JP2001256631A - Magnetic recording medium and method of manufacturing the same - Google Patents

Magnetic recording medium and method of manufacturing the same

Info

Publication number
JP2001256631A
JP2001256631A JP2000300906A JP2000300906A JP2001256631A JP 2001256631 A JP2001256631 A JP 2001256631A JP 2000300906 A JP2000300906 A JP 2000300906A JP 2000300906 A JP2000300906 A JP 2000300906A JP 2001256631 A JP2001256631 A JP 2001256631A
Authority
JP
Japan
Prior art keywords
recording medium
substrate
magnetic recording
magnetic
medium according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000300906A
Other languages
Japanese (ja)
Inventor
Osamu Kitagami
北上  修
Hiroshi Shimada
島田  寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000300906A priority Critical patent/JP2001256631A/en
Publication of JP2001256631A publication Critical patent/JP2001256631A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high-density recording medium, having improved thermal and temporal stability of the recording state and superior reliability, and to provide a method of manufacturing the medium. SOLUTION: In the magnetic recording medium, having a ferromagnetic particle layer consisting of ferromagnetic particles formed on the substrate (or on a base layer on the substrate) or having a ferromagnetic particle layer, formed by growing ferromagnetic particles in a nonmagnetic matrix on the substrate, the ferromagnetic particles have a CuAu regular structure, consisting of the composition of F1-xMx (where F represents Fe or Co and M represents Pd, Ir or Pt) and contains a nonmagnetic additive element Y (where Y is Ag, In, Au, Pb, Bi, Sn or Sb) by 0.3 atomic abundance ratio with respect to F1-xMx.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高密度磁気記録媒体およ
びその製造方法に係り、更に詳しくは、その熱的安定性
および経時的安定性に優れた磁気記録媒体およびその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-density magnetic recording medium and a method for manufacturing the same, and more particularly, to a magnetic recording medium excellent in thermal stability and temporal stability and a method for manufacturing the same.

【0002】[0002]

【従来の技術】情報社会の発展に伴い、高密度記録技術
の開発が切望されている。特に、ビット単価が安く、不
揮発かつ大容量記録の可能な磁気記録においては、高密
度記録の可能な磁気記録媒体の開発が強く要求され、種
々の研究開発によりここ数年で著しい高密度化が実現さ
れた。しかし、将来的に更なる進化が期待される情報化
社会において、例えば十年、二十年先の市場要求に対応
できる技術的見通しは殆ど得られていない。
2. Description of the Related Art With the development of the information society, development of high-density recording technology has been eagerly desired. In particular, for magnetic recording that is inexpensive per bit, and is capable of non-volatile and large-capacity recording, the development of a magnetic recording medium capable of high-density recording is strongly demanded. It was realized. However, in the information society where further evolution is expected in the future, for example, there is hardly any technical prospect that can respond to market demands in the next decade or two decades.

【0003】この技術的行き詰まりの最も大きな原因の
一つに、現行磁気記録媒体が抱える以下のような原理的
問題がある。現行の磁気記録媒体用薄膜は、CoCrを
主体とする合金薄膜であるが、この薄膜においては磁性
を担う微小領域の磁気的分離が不十分なため、磁気的に
結合した比較的に大きな磁気集団(クラスタ−)が形成
される。そのサイズは凡そサブミクロンからミクロンオ
−ダ−にも達する。現行の磁気記録技術における最小ビ
ットサイズがサブミクロンオ−ダ−であり、上記磁気ク
ラスタ−サイズと同程度であることを考えると、記録分
解能という点では既に限界に近づいているということが
できる。
[0003] One of the biggest causes of this technical deadlock is the following fundamental problem of current magnetic recording media. The current thin films for magnetic recording media are alloy thin films mainly composed of CoCr. However, in this thin film, the magnetic separation of minute regions bearing the magnetism is insufficient, so that a relatively large magnetic group that is magnetically coupled is used. (Cluster) is formed. Its size ranges from submicron to micron order. Considering that the minimum bit size in the current magnetic recording technology is on the order of submicron, which is almost the same as the magnetic cluster size, it can be said that the recording resolution has already reached the limit.

【0004】現行技術のこのような限界を打破するに
は、記録媒体内の磁性粒子を効率よく磁気絶縁し、磁気
クラスタ−の極小化を図る必要がある。この問題に対す
る一つのブレ−クスル−として、グラニュラ−型媒体が
提案された。グラニュラ−媒体は、酸化物等の非磁性マ
トリクス中に磁性微粒子を析出させた構造を有し、磁性
粒子間が非磁性物質の介在によりほぼ完全に磁気的に絶
縁されている。
In order to overcome such limitations of the current technology, it is necessary to efficiently magnetically insulate magnetic particles in a recording medium and minimize the size of magnetic clusters. As one solution to this problem, a granular medium has been proposed. The granular medium has a structure in which magnetic fine particles are precipitated in a nonmagnetic matrix such as an oxide, and the magnetic particles are almost completely magnetically insulated from each other by the interposition of a nonmagnetic substance.

【0005】したがって、個々の粒子(凡そ100〜3
00オングストロ−ム程度)が最小の磁化単位となり、
少なくともこの程度のサイズまで微小な高密度記録が可
能となる。実際、最近の研究によれば、SiO2非磁性
マトリクス中に磁性粒子を分散析出させたグラニュラ−
媒体において、高密度記録が可能なこと、そして粗大ク
ラスタ−形成の回避によるノイズの顕著な低減効果が確
認されている。
Therefore, individual particles (about 100 to 3)
00 Angstrom) is the minimum magnetization unit.
At least up to this size, minute high-density recording becomes possible. In fact, according to recent research, a granular material in which magnetic particles are dispersed and precipitated in a SiO 2 non-magnetic matrix is used.
It has been confirmed that high-density recording is possible on a medium, and a remarkable effect of reducing noise by avoiding formation of coarse clusters.

【0006】以上のように、グラニュラ−型媒体は次世
代超高密度記録媒体として大変有望な候補であるが、そ
の反面記録状態の熱擾乱という一層深刻な問題を抱えて
いる。この問題について以下に詳述する。
As described above, the granular medium is a very promising candidate as a next-generation ultra-high-density recording medium, but has a more serious problem of thermal disturbance in the recording state. This problem will be described in detail below.

【0007】一般に磁性体は、結晶格子の空間的対称性
を反映した結晶磁気異方性を示す。例えば、六方稠密構
造を有するコバルトでは、結晶主軸(c軸)方向にスピ
ンが向いた場合がもっとも磁気的エネルギ−が低く、そ
の方向からずれるとエネルギ−が高くなり、直交方向で
は最大となる。
In general, a magnetic material exhibits crystal magnetic anisotropy reflecting the spatial symmetry of the crystal lattice. For example, in the case of cobalt having a hexagonal close-packed structure, the magnetic energy is lowest when the spin is oriented in the main crystal axis (c-axis) direction.

【0008】つまり、外場による強制がなければ、常に
スピンはc軸方向の二方向のいずれかを向くことにな
る。このスピンの向きの二値情報を活用したものが、磁
気記録の基本である。一個の磁性粒子に着目した場合、
その磁気異方性エネルギ−は、物質そのものにより決ま
る磁気異方性定数に粒子体積を乗じたものが、全エネル
ギ−となる。このエネルギ−が安定方向へのスピン拘束
度を支配し、記録状態の保存につながるわけである。
[0008] In other words, unless forced by an external field, the spin always faces one of two directions in the c-axis direction. What utilizes the binary information of the spin direction is the basis of magnetic recording. When focusing on one magnetic particle,
The magnetic anisotropy energy is the total energy obtained by multiplying the magnetic anisotropy constant determined by the substance itself by the particle volume. This energy governs the spin constraint in the stable direction, leading to the preservation of the recorded state.

【0009】もし、磁性粒子の体積が極端に小さくな
り、磁気異方性エネルギ−が熱エネルギ−と同程度にな
った場合を考えると、熱擾乱によりスピンの向き(つま
り記録状態)は常に揺らいだものとなり、もはや記録状
態を安定に維持できなくなる。上記グラニュラ−媒体
は、極微小な粒子が非磁性物によりほぼ完全に孤立化さ
れてるため、この熱擾乱が極めて深刻な問題となる。こ
のために、グラニュラ−媒体では、記録情報の熱的安定
性や長期保存性が問題となり、その実用化は困難視され
ていた。
Considering the case where the volume of the magnetic particles becomes extremely small and the magnetic anisotropy energy becomes almost equal to the heat energy, the direction of the spin (that is, the recording state) always fluctuates due to thermal disturbance. The recording state can no longer be stably maintained. In the above-mentioned granular medium, extremely minute particles are almost completely isolated by a non-magnetic substance, so that this thermal disturbance becomes a very serious problem. For this reason, in the case of the granular medium, the thermal stability and long-term storage stability of the recorded information have become problems, and its practical use has been regarded as difficult.

【0010】こうした問題を解決するには、本質的に磁
性体の異方性エネルギ−を高める必要があり、その方法
としてCo50Pt50、Fe50Pt50などCuAu型構造
の高い結晶磁気異方性を有する規則合金を用いることも
考えられる。しかし、一般にこうした材料は合成温度が
非常に高く、量産化には適さないものであった。
In order to solve these problems, it is necessary to essentially increase the anisotropic energy of the magnetic material. As a method for achieving this, a crystal magnetic anisotropic material having a CuAu type structure such as Co 50 Pt 50 or Fe 50 Pt 50 is used. It is also conceivable to use an ordered alloy having properties. However, these materials generally have a very high synthesis temperature and are not suitable for mass production.

【0011】[0011]

【発明が解決しようとする課題】本発明は、従来研究さ
れてきたグラニュラ−型媒体が抱える記録状態の熱的、
経時的不安定性という問題を解決し、信頼性に優れた高
密度記録媒体およびその製造方法を提供することを目的
とする。
DISCLOSURE OF THE INVENTION The present invention is directed to a recording medium having a thermal state,
It is an object of the present invention to solve the problem of temporal instability and to provide a high-density recording medium having excellent reliability and a method of manufacturing the same.

【0012】[0012]

【課題を解決するための手段】本発明の磁気記録媒体
は、基体上(あるいは基体上の下地層上)に形成された
強磁性粒子からなる強磁性粒子層、または基体上の非磁
性マトリクス中に強磁性粒子が成長してなる強磁性粒子
層を有する磁気記録媒体において、前記強磁性粒子がF
1-xx(F:Fe、Co、M:Pd、Ir、Pt)の組
成からなるCuAu型規則構造を有し、かつ前記F1-x
xに対する原子存在比率が0.3以内の非磁性添加元
素Y(Y:Ag、In、Au、Pb、Bi、Sn、S
b)が含有されることを特徴とする。
According to the present invention, there is provided a magnetic recording medium comprising: a ferromagnetic particle layer formed of ferromagnetic particles formed on a substrate (or an underlayer on the substrate); In a magnetic recording medium having a ferromagnetic particle layer in which ferromagnetic particles are grown on
1-x M x (F: Fe, Co, M: Pd, Ir, Pt), having a CuAu type ordered structure having a composition, and the F 1-x
Atomic abundance ratio M x 0.3 within a nonmagnetic additive element Y (Y: Ag, In, Au, Pb, Bi, Sn, S
b) is contained.

【0013】ここにおいて、F1-xxに対するYの原子
存在比率を0.01〜0.3の範囲とすることが好まし
く、0.03〜0.2の範囲とすることがより好まし
い。
Here, the atomic ratio of Y to F 1 -xM x is preferably in the range of 0.01 to 0.3, and more preferably in the range of 0.03 to 0.2.

【0014】また、結晶主軸が主に強磁性粒子層面の法
線方向にあることが好ましく。非磁性マトリクスは炭化
物、窒化物、酸化物またはこれらの混合物からなること
が好ましく、より具体的には、SiO2,MgO,Al2
3,In23のいずれか1種以上からなることが好ま
しい。
Further, it is preferable that the crystal main axis is mainly in the normal direction of the ferromagnetic particle layer surface. The non-magnetic matrix is preferably made of carbide, nitride, oxide or a mixture thereof, and more specifically, SiO 2 , MgO, Al 2
It is preferable to be composed of at least one of O 3 and In 2 O 3 .

【0015】一方、上記において、x=0.40〜0.
65が好ましい。この範囲においてCuAu型規則構造
が形成され、さらに熱的、経時的安定性がより一層向上
する。
On the other hand, in the above, x = 0.40-0.
65 is preferred. Within this range, a CuAu type ordered structure is formed, and the thermal and temporal stability are further improved.

【0016】強磁性粒子層の厚さは100nm以下が好
ましく、50nm以下がより好ましい。
The thickness of the ferromagnetic particle layer is preferably 100 nm or less, more preferably 50 nm or less.

【0017】基体としては、熱膨張係数が2×10-5
℃以下のものが特に好ましい。表面酸化Siウエハ(〜
2×10-6/℃)、溶融石英基体(0.4×10-6
℃)、ガラス基体(3〜15×10-6/℃)等が好適に
用いられる。これら基体に50nm以下のFePt−A
g/SiO2膜を形成熱処理を施すと、基体の熱膨張係
数の小さいものほど規則度及び(001)配向の顕著な
改善が認められる。これは基体と膜との熱膨張係数の差
により膜が歪み(引張応力)を受け、この応力の存在に
より規則度そして配向が向上するのではないかと推測さ
れる。
The substrate has a coefficient of thermal expansion of 2 × 10 -5 /
C. or lower is particularly preferred. Surface oxidized Si wafer (~
2 × 10 −6 / ° C.), fused quartz substrate (0.4 × 10 −6 /
C.), a glass substrate (3 to 15 * 10 < -6 > / [deg.] C.) and the like are preferably used. FePt-A of 50 nm or less is applied to these substrates.
When the heat treatment for forming the g / SiO 2 film is performed, the order and the (001) orientation are remarkably improved as the thermal expansion coefficient of the substrate becomes smaller. This is presumed to be due to the fact that the film receives strain (tensile stress) due to the difference in the coefficient of thermal expansion between the substrate and the film, and the presence of this stress improves the order and orientation.

【0018】また、下地層についても基体の場合と同様
に熱膨張係数の小さいものほど好ましい。下地層として
は、C、Si、酸化物(SiO2、MgO、Al2
3等)、炭化物(SiW、WC等)、窒化物(BN
等))からなる層であることが好ましい。
As for the underlayer, it is preferable that the thermal expansion coefficient is small as in the case of the substrate. C, Si, oxides (SiO 2 , MgO, Al 2 O)
3 ), carbide (SiW, WC, etc.), nitride (BN
And the like).

【0019】本発明の磁気記録媒体の製造方法は、強磁
性体F1-xx(F:Fe、Co、M:Pd、Ir、P
t)、非磁性添加元素Y(Y:Ag、In、Au、P
b、Bi、Sn、Sb)を同時に基体上(あるいは基体
上に形成された下地層上)に堆積させることを特徴とす
る。
The method of manufacturing a magnetic recording medium according to the present invention is directed to a ferromagnetic material F 1-x M x (F: Fe, Co, M: Pd, Ir, P
t), nonmagnetic additive element Y (Y: Ag, In, Au, P
b, Bi, Sn, Sb) are simultaneously deposited on the substrate (or on the underlayer formed on the substrate).

【0020】また、本発明の磁気記録媒体の製造方法
は、強磁性体F1-xx(F:Fe、Co、M:Pd、I
r、Pt)、非磁性添加元素Y(Y:Ag、In、A
u、Pb、Bi、Sn、Sb)、及び非磁性マトリクス
材料を同時に基体上に堆積させることを特徴とする。
Further, the method of manufacturing a magnetic recording medium of the present invention is directed to a ferromagnetic material F 1-x M x (F: Fe, Co, M: Pd, I
r, Pt), nonmagnetic additive element Y (Y: Ag, In, A)
u, Pb, Bi, Sn, Sb) and a non-magnetic matrix material are simultaneously deposited on a substrate.

【0021】上記製造方法においても、強磁性体F1-x
x(F:Fe、Co、M:Pd、Ir、Pt)、及び
1-xxに対する原子存在比率が0.3以内であること
が好ましい。
In the above manufacturing method, the ferromagnetic material F 1-x
It is preferable that the atom abundance ratio to M x (F: Fe, Co, M: Pd, Ir, Pt) and F 1-x M x is within 0.3.

【0022】本発明の磁気記録媒体の製造方法は、強磁
性体F1-xx(F:Fe、Co、M:Pd、Ir、P
t)、非磁性添加元素Y(Y:Ag、In、Au、P
b、Bi、Sn、Sb)、及び非磁性マトリクス材料を
同時に基体上に堆積させることを特徴とする。
The method of manufacturing a magnetic recording medium according to the present invention is directed to a ferromagnetic material F 1-x M x (F: Fe, Co, M: Pd, Ir, P
t), nonmagnetic additive element Y (Y: Ag, In, Au, P
b, Bi, Sn, Sb) and the non-magnetic matrix material are simultaneously deposited on the substrate.

【0023】上記製造方法において、強磁性体F1-xx
(F:Fe、Co、M:Pd、Ir、Pt)、及びF
1-xxに対する原子存在比率が0.3以内の非磁性添加
元素Y(Y:Ag、In、Au、Pb、Bi、Sn、S
b)を同時に非磁性あるいは軟磁性基体上に堆積させる
ことが好ましい。
In the above manufacturing method, the ferromagnetic substance F 1-x M x
(F: Fe, Co, M: Pd, Ir, Pt), and F
1-x M atomic abundance ratio for x is 0.3 within a nonmagnetic additive element Y (Y: Ag, In, Au, Pb, Bi, Sn, S
Preferably, b) is simultaneously deposited on a non-magnetic or soft magnetic substrate.

【0024】[0024]

【作用】本発明者等は、上記従来技術が抱える記録状態
の熱的および経時的不安定性という問題を解決するため
に鋭意検討した結果、F1-xx(F:Fe、Co、M:
Pd、Ir、Pt)の組成からなるCuAu型規則構造
の強磁性粒子集合体あるいはグラニュラ−構造を作製す
る際、非磁性元素Y(Y:Ag、In、Au、Pb、B
i、Sn、Sb)を所定量添加することにより、磁気特
性を劣化させること無く規則化温度を著しく低減できる
ことを発見した。これにより、高い結晶磁気異方性のF
1-xx規則合金微粒子集合体を、量産化レベルの低い温
度で合成することが可能になった。すなわち、従来は6
50℃以上の温度が必要であったが、本発明において
は、300〜600℃の温度においても規則化が達成さ
れる。ただ、300℃未満では条件によっては良好な規
則が達成されない場合がある。300〜600℃の範囲
において、400〜550℃が好ましく、450〜50
0がより好ましい。
The present inventors have conducted intensive studies to solve the problem of thermal and temporal instability of the recording state of the prior art, and as a result, found that F 1-x M x (F: Fe, Co, M :
When producing a ferromagnetic particle aggregate or a granular structure having a CuAu type ordered structure composed of Pd, Ir, Pt), the nonmagnetic element Y (Y: Ag, In, Au, Pb, B)
It has been found that by adding a predetermined amount of i, Sn, Sb), the ordering temperature can be significantly reduced without deteriorating magnetic properties. As a result, F of high crystal magnetic anisotropy
It has become possible to synthesize 1-xM x ordered alloy fine particle aggregates at a low temperature for mass production. That is, 6
Although a temperature of 50 ° C. or higher was required, in the present invention, ordering is achieved even at a temperature of 300 to 600 ° C. However, below 300 ° C., good rules may not be achieved depending on conditions. In the range of 300 to 600 ° C, 400 to 550 ° C is preferable, and 450 to 50 ° C.
0 is more preferred.

【0025】上記非磁性元素Yの添加量について、磁気
特性を損なわない範囲で規則化温度の低減が顕著に認め
られるのは、F1-xxに対するYの原子存在比率が0.
3以内であった。より望ましい比率としては0.01〜
0.3であり、更に望ましくは0.03〜0.2であっ
た。以上のような少量の元素Yの添加により、F1-xx
の規則化温度は、それを添加しない場合に比べ、100
℃以上低減した。
[0025] The amount of the non-magnetic element Y, the reduction of the ordering temperature within a range not to impair the magnetic properties were conspicuously observed is, F 1-x M atomic abundance ratio of Y with respect to x is 0.
Within three. A more desirable ratio is 0.01 to
0.3, and more preferably 0.03 to 0.2. By adding a small amount of element Y as described above, F 1-x M x
Has a regularization temperature of 100
℃ or more.

【0026】本発明の効果は、特に次のような場合に顕
著に現れる。第一は、下地層を介すかあるいは介さない
で基体上にF1-xx規則合金膜を形成する場合である。
特に膜厚が100nm以下と薄い場合に、元素Yの添加
による規則化温度の低下は著しい。ここでF1-xxの規
則化は、成長時の基体温度を高くすることによっても実
現されるし、不規則相を形成した後の熱処理によっても
可能である。いずれの場合にも元素Yの添加による規則
化温度の低下が顕著に認められる。
The effect of the present invention is particularly noticeable in the following cases. The first is a case where an F 1-x M x ordered alloy film is formed on a substrate with or without an underlayer.
In particular, when the film thickness is as thin as 100 nm or less, the addition of the element Y significantly reduces the ordering temperature. Here, the ordering of F 1-x M x can be realized by increasing the substrate temperature during growth, or by heat treatment after forming an irregular phase. In each case, a decrease in the ordering temperature due to the addition of the element Y is remarkably observed.

【0027】本発明の効果が顕著に認められる第二のケ
−スは、F1-xxと非磁性マトリクス材料を同時に基体
上に堆積させる、いわゆるグラニュラ−膜の場合であ
る。この場合には、膜中に元素Yを所定量添加すれば、
先の例と同様に顕著な規則化温度の低減を実現できる。
このケ−スでは、磁性合金F1-xx微粒子が非磁性マト
リクス中に分散した形態となるが、このような相分離及
び規則化を進行させる手段として、上記第一の場合と同
様に成長時の基体加熱あるいは成膜後の熱処理のいずれ
をも選択できる。熱処理の温度は、膜の厚さにもよるが
堆積時の基体温度と同様の温度を適用すればよい。
A second case where the effect of the present invention is remarkably recognized is a so-called granular film in which F 1 -xM x and a non-magnetic matrix material are simultaneously deposited on a substrate. In this case, if a predetermined amount of the element Y is added to the film,
As in the previous example, a remarkable reduction in ordering temperature can be realized.
In this case, the magnetic alloy F 1-x M x fine particles are dispersed in a non-magnetic matrix. As a means for promoting such phase separation and ordering, as in the first case, Either substrate heating during growth or heat treatment after film formation can be selected. Although the temperature of the heat treatment depends on the thickness of the film, a temperature similar to the substrate temperature during deposition may be applied.

【0028】本発明の検討中に見出された更に有用かつ
興味深い現象として、元素Yの添加によるF1-xx規則
合金の優先配向がある。以下にその内容を述べる。F
1-xx(F:Fe、Co、M:Pd、Ir、Pt)合金
は、x〜0.5付近でCuAu型規則構造をとる。この
時にF、Mがランダムに配列した面心立方構造(fc
c)の不規則相から、一軸方向に伸縮した面心正方構造
(fct)の規則相に規則−不規則変態を起こす。この
伸縮した結晶軸方向((001)方向)には、一原子層
毎にFとMが交互に積層されたいわゆる原子レベルでの
超格子が形成される。
A further useful and interesting phenomenon discovered during the study of the present invention is the preferential orientation of F 1-x M x ordered alloys by the addition of element Y. The details are described below. F
The 1-x M x (F: Fe, Co, M: Pd, Ir, Pt) alloy has a CuAu type ordered structure near x to 0.5. At this time, a face-centered cubic structure in which F and M are randomly arranged (fc
From the irregular phase of c), an order-irregular transformation is caused to a regular phase of a face-centered square structure (fct) expanded and contracted in one axis direction. In the stretched crystal axis direction ((001) direction), a so-called atomic-level superlattice in which F and M are alternately stacked for each atomic layer is formed.

【0029】このような原子配列の異方性は、一般に極
めて強い磁気異方性を生み出す。従って、F1-xx規則
合金微粒子の結晶軸の配向状態は磁気特性を支配するた
め、結晶配向の制御は極めて重要な課題となる。FeP
tあるいはCoPt規則合金などを例にとれば、(00
1)が磁化容易軸となり、その磁気エネルギ−は107
erg/cc台にも達する。今回我々が新たに見出した
現象は、少量の非磁性元素Y(Y:Ag、In、Au、
Pb、Bi、Sn、Sb)の添加により、特に膜厚50
nmという薄い領域において、前記二つのケ−スいずれ
の場合にも、ほぼ理想に近いfct(001)配向が実
現されることである。つまりfct(001)軸は膜面
法線方向に向き、その結果面直方向に強い磁気異方性が
現れる。例えば、FePtやCoPt規則合金などでは
ほぼ理想的な垂直磁化膜となり、垂直磁気記録に好適な
材料となる。
Such anisotropy of atomic arrangement generally produces extremely strong magnetic anisotropy. Therefore, since the orientation of the crystal axis of the F 1-x M x ordered alloy fine particles dominate the magnetic properties, controlling the crystal orientation is a very important issue. FeP
If t or CoPt ordered alloy is taken as an example, (00
1) becomes the axis of easy magnetization, and its magnetic energy is 10 7
erg / cc level. The phenomenon we have newly found this time is that a small amount of nonmagnetic element Y (Y: Ag, In, Au,
By adding Pb, Bi, Sn, and Sb), a film thickness of 50
In a region as thin as nm, the fct (001) orientation which is almost ideal is realized in any of the two cases. In other words, the fct (001) axis is oriented in the direction normal to the film surface, and as a result, strong magnetic anisotropy appears in the direction perpendicular to the surface. For example, a FePt or CoPt ordered alloy or the like becomes a nearly ideal perpendicular magnetic film, and is a material suitable for perpendicular magnetic recording.

【0030】以下、本発明を実施例により説明する。Hereinafter, the present invention will be described with reference to examples.

【0031】[0031]

【実施例】(実施例1)SiO2タ−ゲットとCo−5
0at.%Ptタ−ゲットをスパッタリングし、溶融石
英基板上に全体膜厚が約100nmとなるよう同時堆積
した。
[Example] (Example 1) SiO 2 data - target and Co-5
0 at. % Pt target was sputtered and co-deposited on a fused quartz substrate to a total thickness of about 100 nm.

【0032】また、添加元素の影響を調べるために、A
gチップをCo−Ptタ−ゲット上に配置し、同様にス
パッタを行った。
In order to investigate the effect of the added element,
The g chip was placed on a Co-Pt target, and sputtering was performed in the same manner.

【0033】その後、1×10-6Torr以下の真空中
で450℃で1時間熱処理をおこなった。
Thereafter, heat treatment was performed at 450 ° C. for 1 hour in a vacuum of 1 × 10 −6 Torr or less.

【0034】Co−Ptに対するAgの原子存在比率R
はEDXにより決定し、Rを0.03〜0.3の範囲で
変化させた。結晶構造及び規則化パラメタ−SはX線回
折から決定した。磁気特性はSQUID(最大印加磁場
9T)により測定した。測定結果を表1にまとめる(試
料1〜5)。
Atomic ratio R of Ag to Co-Pt
Was determined by EDX, and R was changed in the range of 0.03 to 0.3. Crystal structure and ordered parameter-S were determined from X-ray diffraction. Magnetic properties were measured by SQUID (maximum applied magnetic field 9T). The measurement results are summarized in Table 1 (Samples 1 to 5).

【0035】表中、Hciは面内方向保磁力、Hcpは
面直方向保磁力を示し、結晶配向性は積分回折強度比γ
=I002/(I111+I002+I200)を目安として評価し
た。
In the table, Hci indicates the in-plane coercive force, Hcp indicates the coercive force in the direction perpendicular to the plane, and the crystal orientation is determined by the integrated diffraction intensity ratio γ.
= I 002 / (I 111 + I 002 + I 200 ).

【0036】なお、保磁力が大きいほど磁気粒子の異方
性エネルギーは高く、その結果、磁気粒子は熱擾乱の影
響を受けにくく安定性に優れていることを意味する。
The larger the coercive force, the higher the anisotropy energy of the magnetic particles. As a result, it means that the magnetic particles are less susceptible to thermal disturbance and have better stability.

【0037】(実施例2)実施例1と同様の条件で添加
元素AgをIn、Au、Pb、Biに替えて試料作製を
おこなった。結果を表1に示す(試料6〜9)。
Example 2 A sample was prepared under the same conditions as in Example 1 except that the additive element Ag was changed to In, Au, Pb, and Bi. The results are shown in Table 1 (samples 6 to 9).

【0038】(実施例3)実施例1と同様の条件下で、
添加元素をAg(R=0.1)として、全膜厚を2〜1
00nmの範囲で変化させた。結果を表1に示す(試料
10〜13)。
Example 3 Under the same conditions as in Example 1,
When the additive element is Ag (R = 0.1), the total film thickness is 2 to 1
It was changed in the range of 00 nm. The results are shown in Table 1 (samples 10 to 13).

【0039】(実施例4)酸化シリコンウェハ−基板を
450℃に加熱した状態で、Fe−50at.%Ptに
R=0.08のAgを含有する膜を15nm堆積し測定
試料とした。結果を表2に示す(試料27)。
(Example 4) While a silicon oxide wafer-substrate was heated to 450 ° C, Fe-50 at. A film containing Ag of R = 0.08 in% Pt was deposited to a thickness of 15 nm to obtain a measurement sample. The results are shown in Table 2 (Sample 27).

【0040】(比較例1)実施例1と同様の条件下で、
Agを添加元素せずに、試料作製をおこなった。結果を
表1に示す(試料14)。
Comparative Example 1 Under the same conditions as in Example 1,
A sample was prepared without adding Ag. The results are shown in Table 1 (Sample 14).

【0041】(比較例2)実施例2と同様の条件下で、
Al、Ti、Zn、Cu、、Mo、Rh、Ta、W、を
添加し、試料作製を行った。結果を表1に示す(試料1
5〜22)。
Comparative Example 2 Under the same conditions as in Example 2,
Samples were prepared by adding Al, Ti, Zn, Cu, Mo, Rh, Ta, and W. The results are shown in Table 1 (Sample 1
5-22).

【0042】(比較例3)実施例3と同様の条件下で、
Agを添加せずに試料作製をおこなった。結果を表1に
示す(試料23〜26)。
Comparative Example 3 Under the same conditions as in Example 3,
A sample was prepared without adding Ag. The results are shown in Table 1 (samples 23 to 26).

【0043】(比較例4)実施例4と同様の条件下で、
Agを添加しないFe−50at.%Pt膜を作製し
た。結果を表2に示す(試料28)。
Comparative Example 4 Under the same conditions as in Example 4,
Ag-free Fe-50 at. % Pt film was produced. The results are shown in Table 2 (Sample 28).

【0044】(実施例5)基板をNiPコートAl基板
(熱膨張係数〜3×10-5/℃)に替え実施例1と同様
の試験を行った。
Example 5 The same test as in Example 1 was performed, except that the substrate was changed to a NiP-coated Al substrate (coefficient of thermal expansion up to 3 × 10 −5 / ° C.).

【0045】溶融石英基板を用いた実施例1の場合が本
例より規則化度及び(001)配向は優れていた。た
だ、本例は、従来例よりは規則化度及び(001)配向
は優れていた。
In the case of Example 1 using a fused quartz substrate, the degree of ordering and (001) orientation were superior to those of this example. However, in this example, the degree of ordering and (001) orientation were superior to the conventional example.

【0046】(実施例6)上記実施例では、堆積後に熱
処理を行ったが、本実施例では、堆積後の熱処理に替え
て堆積時に基板の加熱を行った。
(Embodiment 6) In the above embodiment, the heat treatment was performed after the deposition, but in this embodiment, the substrate was heated during the deposition instead of the heat treatment after the deposition.

【0047】加熱温度は250〜600℃の範囲で温度
を替えて行った。
The heating temperature was changed in the range of 250 to 600 ° C.

【0048】300の温度においても規則化が達成され
た。250℃では必ずしも良好な規則が達成されなかっ
た。400〜550℃においてより良好な結果が得ら
れ、450〜500においてさらに良好な結果が得られ
た。
Ordering was also achieved at a temperature of 300. At 250 ° C., good rules were not always achieved. Better results were obtained at 400-550 ° C and even better results at 450-500.

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【表2】 [Table 2]

【0051】(実施例7)Co−50at.%Ptタ−
ゲットをスパッタリングし、溶融石英基板上に全体膜厚
が約30nmとなるよう堆積した。
Example 7 Co-50 at. % Pt tar
A get was sputtered and deposited on a fused quartz substrate so as to have an overall film thickness of about 30 nm.

【0052】また、添加元素の影響を調べるために、S
n、SbチップをCo−Ptタ−ゲット上に配置し、同
様にスパッタを行った。
In order to investigate the effect of the added element,
The n and Sb chips were placed on a Co-Pt target, and sputtering was performed in the same manner.

【0053】その後、1×10-6Torr以下の真空中
で450℃で1時間熱処理をおこなった。
Thereafter, heat treatment was performed at 450 ° C. for 1 hour in a vacuum of 1 × 10 −6 Torr or less.

【0054】Co−Ptに対するSn、Sbの原子存在
比率RはEDXにより決定し、Rを0.03〜0.3の
範囲で変化させた。結晶構造及び規則化パラメタ−Sは
X線回折から決定した。磁気特性はSQUID(最大印
加磁場9T)により測定した。測定結果を表3にまとめ
る(試料29〜34)。
The atomic ratio R of Sn and Sb to Co-Pt was determined by EDX, and R was changed in the range of 0.03 to 0.3. Crystal structure and ordered parameter-S were determined from X-ray diffraction. Magnetic properties were measured by SQUID (maximum applied magnetic field 9T). The measurement results are summarized in Table 3 (samples 29 to 34).

【0055】表中、Hciは面内方向保磁力、Hcpは
面直方向保磁力を示し、結晶配向性は積分回折強度比γ
=I002/(I111+I002+I200)を目安として評価し
た。
In the table, Hci indicates an in-plane coercive force, Hcp indicates a coercive force in a direction perpendicular to the plane, and the crystal orientation is represented by an integrated diffraction intensity ratio γ.
= I 002 / (I 111 + I 002 + I 200 ).

【0056】(比較例5)実施例7と同様の条件でS
n、Sbを添加せずに試料作製を行った。結果を表3に
示す(試料35)。
(Comparative Example 5) S under the same conditions as in Example 7.
A sample was prepared without adding n and Sb. The results are shown in Table 3 (Sample 35).

【0057】[0057]

【表3】 [Table 3]

【0058】[0058]

【発明の効果】本発明によれば、従来研究されてきたグ
ラニュラ−型媒体が抱える記録状態の熱的、経時的不安
定性という問題を解決し、信頼性に優れた高密度記録媒
体およびその製造方法を提供することを目的ことができ
るという顕著な効果を達成することができる。
According to the present invention, the problem of thermal and temporal instability in the recording state of a granular medium which has been studied in the prior art is solved, and a high-density recording medium excellent in reliability and its manufacture. The remarkable effect that the method can be aimed at can be achieved.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 10/26 H01F 10/26 41/16 41/16 Fターム(参考) 5D006 BB01 BB06 BB07 BB09 CA01 CB01 5D112 AA05 BB01 BB06 FA04 FB19 GB01 5E049 AA01 AA04 AA09 BA06 BA08 DB04 EB06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 10/26 H01F 10/26 41/16 41/16 F term (Reference) 5D006 BB01 BB06 BB07 BB09 CA01 CB01 5D112 AA05 BB01 BB06 FA04 FB19 GB01 5E049 AA01 AA04 AA09 BA06 BA08 DB04 EB06

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 基体上(あるいは基体上の下地層上)に
形成された強磁性粒子からなる強磁性粒子層、または基
体上の非磁性マトリクス中に強磁性粒子が成長してなる
強磁性粒子層を有する磁気記録媒体において、 前記強磁性粒子がF1-xx(F:Fe、Co、M:P
d、Ir、Pt)の組成からなるCuAu型規則構造を
有し、かつ前記F1-xxに対する原子存在比率が0.3
以内の非磁性添加元素Y(Y:Ag、In、Au、P
b、Bi、Sn、Sb)が含有されることを特徴とする
磁気記録媒体。
1. A ferromagnetic particle layer composed of ferromagnetic particles formed on a substrate (or an underlayer on the substrate) or a ferromagnetic particle formed by growing ferromagnetic particles in a non-magnetic matrix on the substrate. In the magnetic recording medium having a layer, the ferromagnetic particles are composed of F 1-x M x (F: Fe, Co, M: P
d, Ir, having a CuAu type ordered structure having a composition of Pt), and atomic abundance ratio with respect to the F 1-x M x is 0.3
Within the non-magnetic additive element Y (Y: Ag, In, Au, P
b, Bi, Sn, Sb).
【請求項2】 F1-xxに対するYの原子存在比率が
0.01〜0.3の範囲にあることを特徴とする請求項
1に記載の磁気記録媒体。
2. The magnetic recording medium according to claim 1, wherein the atomic ratio of Y to F 1-x M x is in the range of 0.01 to 0.3.
【請求項3】 F1-xxに対するYの原子存在比率が
0.03〜0.2の範囲にあることを特徴とする請求項
1記載の磁気記録媒体。
3. The magnetic recording medium according to claim 1, wherein the atomic ratio of Y to F 1-x M x is in the range of 0.03 to 0.2.
【請求項4】 結晶主軸が主に膜面法線方向にあること
を特徴とする請求項1ないし3のいずれか1項に記載の
磁気記録媒体。
4. The magnetic recording medium according to claim 1, wherein the crystal main axis is mainly in a direction normal to the film surface.
【請求項5】 前記非磁性マトリクスは炭化物、窒化
物、酸化物またはこれらの混合物からなることを特徴と
する請求項1ないし4のいずれか1項に記載の磁気記録
媒体。
5. The magnetic recording medium according to claim 1, wherein the non-magnetic matrix is made of a carbide, a nitride, an oxide, or a mixture thereof.
【請求項6】 前記非磁性マトリクスはSiO2,Mg
O,Al23,In23のいずれか1種以上からなるこ
とを特徴とする請求項5記載の磁気記録媒体。
6. The non-magnetic matrix is made of SiO 2 , Mg.
O, Al 2 O 3, In 2 magnetic recording medium according to claim 5, characterized in that it consists of any one or more of O 3.
【請求項7】 x=0.40〜0.65であることを特
徴とする請求項1ないし6のいずれか1項に記載の磁気
記録媒体。
7. The magnetic recording medium according to claim 1, wherein x = 0.40 to 0.65.
【請求項8】 前記強磁性粒子層の厚さが100nm以
下であることを特徴とする請求項1ないし7のいずれか
1項に記載の磁気記録媒体。
8. The magnetic recording medium according to claim 1, wherein the thickness of the ferromagnetic particle layer is 100 nm or less.
【請求項9】 前記基体は熱膨張係数が2×10-5/℃
以下であることを特徴とする請求項1ないし8のいずれ
か1項に記載の磁気記録媒体。
9. The substrate has a coefficient of thermal expansion of 2 × 10 −5 / ° C.
The magnetic recording medium according to claim 1, wherein:
【請求項10】 前記基体は、表面酸化Siウエハ、溶
融石英基体、ガラス基体であることを特徴とする請求項
1ないし8のいずれか1項に記載の磁気記録媒体。
10. The magnetic recording medium according to claim 1, wherein the substrate is a surface-oxidized Si wafer, a fused quartz substrate, or a glass substrate.
【請求項11】 前記下地層は、C、Si、酸化物、炭
化物、窒化物から層であることを特徴とする請求項1な
いし10のいずれか1項に記載の磁気記録媒体。
11. The magnetic recording medium according to claim 1, wherein the underlayer is a layer made of C, Si, oxide, carbide, or nitride.
【請求項12】 強磁性体F1-xx(F:Fe、Co、
M:Pd、Ir、Pt)、非磁性添加元素Y(Y:A
g、In、Au、Pb、Bi、Sn、Sb)を同時に基
体上(あるいは基体上の下地層上)に堆積させることを
特徴とする磁気記録媒体の製造方法。
12. A ferromagnetic material F 1-x M x (F: Fe, Co,
M: Pd, Ir, Pt), nonmagnetic additive element Y (Y: A
g, In, Au, Pb, Bi, Sn, and Sb) are simultaneously deposited on a substrate (or on a base layer on the substrate).
【請求項13】 強磁性体F1-xx(F:Fe、Co、
M:Pd、Ir、Pt)、非磁性添加元素Y(Y:A
g、In、Au、Pb、Bi、Sn、Sb)、及び非磁
性マトリクス材料を同時に基体上に堆積させることを特
徴とする磁気記録媒体の製造方法。
13. A ferromagnetic material F 1-x M x (F: Fe, Co,
M: Pd, Ir, Pt), nonmagnetic additive element Y (Y: A
g, In, Au, Pb, Bi, Sn, Sb) and a non-magnetic matrix material are simultaneously deposited on a substrate.
【請求項14】 強磁性体F1-xx(F:Fe、Co、
M:Pd、Ir、Pt)、及びF1-xxに対する原子存
在比率が0.3以内であることを特徴とする請求項12
または13に記載の磁気記録媒体の製造方法。
14. A ferromagnetic material F 1-x M x (F: Fe, Co,
M: Pd, Ir, Pt), and the atomic abundance ratio to F 1-x M x is within 0.3.
Or a method for manufacturing a magnetic recording medium according to item 13.
【請求項15】 堆積時の基体温度を300℃〜600
℃とすることを特徴とする請求項12ないし14のいず
れか1項に記載の磁気記録媒体の製造方法。
15. The substrate temperature during deposition is 300 ° C. to 600 ° C.
15. The method for producing a magnetic recording medium according to claim 12, wherein the temperature is set to ° C.
【請求項16】 堆積後の熱処理を300℃〜600℃
で行うことを特徴とする請求項12ないし14のいずれ
か1項に記載の磁気記録媒体の製造方法。
16. Post-deposition heat treatment at 300 ° C. to 600 ° C.
The method according to any one of claims 12 to 14, wherein the method is performed.
JP2000300906A 2000-01-05 2000-09-29 Magnetic recording medium and method of manufacturing the same Pending JP2001256631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000300906A JP2001256631A (en) 2000-01-05 2000-09-29 Magnetic recording medium and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000000544 2000-01-05
JP2000-544 2000-01-05
JP2000300906A JP2001256631A (en) 2000-01-05 2000-09-29 Magnetic recording medium and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2001256631A true JP2001256631A (en) 2001-09-21

Family

ID=26583178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000300906A Pending JP2001256631A (en) 2000-01-05 2000-09-29 Magnetic recording medium and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2001256631A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1376625A2 (en) * 2002-05-31 2004-01-02 Fuji Photo Film Co., Ltd. Magnetic particle and its production method
US7037605B2 (en) 2003-02-28 2006-05-02 Fuji Photo Film Co., Ltd. Magnetic particle coated material containing magnetic particles having CuAu type or Cu3Au type ferromagnetic ordered alloy phase, and method for producing the same
WO2008026439A1 (en) * 2006-08-31 2008-03-06 Ishifuku Metal Industry Co., Ltd. Magnetic thin film
US7384449B2 (en) 2001-09-05 2008-06-10 Fujifilm Corporation Ferromagnetic nanoparticles, material coated with dispersion of ferromagnetic nanoparticles, and magnetic recording medium using the material
US7470308B2 (en) 2004-02-10 2008-12-30 Fujifilm Corporation Method of producing magnetic particles and reaction method using microreactor and microreactor
US7544230B2 (en) 2003-03-05 2009-06-09 Fujifilm Corporation Method of manufacturing magnetic particle, magnetic particle and magnetic recording medium
JP2011081873A (en) * 2009-10-07 2011-04-21 Ulvac Japan Ltd Recording layer for perpendicular magnetic recording medium, perpendicular magnetic recording medium, and method for manufacturing ferromagnetic metal film
WO2011132747A1 (en) * 2010-04-23 2011-10-27 国立大学法人秋田大学 Magnetic recording medium and manufacturing method for magnetic recording medium
KR101078872B1 (en) * 2009-04-23 2011-11-01 한국과학기술연구원 Magnetic thin film member and method for manufacturing the same
WO2020031461A1 (en) * 2018-08-09 2020-02-13 Jx金属株式会社 Sputtering target and magnetic film
WO2020031460A1 (en) * 2018-08-09 2020-02-13 Jx金属株式会社 Sputtering target, magnetic film, and perpendicular magnetic recording medium

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7384449B2 (en) 2001-09-05 2008-06-10 Fujifilm Corporation Ferromagnetic nanoparticles, material coated with dispersion of ferromagnetic nanoparticles, and magnetic recording medium using the material
JP4524078B2 (en) * 2002-05-31 2010-08-11 富士フイルム株式会社 Magnetic particle and method for manufacturing the same, and magnetic recording medium and method for manufacturing the same
JP2004056091A (en) * 2002-05-31 2004-02-19 Fuji Photo Film Co Ltd Magnetic particle and its manufacturing method, and magnetic recording medium and its manufacturing method
EP1376625A2 (en) * 2002-05-31 2004-01-02 Fuji Photo Film Co., Ltd. Magnetic particle and its production method
US7244287B2 (en) 2002-05-31 2007-07-17 Fujifilm Corporation Magnetic particle, its production method, magnetic recording medium and its production method
EP1850355A1 (en) * 2002-05-31 2007-10-31 FUJIFILM Corporation Magnetic particle and its production method
US7335393B2 (en) 2002-05-31 2008-02-26 Fujifilm Corporation Magnetic particle, its production method, magnetic recording medium and its production method
EP1376625A3 (en) * 2002-05-31 2006-03-15 Fuji Photo Film Co., Ltd. Magnetic particle and its production method
US7037605B2 (en) 2003-02-28 2006-05-02 Fuji Photo Film Co., Ltd. Magnetic particle coated material containing magnetic particles having CuAu type or Cu3Au type ferromagnetic ordered alloy phase, and method for producing the same
US7544230B2 (en) 2003-03-05 2009-06-09 Fujifilm Corporation Method of manufacturing magnetic particle, magnetic particle and magnetic recording medium
US7470308B2 (en) 2004-02-10 2008-12-30 Fujifilm Corporation Method of producing magnetic particles and reaction method using microreactor and microreactor
JP2008060347A (en) * 2006-08-31 2008-03-13 Ishifuku Metal Ind Co Ltd Magnetic thin film
WO2008026439A1 (en) * 2006-08-31 2008-03-06 Ishifuku Metal Industry Co., Ltd. Magnetic thin film
US8158276B2 (en) 2006-08-31 2012-04-17 Ishifuku Metal Industry Co., Ltd. FePtP-alloy magnetic thin film
KR101078872B1 (en) * 2009-04-23 2011-11-01 한국과학기술연구원 Magnetic thin film member and method for manufacturing the same
JP2011081873A (en) * 2009-10-07 2011-04-21 Ulvac Japan Ltd Recording layer for perpendicular magnetic recording medium, perpendicular magnetic recording medium, and method for manufacturing ferromagnetic metal film
WO2011132747A1 (en) * 2010-04-23 2011-10-27 国立大学法人秋田大学 Magnetic recording medium and manufacturing method for magnetic recording medium
JP5641452B2 (en) * 2010-04-23 2014-12-17 国立大学法人秋田大学 Magnetic recording medium and method for producing magnetic recording medium
WO2020031461A1 (en) * 2018-08-09 2020-02-13 Jx金属株式会社 Sputtering target and magnetic film
WO2020031460A1 (en) * 2018-08-09 2020-02-13 Jx金属株式会社 Sputtering target, magnetic film, and perpendicular magnetic recording medium
CN111566253A (en) * 2018-08-09 2020-08-21 Jx金属株式会社 Sputtering target and magnetic film
CN112585295A (en) * 2018-08-09 2021-03-30 Jx金属株式会社 Sputtering target, magnetic film, and perpendicular magnetic recording medium
JPWO2020031461A1 (en) * 2018-08-09 2021-08-26 Jx金属株式会社 Sputtering target and magnetic film
JPWO2020031460A1 (en) * 2018-08-09 2021-10-07 Jx金属株式会社 Sputtering target, magnetic film and vertical magnetic recording medium
JP7076555B2 (en) 2018-08-09 2022-05-27 Jx金属株式会社 Sputtering target, magnetic film and vertical magnetic recording medium
JP7153729B2 (en) 2018-08-09 2022-10-14 Jx金属株式会社 Sputtering target and magnetic film
US11618944B2 (en) 2018-08-09 2023-04-04 Jx Nippon Mining & Metals Corporation Sputtering target, magnetic film, and perpendicular magnetic recording medium
US11894221B2 (en) 2018-08-09 2024-02-06 Jx Metals Corporation Sputtering target and magnetic film
US11939663B2 (en) 2018-08-09 2024-03-26 Jx Metals Corporation Magnetic film and perpendicular magnetic recording medium

Similar Documents

Publication Publication Date Title
US6846583B2 (en) Magnetic recording medium and magnetic recording apparatus
US6007623A (en) Method for making horizontal magnetic recording media having grains of chemically-ordered FePt or CoPt
US6086974A (en) Horizontal magnetic recording media having grains of chemically-ordered FEPT of COPT
JP4019703B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
US7736769B2 (en) Magnetic recording medium, method of producing the same, and magnetic storage apparatus
JP3010156B2 (en) Method for manufacturing information recording medium comprising ordered alloy thin film
JP6067180B2 (en) Magnetic stack including MgO-Ti (ON) interlayer
JP3981732B2 (en) FePt magnetic thin film having perpendicular magnetic anisotropy and method for producing the same
JP2006019000A (en) Magnetic recording medium for tilt recording
US20070218316A1 (en) Magnetic recording medium, method of producing same, and magnetic storage apparatus
JP2010034182A (en) Magnetic thin film, its forming method and application device of magnetic thin film
JP2001256631A (en) Magnetic recording medium and method of manufacturing the same
JP2005190538A (en) Magnetic recording medium, and its manufacturing method and apparatus
US7462410B2 (en) Magnetic recording medium and magnetic storage apparatus
JP2001273622A (en) Nanogranular thin film and magnetic recording medium
CN106024028B (en) Iridium lower layer for hamr medium
JP2000200410A (en) Magnetic recording medium, production of magnetic recording medium and magnetic recording device
US20070071964A1 (en) Nano-particle device and method for manufacturing nano-particle device
JP3961887B2 (en) Method for manufacturing perpendicular magnetic recording medium
Xi et al. Annealing effect on exchange bias in Ni/sub 81/Fe/sub 19//Cr/sub 50/Mn/sub 50/bilayers
JP2003203330A (en) Magnetic recording medium
JP2003006830A (en) Magnetic recording medium and its production method
Martien et al. Increasing the exchange-bias field of Ni 0.5 Co 0.5 O films by microstructural control
JP2004227717A (en) Magnetic recording medium and its manufacturing method
Pakala et al. Effect of film microstructure on exchange bias of IrMn/CoFe films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090902