JPH1171605A - Manufacture of fine particle, and manufacturing device therefor - Google Patents

Manufacture of fine particle, and manufacturing device therefor

Info

Publication number
JPH1171605A
JPH1171605A JP23453597A JP23453597A JPH1171605A JP H1171605 A JPH1171605 A JP H1171605A JP 23453597 A JP23453597 A JP 23453597A JP 23453597 A JP23453597 A JP 23453597A JP H1171605 A JPH1171605 A JP H1171605A
Authority
JP
Japan
Prior art keywords
raw material
fine particles
carrier gas
tube
dead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23453597A
Other languages
Japanese (ja)
Inventor
Joshi Shinohara
譲司 篠原
Koichiro Wazumi
光一郎 和住
Kiyoshi Noshiro
清 野城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP23453597A priority Critical patent/JPH1171605A/en
Publication of JPH1171605A publication Critical patent/JPH1171605A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fine particle manufacturing method and a fine particle manufacturing device capable of continuously manufacturing fine particles of high purity without mixing impurities into the raw material. SOLUTION: A high-frequency levitation coil 9 to heat, melt and evaporate a charged raw material 1 while it is electromagnetically levitated is arranged on an outer circumferential part of a dead-man tube 8 at which the raw material 1 is thrown in from a raw material throw-in table 7, a carrying gas feed device 10 to feed the carrying gas to carry fine particles of the raw material 1 to be coagulated after the raw material is evaporated through the heating and melting in the dead-man tube 8 is connected to a bottom part of the dead-man tube 8 through a carrying gas feed pipe 11, and a separation collector 12 in which the fine particles of the raw material 1 to be coagulated after it is evaporated through the heating and melting in the dead-man tube 8 are led together with the carrying gas and the fine particles of the raw material 1 are separated from the carrying gas is connected to an upper part of the dead-man tube 8 through a communication tube 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、焼結の材料等とし
て用いられる微粒子製造方法及び装置に関するものであ
る。
The present invention relates to a method and an apparatus for producing fine particles used as a material for sintering.

【0002】[0002]

【従来の技術】この種の微粒子の製造方法としては、従
来、例えば、図3に示される如く、原料1を入れた坩堝
2を真空容器3内に置き、該真空容器3内を図示してい
ない真空ポンプにより真空引きすると共に、前記真空容
器3内にアルゴンやヘリウム等の不活性ガスを充填した
後、電子銃4から坩堝2内の原料1へ電子ビーム5を照
射し、該原料1を加熱溶融させて蒸発させ、該蒸発した
後に不活性ガスと衝突して凝集した微粒子を坩堝2の上
方に配置されたベルト6に付着せしめ、該ベルト6に付
着した微粒子を回収することにより、微粒子を製造する
方法がある。
2. Description of the Related Art Conventionally, as a method for producing such fine particles, for example, as shown in FIG. 3, a crucible 2 containing a raw material 1 is placed in a vacuum vessel 3 and the inside of the vacuum vessel 3 is shown. After vacuuming with a vacuum pump and filling the vacuum vessel 3 with an inert gas such as argon or helium, the electron beam 5 is applied to the raw material 1 in the crucible 2 from the electron gun 4 to convert the raw material 1 The particles are heated and melted and evaporated, and the evaporated fine particles collide with an inert gas and adhere to the belt 6 disposed above the crucible 2, and the fine particles attached to the belt 6 are collected. There is a method of manufacturing.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述の
如く、坩堝2を使って原料1を加熱溶融させて蒸発させ
るのでは、原料1に対する坩堝2からの不純物の混入が
避けられず、高純度の微粒子を製造することは困難であ
った。
However, as described above, if the raw material 1 is heated and melted and evaporated using the crucible 2, impurities from the crucible 2 are unavoidably mixed into the raw material 1, so that the raw material 1 has a high purity. It was difficult to produce fine particles.

【0004】又、電子銃4から坩堝2内の原料1へ電子
ビーム5を照射するためには、真空容器3内を真空引き
することが必要であって、大気圧では電子ビーム5を飛
ばすことができないため、坩堝2内の原料1が全て蒸発
した後に更に原料1を補充する場合やベルト6に付着し
た微粒子を回収する際には、その都度、真空容器3をあ
けて、坩堝2内への原料1の補充やベルト6に付着した
微粒子の回収を行った後、再び、真空容器3内を真空引
きすると共に、該真空容器3内に不活性ガスを充填しな
ければならず、連続して微粒子を製造することは不可能
であり、効率が悪いという欠点を有していた。
In order to irradiate the electron beam 5 from the electron gun 4 to the raw material 1 in the crucible 2, it is necessary to evacuate the inside of the vacuum vessel 3. Therefore, when the raw material 1 in the crucible 2 is completely evaporated and the raw material 1 is further replenished or when the fine particles adhered to the belt 6 are collected, the vacuum vessel 3 is opened every time, and the crucible 2 is opened. After replenishing the raw material 1 and collecting fine particles adhered to the belt 6, the inside of the vacuum vessel 3 must be evacuated again, and the vacuum vessel 3 must be filled with an inert gas. Therefore, it was impossible to produce fine particles, and the efficiency was poor.

【0005】本発明は、斯かる実情に鑑み、原料に対し
て不純物を混入させることなく、高純度の微粒子を連続
的に製造し得る微粒子製造方法及び装置を提供しようと
するものである。
The present invention has been made in view of the above circumstances, and has as its object to provide a method and an apparatus for producing fine particles capable of continuously producing high-purity fine particles without mixing impurities into a raw material.

【0006】[0006]

【課題を解決するための手段】本発明は、原料を電磁浮
遊させつつ加熱溶融させて蒸発させ、蒸発した後に凝集
する原料の微粒子を搬送ガスにより搬送して回収するこ
とを特徴とする微粒子製造方法にかかるものである。
According to the present invention, there is provided a method for producing fine particles, comprising heating, melting, and evaporating a raw material while electromagnetically suspending the raw material and evaporating the raw material. It depends on the method.

【0007】又、本発明は、原料が投入され且つ該投入
された原料を電磁浮遊させつつ加熱溶融させて蒸発させ
るための高周波浮遊コイルが外周部に配設された炉心管
と、該炉心管内での加熱溶融によって蒸発した後に凝集
する原料の微粒子を搬送するための搬送ガスを供給する
搬送ガス供給装置と、前記炉心管内での加熱溶融によっ
て蒸発した後に凝集する原料の微粒子が前記搬送ガスと
共に導入され且つ前記原料の微粒子を前記搬送ガスと分
離して回収する分離回収器とを備えたことを特徴とする
微粒子製造装置にかかるものである。
Further, the present invention provides a furnace tube in which a high-frequency floating coil is provided at an outer peripheral portion for heating and melting and evaporating the charged material while electromagnetically floating the charged material; A carrier gas supply device for supplying a carrier gas for transporting the fine particles of the raw material that coagulates after being evaporated by heating and melting, and the fine particles of the raw material that coagulate after being heated and melted in the furnace core tube together with the carrier gas A separating and collecting device for separating and collecting the introduced fine particles of the raw material from the carrier gas.

【0008】上記手段によれば、以下のような作用が得
られる。
According to the above means, the following effects can be obtained.

【0009】本発明の微粒子製造方法においては、原料
を電磁浮遊させつつ加熱溶融させて蒸発させ、蒸発した
後に凝集する原料の微粒子を搬送ガスにより搬送して回
収するため、原料を坩堝等と全く接触させずに溶融させ
ることが可能となり、不純物を混入させずに微粒子の製
造を連続的に行える。
In the method for producing fine particles according to the present invention, the raw material is heated and melted while being electromagnetically suspended and evaporated, and the fine particles of the raw material that aggregate after evaporation are conveyed by a carrier gas and collected. It is possible to melt without contact, and it is possible to continuously produce fine particles without mixing impurities.

【0010】又、本発明の微粒子製造装置においては、
高周波浮遊コイルに電流を流した状態で、原料を炉心管
内へ投入すると、原料の内部に、誘導電流が誘起され、
互いに反発し合う磁場が高周波浮遊コイルと原料との間
に形成され、該原料が浮遊して炉心管の内壁にぶつから
ずに保持され、前記原料は、炉心管内において電磁浮遊
しつつ、誘起される誘導電流により加熱溶融され、蒸発
して行き、ここで、搬送ガス供給装置から搬送ガスを炉
心管内へ送給すると、蒸発した後に凝集する原料の微粒
子が、前記搬送ガスにより炉心管内から分離回収器へ導
入され、該分離回収器において回収される。
In the apparatus for producing fine particles of the present invention,
When the raw material is charged into the furnace tube while the current is flowing through the high-frequency floating coil, an induced current is induced inside the raw material,
A mutually repelling magnetic field is formed between the high-frequency floating coil and the raw material, the raw material floats and is held without hitting the inner wall of the furnace tube, and the raw material is induced while being electromagnetically suspended in the furnace tube. The carrier gas is heated and melted by the induced current and evaporates. Here, when the carrier gas is supplied from the carrier gas supply device into the furnace core tube, the fine particles of the raw material that coagulate after evaporation are separated and recovered from the furnace tube by the carrier gas. And collected in the separation and recovery device.

【0011】前記原料の電磁浮遊状態での加熱溶融が進
行し、該原料が全て蒸発し終わった後に、引続き、原料
からの微粒子の製造を行う場合には、前述と同様に、新
しい原料を炉心管内へ投入すれば、連続して原料から微
粒子を製造することが可能となる。
In the case where the raw material is heated and melted in an electromagnetic floating state, and after the raw material is completely evaporated, fine particles are continuously produced from the raw material, the new raw material is added to the core in the same manner as described above. If it is put into a tube, it becomes possible to continuously produce fine particles from a raw material.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を図示
例と共に説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1及び図2は本発明を実施する形態の一
例であって、石英やセラミックス等で形成され且つ原料
1が原料投入台7から投入される炉心管8の外周部に、
投入された原料1を電磁浮遊させつつ加熱溶融させて蒸
発させるための高周波浮遊コイル9を配設し、前記炉心
管8の底部に、該炉心管8内での加熱溶融によって蒸発
した後に凝集する原料1の微粒子を搬送するための搬送
ガスを供給する搬送ガス供給装置10を、搬送ガス供給
管11を介して接続し、前記炉心管8の上部に、該炉心
管8内での加熱溶融によって蒸発した後に凝集する原料
1の微粒子が前記搬送ガスと共に導入され且つ前記原料
1の微粒子を前記搬送ガスと分離して回収する分離回収
器12を、連絡管13を介して接続したものである。
FIGS. 1 and 2 show an embodiment of the present invention, in which an outer peripheral portion of a core tube 8 made of quartz, ceramics or the like and into which a raw material 1 is charged from a raw material charging table 7 is provided.
A high-frequency floating coil 9 for heating, melting, and evaporating the charged raw material 1 while electromagnetically floating it is provided, and is coagulated at the bottom of the furnace tube 8 after being evaporated by heating and melting in the furnace tube 8. A carrier gas supply device 10 for supplying a carrier gas for transporting the fine particles of the raw material 1 is connected via a carrier gas supply pipe 11, and is heated and melted in the furnace tube 8 above the furnace tube 8. Fine particles of the raw material 1 which coagulate after being evaporated are introduced together with the carrier gas, and a separation / recovery unit 12 for separating and collecting the fine particles of the raw material 1 from the carrier gas is connected via a connecting pipe 13.

【0014】前記高周波浮遊コイル9は、炉心管8の外
周部に所要方向(図の例では炉心管8の上方から見て反
時計回りとなる方向)に巻き回した下コイル9aと、該
下コイル9aより上方に反対方向(図の例では炉心管8
の上方から見て時計回りとなる方向)に巻き回した上コ
イル9bとから構成してあり、図2に示す如く、前記下
コイル9aに電流Iを流すことにより、原料1の内部
に、前記下コイル9aを流れる電流Iと反対方向の誘導
電流I’を誘起させ、互いに反発し合う磁場を下コイル
と原料1との間に形成し、該原料1を浮遊させると共
に、前記上コイル9bに下コイル9aと反対方向の電流
I”を流すことにより、浮遊する原料1を上から押える
磁場を形成し、原料1が炉心管8の内壁にぶつからずに
炉心管8の略中心部に保持されるようにしてある。
The high-frequency floating coil 9 has a lower coil 9a wound around the outer periphery of the core tube 8 in a required direction (in the example shown in the drawing, a counterclockwise direction as viewed from above the core tube 8). In the opposite direction above the coil 9a (the core tube 8
The upper coil 9b is wound in a clockwise direction as viewed from above (see FIG. 2). As shown in FIG. An induced current I 'in the opposite direction to the current I flowing through the lower coil 9a is induced to form a mutually repelling magnetic field between the lower coil and the raw material 1 so that the raw material 1 is floated and the upper coil 9b By passing a current I ″ in the opposite direction to the lower coil 9a, a magnetic field is formed that presses the floating raw material 1 from above, and the raw material 1 is held at substantially the center of the core tube 8 without hitting the inner wall of the core tube 8. It is so.

【0015】前記搬送ガス供給装置10は、搬送ガスが
貯留されたタンク10aと、該タンク10a内に貯留さ
れた搬送ガスを搬送ガス供給管11を介して炉心管8内
へ送給するファン10bとからなり、又、前記搬送ガス
としては、アルゴンやヘリウム等の不活性ガス、或いは
窒素や酸素等の反応ガスを用いることができる。
The carrier gas supply device 10 includes a tank 10a in which the carrier gas is stored, and a fan 10b which supplies the carrier gas stored in the tank 10a through the carrier gas supply pipe 11 into the core tube 8. Further, as the carrier gas, an inert gas such as argon or helium, or a reactive gas such as nitrogen or oxygen can be used.

【0016】前記分離回収器12は、原料1の微粒子を
搬送してきた搬送ガスに遠心力を与えて原料1の微粒子
を分離捕集すると共に、搬送ガスを排気として排出する
サイクロン等の分離器12aと、該分離器12aで分離
した原料1の微粒子を回収する回収器12bとを備えて
なる構成を有している。
The separation / recovery unit 12 applies a centrifugal force to the carrier gas that has transported the fine particles of the raw material 1 to separate and collect the fine particles of the raw material 1, and separates the separator 12a such as a cyclone that discharges the transport gas as exhaust gas. And a collector 12b for collecting the fine particles of the raw material 1 separated by the separator 12a.

【0017】尚、図中、14は炉心管8の上部に開閉自
在に取り付けられ、原料1の投入時に開かれる開閉蓋で
ある。
In the drawing, reference numeral 14 denotes an openable / closable lid which is attached to the upper part of the furnace tube 8 so as to be openable and closable and is opened when the raw material 1 is charged.

【0018】次に、上記図示例の作動を説明する。Next, the operation of the illustrated example will be described.

【0019】高周波浮遊コイル9の下コイル9aと上コ
イル9bとにそれぞれ電流Iと電流I”とを流した状態
で、開閉蓋14を開け、原料投入台7から原料1を炉心
管8内へ投入すると、原料1の内部に、前記下コイル9
aを流れる電流Iと反対方向の誘導電流I’が誘起さ
れ、互いに反発し合う磁場が下コイル9aと原料1との
間に形成され、該原料1が浮遊すると共に、前記上コイ
ル9bに下コイル9aと反対方向の電流I”が流されて
いることにより、浮遊する原料1を上から押える磁場が
形成され、原料1が炉心管8の内壁にぶつからずに炉心
管8の略中心部に保持される。
With the current I and the current I ″ flowing through the lower coil 9a and the upper coil 9b of the high-frequency floating coil 9, respectively, the opening / closing lid 14 is opened, and the raw material 1 is transferred from the raw material charging table 7 into the furnace tube 8. When the raw material 1 is charged, the lower coil 9
a, an induced current I ′ in a direction opposite to the current I flowing through the lower coil 9a and the raw material 1 is formed between the lower coil 9a and the raw material 1, and the raw material 1 floats and a lower magnetic The current I ″ flowing in the opposite direction to the coil 9a generates a magnetic field that presses the floating raw material 1 from above, so that the raw material 1 does not hit the inner wall of the core tube 8 and is substantially at the center of the core tube 8. Will be retained.

【0020】前記原料1は、炉心管8内において電磁浮
遊しつつ、誘起される誘導電流I’により加熱溶融さ
れ、蒸発していく。
The raw material 1 is heated and melted by the induced current I ′ while being electromagnetically suspended in the furnace tube 8 and evaporates.

【0021】ここで、搬送ガス供給装置10のタンク1
0a内に貯留された搬送ガス(アルゴンやヘリウム等の
不活性ガス)をファン10bの作動により搬送ガス供給
管11を介して炉心管8内へ送給すると、蒸発した後に
凝集する原料1の微粒子が、前記搬送ガスにより炉心管
8内から連絡管13を介して分離回収器12のサイクロ
ン等の分離器12aへ導入され、該分離器12aにおい
て、原料1の微粒子を搬送してきた搬送ガスに遠心力が
与えられて原料1の微粒子が分離捕集され、回収器12
bに回収されると共に、原料1の微粒子が分離された搬
送ガスが排気として排出される。
Here, the tank 1 of the carrier gas supply device 10
When the carrier gas (inert gas such as argon or helium) stored in the furnace tube 0a is fed into the furnace core tube 8 via the carrier gas supply pipe 11 by the operation of the fan 10b, the fine particles of the raw material 1 which evaporate and then aggregate are collected. Is introduced into the separator 12a such as a cyclone of the separation / recovery unit 12 from the inside of the furnace tube 8 through the connecting tube 13 by the carrier gas, and the separator 12a centrifuges the carrier gas that has transported the fine particles of the raw material 1. By applying force, the fine particles of the raw material 1 are separated and collected, and the
b, and the carrier gas from which the fine particles of the raw material 1 have been separated is discharged as exhaust gas.

【0022】前記原料1の電磁浮遊状態での加熱溶融が
進行し、該原料1が全て蒸発し終わった後に、引続き、
原料1からの微粒子の製造を行う場合には、前述と同様
に、開閉蓋14を開け、原料投入台7から新しい原料1
を炉心管8内へ投入すれば、連続して原料1から微粒子
を製造することが可能となる。
The heating and melting of the raw material 1 in the electromagnetic floating state progresses, and after the raw material 1 has completely evaporated,
When producing fine particles from the raw material 1, the open / close lid 14 is opened and the new raw material 1
Into the furnace tube 8, it is possible to continuously produce fine particles from the raw material 1.

【0023】尚、前記原料1としては、各種金属等のよ
うに電流が流れる導電性の材料であればどのようなもの
でもよいが、例えば、シリコンやゲルマニウム等の半導
体材料のように、室温では絶縁体であるが、溶融温度よ
り低い所定の温度(シリコンやゲルマニウム等の場合、
およそ700〜800[℃]程度)で導電性を有するよ
うになる材料の場合には、炉心管8内において先ず図示
していないマニピュレータ等により半導体材料からなる
原料1を支持した状態で、該原料1を図示していない集
光ランプ等によって前記溶融温度より低い所定の温度ま
で加熱すると、前記原料1は導電性を有するようになる
ため、ここで、高周波浮遊コイル9の下コイル9aと上
コイル9bとにそれぞれ電流Iと電流I”とを流せば、
原料1の内部に、前記下コイル9aを流れる電流Iと反
対方向の誘導電流I’が誘起され、互いに反発し合う磁
場が下コイルと原料1との間に形成され、該原料1が浮
遊し、且つ上コイル9bを流れる電流Iと反対方向の電
流I”により上方向にとび出すのが押えられ安定して炉
心管8の略中心部に保持される形となり、前記マニピュ
レータ等による支持は不要となり、前記原料1を、炉心
管8内において電磁浮遊させつつ、誘起される誘導電流
I’により加熱溶融させて蒸発させることができ、前述
と同様に、搬送ガス供給装置10のタンク10a内に貯
留された搬送ガスをファン10bの作動により搬送ガス
供給管11を介して炉心管8内へ送給することにより、
蒸発した後に凝集する原料1の微粒子を分離回収器12
において分離回収することが可能となる。
The raw material 1 may be any conductive material, such as various metals, through which a current flows. For example, at room temperature, such as a semiconductor material such as silicon or germanium, Although it is an insulator, a predetermined temperature lower than the melting temperature (for silicon, germanium, etc.,
In the case of a material that becomes conductive at about 700 to 800 [° C.), the raw material 1 made of a semiconductor material is first supported in the furnace tube 8 by a manipulator (not shown) or the like. When the raw material 1 is heated to a predetermined temperature lower than the melting temperature by a not-shown condenser lamp or the like, the raw material 1 becomes conductive, so that the lower coil 9a and the upper coil 9b, a current I and a current I "
An induced current I ′ in a direction opposite to the current I flowing through the lower coil 9a is induced inside the raw material 1, a repulsive magnetic field is formed between the lower coil and the raw material 1, and the raw material 1 floats. In addition, the current I "flowing in the opposite direction to the current I" flowing through the upper coil 9b suppresses the upward projection and is stably held substantially at the center of the core tube 8, so that the support by the manipulator or the like is unnecessary. The raw material 1 can be heated and melted by the induced current I ′ to be evaporated while being electromagnetically suspended in the furnace tube 8 and evaporated in the tank 10 a of the carrier gas supply device 10 in the same manner as described above. By sending the stored carrier gas into the reactor core tube 8 via the carrier gas supply pipe 11 by the operation of the fan 10b,
The fine particles of the raw material 1 which coagulate after evaporating are separated and collected by the separator 12
At the same time.

【0024】又、例えば、原料1としてアルミを用いる
と共に、搬送ガスとして酸素等の反応ガスを用いれば、
アルミナ等の化合物の微粒子を製造することも可能とな
る。
For example, if aluminum is used as the raw material 1 and a reactive gas such as oxygen is used as the carrier gas,
It is also possible to produce fine particles of a compound such as alumina.

【0025】一方、原料1の微粒子の粒径は、炉心管8
内部の圧力が低く且つ搬送ガスの流量が少ないほど、小
さくすることができ、これは、蒸発した原料1が凝集し
て微粒子となる際、炉心管8内部の圧力が低く且つ搬送
ガスの流量が少ないほど、炉心管8内部の気体に対して
蒸発した原料1が衝突する頻度が少なくなり、成長しに
くくなるためであり、こうした点を利用し、炉心管8内
部の圧力を図示していない真空ポンプによって適宜調節
すると共に、搬送ガスの流量を適宜調節することによ
り、微粒子の粒径を変えることも可能である。
On the other hand, the particle size of the fine particles of the raw material 1
The lower the internal pressure and the smaller the flow rate of the carrier gas, the smaller the pressure can be. This is because when the evaporated raw material 1 is aggregated into fine particles, the pressure inside the furnace tube 8 is low and the flow rate of the carrier gas is low. The smaller the number, the less frequently the evaporated raw material 1 collides with the gas inside the furnace tube 8 and the more difficult it is to grow. By utilizing such a point, the pressure inside the furnace tube 8 is reduced by a vacuum (not shown). It is also possible to change the particle diameter of the fine particles by appropriately adjusting the flow rate of the carrier gas while appropriately adjusting the flow rate using the pump.

【0026】又、炉心管8の温度が上がりすぎるような
場合には、炉心管8を二重管として管と管の間に冷却水
を流すことにより、炉心管8を冷却するようにしてもよ
いことは言うまでもない。
When the temperature of the core tube 8 is too high, the core tube 8 may be cooled by flowing the cooling water between the tubes by using the core tube 8 as a double tube. It goes without saying that it is good.

【0027】こうして、従来のように坩堝2内に原料1
を入れて溶融させる必要がなくなり、原料1に対して不
純物を混入させることなく、高純度の微粒子を連続的に
製造し得る。
Thus, the raw material 1 is placed in the crucible 2 as in the prior art.
This eliminates the need to add and melt, and high-purity fine particles can be continuously produced without mixing impurities into the raw material 1.

【0028】尚、本発明の微粒子製造方法及び装置は、
上述の図示例にのみ限定されるものではなく、本発明の
要旨を逸脱しない範囲内において種々変更を加え得るこ
とは勿論である。
The method and apparatus for producing fine particles of the present invention
It is needless to say that the present invention is not limited to the illustrated example described above, and various changes can be made without departing from the scope of the present invention.

【0029】[0029]

【発明の効果】以上、説明したように本発明の微粒子製
造方法及び装置によれば、原料に対して不純物を混入さ
せることなく、高純度の微粒子を連続的に製造し得ると
いう優れた効果を奏し得る。
As described above, according to the method and apparatus for producing fine particles of the present invention, there is provided an excellent effect that high-purity fine particles can be continuously produced without mixing impurities into the raw material. I can play.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する形態の一例の概要構成図であ
る。
FIG. 1 is a schematic configuration diagram of an example of an embodiment of the present invention.

【図2】本発明を実施する形態の一例における電磁浮遊
の概念図である。
FIG. 2 is a conceptual diagram of electromagnetic floating in an example of an embodiment of the present invention.

【図3】従来例の概要構成図である。FIG. 3 is a schematic configuration diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 原料 8 炉心管 9 高周波浮遊コイル 10 搬送ガス供給装置 12 分離回収器: DESCRIPTION OF SYMBOLS 1 Raw material 8 Furnace tube 9 High frequency floating coil 10 Carrier gas supply device 12 Separation and recovery device:

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原料を電磁浮遊させつつ加熱溶融させて
蒸発させ、蒸発した後に凝集する原料の微粒子を搬送ガ
スにより搬送して回収することを特徴とする微粒子製造
方法。
1. A method for producing fine particles, comprising heating, melting and evaporating a raw material while electromagnetically suspending the raw material, evaporating the raw material, and collecting and transporting fine particles of the raw material which aggregate after being evaporated by a carrier gas.
【請求項2】 原料が投入され且つ該投入された原料を
電磁浮遊させつつ加熱溶融させて蒸発させるための高周
波浮遊コイルが外周部に配設された炉心管と、 該炉心管内での加熱溶融によって蒸発した後に凝集する
原料の微粒子を搬送するための搬送ガスを供給する搬送
ガス供給装置と、 前記炉心管内での加熱溶融によって蒸発した後に凝集す
る原料の微粒子が前記搬送ガスと共に導入され且つ前記
原料の微粒子を前記搬送ガスと分離して回収する分離回
収器とを備えたことを特徴とする微粒子製造装置。
2. A core tube in which a raw material is charged, and a high-frequency floating coil for heating and melting and evaporating the charged raw material while electromagnetically floating the charged raw material is disposed on an outer peripheral portion, and heating and melting in the core tube. A carrier gas supply device for supplying a carrier gas for transporting the raw material particles that aggregate after being vaporized, and the raw material particles that are aggregated after being heated and melted in the furnace tube are introduced together with the carrier gas, and An apparatus for separating fine particles of a raw material from the carrier gas to collect the fine particles.
JP23453597A 1997-08-29 1997-08-29 Manufacture of fine particle, and manufacturing device therefor Pending JPH1171605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23453597A JPH1171605A (en) 1997-08-29 1997-08-29 Manufacture of fine particle, and manufacturing device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23453597A JPH1171605A (en) 1997-08-29 1997-08-29 Manufacture of fine particle, and manufacturing device therefor

Publications (1)

Publication Number Publication Date
JPH1171605A true JPH1171605A (en) 1999-03-16

Family

ID=16972556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23453597A Pending JPH1171605A (en) 1997-08-29 1997-08-29 Manufacture of fine particle, and manufacturing device therefor

Country Status (1)

Country Link
JP (1) JPH1171605A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075078A (en) * 2001-09-03 2003-03-12 Ishikawajima Harima Heavy Ind Co Ltd Contamination preventing apparatus for furnace core pipe of electromagnetic floating furnace
US7323229B2 (en) * 2002-02-21 2008-01-29 Corus Technology Bv Method and device for coating a substrate
US7973267B2 (en) * 2004-08-23 2011-07-05 Tata Steel Nederland Technology Bv Apparatus and method for levitation of an amount of conductive material
JP2013510243A (en) * 2009-11-10 2013-03-21 テクノロジアン テュトキムスケスクス ヴェーテーテー Nanoparticle production method and nanoparticle production apparatus
CN110814357A (en) * 2018-08-14 2020-02-21 深圳市百柔新材料技术有限公司 Nanomaterial preparation device and method
CN111804926A (en) * 2020-07-06 2020-10-23 昆明理工大学 Method for preparing refractory metal powder
CN112538604A (en) * 2019-09-23 2021-03-23 宝山钢铁股份有限公司 Device and method for supplementing liquid and stabilizing metal steam supply amount in vacuum coating

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075078A (en) * 2001-09-03 2003-03-12 Ishikawajima Harima Heavy Ind Co Ltd Contamination preventing apparatus for furnace core pipe of electromagnetic floating furnace
US7323229B2 (en) * 2002-02-21 2008-01-29 Corus Technology Bv Method and device for coating a substrate
US7973267B2 (en) * 2004-08-23 2011-07-05 Tata Steel Nederland Technology Bv Apparatus and method for levitation of an amount of conductive material
JP2013510243A (en) * 2009-11-10 2013-03-21 テクノロジアン テュトキムスケスクス ヴェーテーテー Nanoparticle production method and nanoparticle production apparatus
CN110814357A (en) * 2018-08-14 2020-02-21 深圳市百柔新材料技术有限公司 Nanomaterial preparation device and method
CN112538604A (en) * 2019-09-23 2021-03-23 宝山钢铁股份有限公司 Device and method for supplementing liquid and stabilizing metal steam supply amount in vacuum coating
CN111804926A (en) * 2020-07-06 2020-10-23 昆明理工大学 Method for preparing refractory metal powder

Similar Documents

Publication Publication Date Title
JP3865033B2 (en) Continuous production method and continuous production apparatus for silicon oxide powder
JP5666785B2 (en) Method for producing core-shell structured nanoparticles
TW201515996A (en) Siox powder manufacturing process and siox powder manufacturing apparatus
US4881722A (en) Apparatus for producing superfine particle
CN109719303A (en) A kind of submicron order iron-nickel alloy powder producing method of soft magnetic materials
JPH1171605A (en) Manufacture of fine particle, and manufacturing device therefor
JP6890291B2 (en) Fine particle manufacturing equipment and manufacturing method
JP5267665B2 (en) Magnetic powder manufacturing method and manufacturing apparatus thereof
JP6924944B2 (en) Fine particle manufacturing equipment and fine particle manufacturing method
JPH06279015A (en) Production of ultrafine silicon particle
JP2002241812A (en) Method and equipment for manufacturing metallic ultrafine particle
CN107470642A (en) A kind of powder preparation method
CN214736209U (en) Silicon carbide single crystal ingot growth equipment
CN113005512B (en) Silicon carbide single crystal ingot growth equipment and method
KR20200056073A (en) Manufacturing apparatus and manufacturing method of nanopowder using DC arc plasma and apparatus for manufacturing the same
JPH0761803A (en) Production of fullerene and carbon nanotube
JP2013249235A (en) Method for producing fluoride salts, and fluoride salts, and method for producing silicon using the fluoride salts
JP2017170402A (en) Fine particle producing apparatus and producing method
WO1993002787A1 (en) Process for the production of ultra-fine powdered materials
JP3563083B2 (en) Method and apparatus for gas deposition of ultrafine particles
JPS60224706A (en) Production of ultrafine metallic particles
JP2007063615A (en) Method for forming lithium or lithium alloy thin film
JPH0625717A (en) Method and device for producing globular grain by high-frequency plasma
CN115928023A (en) Suspended evaporation source for preparing high-purity metal film and coating material
CN219942795U (en) Nitride powder production and processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060530