの相溶性、親和性が高く、単に有機樹
脂中に分散するより、より良い分散状態、フィラーとマ
トリックスとの密着性が高い被膜が得られ、通常の添加
効果よりも高い効果が得られるものである。また、特に
これらのアクリロイル基含有ケイ素化合物の添加の際
に、無機微粒子と化合物Aを別の系にて混合反応させ、
あらかじめ粒子表面に修飾させると、バインダー成分と
なるアクリル化合物の量を抑制しても十分な強度を得ら
れるなどの効果が大きくなり本発明の組成物には好適で
ある。
Although the combination of these hybrid compositions is generally known as a concept of modifying particles and mixing with a binder, the combination of the hybrid composition of the present invention is not a simple combination,
The compatibility and affinity between the inorganic network and the inorganic filler of the coat composition, which is the matrix, is high, and a coating having a better dispersion state and higher adhesion between the filler and the matrix is obtained than simply dispersing in an organic resin. And an effect higher than the usual effect can be obtained. In addition, particularly when the acryloyl group-containing silicon compound is added, the inorganic fine particles and the compound A are mixed and reacted in another system,
If the surface of the particles is modified in advance, the effect of obtaining a sufficient strength even if the amount of the acrylic compound serving as a binder component is suppressed is increased, which is suitable for the composition of the present invention.

【0041】次に低屈折率組成物中に含まれる各成分に
ついて以下に詳述する。本発明において用いられる、シ
リカゾルとは平均粒径が5〜100nmの粒子径のシリ
カ粒子が溶媒中に分散されたもので、ケイ酸ナトリムな
どのケイ酸アルカリからイオン交換等でアルカリを除去
したり、酸で中和したりする方法で得られるシリカゾル
であって、水性でも、有機溶剤置換された有機溶媒系シ
リカゾルでも特に限定されないが、アクリルモノマーと
の相溶性、プラスティック基材への塗工適性などから有
機溶媒系のものが望ましい。
Next, each component contained in the low refractive index composition will be described in detail below. The silica sol used in the present invention is one in which silica particles having an average particle diameter of 5 to 100 nm are dispersed in a solvent, and an alkali is removed from an alkali silicate such as sodium silicate by ion exchange or the like. , A silica sol obtained by a method of neutralizing with an acid, and is not particularly limited to an aqueous solvent or an organic solvent-based silica sol substituted with an organic solvent, but is compatible with an acrylic monomer, and is suitable for coating on a plastic substrate. Thus, an organic solvent-based solvent is desirable.

【0042】この場合、5nm以下は製造が困難であ
り、100nm以上では光の散乱のため透明性が損なわ
れる。
In this case, if the thickness is less than 5 nm, it is difficult to manufacture, and if it is more than 100 nm, transparency is impaired due to scattering of light.

【0043】低屈折組成物とするためには粒子とバイン
ダーとの比率が重要であり、本発明の低屈折率組成物被
膜中の全シリカ粒子成分が30〜80wt%さらに好適
には40〜70wt%含有されていることがが望まし
く、30wt%以下では所望の屈折率が得られにくく、
80%以上では十分な強度を発現できなくなる。なかで
も粒径が50〜100nmである大粒子径成分が全シリ
カ粒子中に10〜60wt%含有されることで、組成物
被膜中に適当な微細凹凸あるいはナノポーラス構造とす
ることができるものであって、見掛けの屈折率を低下さ
せることができ好適である。
In order to obtain a low refractive index composition, the ratio of the particles to the binder is important, and the total silica particle component in the low refractive index composition coating of the present invention is 30 to 80 wt%, more preferably 40 to 70 wt%. %, It is difficult to obtain a desired refractive index below 30 wt%.
If it is 80% or more, sufficient strength cannot be exhibited. Above all, when a large particle diameter component having a particle diameter of 50 to 100 nm is contained in all the silica particles in an amount of 10 to 60 wt%, it is possible to form an appropriate fine unevenness or a nanoporous structure in the composition coating. Thus, the apparent refractive index can be reduced, which is preferable.

【0044】この大粒子径成分が10%以下でもある程
度の低屈折率化がはかれ、用途によっては十分な場合も
あるがその効果は小さい。一方60%以上ではナノポー
ラス化(ナノ凹凸化)度合が大きすぎるために、見掛け
屈折率は低下するものの、強度的に弱くなり、また表面
の凹凸のため指紋などの汚れが付着した際に拭き取りに
くいといった欠点があり、好ましくない。
Even if the large particle diameter component is 10% or less, the refractive index can be reduced to some extent, and depending on the application, it may be sufficient, but the effect is small. On the other hand, if it is 60% or more, the degree of nanoporosity (nano-roughening) is too large, and the apparent refractive index is reduced, but the strength is weak. Also, it is difficult to wipe off when dirt such as fingerprints adheres due to surface unevenness. This is not preferred.

【0045】低屈折率組成物の他の成分であるアクリロ
イル基など含有の有機ケイ素化合物、3官能以上のアク
リル系化合物は前述の高屈折率組成物に用いた材料を用
いることができる。また、組成比や粒子修飾なども同様
の手法、比率で用いることが好適である。
As the other components of the low refractive index composition, such as the acryloyl group-containing organosilicon compound and the trifunctional or higher acrylic compound, the materials used in the above high refractive index composition can be used. Further, it is preferable to use a composition ratio, particle modification, and the like in the same manner and ratio.

【0046】UV照射による硬化を行う際には、ラジカ
ル重合開始剤を添加すると好適であり、ベンゾインメチ
ルエーテルなどのベンゾインエーテル系開始剤、アセト
フェノン、2、1−ヒドロキシシクロヘキシルフェニル
ケトン、などのアセトフェノン系開始剤、ベンゾフェノ
ンなどのベンゾフェノン系開始剤など特に限定されるも
のではない。
When curing by UV irradiation, it is preferable to add a radical polymerization initiator, such as a benzoin ether-based initiator such as benzoin methyl ether, or an acetophenone-based initiator such as acetophenone or 2,1-hydroxycyclohexylphenyl ketone. The initiator and the benzophenone-based initiator such as benzophenone are not particularly limited.

【0047】上述した各成分をいくつか組み合わせてコ
ーティング組成物に加えることができ、さらに、物性を
損なわない範囲で、分散剤、安定化剤、粘度調整剤、着
色剤など公知の添加剤を加えることができる。
Some of the above-mentioned components can be combined and added to the coating composition. Further, known additives such as dispersants, stabilizers, viscosity modifiers and colorants are added as long as the physical properties are not impaired. be able to.

【0048】コーティング組成物の塗布方法には、通常
用いられる、ディッピング法、ロールコティング法、ス
クリーン印刷法、スプレー法など従来公知の手段が用い
られる。被膜の厚さは目的の光学設計にあわせて、液の
濃度や塗工量によって適宜選択調整することができる。
As a method for applying the coating composition, conventionally known means such as a dipping method, a roll coating method, a screen printing method, and a spray method are used. The thickness of the coating can be appropriately selected and adjusted depending on the concentration of the liquid and the amount of coating in accordance with the intended optical design.

【0049】本発明の高屈折率組成物は、ガラスやプラ
スチックフィルムなど特に限定されるものではなく、さ
らに必要に応じて各種ハードコート剤、低屈折率材料、
セラミック蒸着膜と積層することが可能で、また本発明
の組成比を変えて積層することも可能である。
The high refractive index composition of the present invention is not particularly limited, such as glass and plastic films. Further, if necessary, various hard coating agents, low refractive index materials,
It is possible to laminate with a ceramic vapor deposition film, and it is also possible to laminate with changing the composition ratio of the present invention.

【0050】本発明の反射防止積層体は、プラスチック
やガラスなどの基材の少なくとも一方に、ハードコート
層/高屈折率層/低屈折率層あるいはハードコート層/
中屈折率層/高屈折率層/低屈折率層を順次積層してる
なる多層構成の反射防止膜が形成された積層体におい
て、本発明の反射防止積層体は、該高屈折率層が、本発
明の高屈折率組成物からなることを特徴とするものであ
り、さらに低屈折率層が上述した低屈折率組成物からな
ることを特徴とするものである。
The antireflection laminate of the present invention comprises a hard coat layer / high refractive index layer / low refractive index layer or hard coat layer on at least one of substrates such as plastic and glass.
In a laminate in which an antireflection film having a multilayer structure in which a middle refractive index layer / a high refractive index layer / a low refractive index layer is sequentially laminated is formed, the antireflection laminate of the present invention has a structure in which the high refractive index layer is The present invention is characterized by comprising the high refractive index composition of the present invention, and further characterized in that the low refractive index layer is composed of the above low refractive index composition.

【0051】中屈折率層は公知の材料の組合せすなわ
ち、高屈折率粒子とアクリル系バインダーで構成しても
良いし、本発明の高屈折率組成物の高屈折率微粒子とバ
インダー成分との比率を変えて調整することもできる。
The medium refractive index layer may be composed of a combination of known materials, that is, a high refractive index particle and an acrylic binder, or a ratio of the high refractive index fine particles of the high refractive index composition of the present invention to the binder component. Can be adjusted by changing.

【0052】これらの層は各層の設計条件にあわせて適
宜、材料組成を組合せることができるものであり、特に
限定されるものではない。
These layers can be appropriately combined in material composition in accordance with the design conditions of each layer, and are not particularly limited.

【0053】本発明の積層体にさらに、フッ素含有のシ
ラン系材料など公知の防汚層を設けることで、汚れの付
着を防止したり、簡単に取れやすくしたりすることもで
きる。
By further providing a known antifouling layer such as a fluorine-containing silane-based material on the laminate of the present invention, it is possible to prevent adhesion of dirt or to easily remove dirt.

【0054】また、本発明は上記材料を組み合わせた組
成物をウェットコーティングにより形成されるものであ
るが、ウェットコーティングの利点を活かして下層の硬
化状態(乾燥状態)を乾燥条件、あるいはUV照射条件
を調整して半硬化状態とした上に積層することで、下層
に未反応のアクリロイル基などの重合可能な結合基を残
存させた状態で積層し積層後に追照射などで硬化反応さ
せることできる。上記のように製法で積層すると層間で
の密着性を高め、各層の一体化を図ることができ、それ
故に十分な機械的強度を発現させることもできる。
In the present invention, the composition obtained by combining the above-mentioned materials is formed by wet coating. By taking advantage of the wet coating, the cured state (dry state) of the lower layer is dried or UV-irradiated. Is adjusted to be in a semi-cured state, and then laminated, a layer can be laminated in a state where a polymerizable bonding group such as an unreacted acryloyl group remains in a lower layer, and a curing reaction can be performed by additional irradiation or the like after lamination. When the layers are laminated by the production method as described above, the adhesion between the layers can be enhanced, and the layers can be integrated, and therefore, sufficient mechanical strength can be exhibited.

【0055】本発明の材料組成は熱硬化により架橋する
成分とUV硬化により架橋する成分より構成されるため
この半硬化状態を容易に形成できるものである。
Since the material composition of the present invention is composed of a component which is crosslinked by heat curing and a component which is crosslinked by UV curing, the semi-cured state can be easily formed.

【0056】本発明の一実施例を具体的な実施例例をあ
げて説明するが、本発明は下記の実施例に特に限定され
るものではない。。
One embodiment of the present invention will be described with reference to specific embodiments, but the present invention is not particularly limited to the following embodiments. .

【0057】[0057]

【実施例】<実施例一 (高屈折率組成物の実施例)>
表面にUV硬化樹脂HC層(5μm)を設けた80μm
厚のTACフィルムを基材として、下記組成の材料を各
成分の固形分が表1に示す割合になるように組み合わせ
て調液して高屈折率組成物を作成、UV硬化の開始剤と
してアセトフェノン系開始剤を重合成分に対して2%添
加した。
Examples <Example 1 (Example of high refractive index composition)>
80 μm with UV curable resin HC layer (5 μm) on the surface
Using a thick TAC film as a base material, a material having the following composition was combined so that the solid content of each component became the ratio shown in Table 1, to prepare a high refractive index composition, and acetophenone was used as a UV curing initiator. 2% of the system initiator was added to the polymerization component.

【0058】バーコーターにより塗布し、乾燥機で10
0℃−1min乾燥し、高圧水銀灯により1,000m
J/cm2 の紫外線を照射して硬化させ、光学膜厚(n
d=屈折率n*膜厚d(nm))がnd=550/4n
mになるよう適宜濃度調整をして高屈折率被膜を形成
し、各種試験用の試験体を得た。
The composition was applied with a bar coater and dried with a drier.
Dry at 0 ° C for 1 min.
It is cured by irradiating ultraviolet rays of J / cm 2 , and the optical film thickness (n
d = refractive index n * thickness d (nm)) is nd = 550 / 4n
m was adjusted appropriately to form a high-refractive-index coating, and test specimens for various tests were obtained.

【0059】本発明の実施例として実施例1〜3に示す
配合で、比較例として多官能アクリル化合物を含まない
系(比較例1)と高屈折微粒子と2官能アクリル化合物
との2成分系(比較例2)の試験体を合わせて作成し、
下記評価方法にて評価した。表1に結果を示す。
As a comparative example, a two-component system composed of a system containing no polyfunctional acrylic compound (Comparative Example 1) and high refractive fine particles and a bifunctional acrylic compound (Comparative Example) The test specimen of Comparative Example 2) was prepared together,
The following evaluation method evaluated. Table 1 shows the results.

【0060】<高屈折率組成物の各成分>表1に結果を
示す。
<Each component of high refractive index composition> Table 1 shows the results.

【0061】<コーティング組成物の各成分> (a)平均粒径25nmの酸化チタン微粒子にモル比で
1/0.06(重量比で約80/20)(3−アクリロ
キシプロピル)トリメトキシシランを混合し触媒として
pトルエンスルホン酸をアクリルシランに対して重量比
で1%添加し室温で3時間攪拌し反応させ修飾させた複
合ゾル。 (b)平均粒径25nmの酸化チタン微粒子にモル比で
1/0.10(重量比で約70/30)(3−アクリロ
キシプロピル)トリメトキシシランを混合し触媒として
pトルエンスルホン酸をアクリルシランに対して重量比
で1%添加し室温で3時間攪拌し反応させ修飾させた複
合ゾル。 (c)平均粒径25nmの酸化チタン微粒子MEK分散
ゾル (d)DPHAのMEK希釈溶液。 (e)OH価130、平均分子量10000、Tg88
℃の市販アクリルポリオール樹脂の溶液(酢酸ブチル、
酢酸エチル混合溶剤) (f)平均分子量3000の2官能のウレタンアクリル
レート(市販品)
<Each component of coating composition> (a) 1 / 0.06 (about 80/20 by weight) (3-acryloxypropyl) trimethoxysilane in molar ratio to titanium oxide fine particles having an average particle diameter of 25 nm A composite sol modified by adding 1% by weight of p-toluenesulfonic acid to acrylic silane as a catalyst and reacting by stirring at room temperature for 3 hours. (B) A mixture of titanium oxide fine particles having an average particle diameter of 25 nm and a molar ratio of 1 / 0.10 (about 70/30 by weight) (3-acryloxypropyl) trimethoxysilane is used as a catalyst, and p-toluenesulfonic acid is used as an acryl catalyst. A composite sol modified by adding 1% by weight to silane and stirring at room temperature for 3 hours to react. (C) MEK dispersion sol of titanium oxide fine particles having an average particle size of 25 nm (d) MEK diluted solution of DPHA. (E) OH value 130, average molecular weight 10,000, Tg88
℃ commercial acrylic polyol resin solution (butyl acetate,
Ethyl acetate mixed solvent) (f) Bifunctional urethane acrylate having an average molecular weight of 3000 (commercially available)

【0062】<評価試験> (1)光学特性 分光光度計により入射角5で550nmにおける反射率
を測定し、反射率値か被膜の屈折率を見積もった。 (2)密着性 塗料一般試験法JIS−K5400のクロスカット密着
試験方法に準じて塗膜の残存数にて評価した。 (3)鉛筆硬度 塗料一般試験法JIS−K5400の鉛筆引っかき値試
験方法に準じて塗膜の擦り傷にて評価した。 (4)耐擦傷試験 スチールウール#0000により、250g/cm2
荷重で往復5回擦傷試験を実施、目視による傷の外観を
検査した。評価は、傷なし◎、かるく傷あり○、かなり
傷つく△、著しく傷つく×の4段階とした。
<Evaluation Test> (1) Optical Characteristics The reflectance at 550 nm at an incident angle of 5 was measured with a spectrophotometer, and the reflectance value or the refractive index of the coating was estimated. (2) Adhesion Evaluated by the number of remaining paint films according to the cross-cut adhesion test method of JIS-K5400, a general test method for paint. (3) Pencil hardness The paint was evaluated for scratches on the coating film according to the Pencil Scratch Value Test Method of JIS-K5400. (4) Scratch resistance test A steel wool # 0000 was used to perform a reciprocating scratch test five times with a load of 250 g / cm 2 to visually inspect the appearance of the scratch. The evaluation was made in four stages: 傷 without damage, あ り with slight damage, △ with considerable damage, and x with severe damage.

【0063】[0063]

【表1】 [Table 1]

【0064】表1に示すように、酸化チタン成分を55
%以上すると、いずれも高い屈折率(おおよそ1.8以
上)で、目的の高屈折率層を得ることができたが、本実
施例の組成物を用いた被膜は密着性、硬度、耐擦傷性に
も優れるが、比較例の2点は強度面で特性が劣っている
ことがわかる。
As shown in Table 1, the titanium oxide component was 55
% Or more, the target high refractive index layer could be obtained with a high refractive index (about 1.8 or more) in any case. However, the coating using the composition of this example had poor adhesion, hardness, and scratch resistance. It is understood that the two points of the comparative example are inferior in characteristics in terms of strength, although they are also excellent in properties.

【0065】<実施例二 反射防止積層体の実施例>高
屈折率層は<実施例一>の実施例3の組成物を用い、低
屈折率層は下記組成の材料を表2に示す割合になるよう
に組み合わせた組成物を作成し、各々UV硬化の開始剤
としてアセトフェノン系開始剤を重合成分に対して2%
添加した。
Example 2 Example of Antireflection Laminate The high refractive index layer uses the composition of Example 3 of <Example 1>, and the low refractive index layer uses a material having the following composition as shown in Table 2. Acetophenone-based initiator as a UV-curing initiator in each of 2% to the polymerization component.
Was added.

【0066】基材として、表面にUV硬化樹脂HC層
(5μm)を設けた80μm厚のTACフィルムを用
い、各材料を高/低の順に、バーコーターにより塗布
し、乾燥機で100℃−1min乾燥し、全層積層後に
高圧水銀灯により1,000mJ/cm2 の紫外線を照
射して硬化させ反射防止積層体を得た。
As a base material, a TAC film having a thickness of 80 μm provided with a UV-curable resin HC layer (5 μm) on the surface was applied by using a bar coater in the order of high / low, and then dried at 100 ° C. for 1 min. After drying and laminating all the layers, ultraviolet rays of 1,000 mJ / cm 2 were irradiated with a high-pressure mercury lamp and cured to obtain an antireflection laminate.

【0067】積層に際し、高、低の各層は各層の光学膜
厚(nd=屈折率n*膜厚d(nm))がnd=550
/4nmになるよう適宜濃度調整をして、HC/高/低
の2層構成反射防止積層体を得た。
In the lamination, each of the high and low layers has an optical film thickness (nd = refractive index n * film thickness d (nm)) of nd = 550.
The concentration was appropriately adjusted to / 4 nm to obtain an HC / high / low two-layer antireflection laminate.

【0068】本発明の比較例として高屈折率層に<実施
例一>の比較例2の組成物を用い、低屈折率組成物とし
てシリカゾル粒子/DPHA系のかわりにシリカ粒子/
市販のアクリルウレタン樹脂(2官能、分子量300
0)を用いてた系にて低屈折率層を形成し同様に積層体
を作成した。
As a comparative example of the present invention, the composition of Comparative Example 2 of <Example 1> was used for the high refractive index layer, and the silica particles instead of the silica sol particles / DPHA system were used as the low refractive index composition.
Commercially available acrylic urethane resin (bifunctional, molecular weight 300
A low-refractive-index layer was formed in a system using 0), and a laminate was similarly prepared.

【0069】実施例および比較例の試験体について前記
の<実施例一>と同様の評価方法にて評価し、試験体の
各層の成分配合比と共にその結果を表2に示す。
The test pieces of Examples and Comparative Examples were evaluated by the same evaluation method as that of <Example 1>, and the results are shown in Table 2 together with the component mixing ratio of each layer of the test pieces.

【0070】<低屈折率組成物の各成分> (α)平均粒径10〜30nmのシリカゾル/MEK溶
媒分散にモル比で1/0.08(重量比で約80/2
0)(3−アクリロキシプロピル)トリメトキシシラン
を混合し、触媒としてpトルエンスルホン酸をアクリル
シランに対して重量比で1%添加し室温で3時間攪拌し
反応させ修飾させた複合ゾル。 (β)A1のアクリルシラン修飾複合ゾルと同様に、平
均粒径10〜30nmのシリカゾルと平均粒径50〜7
0nmのシリカゾルの重量比80/20wt%の混合物
にて複合ゾルを作成。 (γ)A1のアクリルシラン修飾複合ゾルと同様に、平
均粒径10〜30nmのシリカゾルと平均粒径50〜7
0nmのシリカゾルの重量比40/60wt%の混合物
にて複合ゾルを作成。 (δ)平均粒径10〜30nmのシリカゾル/MEK溶
媒分散 (ε)DPHAのMEK希釈溶液。 (ζ)平均分子量3000の2官能のウレタンアクリル
レート(市販品)
<Components of Low Refractive Index Composition> (α) A silica sol having an average particle diameter of 10 to 30 nm / MEK solvent dispersion was added in a molar ratio of 1 / 0.08 (about 80/2 by weight).
0) A composite sol obtained by mixing (3-acryloxypropyl) trimethoxysilane, adding 1% by weight of p-toluenesulfonic acid to acrylic silane as a catalyst, and stirring and reacting at room temperature for 3 hours to modify. (Β) Similar to the acrylic silane-modified composite sol of A1, silica sol having an average particle size of 10 to 30 nm and an average particle size of 50 to 7
A composite sol was prepared with a mixture of 0 nm silica sol at a weight ratio of 80/20 wt%. (Γ) Silica sol having an average particle diameter of 10 to 30 nm and an average particle diameter of 50 to 7 similarly to the acrylic silane-modified composite sol of A1.
A composite sol was prepared with a mixture of 0 nm silica sol at a weight ratio of 40/60 wt%. (Δ) Dispersion of silica sol / MEK solvent having an average particle size of 10 to 30 nm (ε) MEK diluted solution of DPHA. (Ζ) Bifunctional urethane acrylate having an average molecular weight of 3000 (commercially available)

【0071】[0071]

【表2】 [Table 2]

【0072】表2に示すように、反射防止特性は実施
例、比較例とも反射率が0.7%以下で良好であるが、
本発明の積層体は耐擦傷性などの機械的強度に優れるこ
とがわかる。
As shown in Table 2, the antireflection characteristics of the embodiment and the comparative example are good with a reflectance of 0.7% or less.
It can be seen that the laminate of the present invention has excellent mechanical strength such as scratch resistance.

【0073】[0073]

【発明の効果】以上述べたように本発明の高屈折率組成
物ならびにこの組成物からなる反射防止積層体は、無機
微粒子とアクリル基含有ケイ素化合物ならびに多官能ア
クリルモノマーを有し、無機と有機化合物の分子レベル
のハイブリッド構造を呈した被膜を形成できるものであ
り、光学特性と物理的強度特性とを兼備した被膜を形成
することができるものである。
As described above, the high refractive index composition of the present invention and the antireflection laminate comprising this composition have inorganic fine particles, an acrylic group-containing silicon compound and a polyfunctional acrylic monomer, It can form a film exhibiting a hybrid structure at the molecular level of the compound, and can form a film having both optical characteristics and physical strength characteristics.

【0074】すなわち、ディスプレイの反射防止膜など
の基材の最外層に形成され、過酷な環境や取り扱いにも
充分に耐えられる被膜を形成することができ、蒸着など
と比べ装置コストも比較的安価で、成膜(塗工)速度も
10倍以上で生産性も高く、製造も容易である。
That is, a film which is formed on the outermost layer of a substrate such as an anti-reflection film of a display and which can withstand a severe environment and handling can be formed, and the apparatus cost is relatively inexpensive as compared with vapor deposition. Thus, the film forming (coating) speed is 10 times or more, the productivity is high, and the production is easy.

【0075】また本発明の組成物の被膜は、光照射など
で硬化するため、低温での塗工が可能なので、フィルム
などのを巻き取り塗工で作成することが可能で安価に、
大量生産できるといった効果を奏する。
Further, since the coating of the composition of the present invention is cured by light irradiation or the like, it can be applied at a low temperature.
It has the effect of mass production.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09D 4/02 C09D 151/08 151/08 G02B 1/10 A Fターム(参考) 2K009 AA05 AA06 AA15 BB28 CC09 CC24 CC42 DD02 DD05 4J002 BG071 DE096 DE106 DE136 EX007 FD206 FD207 GF00 GP00 4J026 AB44 BA28 BB01 DA05 DA11 DB06 DB11 DB36 FA05 GA06 4J038 CL001 FA112 FA241 HA216 JC32 KA20 MA14 NA19 PC03 PC08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C09D 4/02 C09D 151/08 151/08 G02B 1/10 A F-term (Reference) 2K009 AA05 AA06 AA15 BB28 CC09 CC24 CC42 DD02 DD05 4J002 BG071 DE096 DE106 DE136 EX007 FD206 FD207 GF00 GP00 4J026 AB44 BA28 BB01 DA05 DA11 DB06 DB11 DB36 FA05 GA06 4J038 CL001 FA112 FA241 HA216 JC32 KA20 MA14 NA19 PC03 PC08

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】平均粒径5〜50nmの結晶性の酸化チタ
ン、酸化ジルコニウム、酸化亜鉛、酸化インジウムから
選ばれる高屈折超微粒子とR’x Si(OR)
4-x (R:アルキル基、R’:末端にビニル基、アクリ
ロイル基、メタクリロイル基などの重合可能な不飽和結
合を有する官能基、xは0<x<4の置換数)、および
その加水分解物の少なくとも1種と分子中にビニル基、
アクリロイル基、メタクリロイル基などの重合可能な不
飽和結合を少なくとも3個以上を有するアクリル系化合
物とを主成分とすることを特徴とする高屈折率組成物。
1. High refractive ultrafine particles selected from crystalline titanium oxide, zirconium oxide, zinc oxide and indium oxide having an average particle diameter of 5 to 50 nm and R ' x Si (OR)
4-x (R: an alkyl group, R ': a functional group having a polymerizable unsaturated bond such as a vinyl group, an acryloyl group, or a methacryloyl group at a terminal, x is 0 <x <4, the number of substitutions) At least one of the decomposition products and a vinyl group in the molecule;
A high refractive index composition comprising, as a main component, an acrylic compound having at least three or more polymerizable unsaturated bonds such as an acryloyl group and a methacryloyl group.
【請求項2】前記高屈折率組成物において、前記高屈折
率微粒子が40〜80wt%含有されかつ、前記アクリ
ル系化合物が3官能以上のアクリルモノマーおよびその
変性体で、平均分子量が200〜1000であることを
特徴とする請求項1記載の高屈折率組成物。
2. The high-refractive-index composition, wherein the high-refractive-index fine particles are contained in an amount of 40 to 80% by weight and the acrylic compound is a trifunctional or more functional acrylic monomer or a modified product thereof, and has an average molecular weight of 200 to 1000. The high refractive index composition according to claim 1, wherein
【請求項3】前記高屈折率組成物を形成するR’x Si
(OR)4-x がCH2 =CHCOO−(CH)n−Si
(OR)4 (R:アルキル基、xは0<x<4の置換
数、nはn<5の整数)であって、高屈折微粒子にあら
かじめ修飾されてなることを特徴とする請求項1、2何
れか記載の高屈折率組成物。
3. R ′ x Si forming the high refractive index composition
(OR) 4-x is CH 2 CHCHCOO- (CH) n-Si
(OR) 4 (R: an alkyl group, x is the number of substitutions of 0 <x <4, n is an integer of n <5), and is preliminarily modified with high-refractive fine particles. 2. The high refractive index composition according to any one of 2.
【請求項4】前記CH2 =CHCOO−(CH)n−S
i(OR)4 が修飾粒子に対して比率が、粒子/CH2
=CHCOO−(CH)n−Si(OR)4 のモル比で
1/0.03〜1/0.17(重量換算で90/10〜
60/40wt%相当)であることを特徴とする請求項
1〜3何れかに記載の高屈折率組成物。
4. The CH 2 CHCHCOO- (CH) n-S
The ratio of i (OR) 4 to modified particles is particle / CH 2
= CHCOO- (CH) n-Si (OR) 4 in a molar ratio of 1 / 0.03 to 1 / 0.17 (90/10 to 10
The high refractive index composition according to any one of claims 1 to 3, wherein the composition has a refractive index of 60/40 wt%).
【請求項5】前記CH2 =CHCOO−(CH)n−S
i(OR)4 を粒子修飾する際に、pトルエンスルホン
酸などのスルホン酸触媒下で反応させてなることを特徴
とする請求項4に記載の高屈折率組成物。
5. The CH 2前 記 CHCOO- (CH) n-S
The high refractive index composition according to claim 4, wherein the i (OR) 4 is modified in the presence of a sulfonic acid catalyst such as p-toluenesulfonic acid when modifying particles.
【請求項6】基材の少なくとも一方に、ハードコート層
/高屈折率層/低屈折率層あるいはハードコート層/中
屈折率層/高屈折率層/低屈折率層を順次積層してるな
る多層構成の反射防止膜が形成された積層体において、
該高屈折率層が請求項1〜5の何れか1項記載の高屈折
率組成物からなることを特徴とする反射防止積層体。
6. A hard coat layer / high refractive index layer / low refractive index layer or a hard coat layer / medium refractive index layer / high refractive index layer / low refractive index layer is sequentially laminated on at least one of the substrates. In a laminate on which an antireflection film having a multilayer structure is formed,
An antireflection laminate, wherein the high refractive index layer comprises the high refractive index composition according to any one of claims 1 to 5.
【請求項7】請求項6記載の反射防止積層体において前
記低屈折率層が平均粒径が5〜100nmのシリカゾル
とR’x Si(OR)4-x (R:アルキル基、R’:末
端にビニル基、アクリロイル基、メタクリロイル基など
の重合可能な不飽和結合を有する官能基、xは0<x<
4の置換数)、およびその加水分解物と分子中にビニル
基、アクリロイル基、メタクリロイル基などの重合可能
な不飽和結合を少なくとも3個以上を有するアクリル系
化合物とを主成分とする低屈折率組成物からなることを
特徴とする反射防止積層体。
7. The anti-reflection laminate according to claim 6, wherein the low refractive index layer has a silica sol having an average particle size of 5 to 100 nm and R ′ x Si (OR) 4-x (R: alkyl group, R ′: A functional group having a polymerizable unsaturated bond such as a vinyl group, an acryloyl group or a methacryloyl group at a terminal, x is 0 <x <
4) and a low refractive index mainly composed of a hydrolyzate thereof and an acrylic compound having at least three polymerizable unsaturated bonds such as a vinyl group, an acryloyl group and a methacryloyl group in the molecule. An antireflection laminate comprising a composition.
【請求項8】請求項7記載の反射防止積層体において前
記低屈折率組成物がシリカゾル粒子を30〜80wt%
含有し、かつ前記アクリル系化合物が3官能以上のアク
リルモノマーおよびその変性体で、平均分子量が200
〜1000からなることを特徴とする反射防止積層体。
8. The antireflection laminate according to claim 7, wherein the low refractive index composition contains 30 to 80% by weight of silica sol particles.
And the acrylic compound is an acrylic monomer having three or more functional groups and a modified product thereof, and has an average molecular weight of 200.
An anti-reflection laminate comprising: -1000.
【請求項9】請求項7、8何れか記載の反射防止積層体
において、前記低屈折率組成物中にシリカゾル粒子が3
0〜80wt%以上含有され、なかでも平均粒径が50
〜100nmのシリカゾル粒子が10〜60wt%含有
されてなることを特徴とすると請求項1、2何れかに記
載の反射防止積層体。
9. The anti-reflection laminate according to claim 7, wherein the low refractive index composition contains 3 or more silica sol particles.
0-80 wt% or more, among which the average particle size is 50
The anti-reflection laminate according to any one of claims 1 and 2, characterized in that the anti-reflection laminate (10) comprises 10 to 60 wt% of silica sol particles of 100 to 100 nm.
【請求項10】請求項7〜9何れか記載の反射防止積層
体において前記低屈折率組成物を形成する有機ケイ素化
合物がCH2 =CHCOO−(CH)n −Si(OR)
4 (R:アルキル基、xは0<x<4の置換数、nはn
<5の整数)であって、シリカ粒子にあらかじめ修飾さ
れてなることを特徴とする反射防止積層体。
10. The antireflection laminate according to claim 7, wherein the organosilicon compound forming the low refractive index composition is CH 2 CHCOO— (CH) n —Si (OR).
4 (R: alkyl group, x is the number of substitutions of 0 <x <4, n is n
(An integer of 5), wherein the silica particles are modified in advance.
【請求項11】請求項10記載の反射防止積層体におい
てCH2 =CHCOO−(CH)n −Si(OR)4
修飾粒子に対して比率が、粒子/CH2 =CHCOO−
(CH)n −Si(OR)4 のモル比で1/0.04〜
1/0.25(重量換算で90/10〜60/40wt
%相当)であることを特徴とする反射防止積層体。
11. The antireflection laminate according to claim 10, wherein the ratio of CH 2 CHCHCOO— (CH) n —Si (OR) 4 to the modified particles is as follows: particles / CH 2 CHCHCOO—
(CH) n —Si (OR) 4 in a molar ratio of 1 / 0.04 to
1 / 0.25 (90 / 10-60 / 40wt in weight conversion)
%).
【請求項12】請求項10、11何れか記載の反射防止
積層体において前記CH2 =CHCOO−(CH)n
Si(OR)4 を粒子修飾する際に、pトルエンスルホ
ン酸などのスルホン酸触媒下で反応させてなることを特
徴とする請求項5に記載の反射防止積層体。
12. The antireflection laminate according to claim 10, wherein said CH 2 CHCOO- (CH) n-
6. The antireflection laminate according to claim 5, wherein, when modifying particles of Si (OR) 4 , the reaction is performed under a sulfonic acid catalyst such as p-toluenesulfonic acid.
JP34737399A 1999-12-07 1999-12-07 High-refractive-index composition and antireflection laminate Pending JP2001164117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34737399A JP2001164117A (en) 1999-12-07 1999-12-07 High-refractive-index composition and antireflection laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34737399A JP2001164117A (en) 1999-12-07 1999-12-07 High-refractive-index composition and antireflection laminate

Publications (1)

Publication Number Publication Date
JP2001164117A true JP2001164117A (en) 2001-06-19

Family

ID=18389801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34737399A Pending JP2001164117A (en) 1999-12-07 1999-12-07 High-refractive-index composition and antireflection laminate

Country Status (1)

Country Link
JP (1) JP2001164117A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164119A (en) * 1999-12-07 2001-06-19 Toppan Printing Co Ltd High-refractive-index composition, high-refracttve-index film, and antireflection film
JP2001163906A (en) * 1999-12-07 2001-06-19 Toppan Printing Co Ltd Low refractive index composition, low refractive index film, optical multilayer film and antireflection film
JP2006083033A (en) * 2004-09-17 2006-03-30 Tayca Corp Rutile-type titanium oxide sol
JP2006098444A (en) * 2004-09-28 2006-04-13 Sumitomo Chemical Co Ltd Laminate having scratch resistance and antireflection
JP2006099081A (en) * 2004-09-06 2006-04-13 Fuji Photo Film Co Ltd Method of manufacturing optical film and antireflection film, optical film, antireflection film, polarizing plate, and image display device using them
WO2006038735A1 (en) * 2004-10-07 2006-04-13 Nippon Shokubai Co., Ltd. Resin composition for optical packaging material and process for preparing the same, and optical packaging material, optical packaging component, and optical module
US7229686B2 (en) 2002-09-25 2007-06-12 Shin-Etsu Chemical Co., Ltd. Antireflection film and making method
WO2007091730A1 (en) * 2006-02-10 2007-08-16 Fujifilm Corporation Organic-inorganic hybrid composition, method for producing the same, molding and optical component
JP2007213079A (en) * 2006-02-08 2007-08-23 Dongwoo Fine-Chem Co Ltd Low reflection film and its manufacturing method
CN102549081A (en) * 2009-10-16 2012-07-04 拜尔材料科学股份公司 High refractive, scratch resistant TiO in single and multiple layers2Coating layer
JP2012220556A (en) * 2011-04-05 2012-11-12 Jsr Corp Antireflection film, composition for forming high refractive layer of the antireflection film, and display for outdoor installation

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161027A (en) * 1987-12-17 1989-06-23 Nippon Oil Co Ltd Curable composition
JPH02210401A (en) * 1989-02-10 1990-08-21 Mitsubishi Rayon Co Ltd Formation of antireflection layer
JPH05188202A (en) * 1992-01-10 1993-07-30 Canon Inc Multilayered optical thin film
JPH05202314A (en) * 1992-01-23 1993-08-10 Shin Etsu Chem Co Ltd Optically curable coating composition, its cured coating film and its formation
JPH07209503A (en) * 1994-01-18 1995-08-11 Dainippon Printing Co Ltd Composition for optical film forming coating, production thereof and formation of optical film and optical film
JPH08283453A (en) * 1995-04-14 1996-10-29 Sekisui Chem Co Ltd Antimicrobial resin composition
JPH08297201A (en) * 1995-04-26 1996-11-12 Sekisui Chem Co Ltd High refractive index coating material
JPH08295846A (en) * 1995-03-01 1996-11-12 Seiko Epson Corp Coating composition and laminate
JPH0921902A (en) * 1995-07-06 1997-01-21 Sekisui Chem Co Ltd Optical multilayered films
JPH09220791A (en) * 1996-02-16 1997-08-26 Dainippon Printing Co Ltd Reflection preventing film
JPH09222504A (en) * 1996-02-16 1997-08-26 Dainippon Printing Co Ltd Antireflection film
JPH09230108A (en) * 1995-12-22 1997-09-05 Toto Ltd Anti-fogging plastic lens and its anti-fogging method
JPH09313934A (en) * 1996-03-27 1997-12-09 Toshiba Lighting & Technol Corp Photocatalyst, incandescent electric bulb, discharge lamp and luminair
JPH10102002A (en) * 1996-10-03 1998-04-21 Shin Etsu Chem Co Ltd Composition for photocurable coating agent and formation of coated film
JPH10505316A (en) * 1994-08-31 1998-05-26 ユニヴァーシティ・オブ・シンシナティ Method for producing ceramic powder, especially titanium dioxide useful as a photocatalyst
JPH10286913A (en) * 1997-04-11 1998-10-27 Seiko Epson Corp Laminate and its manufacture
JPH116902A (en) * 1997-04-04 1999-01-12 Fuji Photo Film Co Ltd Reflection preventing film and picture display device using it
JPH11131021A (en) * 1997-10-30 1999-05-18 Seiko Epson Corp Composition for coating and its laminate
JPH11246692A (en) * 1998-02-27 1999-09-14 Konica Corp Antireflection film and its production
JPH11287902A (en) * 1998-03-31 1999-10-19 Tomoegawa Paper Co Ltd Antireflection material and polarizing film using that
JP2000063444A (en) * 1998-08-26 2000-02-29 Jsr Corp Radiation-curable resin composition, cured film with high refractive index, and anti-reflecting film
JP2000143924A (en) * 1998-11-06 2000-05-26 Jsr Corp Liquid curable resin composition, its cured product and reflection-preventing film
JP2000186216A (en) * 1998-12-22 2000-07-04 Jsr Corp High-refractive-index material and antireflection laminate made by using same
JP2000266908A (en) * 1999-03-18 2000-09-29 Konica Corp Manufacture of anti-reflection film and anti-reflection film
JP2000319523A (en) * 1999-03-11 2000-11-21 Konica Corp Composition for high refractive index, antireflection material, method for producing antireflection material, film for protecting polarizing plate, and polarizing plate
JP2000336313A (en) * 1999-06-01 2000-12-05 Toppan Printing Co Ltd Coating composition having high refractive index
JP2000338305A (en) * 1999-05-27 2000-12-08 Dainippon Printing Co Ltd Antireflection film
JP2000356705A (en) * 1999-06-16 2000-12-26 Toppan Printing Co Ltd High refractive index composition and optical film comprising the same
JP2001031871A (en) * 1999-07-21 2001-02-06 Toppan Printing Co Ltd High-reflective index composition and high-reflective index coating composition and antireflection laminate comprising the same composition and its production
JP2001049131A (en) * 1999-08-10 2001-02-20 Toppan Printing Co Ltd High-refractive composition
JP2001059902A (en) * 1999-08-23 2001-03-06 Toppan Printing Co Ltd Reflection preventing laminated body and its manufacture
JP2001163906A (en) * 1999-12-07 2001-06-19 Toppan Printing Co Ltd Low refractive index composition, low refractive index film, optical multilayer film and antireflection film
JP2001164119A (en) * 1999-12-07 2001-06-19 Toppan Printing Co Ltd High-refractive-index composition, high-refracttve-index film, and antireflection film

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161027A (en) * 1987-12-17 1989-06-23 Nippon Oil Co Ltd Curable composition
JPH02210401A (en) * 1989-02-10 1990-08-21 Mitsubishi Rayon Co Ltd Formation of antireflection layer
JPH05188202A (en) * 1992-01-10 1993-07-30 Canon Inc Multilayered optical thin film
JPH05202314A (en) * 1992-01-23 1993-08-10 Shin Etsu Chem Co Ltd Optically curable coating composition, its cured coating film and its formation
JPH07209503A (en) * 1994-01-18 1995-08-11 Dainippon Printing Co Ltd Composition for optical film forming coating, production thereof and formation of optical film and optical film
JPH10505316A (en) * 1994-08-31 1998-05-26 ユニヴァーシティ・オブ・シンシナティ Method for producing ceramic powder, especially titanium dioxide useful as a photocatalyst
JPH08295846A (en) * 1995-03-01 1996-11-12 Seiko Epson Corp Coating composition and laminate
JPH08283453A (en) * 1995-04-14 1996-10-29 Sekisui Chem Co Ltd Antimicrobial resin composition
JPH08297201A (en) * 1995-04-26 1996-11-12 Sekisui Chem Co Ltd High refractive index coating material
JPH0921902A (en) * 1995-07-06 1997-01-21 Sekisui Chem Co Ltd Optical multilayered films
JPH09230108A (en) * 1995-12-22 1997-09-05 Toto Ltd Anti-fogging plastic lens and its anti-fogging method
JPH09220791A (en) * 1996-02-16 1997-08-26 Dainippon Printing Co Ltd Reflection preventing film
JPH09222504A (en) * 1996-02-16 1997-08-26 Dainippon Printing Co Ltd Antireflection film
JPH09313934A (en) * 1996-03-27 1997-12-09 Toshiba Lighting & Technol Corp Photocatalyst, incandescent electric bulb, discharge lamp and luminair
JPH10102002A (en) * 1996-10-03 1998-04-21 Shin Etsu Chem Co Ltd Composition for photocurable coating agent and formation of coated film
JPH116902A (en) * 1997-04-04 1999-01-12 Fuji Photo Film Co Ltd Reflection preventing film and picture display device using it
JPH10286913A (en) * 1997-04-11 1998-10-27 Seiko Epson Corp Laminate and its manufacture
JPH11131021A (en) * 1997-10-30 1999-05-18 Seiko Epson Corp Composition for coating and its laminate
JPH11246692A (en) * 1998-02-27 1999-09-14 Konica Corp Antireflection film and its production
JPH11287902A (en) * 1998-03-31 1999-10-19 Tomoegawa Paper Co Ltd Antireflection material and polarizing film using that
JP2000063444A (en) * 1998-08-26 2000-02-29 Jsr Corp Radiation-curable resin composition, cured film with high refractive index, and anti-reflecting film
JP2000143924A (en) * 1998-11-06 2000-05-26 Jsr Corp Liquid curable resin composition, its cured product and reflection-preventing film
JP2000186216A (en) * 1998-12-22 2000-07-04 Jsr Corp High-refractive-index material and antireflection laminate made by using same
JP2000319523A (en) * 1999-03-11 2000-11-21 Konica Corp Composition for high refractive index, antireflection material, method for producing antireflection material, film for protecting polarizing plate, and polarizing plate
JP2000266908A (en) * 1999-03-18 2000-09-29 Konica Corp Manufacture of anti-reflection film and anti-reflection film
JP2000338305A (en) * 1999-05-27 2000-12-08 Dainippon Printing Co Ltd Antireflection film
JP2000336313A (en) * 1999-06-01 2000-12-05 Toppan Printing Co Ltd Coating composition having high refractive index
JP2000356705A (en) * 1999-06-16 2000-12-26 Toppan Printing Co Ltd High refractive index composition and optical film comprising the same
JP2001031871A (en) * 1999-07-21 2001-02-06 Toppan Printing Co Ltd High-reflective index composition and high-reflective index coating composition and antireflection laminate comprising the same composition and its production
JP2001049131A (en) * 1999-08-10 2001-02-20 Toppan Printing Co Ltd High-refractive composition
JP2001059902A (en) * 1999-08-23 2001-03-06 Toppan Printing Co Ltd Reflection preventing laminated body and its manufacture
JP2001163906A (en) * 1999-12-07 2001-06-19 Toppan Printing Co Ltd Low refractive index composition, low refractive index film, optical multilayer film and antireflection film
JP2001164119A (en) * 1999-12-07 2001-06-19 Toppan Printing Co Ltd High-refractive-index composition, high-refracttve-index film, and antireflection film

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163906A (en) * 1999-12-07 2001-06-19 Toppan Printing Co Ltd Low refractive index composition, low refractive index film, optical multilayer film and antireflection film
JP2001164119A (en) * 1999-12-07 2001-06-19 Toppan Printing Co Ltd High-refractive-index composition, high-refracttve-index film, and antireflection film
US7229686B2 (en) 2002-09-25 2007-06-12 Shin-Etsu Chemical Co., Ltd. Antireflection film and making method
JP2006099081A (en) * 2004-09-06 2006-04-13 Fuji Photo Film Co Ltd Method of manufacturing optical film and antireflection film, optical film, antireflection film, polarizing plate, and image display device using them
JP2006083033A (en) * 2004-09-17 2006-03-30 Tayca Corp Rutile-type titanium oxide sol
JP2006098444A (en) * 2004-09-28 2006-04-13 Sumitomo Chemical Co Ltd Laminate having scratch resistance and antireflection
JP4736387B2 (en) * 2004-09-28 2011-07-27 住友化学株式会社 Laminated body having scratch resistance and antireflection properties
WO2006038735A1 (en) * 2004-10-07 2006-04-13 Nippon Shokubai Co., Ltd. Resin composition for optical packaging material and process for preparing the same, and optical packaging material, optical packaging component, and optical module
JP2007213079A (en) * 2006-02-08 2007-08-23 Dongwoo Fine-Chem Co Ltd Low reflection film and its manufacturing method
WO2007091730A1 (en) * 2006-02-10 2007-08-16 Fujifilm Corporation Organic-inorganic hybrid composition, method for producing the same, molding and optical component
US7897712B2 (en) 2006-02-10 2011-03-01 Fujifilm Corporation Organic-inorganic hybrid composition, method for producing the same, molding and optical component
CN102549081A (en) * 2009-10-16 2012-07-04 拜尔材料科学股份公司 High refractive, scratch resistant TiO in single and multiple layers2Coating layer
JP2012220556A (en) * 2011-04-05 2012-11-12 Jsr Corp Antireflection film, composition for forming high refractive layer of the antireflection film, and display for outdoor installation

Similar Documents

Publication Publication Date Title
JP4292634B2 (en) Method for manufacturing antireflection laminate
JP4590705B2 (en) Anti-reflection laminate
JP5078620B2 (en) Hollow silica fine particles, composition for forming transparent film containing the same, and substrate with transparent film
JP4517590B2 (en) Antifouling agent and antifouling article using the same
KR101009821B1 (en) Coating composition for antireflection, antireflection film and method for preparing the same
KR101273097B1 (en) Anti-reflection and anti-glare coating composition, anti-reflection and anti-glare film, and method for preparation of the same
JP4126521B2 (en) Method for producing fluoroorganopolysiloxane resin for film forming composition
JP4380752B2 (en) Method for manufacturing antireflection laminate
KR101497409B1 (en) Resin composition
WO2007148684A1 (en) Inorganic-organic hybrid composition and use thereof
WO2005085913A1 (en) Antireflection film and process for producing the same
JP2014037453A (en) Active energy ray curable resin composition and laminate using the same
JP2001164117A (en) High-refractive-index composition and antireflection laminate
JP2002053806A (en) Coating film forming composition
JP4759780B2 (en) Low refractive index composition, low refractive index film, optical multilayer film and antireflection film
JP4736234B2 (en) Method for manufacturing antireflection laminate
JP4480408B2 (en) Coating composition for silver plating and method for producing the same
JP4747421B2 (en) Anti-reflection laminate
JP2000356705A (en) High refractive index composition and optical film comprising the same
JP4590665B2 (en) High refractive index composition, high refractive index film and antireflection film
JP2000336313A (en) Coating composition having high refractive index
JP5124892B2 (en) Low refractive index composition for coating and optical multilayer film comprising the composition
JP2001293818A (en) Reflection preventing hard coat film
JP4649690B2 (en) Antireflection laminate and method for producing the same
JP4748132B2 (en) Method for manufacturing antireflection laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309