JP2003006830A - Magnetic recording medium and its production method - Google Patents

Magnetic recording medium and its production method

Info

Publication number
JP2003006830A
JP2003006830A JP2001184162A JP2001184162A JP2003006830A JP 2003006830 A JP2003006830 A JP 2003006830A JP 2001184162 A JP2001184162 A JP 2001184162A JP 2001184162 A JP2001184162 A JP 2001184162A JP 2003006830 A JP2003006830 A JP 2003006830A
Authority
JP
Japan
Prior art keywords
magnetic recording
recording medium
substrate
medium according
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001184162A
Other languages
Japanese (ja)
Inventor
Osamu Kitagami
北上  修
Hiroshi Shimada
島田  寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001184162A priority Critical patent/JP2003006830A/en
Publication of JP2003006830A publication Critical patent/JP2003006830A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thin film for a high-density recording medium that solves the problem of high-temperature process which a thin-film medium of a CuAu- type regular alloy F1-x Mx (F: Fe, Co, M: Pd, Ir, Pt, 0.35<x<0.65) has and accordingly is excellent in mass production and reliability, and also provide a production method therefor. SOLUTION: A magnetic recording medium comprises a ferromagnetic thin film formed on a substrate (or on the foundation layer of the substrate), a ferromagnetic particle layer consisting of ferromagnetic particles or a ferromagnetic particle layer formed by the growth of the ferromagnetic particles in a nonmagnetic matrix on the substrate. In this case, characteristically, the ferromagnetic particles have CuAu type regular structure having the composition represented by F1-x Mx (F: Fe, Co, M: Pd, Ir, Pt, 0.35<x<0.65), and an existing rate for B in F1-x Mx is 0.01 to 0.30.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高密度の磁気記録媒体及
びその作成方法に係り,更に詳しくはその熱的および経
時安定性の改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high density magnetic recording medium and a method for producing the same, and more particularly to improvement of thermal and aging stability thereof.

【0002】[0002]

【従来の技術】情報社会の発展に伴い,高密度記録技術
の開発が切望されている。特に,ビット単価が安く,不
揮発かつ大容量記録が可能な磁気記録においては,高密
度記録の可能な磁気記録媒体の開発が強く要求され,種
々の研究開発によりここ数年で著しい高密度化が実現さ
れた。しかし,将来的に更なる進化が期待される情報化
社会において,例えば十年,二十年先の市場要求に対応
できる技術的見通しは殆ど得られていない。
2. Description of the Related Art With the development of the information society, the development of high-density recording technology has been earnestly desired. In particular, for magnetic recording that has a low bit unit price and is capable of non-volatile and large-capacity recording, there is a strong demand for the development of magnetic recording media capable of high-density recording. It was realized. However, in the information-oriented society, which is expected to further evolve in the future, little technical prospects have been obtained that can meet market demands of 10 to 20 years in the future.

【0003】この技術的行き詰まりの最も大きな原因の
一つに,現行磁気記録媒体が抱える以下のような原理的
問題がある。現行の磁気記録媒体用薄膜は,CoCrを
主体とする合金薄膜であり,この薄膜を構成する個々の
微粒子内では磁気相分離により,Coリッチ強磁性領域
の中心部を非磁性Crリッチの殻が取り囲む構造をとっ
ている。この構造は,強磁性粒子間の磁気的結合を低減
させ,その結果優れたS/Nの実現を可能にしている。
One of the major causes of this technical deadlock is the following principle problem of the current magnetic recording medium. The current thin film for magnetic recording media is an alloy thin film mainly composed of CoCr, and a non-magnetic Cr-rich shell is formed in the center of the Co-rich ferromagnetic region due to magnetic phase separation in the individual fine particles constituting this thin film. It has a surrounding structure. This structure reduces the magnetic coupling between the ferromagnetic particles and, as a result, realizes excellent S / N.

【0004】一方,このような孤立構造は,磁性粒子の
体積を減らすため,磁化の熱擾乱(記録状態の不安定
化)を顕著にする。磁性体が有する磁気異方性エネルギ
−をK,強磁性粒子の体積をvとすると,それらの積K
vが磁化の安定性の指標となる。熱エネルギ−はkT
(k:ボルツマン定数,T:温度)と表されるから,こ
の量がKvに比べ無視できなくなると,熱擾乱が顕著と
なって,メモリ−情報の消失という深刻な問題があらわ
れてくる。
On the other hand, such an isolated structure reduces the volume of the magnetic particles, so that thermal disturbance of the magnetization (destabilization of the recording state) becomes remarkable. Let K be the magnetic anisotropy energy of a magnetic substance and v be the volume of ferromagnetic particles.
v is an index of the stability of magnetization. Thermal energy is kT
Since it is expressed as (k: Boltzmann's constant, T: temperature), if this amount cannot be ignored compared to Kv, thermal agitation becomes remarkable and a serious problem of memory-information loss appears.

【0005】以上述べたように高密度記録媒体では,S
/Nの面から磁化単位vの微小化が求められ,熱安定性
の面からはKvの増加が求められている。如何にして,
これら相反する要求を両立させるかが大きな課題であ
る。最も単純には,小さいvを保ちながら異方性エネル
ギ−Kを増加させることが有効と考えられる。上記Co
Cr合金系のKの値は高々10erg/cc程度であ
るため,100オングストロ−ムという粒子サイズでも
著しい熱擾乱を受ける。
As described above, in the high density recording medium, S
The miniaturization of the magnetization unit v is required from the aspect of / N, and the increase of Kv is required from the aspect of thermal stability. How
A major issue is how to meet these conflicting requirements. In the simplest case, it is considered effective to increase the anisotropic energy-K while keeping a small v. Above Co
Since the value of K of the Cr alloy system is at most about 10 6 erg / cc, even if the particle size is 100 angstrom, it is subjected to significant thermal agitation.

【0006】こうした熱擾乱の問題を避けるため,Sm
−Co,Nd−Fe−Bなどの高い異方性エネルギ−の
永久磁石材料が検討され始めている。中でも,CuAu
型構造を有するFePt,CoPtなどの規則合金は1
〜10erg/ccの高い異方性を有し,かつ
化学的にも安定であることから,最近活発に研究されて
いる。
In order to avoid the problem of thermal disturbance, Sm
Permanent magnet materials having high anisotropy energy such as —Co and Nd—Fe—B have begun to be studied. Above all, CuAu
FePt, CoPt and other ordered alloys having a type structure are 1
Since it has a high anisotropy of 0 7 to 10 8 erg / cc and is chemically stable, it has been actively researched recently.

【0007】しかし,こうした合金に対して,規則/不
規則変態を生じせしめて規則合金とするには,600℃
C以上もの高い熱処理温度を必要とする。こうした高温
プロセスは量産に適さず,プロセス温度の低減が切望さ
れていた。
However, 600 ° C. is required to form an ordered alloy by causing ordered / disordered transformation in such an alloy.
A heat treatment temperature as high as C or higher is required. These high-temperature processes are not suitable for mass production, and there has been a strong demand for a reduction in process temperature.

【0008】[0008]

【発明が解決しようとする課題】本発明は,従来研究さ
れてきたCuAu型規則合金F1−x(F:Fe,
Co,M:Pd,Ir,Pt,0.35<x<0.6
5)薄膜媒体が抱える高温プロセスという問題を解決
し,以って量産性に優れかつ信頼性に優れた高密度記録
媒体用薄膜及びその作成方法を提供することを目的とす
る。
DISCLOSURE OF THE INVENTION The present invention is based on the CuAu type ordered alloy F 1-x M x (F: Fe,
Co, M: Pd, Ir, Pt, 0.35 <x <0.6
5) An object of the present invention is to provide a thin film for a high-density recording medium which is excellent in mass productivity and excellent in reliability and a method for producing the thin film medium, which solves the problem of high temperature process.

【0009】[0009]

【課題を解決するため手段】本発明の磁気記録媒体は、
基体上(あるいは基体上の下地層上)に形成された強磁
性体からなる強磁性層、または基体上の非磁性マトリク
ス中に強磁性粒子が成長してなる強磁性粒子層を有する
磁気記録媒体において、強磁性体がF1−x(F:
Fe,Co,M:Pd,Ir,Pt,0.35<x<
0.65)の組成からなるCuAu型規則構造を有し,
かつF1−x中のB存在率が0.01〜0.30で
あることを特徴とする。
The magnetic recording medium of the present invention comprises:
Magnetic recording medium having a ferromagnetic layer made of a ferromagnetic material formed on a substrate (or an underlayer on the substrate), or a ferromagnetic particle layer formed by growing ferromagnetic particles in a non-magnetic matrix on the substrate In, the ferromagnetic substance is F 1-x M x (F:
Fe, Co, M: Pd, Ir, Pt, 0.35 <x <
0.65) having a CuAu type ordered structure having a composition of
In addition, the B abundance ratio in F 1-x M x is 0.01 to 0.30.

【0010】本発明の磁気記録媒体の作成方法は、F
1−x(F:Fe,Co,M:Pd,Ir,Pt,
0.35<x<0.65)の組成からなるCuAu型規
則構造を有し,かつF1−x中のB存在率が0.0
1〜0.30である強磁性体からなる磁気記録層を基体
上(あるいは基体上の下地層上)に形成することを特徴
とする。
The method for producing a magnetic recording medium of the present invention is
1-x M x (F: Fe, Co, M: Pd, Ir, Pt,
0.35 <x <0.65) having a CuAu type ordered structure and having a B abundance ratio of 0.0 in F 1-x M x.
A magnetic recording layer made of a ferromagnetic material having a thickness of 1 to 0.30 is formed on a substrate (or an underlayer on the substrate).

【0011】本発明の磁気記録媒体の作成方法は、F
1−x(F:Fe,Co,M:Pd,Ir,Pt,
0.35<x<0.65)の組成からなるCuAu型規
則構造を有し,かつF1−x中のB存在率が0.0
1〜0.30である強磁性粒子を非磁性マトリクス中に
含む磁気記録層を基体上(あるいは基体上の下地層上)
に形成することを特徴とする。
The magnetic recording medium manufacturing method of the present invention is
1-x M x (F: Fe, Co, M: Pd, Ir, Pt,
0.35 <x <0.65) having a CuAu type ordered structure and having a B abundance ratio of 0.0 in F 1-x M x.
A magnetic recording layer containing ferromagnetic particles of 1 to 0.30 in a non-magnetic matrix is formed on a substrate (or an underlayer on the substrate).
It is characterized in that it is formed.

【0012】[0012]

【作用及び発明の実施の形態】本発明者は,上記従来技
術が抱える記録状態の熱的および経時的不安定性という
問題を解決するために鋭意検討した結果,F1−x
(F:Fe,Co,M:Pd,Ir,Pt)の組成から
なるCuAu型規則構造の強磁性薄膜あるいはグラニュ
ラ−構造を作製する際,非磁性元素Bを所定量添加する
ことにより,磁気特性を劣化させること無く規則化温度
を著しく低減できることを発見した。
The present inventor has made earnest studies in order to solve the problems of thermal and temporal instability of the recording state of the above-mentioned prior art, and as a result, F 1-x M x
When a CuAu type ordered structure ferromagnetic thin film or granular structure composed of (F: Fe, Co, M: Pd, Ir, Pt) is produced, by adding a predetermined amount of the non-magnetic element B, the magnetic properties can be improved. It has been discovered that the ordering temperature can be significantly reduced without degrading.

【0013】これにより,高い結晶磁気異方性のF
1−x規則合金微粒子集合体を,量産化レベルの低
い温度(凡そ400℃以下)でも合成することが可能に
なった。
As a result, F having high magnetocrystalline anisotropy is obtained.
The 1-x M x ordered alloy fine particle aggregates, it has become possible even synthesized mass production levels of low temperature (approximately 400 ° C. or less).

【0014】上記非磁性元素Bの添加量について,磁気
特性を損なわない範囲で規則化温度の低減が顕著に認め
られるのは,F1−xに対するBの原子存在比率が
0.01〜0.3であった。より望ましい比率としては
0.01〜0.2であり,更に望ましくは0.02〜
0.2であった。Bの添加量がこれより少ない場合は,
規則化温度の低減効果は弱く,過剰の場合には飽和磁化
などの磁気特性が劣化する。
Regarding the added amount of the non-magnetic element B, the reduction of the ordering temperature is remarkably recognized within the range where the magnetic properties are not impaired, because the atomic ratio of B to F 1-x M x is 0.01 to. It was 0.3. The more desirable ratio is 0.01 to 0.2, and more desirably 0.02.
It was 0.2. If the amount of B added is less than this,
The effect of reducing the ordering temperature is weak, and when it is excessive, the magnetic properties such as saturation magnetization deteriorate.

【0015】以上のような少量のB添加により,F
1−xの規則化温度は,無添加の場合に比べ100
℃以上低減した。
By adding a small amount of B as described above, F
The ordering temperature of 1-x M x is 100 compared to the case of no addition.
℃ or more reduced.

【0016】X線回折及び電子線回折を用いた精密な構
造解析によれば,Bは面心正方晶(FCT)構造のF
1−x規則合金格子中に侵入し,しかも正方晶主軸
(c軸)方向を引き伸ばすように侵入型元素として取り
込まれていることが判明した。このようなBの効果は,
同様の原子半径を有する侵入型元素Cには認められず,
全くB特有の効果であることがわかった。ちなみに規則
合金格子内でのBとCの挙動の違いは,母合金構成元素
に対する混合エンタルピ−の違いにより理解できた。
According to a precise structural analysis using X-ray diffraction and electron beam diffraction, B is F of a face-centered tetragonal (FCT) structure.
Penetrates into 1-x M x ordered alloy lattice, yet it is found that incorporated as interstitial element to stretch the tetragonal spindle (c-axis) direction. The effect of B is
Not found in interstitial element C with similar atomic radius,
It turned out that the effect was completely peculiar to B. By the way, the difference in the behavior of B and C in the ordered alloy lattice can be understood by the difference in the mixed enthalpies with respect to the constituent elements of the master alloy.

【0017】F1−x−Bの形成法は,成膜法によ
らずいかなる手法によってもF1−x中にBを混入
させることができれば,所望の効果が得られる。例え
ば,スパッタ法でF1−x合金を形成する際,F
1−x合金タ−ゲット上にBを所定量配置して,ス
パッタすればよい。また、F1−xを形成後、例え
ば、イオン注入法などによりBを注入し、その後、熱処
理を行ってもよい。
As for the method for forming F 1-x M x -B, the desired effect can be obtained if B can be mixed into F 1-x M x by any method regardless of the film forming method. For example, when forming an F 1-x M x alloy by the sputtering method,
1-x M x alloy data - on Get B disposed a predetermined amount, may be sputtering. In addition, after forming F 1-x M x , B may be implanted by, for example, an ion implantation method, and then heat treatment may be performed.

【0018】また、もしこの材料を垂直磁気記録媒体に
応用するならば,結晶主軸が主に強磁性粒子層面の法線
方向にあることが好ましい。
Further, if this material is applied to a perpendicular magnetic recording medium, it is preferable that the crystal main axis is mainly in the direction normal to the plane of the ferromagnetic particle layer.

【0019】非磁性マトリクスは炭化物、窒化物、酸化
物またはこれらの混合物からなることが好ましく、より
具体的には、SiO,MgO,Al,In
のいずれか1種以上からなることが好ましい。
The non-magnetic matrix is preferably made of carbide, nitride, oxide or a mixture thereof, and more specifically, SiO 2 , MgO, Al 2 O 3 and In 2 O.
It is preferable that any one or more of 3 is included.

【0020】x=0.30〜0.65においてCuAu
型規則構造が形成され、さらに熱的、経時的安定性がよ
り一層向上する。
CuAu at x = 0.30 to 0.65
A type ordered structure is formed, and the thermal and temporal stability is further improved.

【0021】磁気記録層の厚さは100nm以下が好ま
しく、50nm以下がより好ましい。
The thickness of the magnetic recording layer is preferably 100 nm or less, more preferably 50 nm or less.

【0022】基体としては、表面酸化Siウエハ(〜2
×10−6/℃)、溶融石英基体(0.4×10−6
℃)、ガラス基体(3〜15×10−6/℃)、アルミ
ニウム基体等が好適に用いられる。これら基体に50n
m以下のFePt−Ag/SiO膜を形成熱処理を施
すと、基体の熱膨張係数の小さいものほど規則度及び
(001)配向の顕著な改善が認められる。これは基体
と膜との熱膨張係数の差により膜が歪み(引張応力)を
受け、この応力の存在により規則度そして配向が向上す
るのではないかと推測される。
As the substrate, a surface-oxidized Si wafer (~ 2
× 10 -6 / ℃), fused silica substrates (0.4 × 10 -6 /
C.), glass substrates (3 to 15.times.10.sup.- 6 / .degree. C.), aluminum substrates and the like are preferably used. 50n on these substrates
When the FePt-Ag / SiO 2 film having a thickness of m or less is subjected to the heat treatment for forming, the smaller the coefficient of thermal expansion of the substrate, the more remarkable the degree of order and the (001) orientation are recognized. It is speculated that this is because the film undergoes strain (tensile stress) due to the difference in coefficient of thermal expansion between the substrate and the film, and the presence of this stress improves the order and orientation.

【0023】また、下地層についても基体の場合と同様
に熱膨張係数の小さいものほど好ましい。下地層として
は、C、Si、酸化物(SiO、MgO、Al
等)、炭化物(SiW、WC等)、窒化物(BN
等))、NiPからなる層であることが好ましい。特に
アルミニウム基板にNiPなどの非晶質下地層を設ける
場合は製造コストの低減を図ることができる。
As for the underlayer, the smaller the coefficient of thermal expansion is, the more preferable as in the case of the substrate. As the underlayer, C, Si, oxides (SiO 2 , MgO, Al 2 O 3
Etc.), carbides (SiW, WC, etc.), nitrides (BN
Etc.)), and a layer made of NiP. In particular, when an amorphous underlayer such as NiP is provided on the aluminum substrate, the manufacturing cost can be reduced.

【0024】磁気特性を劣化させること無く規則化温度
を著しく低減できることを発見した。これにより、高い
結晶磁気異方性のF1−x規則合金薄膜媒体を、量
産化レベルの低い温度で合成することが可能になった。
すなわち、従来は650℃以上の温度が必要であった
が、本発明においては、200〜600℃の温度におい
ても規則化が達成される。ただ、200℃未満では条件
によっては良好な規則が達成されない場合がある。20
0〜600℃の範囲において、400℃以下がより好ま
しい。
It has been discovered that the ordering temperature can be significantly reduced without degrading the magnetic properties. As a result, it became possible to synthesize an F 1-x M x ordered alloy thin film medium having a high magnetocrystalline anisotropy at a temperature of low mass production level.
That is, conventionally, a temperature of 650 ° C. or higher was required, but in the present invention, ordering is achieved even at a temperature of 200 to 600 ° C. However, if the temperature is lower than 200 ° C, good rules may not be achieved depending on the conditions. 20
In the range of 0 to 600 ° C, 400 ° C or lower is more preferable.

【0025】本発明の効果は、特に次のような場合に顕
著に現れる。第一は、下地層を介すかあるいは介さない
で基体上にF1−x規則合金膜を形成する場合であ
る。特に膜厚が100nm以下と薄い場合に、元素B添
加による規則化温度の低下は著しい。ここでF1−x
の規則化は、成長時の基体温度を高くすることによっ
ても実現されるし、不規則相を形成した後の熱処理によ
っても可能である。いずれの場合にも元素Bの添加によ
る規則化温度の低下が顕著に認められる。
The effects of the present invention are particularly remarkable in the following cases. The first is a case where the F 1-x M x ordered alloy film is formed on the substrate with or without an underlayer. Particularly when the film thickness is as thin as 100 nm or less, the decrease of the ordering temperature due to the addition of the element B is remarkable. Where F 1-x M
The ordering of x can be realized by increasing the temperature of the substrate during growth, or by heat treatment after forming the disordered phase. In any case, the reduction of the ordering temperature due to the addition of the element B is remarkably recognized.

【0026】本発明の効果が顕著に認められる第二のケ
−スは、F1−xと非磁性マトリクス材料を同時に
基体上に堆積させる、いわゆるグラニュラ−膜の場合で
ある。この場合には、膜中に元素Bを所定量添加すれ
ば、先の例と同様に顕著な規則化温度の低減を実現でき
る。このケ−スでは、磁性合金F1−x微粒子が非
磁性マトリクス中に分散した形態となるが、このような
相分離及び規則化を進行させる手段として、上記第一の
場合と同様に成長時の基体加熱あるいは成膜後の熱処理
のいずれをも選択できる。熱処理の温度は、膜の厚さに
もよるが堆積時の基体温度と同様の温度を適用すればよ
い。
The second case in which the effect of the present invention is remarkably recognized is the case of a so-called granular film in which F 1-x M x and the non-magnetic matrix material are simultaneously deposited on the substrate. In this case, if the element B is added to the film in a predetermined amount, a remarkable reduction in the ordering temperature can be realized as in the previous example. In this case, the magnetic alloy F 1-x M x fine particles are dispersed in the non-magnetic matrix, and as a means for promoting such phase separation and ordering, as in the first case described above. Either heating of the substrate during growth or heat treatment after film formation can be selected. Although the temperature of the heat treatment depends on the thickness of the film, the same temperature as the substrate temperature during deposition may be applied.

【0027】本発明の検討中に見出された更に有用かつ
興味深い現象として、元素Bの添加によるF1−x
規則合金の優先配向がある。以下にその内容を述べる。
−x(F:Fe、Co、M:Pd、Ir、P
t)合金は、x〜0.5付近でCuAu型規則構造をと
る。この時にF、Mがランダムに配列した面心立方構造
(fcc)の不規則相から、一軸方向に伸縮した面心正
方構造(fct)の規則相に規則−不規則変態を起こ
す。この伸縮した結晶軸方向([001]方向)には、
一原子層毎にFとMが交互に積層されたいわゆる原子レ
ベルでの超格子が形成される。
As a further useful and interesting phenomenon found during the study of the present invention, the addition of the element B, F 1-x M x
There is a preferred orientation of ordered alloys. The contents are described below.
F 1 −x M x (F: Fe, Co, M: Pd, Ir, P
The t) alloy has a CuAu type ordered structure in the vicinity of x to 0.5. At this time, a regular-irregular transformation occurs from the disordered phase of the face-centered cubic structure (fcc) in which F and M are randomly arranged to the ordered phase of the face-centered tetragonal structure (fct) expanded and contracted in the uniaxial direction. In this crystallographic axis direction ([001] direction) that has expanded and contracted,
A so-called atomic level superlattice in which F and M are alternately stacked for each atomic layer is formed.

【0028】このような原子配列の異方性は、一般に極
めて強い磁気異方性を生み出す。従って、F1−x
規則合金微粒子の結晶軸の配向状態は磁気特性を支配す
るため、結晶配向の制御は極めて重要な課題となる。F
ePtあるいはCoPt規則合金などを例にとれば、
[001]が磁化容易軸となり、その磁気エネルギ−は
10erg/cc台にも達する。今回我々が新たに見
出した現象は、少量の非磁性Bの添加により、特に膜厚
50nmという薄い領域において、前記二つのケ−スい
ずれの場合にも、ほぼ理想に近いfct(001)配向
が実現されることである。つまりfct[001]軸は
膜面法線方向に向き、その結果面直方向に強い磁気異方
性が現れる。
Such anisotropy of atomic arrangement generally produces extremely strong magnetic anisotropy. Therefore, F 1-x M x
Since the orientation state of the crystal axis of the ordered alloy fine particles governs the magnetic properties, controlling the crystal orientation is an extremely important issue. F
Taking ePt or CoPt ordered alloy as an example,
[001] is the axis of easy magnetization, and its magnetic energy reaches the order of 10 7 erg / cc. The phenomenon newly found by us this time is that the addition of a small amount of non-magnetic B causes the fct (001) orientation to be almost ideal in both cases, especially in a thin region of 50 nm. It will be realized. That is, the fct [001] axis is oriented in the direction normal to the film surface, and as a result, strong magnetic anisotropy appears in the direction perpendicular to the surface.

【0029】例えば、FePtやCoPt規則合金など
ではほぼ理想的な垂直磁化膜となり、垂直磁気記録にも
好適な材料となる。
For example, FePt, CoPt ordered alloy, or the like is a nearly ideal perpendicular magnetization film, and is also a material suitable for perpendicular magnetic recording.

【0030】[0030]

【実施例】以下,本発明を実施例により説明する。EXAMPLES The present invention will be described below with reference to examples.

【0031】[実施例1]Bチップを配置したCo−5
0at.%Ptタ−ゲットをスパッタリングし,溶融石
英基板上に全体膜厚が約40nmとなるよう同時堆積し
た。その後,1×10−6 Torr以下の真空中で3
50℃で0.5時間熱処理をおこなった。膜中のBの原
子含有率Rは光電子分光法(XPS)により決定し,R
を0.01〜0.3の範囲で変化させた。結晶構造及び
規則化パラメタ−SはX線回折から決定した。磁気特性
はSQUID(最大印加磁場9T)により測定した。測
定結果を表1にまとめる。表中,Sは規則化度の尺度で
ある規則化パラメタ−を,Hcは保磁力を示す。
[Example 1] Co-5 in which B chip is arranged
0 at. % Pt target was sputtered and co-deposited on the fused quartz substrate so that the total film thickness was about 40 nm. Then, in a vacuum of 1 × 10 −6 Torr or less, 3
Heat treatment was performed at 50 ° C. for 0.5 hours. The atomic content R of B in the film is determined by photoelectron spectroscopy (XPS), and R
Was varied in the range of 0.01 to 0.3. Crystal structure and ordering parameter-S were determined from X-ray diffraction. The magnetic characteristics were measured by SQUID (maximum applied magnetic field 9T). The measurement results are summarized in Table 1. In the table, S indicates a regularization parameter, which is a measure of the regularization degree, and Hc indicates a coercive force.

【0032】[実施例2]Bチップを配置したFe−5
0at.%Ptタ−ゲットをスパッタリングし,溶融石
英基板上に全体膜厚が約50nmとなるよう同時堆積し
た。その後,1×10−6Torr以下の真空中で35
0℃で0.5時間熱処理をおこなった。 膜中のBの原
子含有率Rは光電子分光法(XPS)により決定し,R
を0〜0.35の範囲で変化させた。結晶構造及び規則
化度はX線回折から決定した。磁気特性はSQUID
(最大印加磁場9T)により測定した。測定結果を表2
にまとめる。表中,Sは規則化度の尺度である規則化パ
ラメタ−を,Hcは保磁力を示す。
Example 2 Fe-5 with B Chip Arranged
0 at. % Pt target was sputtered and co-deposited on the fused silica substrate to a total film thickness of about 50 nm. Then, in a vacuum of 1 × 10 −6 Torr or less, 35
Heat treatment was performed at 0 ° C. for 0.5 hours. The atomic content R of B in the film is determined by photoelectron spectroscopy (XPS), and R
Was varied in the range of 0 to 0.35. The crystal structure and the degree of ordering were determined by X-ray diffraction. Magnetic property is SQUID
(Maximum applied magnetic field 9T). Table 2 shows the measurement results
Put together. In the table, S indicates a regularization parameter, which is a measure of the regularization degree, and Hc indicates a coercive force.

【0033】[比較例1]実施例1と同様の条件下で,
Rを0〜0.01の範囲で変化させた。
[Comparative Example 1] Under the same conditions as in Example 1,
R was changed in the range of 0 to 0.01.

【0034】[比較例2]実施例1と同様の条件下で,
Rを0.3〜0.5の範囲で変化させた。ただし,この
場合はCo−50at.%Ptチップを配置したBタ−
ゲットを用いた。
Comparative Example 2 Under the same conditions as in Example 1,
R was changed in the range of 0.3 to 0.5. However, in this case, Co-50 at. % B with% Pt chip
I used a get.

【0035】[比較例3]Cチップを配置したCo−5
0at.%Ptタ−ゲットをスパッタリングし,溶融石
英基板上に全体膜厚が約40nmとなるよう同時堆積し
た。Rを0.01〜0.1の範囲で変化させた。
[Comparative Example 3] Co-5 with C chip arranged
0 at. % Pt target was sputtered and co-deposited on the fused quartz substrate so that the total film thickness was about 40 nm. R was changed in the range of 0.01 to 0.1.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【発明の効果】本発明によれば、磁気特性を劣化させる
こと無く規則化温度を著しく低減できる。
According to the present invention, the ordering temperature can be remarkably reduced without deteriorating the magnetic characteristics.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5D006 BB01 BB06 BB07 EA03 EA05 FA00 5D112 AA03 AA05 BA02 BA03 BA04 BA06 BB01 BB02 BB05 FA04 GB01    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 5D006 BB01 BB06 BB07 EA03 EA05                       FA00                 5D112 AA03 AA05 BA02 BA03 BA04                       BA06 BB01 BB02 BB05 FA04                       GB01

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 基体上(あるいは基体上の下地層上)に
形成された強磁性薄膜,または強磁性粒子からなる強磁
性粒子層、または基体上の非磁性マトリクス中に強磁性
粒子が成長してなる強磁性粒子層を有する磁気記録媒体
において、 強磁性体がF1−x(F:Fe,Co,M:Pd,
Ir,Pt,0.35<x<0.65)の組成からなる
CuAu型規則構造を有し,かつF1−x中のB存
在率が0.01〜0.30であることを特徴とする磁気
記録媒体。
1. A ferromagnetic thin film formed on a substrate (or an underlayer on a substrate), a ferromagnetic particle layer made of ferromagnetic particles, or a ferromagnetic particle grown in a non-magnetic matrix on a substrate. In a magnetic recording medium having a ferromagnetic particle layer formed by the method, the ferromagnetic material is F1 - xMx (F: Fe, Co, M: Pd,
Ir, Pt, having a CuAu type ordered structure composed of 0.35 <x <0.65), and having a B abundance ratio in F 1-x M x of 0.01 to 0.30. Characteristic magnetic recording medium.
【請求項2】 F1−x中におけるBの原子存在率
が0.01〜0.20の範囲にあることを特徴とする請
求項1記載の磁気記録媒体。
2. The magnetic recording medium according to claim 1, wherein the atomic abundance of B in F 1-x M x is in the range of 0.01 to 0.20.
【請求項3】 F1−x中におけるBの原子存在率
が0.02〜0.20の範囲にあることを特徴とする請
求項1記載の磁気記録媒体。
3. The magnetic recording medium according to claim 1, wherein the atomic abundance of B in F 1-x M x is in the range of 0.02 to 0.20.
【請求項4】 結晶主軸が主に膜面法線方向にあること
を特徴とする請求項1ないし3のいずれか1項に記載の
磁気記録媒体。
4. The magnetic recording medium according to claim 1, wherein the crystal main axis is mainly in the direction normal to the film surface.
【請求項5】 前記非磁性マトリクスは炭化物、窒化
物、酸化物またはこれらの混合物からなることを特徴と
する請求項1ないし4のいずれか1項に記載の磁気記録
媒体。
5. The magnetic recording medium according to claim 1, wherein the non-magnetic matrix is made of carbide, nitride, oxide, or a mixture thereof.
【請求項6】 前記非磁性マトリクスはSiO,Mg
O,Al,Inのいずれか1種以上からな
ることを特徴とする請求項5記載の磁気記録媒体。
6. The non-magnetic matrix is SiO 2 , Mg
6. The magnetic recording medium according to claim 5, comprising at least one of O, Al 2 O 3 and In 2 O 3 .
【請求項7】 前記強磁性粒子層の厚さが100nm以
下であることを特徴とする請求項1ないし6のいずれか
1項に記載の磁気記録媒体。
7. The magnetic recording medium according to claim 1, wherein the ferromagnetic particle layer has a thickness of 100 nm or less.
【請求項8】 前記基体は、表面酸化Siウエハ、溶融
石英基体、ガラス基体,アルミニウム基体であることを
特徴とする請求項1ないし7のいずれか1項に記載の磁
気記録媒体。
8. The magnetic recording medium according to claim 1, wherein the substrate is a surface-oxidized Si wafer, a fused silica substrate, a glass substrate, or an aluminum substrate.
【請求項9】 前記下地層は、Ni基非晶質,C、S
i、酸化物、炭化物、窒化物からなる層であることを特
徴とする請求項1ないし8のいずれか1項に記載の磁気
記録媒体。
9. The underlayer is Ni-based amorphous, C, S
9. The magnetic recording medium according to claim 1, which is a layer made of i, oxide, carbide, and nitride.
【請求項10】 F1−x(F:Fe,Co,M:
Pd,Ir,Pt,0.35<x<0.65)の組成か
らなるCuAu型規則構造を有し,かつF −x
のB存在率が0.01〜0.30である強磁性薄膜から
なる磁気記録層を基体上(あるいは基体上の下地層上)
に形成することを特徴とする磁気記録媒体の作成方法。
10. F 1-x M x (F: Fe, Co, M:
Pd, Ir, Pt, having a CuAu type ordered structure composed of 0.35 <x <0.65), and having a B abundance rate of 0.01 to 0.30 in F 1 -xM x. A magnetic recording layer consisting of a ferromagnetic thin film on the substrate (or on the underlying layer on the substrate)
A method for producing a magnetic recording medium, which comprises:
【請求項11】 F1−x(F:Fe,Co,M:
Pd,Ir,Pt,0.35<x<0.65)の組成か
らなるCuAu型規則構造を有し,かつF −x
のB存在率が0.01〜0.30である強磁性体を非磁
性マトリクス中に含む磁気記録層を基体上(あるいは基
体上の下地層上)に形成することを特徴とする磁気記録
媒体の作成方法。
11. F 1-x M x (F: Fe, Co, M:
Pd, Ir, Pt, having a CuAu type ordered structure composed of 0.35 <x <0.65), and having a B abundance rate of 0.01 to 0.30 in F 1 -xM x. A method for producing a magnetic recording medium, comprising forming a magnetic recording layer containing a ferromagnetic material in a non-magnetic matrix on a substrate (or on an underlayer on the substrate).
【請求項12】 F1−x材料、B及び非磁性マト
リクス材料を同時に基体上に堆積させることを特徴とす
る請求項11記載の磁気記録媒体の製造方法。
12. The method of manufacturing a magnetic recording medium according to claim 11, wherein the F 1-x M x material, B and the non-magnetic matrix material are simultaneously deposited on the substrate.
【請求項13】 F1−x膜を形成後、Bを該F
1−x膜に添加することを特徴とする請求項11記
載の磁気記録媒体の作成方法。
13. An F 1-x M x film is formed, and then B is added to the F 1-x M x film.
The method for producing a magnetic recording medium according to claim 11, wherein the 1-x M x film is added.
【請求項14】 基体温度を200℃〜600℃として
前記磁気記録層の形成を行うことを特徴とする請求項1
0ないし13のいずれか1項記載の磁気記録媒体の製造
方法。
14. The magnetic recording layer is formed at a substrate temperature of 200 ° C. to 600 ° C.
14. The method for manufacturing a magnetic recording medium according to any one of 0 to 13.
【請求項15】 基体温度を400℃以下として前記磁
気記録層の形成を行うことを特徴とする請求項10ない
し13のいずれか1項記載の磁気記録媒体の製造方法。
15. The method of manufacturing a magnetic recording medium according to claim 10, wherein the magnetic recording layer is formed at a substrate temperature of 400 ° C. or lower.
【請求項16】 磁気記録層の形成後、200℃〜60
0℃で熱処理を行うことを特徴とする請求項10ないし
13のいずれか1項に記載の磁気記録媒体の作成方法。
16. After the magnetic recording layer is formed, 200 ° C. to 60 ° C.
The method for producing a magnetic recording medium according to claim 10, wherein heat treatment is performed at 0 ° C. 14.
【請求項17】 磁気記録層の形成後、400℃以下で
熱処理を行うことを特徴とする請求項10ないし13の
いずれか1項記載の磁気記録媒体の製造方法。
17. The method for manufacturing a magnetic recording medium according to claim 10, wherein after the formation of the magnetic recording layer, heat treatment is performed at 400 ° C. or lower.
JP2001184162A 2001-06-18 2001-06-18 Magnetic recording medium and its production method Pending JP2003006830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001184162A JP2003006830A (en) 2001-06-18 2001-06-18 Magnetic recording medium and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001184162A JP2003006830A (en) 2001-06-18 2001-06-18 Magnetic recording medium and its production method

Publications (1)

Publication Number Publication Date
JP2003006830A true JP2003006830A (en) 2003-01-10

Family

ID=19023972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001184162A Pending JP2003006830A (en) 2001-06-18 2001-06-18 Magnetic recording medium and its production method

Country Status (1)

Country Link
JP (1) JP2003006830A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003049085A1 (en) * 2001-12-03 2003-06-12 Hitachi Maxell, Ltd. Magnetic recording medium, its manufacturing method, and magnetic recorder
JP2005056489A (en) * 2003-08-04 2005-03-03 Fuji Photo Film Co Ltd Magnetic recording medium
JP2008192275A (en) * 2006-09-21 2008-08-21 Canon Inc Magnetic recording medium and method of manufacturing the same
US7470308B2 (en) 2004-02-10 2008-12-30 Fujifilm Corporation Method of producing magnetic particles and reaction method using microreactor and microreactor
US7544230B2 (en) 2003-03-05 2009-06-09 Fujifilm Corporation Method of manufacturing magnetic particle, magnetic particle and magnetic recording medium
US10062404B2 (en) 2014-05-12 2018-08-28 Fuji Electric Co., Ltd. Method for manufacturing perpendicular magnetic recording medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320847A (en) * 1996-05-31 1997-12-12 Res Inst Electric Magnetic Alloys Vertically magnetized film and its manufacture and vertical magnetic recording medium
JPH10134333A (en) * 1996-07-26 1998-05-22 Toshiba Corp Magnetic recorder
JPH11110757A (en) * 1997-10-03 1999-04-23 Fuji Electric Co Ltd Manufacture of magnetic recording medium
JP2001101645A (en) * 1999-09-29 2001-04-13 Akita Prefecture High density information recording medium and method for manufacturing the medium
WO2002039433A1 (en) * 2000-11-09 2002-05-16 Hitachi Maxell, Ltd. Magnetic recording medium and magnetic recording apparatus
JP2002216330A (en) * 2001-01-19 2002-08-02 Toshiba Corp Magnetic recording medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320847A (en) * 1996-05-31 1997-12-12 Res Inst Electric Magnetic Alloys Vertically magnetized film and its manufacture and vertical magnetic recording medium
JPH10134333A (en) * 1996-07-26 1998-05-22 Toshiba Corp Magnetic recorder
JPH11110757A (en) * 1997-10-03 1999-04-23 Fuji Electric Co Ltd Manufacture of magnetic recording medium
JP2001101645A (en) * 1999-09-29 2001-04-13 Akita Prefecture High density information recording medium and method for manufacturing the medium
WO2002039433A1 (en) * 2000-11-09 2002-05-16 Hitachi Maxell, Ltd. Magnetic recording medium and magnetic recording apparatus
JP2002216330A (en) * 2001-01-19 2002-08-02 Toshiba Corp Magnetic recording medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003049085A1 (en) * 2001-12-03 2003-06-12 Hitachi Maxell, Ltd. Magnetic recording medium, its manufacturing method, and magnetic recorder
US6863998B2 (en) 2001-12-03 2005-03-08 Hitachi Maxell, Ltd. Magnetic recording medium, method for producing the same, and magnetic recording apparatus
US7544230B2 (en) 2003-03-05 2009-06-09 Fujifilm Corporation Method of manufacturing magnetic particle, magnetic particle and magnetic recording medium
JP2005056489A (en) * 2003-08-04 2005-03-03 Fuji Photo Film Co Ltd Magnetic recording medium
US7470308B2 (en) 2004-02-10 2008-12-30 Fujifilm Corporation Method of producing magnetic particles and reaction method using microreactor and microreactor
JP2008192275A (en) * 2006-09-21 2008-08-21 Canon Inc Magnetic recording medium and method of manufacturing the same
US10062404B2 (en) 2014-05-12 2018-08-28 Fuji Electric Co., Ltd. Method for manufacturing perpendicular magnetic recording medium

Similar Documents

Publication Publication Date Title
JP3010156B2 (en) Method for manufacturing information recording medium comprising ordered alloy thin film
US20040191578A1 (en) Method of fabricating L10 ordered fePt or FePtX thin film with (001) orientation
Kang et al. Composite nanogranular films of FePt-MgO with (001) orientation onto glass substrates
JPH07101495B2 (en) Magnetic recording medium
JP2003178412A (en) Perpendicular magnetic recording medium and manufacturing method therefor
KR20030038707A (en) Magnetic recording medium and magnetic recording apparatus
JP2007087575A (en) Tuning exchange coupling in magnetic recording medium
Shimatsu et al. High-potential magnetic anisotropy of CoPtCr-SiO/sub 2/perpendicular recording media
WO2004086427A1 (en) FePt MAGNETIC THIN FILM HAVING PERPENDICULAR MAGNETIC ANISOTROPY AND METHOD FOR PREPARATION THEREOF
Kang et al. (001) oriented FePt–Ag composite nanogranular films on amorphous substrate
JP2002190108A (en) Magnetic recording medium and its production method
JPH0573880A (en) Magnetic recording medium and manufacture thereof
TW200407450A (en) Fabrication of nanocomposite thin films for high density magnetic recording media
JP2001273622A (en) Nanogranular thin film and magnetic recording medium
JP2003173511A (en) Magnetic recording medium, method for manufacturing the same and magnetic recording device
JP2001256631A (en) Magnetic recording medium and method of manufacturing the same
JP2000200410A (en) Magnetic recording medium, production of magnetic recording medium and magnetic recording device
JP2003006830A (en) Magnetic recording medium and its production method
JP3141109B2 (en) Magnetic recording medium and method of manufacturing magnetic recording medium
JP2003203330A (en) Magnetic recording medium
JP4069205B2 (en) Method for manufacturing magnetic recording medium
JP2005196959A (en) Perpendicular magnetic recording medium
JP3576332B2 (en) Magnetic powder for magnetic recording
JP3730820B2 (en) Substrate with substrate, magnetic recording medium, and magnetic recording apparatus
JP2001250222A (en) Magnetic recording medium, its producing method and magnetic recorder using the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100623