JP2001073007A - Nickel powder for laminated ceramic capacitor - Google Patents

Nickel powder for laminated ceramic capacitor

Info

Publication number
JP2001073007A
JP2001073007A JP24489699A JP24489699A JP2001073007A JP 2001073007 A JP2001073007 A JP 2001073007A JP 24489699 A JP24489699 A JP 24489699A JP 24489699 A JP24489699 A JP 24489699A JP 2001073007 A JP2001073007 A JP 2001073007A
Authority
JP
Japan
Prior art keywords
nickel powder
nickel
content
grain size
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24489699A
Other languages
Japanese (ja)
Inventor
Takayuki Ito
孝之 伊藤
Hideo Takatori
英男 高取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP24489699A priority Critical patent/JP2001073007A/en
Priority to KR10-2001-7005080A priority patent/KR100422719B1/en
Priority to EP00954973A priority patent/EP1129804A4/en
Priority to US09/786,032 priority patent/US6454830B1/en
Priority to CNB008018405A priority patent/CN1248814C/en
Priority to PCT/JP2000/005688 priority patent/WO2001015838A1/en
Priority to TW089117620A priority patent/TW522172B/en
Publication of JP2001073007A publication Critical patent/JP2001073007A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the content of coarse grains in nickel powder and to reduce the surface roughness in the case of being made into paste by specifying the content of nickel powder of specified grain size in nickel powder having the average grain size in a specified range by the standard of the number. SOLUTION: In a medium such as water, nickel powder having the average grain size of 0.1 to 1.0 μm is dispersed to obtain slurry. This slurry is fed to a liq. cyclone and is classified. The content of nickel in the slurry (slurry concn.) is desirably controlled to 20 to 30 wt.%. By this classification, the content of the nickel powder of >=2 μm grain size in the nickel powder having the average grain size of 0.1 to 1.0 μm is controlled to <=700/1,000,000 by the standard of the number. When this nickel powder is used for paste, the uniformity of the film thickness of an internal electrode layer of a ceramic capacitor is made satisfactory. As to the content of the nickel powder of >=2 μm grain size, <=700/1000,000 is essential, desirably, it is controlled to 300/1,00,000, and, more desirably, it is controlled to <=100/1,000,000.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、積層セラミックコ
ンデンサの内部電極形成用導電ペーストフィラーの材料
に用いられる積層セラミックコンデンサ用ニッケル粉に
関する。
The present invention relates to a nickel powder for a multilayer ceramic capacitor used as a material for a conductive paste filler for forming internal electrodes of a multilayer ceramic capacitor.

【0002】[0002]

【従来の技術】Ni、Cu、Ag等の導電性の金属粉
は、積層セラミックコンデンサの内部電極形成用として
有用であり、とりわけニッケル粉は、従来のPd粉等に
比べて安価なため注目されている。そして、積層セラミ
ックコンデンサの小型化、大容量化に伴って内部電極は
1〜2μm前後の薄層化の傾向にあり、したがって、ニ
ッケル粉の粒径は1μm、もしくはそれ以下であること
が要求されてきている。
2. Description of the Related Art Conductive metal powders such as Ni, Cu, and Ag are useful for forming internal electrodes of multilayer ceramic capacitors, and nickel powder is particularly attracting attention because it is less expensive than conventional Pd powders. ing. With the miniaturization and large capacity of the multilayer ceramic capacitor, the internal electrodes tend to be thinner to about 1 to 2 μm. Therefore, the particle size of the nickel powder is required to be 1 μm or less. Is coming.

【0003】このような特性を満足するニッケル粉とし
ては、ニッケルの純度が99.5wt%以上で、しかも
粒径が0.05〜1.0μmの微細な球状ニッケル粉
が、特開平3−280304号公報に開示されている。
このニッケル粉によれば、電極層中の充填密度を高くす
ることができるので、焼成後の電極層の比抵抗が小さ
く、また、デラミネーション(剥離)やクラックが起こ
りにくいとされている。
As a nickel powder satisfying such characteristics, fine spherical nickel powder having a nickel purity of 99.5 wt% or more and a particle size of 0.05 to 1.0 μm is disclosed in Japanese Patent Application Laid-Open No. 3-280304. No. 6,086,045.
According to this nickel powder, the packing density in the electrode layer can be increased, so that the specific resistance of the fired electrode layer is small, and delamination (peeling) and cracks are less likely to occur.

【0004】[0004]

【発明が解決しようとする課題】ところで、ニッケル粉
の製造方法としては、塩化ニッケルガスを水素ガスによ
り還元させる気相還元法が近年では一般的となってい
る。同方法は、球状ニッケル粉を効率よく製造すること
ができるといった利点を備えているものの、粒径が1μ
m以上のニッケル粉が含まれる場合も多かった。粒径1
μm以上のニッケル粉は、電極間のショートや電極層の
ボイドといった問題を招来させやすく、特性上好ましい
ものではない。そこで、1μm以上の粗粒を含まない高
品質のニッケル粉が望まれている。
Incidentally, as a method for producing nickel powder, a gas phase reduction method in which nickel chloride gas is reduced with hydrogen gas has become popular in recent years. This method has the advantage that spherical nickel powder can be efficiently produced, but the particle size is 1 μm.
m or more in many cases. Particle size 1
Nickel powder of μm or more tends to cause problems such as short-circuiting between electrodes and voids in the electrode layer, and is not preferable in characteristics. Therefore, high-quality nickel powder containing no coarse particles of 1 μm or more is desired.

【0005】本発明は上記事情に鑑みてなされたもの
で、以下を目的としている。 粗粒の含有率が低く、粒度分布の狭い積層セラミック
コンデンサ用ニッケル粉を提供する。 ペースト化した際の表面粗さが小さい積層セラミック
コンデンサ用ニッケル粉を提供する。
The present invention has been made in view of the above circumstances, and has the following objects. Provided is a nickel powder for a multilayer ceramic capacitor having a low content of coarse particles and a narrow particle size distribution. Provided is a nickel powder for a multilayer ceramic capacitor having a small surface roughness when pasted.

【0006】[0006]

【課題を解決するための手段】本発明者らは、塩化ニッ
ケルの気相還元で得たニッケル粉につき、粒径2μm以
上のニッケル粉の含有率が異なるサンプルごとにペース
ト化して表面粗さを調べたところ、粒径2μm以上のニ
ッケル粉が100万個当たり1400個前後存在するニ
ッケル粉の場合には満足する表面粗さは得られなかった
が、50個前後であると良好な表面粗さを示すことを見
い出した。このことから、50〜1400個のほぼ中間
である700個相当が存在するまでニッケル粉を分級す
れば実用上問題ない表面粗さが得られるであろうと推測
し、本発明に至った。すなわち本発明の積層セラミック
コンデンサ用ニッケル粉は、平均粒径0.1〜1.0μ
mのニッケル粉であって、粒径2μm以上のニッケル粉
の含有率が、個数基準において700/100万以下に
あることを特徴としている。
Means for Solving the Problems The present inventors paste the nickel powder obtained by the gas phase reduction of nickel chloride into samples having different contents of nickel powder having a particle diameter of 2 μm or more to reduce the surface roughness. According to the examination, a satisfactory surface roughness could not be obtained in the case of nickel powder having a particle diameter of 2 μm or more of about 1400 per 1 million pieces, but a good surface roughness was obtained in the case of about 50 pieces of nickel powder. To show that From this, it was presumed that if the nickel powder was classified until approximately 700, which is almost intermediate between 50 and 1400, a surface roughness that would be practically acceptable would be obtained, leading to the present invention. That is, the nickel powder for a multilayer ceramic capacitor of the present invention has an average particle size of 0.1 to 1.0 μm.
m, wherein the content of the nickel powder having a particle diameter of 2 μm or more is 700 / 1,000,000 or less on a number basis.

【0007】次に、本発明のより具体的な手段を説明す
る。A.ニッケル粉の生成 ニッケル粉は、気相還元法により生成させることができ
るが、原料ならびに生成法は特に制限されない。具体的
には、次の方法が挙げられる。 固体塩化ニッケルを出発原料とし、この固体塩化ニッ
ケルを加熱蒸発させて発生する塩化ニッケルガスと水素
ガスを反応させる。 固体ニッケルを出発原料とし、この固体ニッケルに塩
素ガスを接触させて塩化ニッケルガスを発生させ、この
塩化ニッケルガスと水素ガスを反応させる。
Next, more specific means of the present invention will be described. A. Formation of Nickel Powder Nickel powder can be generated by a gas phase reduction method, but the raw material and the generation method are not particularly limited. Specifically, the following method can be used. Using solid nickel chloride as a starting material, nickel chloride gas generated by heating and evaporating the solid nickel chloride is reacted with hydrogen gas. Using solid nickel as a starting material, a chlorine gas is brought into contact with the solid nickel to generate a nickel chloride gas, and the nickel chloride gas and a hydrogen gas are reacted.

【0008】B.ニッケル粉の分級方法 粒径1μm付近のニッケル粉、すなわち粗粒を分級する
方法としては、液体サイクロンや気流分級器等の一般的
な分級装置を用いればよい。しかしながら、生成ニッケ
ル粉の表面には塩化水素ガスや塩化ニッケルが付着ある
いは吸着しており、通常これらを水洗処理で除去してい
ることから、ニッケル粉を水に分散させてスラリー化
し、このスラリーを液体サイクロンに供給して粗粒を分
級する方法が合理的で好ましい。
B. Nickel Powder Classification Method As a method for classifying nickel powder having a particle size of about 1 μm, that is, coarse particles, a general classification device such as a liquid cyclone or an airflow classifier may be used. However, hydrogen chloride gas and nickel chloride are attached or adsorbed on the surface of the generated nickel powder, and since these are usually removed by a water washing treatment, the nickel powder is dispersed in water to form a slurry. A method of classifying coarse particles by supplying the liquid to a hydrocyclone is rational and preferred.

【0009】液体サイクロンとしては、細粒を装置のト
ップ部(上部)から排出し、粗粒を装置のボトム部(底
部)から排出するタイプの二液分離型や、細粒より細か
な微細粒を装置のトップ部から排出し、細粒を装置のミ
ドル部(中間部)から排出し、粗粒を装置のボトム部か
ら排出するタイプの三液分離型が挙げられる。これらの
中では、粒径を細かく制御することができる観点から後
者のタイプがより好ましく用いられる。トップ部および
/またはミドル部から排出されたニッケル粉が、本発明
のニッケル粉とされる。
As the liquid cyclone, a two-liquid separation type in which fine particles are discharged from the top part (upper part) of the apparatus and coarse particles are discharged from the bottom part (bottom part) of the apparatus, or fine particles finer than fine particles Is discharged from the top part of the apparatus, fine particles are discharged from the middle part (intermediate part) of the apparatus, and coarse particles are discharged from the bottom part of the apparatus. Among these, the latter type is more preferably used from the viewpoint that the particle size can be finely controlled. The nickel powder discharged from the top part and / or the middle part is the nickel powder of the present invention.

【0010】液体サイクロンの材質は、耐食性および耐
摩耗性を確保する上でセラミックス製が好ましい。セラ
ミックスとしては、アルミナや窒化ケイ素が好ましい。
液体サイクロンは、1基あるいは複数を並列させて稼動
させてもよく、複数の液体サイクロンを並列稼動させる
ことにより、大量生産を可能とし生産性向上の上で効果
的である。
The material of the liquid cyclone is preferably made of ceramics in order to ensure corrosion resistance and wear resistance. As the ceramics, alumina and silicon nitride are preferable.
One or a plurality of hydrocyclones may be operated in parallel, and by operating a plurality of hydrocyclones in parallel, mass production is possible, which is effective in improving productivity.

【0011】ニッケル粉をスラリー化する際の媒体とし
ては、上記のように水が好ましく用いられる。水の中
に、平均粒径0.1〜1.0μmのニッケル粉を分散さ
せてスラリーを得、これを液体サイクロンに供給するわ
けであるが、スラリー中のニッケル粉の含有率(スラリ
ー濃度)は、20〜30wt%が好ましい。スラリー濃
度が20wt%を下回るとスラリー中のニッケル粉含有
率が高まって分級効率が向上するが、生産性の低下を招
くので好ましくない。逆に、スラリー濃度が30wt%
を超えると分級効率が低下するので好ましくない。
As a medium for making the nickel powder into a slurry, water is preferably used as described above. A nickel powder having an average particle size of 0.1 to 1.0 μm is dispersed in water to obtain a slurry, which is supplied to a liquid cyclone. The content of the nickel powder in the slurry (slurry concentration) Is preferably 20 to 30 wt%. If the slurry concentration is less than 20% by weight, the content of nickel powder in the slurry is increased and the classification efficiency is improved, but this is not preferable because the productivity is lowered. Conversely, the slurry concentration is 30wt%
If it exceeds, the classification efficiency is undesirably reduced.

【0012】C.ニッケル粉の好ましい態様 上記分級方法によって得られた本発明に係るニッケル粉
は、前述の如く、平均粒径0.1〜1.0μmであっ
て、粒径2μm以上のニッケル粉の含有率が、個数基準
において700/100万以下にあることを特徴として
いる。このようなニッケル粉をペーストに用いると、セ
ラミックコンデンサの内部電極層の膜厚の均一性が良好
となる。粒径2μm以上のニッケル粉の含有率に関して
は、700/100万以下が必須であり、300/10
0万以下であれば好ましく、100/100万以下であ
ればさらに好ましく、50/100万以下であれば一層
好ましい。
C. The preferred embodiment of the nickel powder The nickel powder according to the present invention obtained by the classification method has an average particle diameter of 0.1 to 1.0 μm and a content of the nickel powder having a particle diameter of 2 μm or more, as described above, It is characterized by being 700 / 1,000,000 or less on a number basis. When such nickel powder is used for the paste, the uniformity of the film thickness of the internal electrode layer of the ceramic capacitor is improved. Regarding the content of nickel powder having a particle size of 2 μm or more, 700 / 1,000,000 or less is essential, and 300/10
It is preferably at most 100,000, more preferably at most 100 / 1,000,000, more preferably at most 50 / 1,000,000.

【0013】ニッケル粉の平均粒径は、小さければ小さ
いほど好ましいが、微細になるにつれニッケル粉どうし
が凝集しやすく、その結果、内部電極中にボイドが形成
されやすくなる。このため、1μm程度の内部電極を形
成するためのニッケル粉としては、平均粒径が0.2〜
0.4μmが好ましい。
The smaller the average particle size of the nickel powder, the better. However, the finer the powder, the easier it is for the nickel powder to agglomerate, resulting in the formation of voids in the internal electrode. For this reason, nickel powder for forming an internal electrode of about 1 μm has an average particle size of 0.2 to 0.2 μm.
0.4 μm is preferred.

【0014】[0014]

【実施例】以下、本発明に基づく実施例を説明する。[実施例1:ニッケル粉の分級試験] 塩化ニッケルの気
相還元法により製造された2種類のニッケル粉(平均粒
径0.62μmと0.65μm)を、比較例の試料とし
た。これら試料(No.1,No2)のニッケル粉中に
存在する2μm以上のニッケル粉の個数割合を顕微鏡を
用いて調べたところ、No.1は1405/100万、
No.2は736/100万であった。
Embodiments of the present invention will be described below. [Example 1: Classification test of nickel powder] Two kinds of nickel powders (average particle diameters 0.62 µm and 0.65 µm) produced by a gas phase reduction method of nickel chloride were used as samples of comparative examples. The number ratio of nickel powder of 2 μm or more present in the nickel powder of these samples (No. 1 and No. 2) was examined using a microscope. 1 is 1405 / 1,000,000,
No. 2 was 736 / 1,000,000.

【0015】次に、上記各比較例のニッケル粉をそれぞ
れ水に分散させ、スラリー濃度(スラリー中のニッケル
粉のwt%)10wt%にスラリー化した。これらスラ
リーを、三液分離型の液体サイクロン(村田工業社製:
TR−5型スーパークロン)に供給圧力6kg/cm
で供給して分級し、微細粒排出口であるトップ部から排
出されたニッケル粉を、それぞれ実施例のニッケル粉と
して得た。これら実施例のニッケル粉中に存在する2μ
m以上のニッケル粉の個数割合を顕微鏡を用いて調べた
ところ、No.1は33/100万、No.2は42/
100万であった。分級試験の結果を、表1に示す。
Next, the nickel powder of each of the above comparative examples was dispersed in water, and slurried to a slurry concentration (wt% of nickel powder in the slurry) of 10 wt%. These slurries are converted into a three-liquid separation type cyclone (Murata Industries:
TR-5 type supercron) supply pressure 6kg / cm 2
, And classified, and the nickel powder discharged from the top portion, which is the fine particle discharge port, was obtained as the nickel powder of each example. 2 μm present in the nickel powder of these examples
When the number ratio of the nickel powder having a particle size of at least m was examined using a microscope, it was determined that No. No. 1 is 33 / 1,000,000, No. 2 is 42 /
One million. Table 1 shows the results of the classification test.

【0016】[0016]

【表1】 [Table 1]

【0017】表1で明らかなように、No.1,2いず
れの試料も、液体サイクロンによる分級後のニッケル粉
中における2μm以上のニッケル粉の個数が格段に減
り、本発明のニッケル粉を得ることができた。
As apparent from Table 1, No. In each of Samples 1 and 2, the number of nickel powder of 2 μm or more in the nickel powder after classification by the hydrocyclone was significantly reduced, and the nickel powder of the present invention could be obtained.

【0018】[実施例2:ニッケル電極層の表面粗さ試
験]上記試料No.1のニッケル粉の分級前と分級後の
平均粒径を調べ、次いで、これらをペースト化して基板
上に塗布し、該基板を加熱して液分を揮発させ電極層を
形成し、その表面粗さを測定した。表面粗さの測定条件
等は、次の通りである。
Example 2 Surface Roughness Test of Nickel Electrode Layer
Test] The above sample No. The average particle size of the nickel powder before and after classification was examined, then these were made into a paste and applied on a substrate, and the substrate was heated to evaporate the liquid component to form an electrode layer, and the surface roughness was adjusted. Was measured. The conditions for measuring the surface roughness are as follows.

【0019】 ペースト組成 α−テルピネオール(42wt%) エチルセルロース (3wt%) ニッケル粉 (55wt%) 基板 ガラス ペースト塗布装置 スクリーン印刷機 ペースト揮発条件 400℃の窒素ガス雰囲気 表面粗さ測定装置 電子線三次元粗さ解析装置 (エリオニクス社製:ERA−8000) 表面粗さ測定方法 走査線ごとに計測される粗さ曲線とその中心線に囲まれ た部分の面積を横方向長さで割った値−中心線平均粗さ を1視野の表面粗さとし、視野サンプル数10個の平均 値を、そのペーストの表面粗さとした。 平均粒径および表面粗さの測定結果を、表2に示す。Paste composition α-terpineol (42 wt%) Ethyl cellulose (3 wt%) Nickel powder (55 wt%) Substrate Glass Paste coating device Screen printing machine Paste volatilization condition Nitrogen gas atmosphere at 400 ° C. Surface roughness measuring device Electron beam three-dimensional roughness Surface analyzer (ELIONIX: ERA-8000) Surface roughness measurement method Roughness curve measured for each scanning line and the area of the area surrounded by the center line divided by the horizontal length-center line The average roughness was defined as the surface roughness of one visual field, and the average value of 10 visual field samples was defined as the surface roughness of the paste. Table 2 shows the measurement results of the average particle size and the surface roughness.

【0020】[0020]

【表2】 [Table 2]

【0021】表2で明らかなように、分級後のニッケル
粉をペースト化させて形成した電極層の表面粗さは、分
級前のニッケル粉と比べるとおよそ半分まで平滑化さ
れ、積層セラミック用のニッケル粉としてきわめて有用
であることが確かめられた。
As is clear from Table 2, the surface roughness of the electrode layer formed by pasting the nickel powder after classification is smoothed to about half that of the nickel powder before classification, and It was confirmed that it was extremely useful as nickel powder.

【0022】[0022]

【発明の効果】以上説明したように本発明は、粒径2μ
m以上のニッケル粉の含有率が個数基準において700
/100万以下にある平均粒径0.1〜1.0μmのニ
ッケル粉であるから、粗粒の含有率が低く、かつ粒度分
布が狭い上、ペースト化した際の表面粗さが小さく、し
たがって、積層セラミックコンデンサ用ニッケル粉とし
てきわめて有望である。
As described above, the present invention has a particle size of 2 μm.
m is not less than 700 based on the number of nickel powder.
/ 1,000,000 or less nickel powder having an average particle size of 0.1 to 1.0 μm, the content of coarse particles is low, the particle size distribution is narrow, and the surface roughness when pasted is small. It is very promising as nickel powder for multilayer ceramic capacitors.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径0.1〜1.0μmのニッケル
粉であって、粒径2μm以上のニッケル粉の含有率が、
個数基準において700/100万以下にあることを特
徴とする積層セラミックコンデンサ用ニッケル粉。
1. A nickel powder having an average particle size of 0.1 to 1.0 μm, wherein the content of the nickel powder having a particle size of 2 μm or more is:
A nickel powder for a multilayer ceramic capacitor, wherein the nickel powder is 700 / 1,000,000 or less on a number basis.
JP24489699A 1999-08-31 1999-08-31 Nickel powder for laminated ceramic capacitor Pending JP2001073007A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP24489699A JP2001073007A (en) 1999-08-31 1999-08-31 Nickel powder for laminated ceramic capacitor
KR10-2001-7005080A KR100422719B1 (en) 1999-08-31 2000-08-24 Nickel powder for monolithic ceramic capacitor
EP00954973A EP1129804A4 (en) 1999-08-31 2000-08-24 Nickel powder for monolithic ceramic capacitor
US09/786,032 US6454830B1 (en) 1999-08-31 2000-08-24 Nickel powder for multilayer ceramic capacitors
CNB008018405A CN1248814C (en) 1999-08-31 2000-08-24 Nickel powder for monolithic ceramic capacitor
PCT/JP2000/005688 WO2001015838A1 (en) 1999-08-31 2000-08-24 Nickel powder for monolithic ceramic capacitor
TW089117620A TW522172B (en) 1999-08-31 2000-08-30 Nickel powder for laminated ceramic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24489699A JP2001073007A (en) 1999-08-31 1999-08-31 Nickel powder for laminated ceramic capacitor

Publications (1)

Publication Number Publication Date
JP2001073007A true JP2001073007A (en) 2001-03-21

Family

ID=17125601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24489699A Pending JP2001073007A (en) 1999-08-31 1999-08-31 Nickel powder for laminated ceramic capacitor

Country Status (1)

Country Link
JP (1) JP2001073007A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079269A (en) * 2007-09-26 2009-04-16 Dowa Electronics Materials Co Ltd Copper powder for electroconductive paste, production method therefor and electroconductive paste
JP2015158000A (en) * 2014-02-25 2015-09-03 住友金属鉱山株式会社 Nickel powder production process
KR20160126286A (en) 2015-04-23 2016-11-02 에스케이케미칼주식회사 Water-soluble polyester resin having improved water resistance and chemical resistance, water-dispersible emulsion comprising the same, and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079269A (en) * 2007-09-26 2009-04-16 Dowa Electronics Materials Co Ltd Copper powder for electroconductive paste, production method therefor and electroconductive paste
JP2015158000A (en) * 2014-02-25 2015-09-03 住友金属鉱山株式会社 Nickel powder production process
KR20160126286A (en) 2015-04-23 2016-11-02 에스케이케미칼주식회사 Water-soluble polyester resin having improved water resistance and chemical resistance, water-dispersible emulsion comprising the same, and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4613362B2 (en) Metal powder for conductive paste and conductive paste
US6391084B1 (en) Metal nickel powder
JP6799936B2 (en) Nickel particles, conductive paste, internal electrodes and multilayer ceramic capacitors
KR100480873B1 (en) Nickel powder and conductive paste
JP2009024197A (en) Method for producing nickel powder
TW201936295A (en) Method for producing fine particles and fine particles
JP2010067418A (en) Conductive paste and method of manufacturing the same
JP5933267B2 (en) Capacitor anode
US6454830B1 (en) Nickel powder for multilayer ceramic capacitors
JP3868421B2 (en) Metal powder manufacturing method, metal powder, and conductive paste and multilayer ceramic capacitor using the same
JP2001073007A (en) Nickel powder for laminated ceramic capacitor
JP2011084762A (en) Nickel powder and method for producing the same
JP6539520B2 (en) Nickel fine particle containing composition and method for producing the same
JP3549446B2 (en) Nickel powder classification method
JP4540364B2 (en) Nickel powder, and conductive paste and multilayer ceramic capacitor using the same
JP2008261054A (en) Heat treating method for metal powder
JP7390198B2 (en) Glass particles, conductive composition using the same, and method for producing glass particles
KR20050107776A (en) Nickel based ultrafine powder
JPH1088205A (en) Production of metallic nickel powder
JP6799931B2 (en) Nickel fine particle-containing composition and its manufacturing method, internal electrodes and laminated ceramic capacitors
WO2021199694A1 (en) Nickel-containing particle, electroconductive composition including same, and method for manufacturing nickel-containing particle
JP2007254282A (en) Process of preparing sintered ito compact
KR102484800B1 (en) Manufacturing method of metal powder
JP2004176120A (en) Electrically conductive powder, production method therefor, and electrically conductive paste obtained by using the same
JP5060227B2 (en) Method for producing nickel powder

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060502