JP2000340216A - Manufacture of negative electrode for secondary battery - Google Patents

Manufacture of negative electrode for secondary battery

Info

Publication number
JP2000340216A
JP2000340216A JP2000066676A JP2000066676A JP2000340216A JP 2000340216 A JP2000340216 A JP 2000340216A JP 2000066676 A JP2000066676 A JP 2000066676A JP 2000066676 A JP2000066676 A JP 2000066676A JP 2000340216 A JP2000340216 A JP 2000340216A
Authority
JP
Japan
Prior art keywords
negative electrode
film
coating film
secondary battery
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000066676A
Other languages
Japanese (ja)
Other versions
JP3510175B2 (en
Inventor
Ryuichi Tsuji
隆一 辻
Kuniyuki Nakanishi
邦之 中西
Toru Nishimura
徹 西村
Tadashi Hirabayashi
忠 平林
Atsushi Suzuki
淳 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP1999/002729 external-priority patent/WO1999062131A1/en
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2000066676A priority Critical patent/JP3510175B2/en
Publication of JP2000340216A publication Critical patent/JP2000340216A/en
Application granted granted Critical
Publication of JP3510175B2 publication Critical patent/JP3510175B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a negative electrode for a secondary battery capable of reducing contact resistance between a sintered body containing silicon as active material and a collector. SOLUTION: Slurry is prepared by adding binder and solvent into negative electrode material containing silicon. The slurry is coated on a peelable film and the solvent is eliminated to produce a coating film. Then, the coating film is peeled from the film, is pressed on a base material containing foil or mesh of conductive metal, is baked, and is sintered integrally with the base material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ケイ素を活物質と
する焼結体を電極材料として用いる二次電池用負極とそ
の製造方法、及びそれを用いた非水系二次電池に関す
る。
The present invention relates to a negative electrode for a secondary battery using a sintered body containing silicon as an active material as an electrode material, a method for producing the same, and a non-aqueous secondary battery using the same.

【0002】[0002]

【従来の技術】携帯電話やノ−トパソコン等の普及に伴
って、リチウムイオンを挿入放出可能な正極活物質及び
負極活物質を含む高容量なリチウム二次電池が注目され
ているが、その中でも特に省スペ−スな薄型の角型電池
の需要が高まっている。現在の角型電池では、電極面積
を大きくすることにより電池反応の効率を上げる目的か
ら、電極活物質、バインダ−及び導電材等を混合した塗
料を帯状の金属箔上に塗布した正負両極が用いられ、こ
れらがセパレ−タとともに卷回された後、押し潰されて
電池缶に収納されている。
2. Description of the Related Art With the spread of mobile phones and notebook personal computers, high-capacity lithium secondary batteries containing a positive electrode active material and a negative electrode active material capable of inserting and releasing lithium ions have been receiving attention. In particular, the demand for space-saving and thin rectangular batteries is increasing. Current prismatic batteries use positive and negative electrodes, which are coated with a mixture of electrode active material, binder, conductive material, etc. on a strip-shaped metal foil in order to increase the efficiency of the battery reaction by increasing the electrode area. These are wound together with a separator and then crushed and stored in a battery can.

【0003】この電極中に占める活物質の割合は約40
体積%、残りはバインダ、導電材、金属箔等20〜30
体積%及び空孔30〜40体積%から構成されている。
従って、バインダ、導電材、金属箔といった本来電極の
容量に寄与しないものが、体積当たりの電池容量を制限
するという問題が有る。また、上記の卷回した電極を角
型の電池缶に収納すると、電池缶の隅角の部分には充填
できず、無駄なスペ−スができるため、単位体積当たり
の容量はさらに低下する。
The ratio of the active material in this electrode is about 40%.
% By volume, the remainder being binder, conductive material, metal foil, etc.
% By volume and 30 to 40% by volume of pores.
Therefore, there is a problem that a material that does not originally contribute to the capacity of the electrode, such as a binder, a conductive material, or a metal foil, limits the battery capacity per volume. Further, when the wound electrode is housed in a rectangular battery can, the corners of the battery can cannot be filled and wasteful space is created, so that the capacity per unit volume is further reduced.

【0004】そこで、単位体積当たりの容量を増大させ
る一つの手段として、電極を実質的に活物質からなる焼
結体で構成する試みがなされている。電極を焼結体で構
成すると、バインダを含まず、さらに導電材を不用又は
少量に減らすことができるため、活物質の充填密度を高
くすることができ、単位体積当たりの容量を増大させる
ことができる。例えば、特開平5−299090号公報
には石油ピッチあるいは炭素質材料の焼結体に銅箔を圧
着した負極や、特開平8−180904号公報にはリチ
ウム複合酸化物の焼結体からなる正極が開示されてい
る。
Therefore, as one means for increasing the capacity per unit volume, an attempt has been made to form the electrode from a sintered body substantially made of an active material. When the electrode is made of a sintered body, it does not contain a binder, and furthermore, the conductive material can be unnecessary or reduced to a small amount, so that the packing density of the active material can be increased, and the capacity per unit volume can be increased. it can. For example, JP-A-5-299090 discloses a negative electrode obtained by pressing a copper foil on a sintered body of petroleum pitch or carbonaceous material, and JP-A-8-180904 discloses a positive electrode formed of a sintered lithium composite oxide. Is disclosed.

【0005】また、負極活物質としては、従来、コ−ク
ス(例えば特開昭62-122066号、特開平1-20
4361号公報)やガラス状炭素(特開平2-6685
6号公報)等の非晶質炭素、天然(特公昭62-234
33号公報)又は人造(特開平4-190555号公
報)の黒鉛等の炭素材料が提案されている。しかし、非
晶質及び結晶質のいずれの炭素材料を用いた場合におい
ても、単位体積当たりの容量が十分ではなく、さらなる
性能の向上が望まれている。
As a negative electrode active material, coke (for example, Japanese Patent Application Laid-Open No. 62-122066, Japanese Patent Application Laid-Open
No. 4361) and vitreous carbon (JP-A-2-6685).
No. 6), amorphous carbon such as natural (Japanese Patent Publication No. 62-234).
No. 33) or an artificial carbon material such as graphite (Japanese Patent Application Laid-Open No. 4-190555). However, the capacity per unit volume is not sufficient when using any of amorphous and crystalline carbon materials, and further improvement in performance is desired.

【0006】そこで、単位体積当たりの容量を増大させ
るため、ケイ素又はその化合物を負極活物質として用
い、負極を構成する試みがなされている。例えば、特開
平7-29602号公報には、LixSi(0≦x≦5)を
負極活物質として用い、導電材のグラファイトとバイン
ダ−を加え成型してペレットとし、導電性接着剤を集電
体として負極を製造する方法が、また特開平5-744
63号公報には、シリコン単結晶を活物質として用いニ
ッケルメッシュで鋏むことにより負極を製造する方法が
開示されている。
Therefore, in order to increase the capacity per unit volume, attempts have been made to construct a negative electrode using silicon or its compound as a negative electrode active material. For example, Japanese Patent Application Laid-Open No. Hei 7-29602 discloses that Li x Si (0 ≦ x ≦ 5) is used as a negative electrode active material, graphite and a binder as conductive materials are added to form a pellet, and a conductive adhesive is collected. A method for producing a negative electrode as an electric conductor is disclosed in Japanese Unexamined Patent Publication No. 5-744.
No. 63 discloses a method of manufacturing a negative electrode by scissors with a nickel mesh using a silicon single crystal as an active material.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、単位体
積当たりの容量を増大させるため、ケイ素を活物質とす
る負極を焼結体で構成しても、集電体と焼結体の間の大
きな接触抵抗により、電池の内部抵抗が大きくなり、必
ずしも大きな容量の向上に繋がっていないのが現状であ
る。また、携帯電話などに使用する場合の必要容量を考
慮すると、電池の厚さなどの制約から電極の底面積は1
cm2以上であることが望ましい。しかしながら、ケイ
素を主体とする焼結体負極においては、これらを同時に
満たすものは従来公知の技術では得られなかった。
However, in order to increase the capacity per unit volume, even if the negative electrode using silicon as an active material is formed of a sintered body, a large contact between the current collector and the sintered body is required. At present, the internal resistance of the battery increases due to the resistance, which does not necessarily lead to a large capacity improvement. Also, considering the required capacity when used in a mobile phone, etc., the bottom area of the electrode is 1 due to restrictions such as the thickness of the battery.
cm 2 or more. However, in the case of a sintered body negative electrode mainly composed of silicon, a material satisfying these simultaneously cannot be obtained by a conventionally known technique.

【0008】そこで、本発明は、ケイ素を活物質として
含む負極において、集電体と焼結体の間の接触抵抗を低
減可能な二次電池用負極の製造方法を提供することを目
的とした。
Accordingly, an object of the present invention is to provide a method of manufacturing a negative electrode for a secondary battery which can reduce the contact resistance between a current collector and a sintered body in a negative electrode containing silicon as an active material. .

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は剥離可能なフィルムを用いて形成されたケ
イ素を含む塗膜と導電性金属の箔又はメッシュからなる
基材とを焼成することにより、上記課題を解決できるこ
とを見い出して完成されたものである。即ち、本発明の
二次電池用負極の製造方法は、a)ケイ素を含む負極材
料にバインダー及び溶剤を加えてスラリーを調製する工
程と、b)上記スラリーを剥離可能なフィルムの上に塗
布し、溶剤を除去して塗膜を作製する工程と、c)上記
フィルムから塗膜を剥離せしめ、塗膜を導電性金属の箔
又はメッシュからなる基材上に圧着して焼成し、基材と
一体化せしめるとともに、焼結させる工程とからなるこ
とを特徴とする。また、塗膜の密度を上げるため、塗膜
を作製後にプレスする工程を加えても良い。
In order to achieve the above object, the present invention provides a method of firing a silicon-containing coating film formed using a peelable film and a base material made of a conductive metal foil or mesh. By doing so, the inventors have found that the above-mentioned problems can be solved, and have been completed. That is, the method for manufacturing a negative electrode for a secondary battery according to the present invention includes: a) a step of preparing a slurry by adding a binder and a solvent to a negative electrode material containing silicon; and b) coating the slurry on a peelable film. Removing the solvent to form a coating film; and c) peeling the coating film from the film, pressing the coating film on a substrate made of a conductive metal foil or mesh, and baking it. And a step of sintering. In order to increase the density of the coating film, a step of pressing the coating film after the preparation may be added.

【0010】ケイ素を含む塗膜と導電性金属からなる基
材を、非酸化雰囲気下で焼成することにより、焼結体と
集電体との界面の接触面積が増大し一体化するため、焼
結体と集電体との接触抵抗を低減することができ、導電
性の向上した薄膜の負極を提供できる。さらに、剥離可
能なフィルムを用いると、フィルム巻取り装置等を用
い、スラリーを塗布したフィルムの乾燥、塗膜の剥離そ
して塗膜及びフィルムの回収等を連続して行うことも可
能となり、製造プロセスを簡略化できる効果が得られ
る。
[0010] By firing the base material composed of the coating film containing silicon and the conductive metal in a non-oxidizing atmosphere, the contact area of the interface between the sintered body and the current collector is increased and integrated. The contact resistance between the binder and the current collector can be reduced, and a thin-film negative electrode with improved conductivity can be provided. Furthermore, when a peelable film is used, it is possible to continuously perform drying of the film coated with the slurry, peeling of the coating film, and collection of the coating film and the film, using a film winding device or the like. Can be simplified.

【0011】また、上記負極材料には、熱処理で炭化す
る材料又は炭素材料が含まれているのが望ましく、その
場合、ケイ素又はその化合物を、熱処理で炭化する材料
又は炭素材料の存在下、600〜1400℃の温度範囲
で非酸化雰囲気下で熱処理してなる複合粉末を用いる事
が好ましい。
It is preferable that the negative electrode material contains a material or a carbon material which is carbonized by heat treatment. In this case, silicon or a compound thereof is converted into a carbon material by carbonization in the presence of a material or carbon material which is carbonized by heat treatment. It is preferable to use a composite powder that is heat-treated in a non-oxidizing atmosphere at a temperature in the range of 1400C to 1400C.

【0012】また、上記塗膜を焼結する場合には、導電
性金属基材の融点以下で行なうことが好ましく、それに
より上記基材が熱変形することなく、焼結体との一体化
を行なうことができる。
In the case of sintering the coating film, the sintering is preferably performed at a temperature not higher than the melting point of the conductive metal base material, whereby the base material can be integrated with the sintered body without being thermally deformed. Can do it.

【0013】また、上記導電性金属としては、ステンレ
ス、銅族及び白金族から選ばれたいずれかひとつの金属
を用いることにより、負極の還元状態においても電気化
学的に安定で、かつ導電性の高い集電体が得られる。
[0013] Further, by using any one of stainless steel, copper group and platinum group as the conductive metal, electrochemically stable and conductive even in the reduced state of the negative electrode. A high current collector can be obtained.

【0014】また、本発明の二次電池用負極は、ケイ素
を含む負極材料とバインダーからなる塗膜と、導電性金
属の箔又はメッシュからなる基材とを焼成し、負極材料
焼結体と上記基材とを一体化せしめてなることを特徴と
するものである。
Further, the negative electrode for a secondary battery of the present invention is obtained by firing a coated film composed of a negative electrode material containing silicon and a binder, and a base material made of a conductive metal foil or mesh to form a sintered negative electrode material. The present invention is characterized in that the base material is integrated with the base material.

【0015】また、上記負極材料焼結体の厚さは、10
〜500μmであることが好ましく、さらに、電池を構
成するためには底面積が1cm2以上であることが好ま
しい。底面積を1cm2以上にし、厚さを10μmより
小さくすると電池作製に必要な機械強度が十分ではな
く、500μmより大きいと充放電時の電流密度が大き
い場合十分な容量が得られない。
The thickness of the negative electrode material sintered body is 10
It is preferable that the bottom area be 1 cm 2 or more in order to constitute a battery. If the bottom area is 1 cm 2 or more and the thickness is smaller than 10 μm, the mechanical strength required for producing the battery is not sufficient, and if it is larger than 500 μm, sufficient capacity cannot be obtained if the current density during charging and discharging is large.

【0016】また、焼結体が30〜90重量%のケイ素
及び10〜70重量%の炭素材を含むことが好ましい。
Preferably, the sintered body contains 30 to 90% by weight of silicon and 10 to 70% by weight of a carbon material.

【0017】そして、本発明の非水系二次電池は、ケイ
素を活物質として含み、導電性金属の箔又はメッシュか
らなる基材と一体化した焼結体であって、底面積が1c
2以上であり、厚さが10〜500μmである負極
と、主としてリチウム遷移金属酸化物からなる正極と、
有機溶媒にリチウム化合物を溶解させた電解液、又は高
分子にリチウム化合物を固溶或いはリチウム化合物を溶
解させた有機溶媒を保持させたリチウムイオン導電性の
非水電解質を含む固体電解質からなることを特徴とする
ものであり、正極にもリチウム遷移金属酸化物からなる
焼結体を用いることが好ましい。
The non-aqueous secondary battery of the present invention is a sintered body that contains silicon as an active material and is integrated with a base made of a conductive metal foil or mesh, and has a bottom area of 1c.
and m 2 or more, a negative electrode thickness is 10 to 500 [mu] m, a positive electrode mainly composed of a lithium transition metal oxide,
An electrolyte solution in which a lithium compound is dissolved in an organic solvent, or a solid electrolyte containing a lithium ion conductive nonaqueous electrolyte in which a lithium compound is dissolved in a polymer or an organic solvent in which a lithium compound is dissolved is held. This is a feature, and it is preferable to use a sintered body made of a lithium transition metal oxide also for the positive electrode.

【0018】また、本発明の非水系二次電池に、電気化
学的充放電処理を行うことが好ましい。この処理を行う
ことにより、高電流密度での充放電が可能となるだけで
なく、高容量が得られる。
Preferably, the non-aqueous secondary battery of the present invention is subjected to an electrochemical charge / discharge treatment. By performing this process, not only charging and discharging at a high current density becomes possible, but also a high capacity is obtained.

【0019】[0019]

【発明の実施の形態】本発明に用いるケイ素粉末として
は、結晶質、非晶質のケイ素単体のいずれも用いる事が
でき、ケイ素を含む化合物を用いても良い。ケイ素化合
物としては、酸化ケイ素などの無機ケイ素化合物や、シ
リコーン樹脂、含ケイ素高分子化合物などの有機ケイ素
化合物様の非酸化雰囲気で分解又は還元されてケイ素に
変化し得る材料が挙げられる。これらの中でも、特にケ
イ素単体が好ましい。ケイ素粉末の純度は特に限定され
るものではないが、十分な容量を得るためケイ素含有率
90重量%以上であることが好ましく、経済性から9
9.999重量%以下のものが好ましい。ケイ素粉末の
粒子径は特に限定されないが、ハンドリングや原料価
格、負極材料の均一性の観点から、平均粒子径0.01
μm以上100μm以下のものが好適に用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION As the silicon powder used in the present invention, either crystalline or amorphous silicon alone can be used, and a compound containing silicon may be used. Examples of the silicon compound include inorganic silicon compounds such as silicon oxide, and materials capable of being decomposed or reduced into silicon by being decomposed or reduced in a non-oxidizing atmosphere like an organic silicon compound such as a silicone resin or a silicon-containing polymer compound. Of these, silicon alone is particularly preferred. Although the purity of the silicon powder is not particularly limited, the silicon content is preferably 90% by weight or more in order to obtain a sufficient capacity.
It is preferably 9.999% by weight or less. The particle size of the silicon powder is not particularly limited, but from the viewpoint of handling, raw material price, and uniformity of the negative electrode material, the average particle size is 0.01
Those having a size of not less than μm and not more than 100 μm are preferably used.

【0020】また、本発明に用いる負極材料には、炭素
材料をも含む複合粉末を用いるのが望ましい。複合粉末
は、ケイ素又はその化合物を、炭素材料又は熱処理によ
り炭化する材料の存在下、非酸化雰囲気下で、ケイ素が
溶融しない範囲で十分な焼結が起こる範囲、すなわち6
00〜1400℃、好ましくは800〜1200℃で熱
処理することによる作製する。ここで用いる炭素材料と
しては、コ−クス、ガラス状炭素、黒鉛、ピッチの炭化
物及びこれらの混合物等が挙げられる。
It is preferable to use a composite powder containing a carbon material as the negative electrode material used in the present invention. The composite powder has a range in which sufficient sintering occurs in a non-oxidizing atmosphere in the presence of a carbon material or a material that carbonizes silicon or a compound thereof by heat treatment in a range in which silicon does not melt, that is,
It is produced by heat treatment at 00 to 1400C, preferably 800 to 1200C. Examples of the carbon material used here include coke, glassy carbon, graphite, carbides of pitch, and mixtures thereof.

【0021】また、熱処理で炭化する材料としては、フ
ェノ−ル樹脂、エポキシ樹脂、不飽和ポリエステル樹
脂、フラン樹脂、尿素樹脂、メラミン樹脂、アルキッド
樹脂、キシレン樹脂等の熱硬化性樹脂、ナフタレン、ア
セナフチレン、フェナントレン、アントラセン、トリフ
ェニレン、ピレン、クリセン、ナフタセン、ピセン、ペ
リレン、ペンタフェン、ペンタセン等の縮合系多環炭化
水素化合物又はその誘導体、あるいは上記化合物の混合
物を主成分とするピッチ等が挙げられるが、ピッチが好
ましい。
Materials to be carbonized by the heat treatment include thermosetting resins such as phenol resin, epoxy resin, unsaturated polyester resin, furan resin, urea resin, melamine resin, alkyd resin and xylene resin, naphthalene and acenaphthylene. Phenanthrene, anthracene, triphenylene, pyrene, chrysene, naphthacene, picene, perylene, pentaphene, a condensed polycyclic hydrocarbon compound such as pentacene or a derivative thereof, or a pitch mainly containing a mixture of the above compounds, Pitch is preferred.

【0022】また、基材に用いる導電性金属には、ステ
ンレス、銅族及び白金族から選ばれたいずれか一つの金
属を用いることできるが、還元され易く、導電性が高
く、さらに安価である銅が望ましい。そして、導電性金
属には箔又はメッシュのいずれを用いても良いが、厚さ
は3〜100μmが望ましい。
As the conductive metal used for the substrate, any one metal selected from stainless steel, copper group and platinum group can be used, but it is easily reduced, has high conductivity, and is inexpensive. Copper is preferred. Either a foil or a mesh may be used for the conductive metal, but the thickness is desirably 3 to 100 μm.

【0023】また、剥離可能なフィルムは、表面が平滑
で、塗膜が剥離可能なものであれば良く、例えば、ポリ
エチレン、ポリプロピレン、ポリエチレンテレフタレー
トそしてポリエチレンナフタレート等の高分子フィルム
を用いることができる。なお、これらのフィルムは剥離
処理したものが好ましい。そして、厚さは3〜100μ
mが望ましい。
The releasable film may have a smooth surface and a releasable coating film. For example, a polymer film such as polyethylene, polypropylene, polyethylene terephthalate and polyethylene naphthalate can be used. . Note that these films are preferably subjected to a release treatment. And the thickness is 3-100μ
m is desirable.

【0024】また、負極材料の導電性基材やフィルムへ
の塗布には、公知のバインダーを例えば、水、N−メチ
ル−2−ピロリドン等の適当な溶媒に溶解したものを用
いることができる。溶媒には、水系、非水系のいずれを
用いても良い。かかるバインダーとしては、ポリテトラ
フルオロエチレン、ポリフッ化ビニリデン、ポリエチレ
ン、ポリプロピレン、ポリビニルアルコール、ポリビニ
ルピロリドン等の従来公知の何れの材料も使用できる。
In applying the negative electrode material to a conductive substrate or film, a material obtained by dissolving a known binder in a suitable solvent such as water or N-methyl-2-pyrrolidone can be used. Either an aqueous or non-aqueous solvent may be used. As the binder, any conventionally known materials such as polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, polyvinyl alcohol, and polyvinylpyrrolidone can be used.

【0025】また、上記負極塗膜を焼結する温度は、用
いる導電性金属の融点以下が望ましく、例えば銅を用い
る場合には、融点1083℃以下、好ましくは500〜
900℃である。なお、この負極塗膜を焼成するとき
に、前述のケイ素と炭素材料を含む複合粉末を作製する
焼成を兼ねることもできる。
The temperature at which the negative electrode coating film is sintered is desirably equal to or lower than the melting point of the conductive metal used. For example, when copper is used, the melting point is equal to or lower than 1083 ° C., and preferably 500 to
900 ° C. In addition, when baking this negative electrode coating film, baking for producing the above-mentioned composite powder containing silicon and a carbon material can also be performed.

【0026】また、負極材料焼結体の厚さは、強度の観
点から10μm以上であることが好ましく、高電流密度
での性能の観点から500μm以下であることが好まし
い。
The thickness of the negative electrode material sintered body is preferably 10 μm or more from the viewpoint of strength, and is preferably 500 μm or less from the viewpoint of performance at high current density.

【0027】また、電池構成時において、取り扱いを容
易にするため、負極材料焼結体の底面積が1cm2以上
であることが好ましい。
In the construction of the battery, the bottom area of the negative electrode material sintered body is preferably 1 cm 2 or more to facilitate handling.

【0028】また、本発明の焼結体は、電解液が活物質
と十分接触するように、15〜60%の空孔率を有する
多孔質体であることが好ましい。
Further, the sintered body of the present invention is preferably a porous body having a porosity of 15 to 60% so that the electrolytic solution is in sufficient contact with the active material.

【0029】本発明の正極活物質として用いられる正極
材料は、従来公知の何れの材料も使用でき、例えば、L
xCoO2,LixNiO2,MnO2,LixMnO2
LixMn24,LixMn2-y4,α−V25,TiS
2等が挙げられる。
As the cathode material used as the cathode active material of the present invention, any conventionally known materials can be used.
i x CoO 2, Li x NiO 2, MnO 2, Li x MnO 2,
Li x Mn 2 O 4 , Li x Mn 2-y O 4 , α-V 2 O 5 , TiS
And the like.

【0030】本発明に使用される非水電解質は、エチレ
ンカーボネート、ジメチルカーボネート等の有機溶媒に
電解質としてLiPF6等のリチウム化合物を溶解させ
た非水電解液、又は高分子にリチウム化合物を固溶或い
はリチウム化合物を溶解させた有機溶媒を保持させた高
分子固体電解質を用いることができる。
The non-aqueous electrolyte used in the present invention is a non-aqueous electrolyte obtained by dissolving a lithium compound such as LiPF 6 as an electrolyte in an organic solvent such as ethylene carbonate or dimethyl carbonate, or a solid solution of a lithium compound in a polymer. Alternatively, a polymer solid electrolyte holding an organic solvent in which a lithium compound is dissolved can be used.

【0031】また、上記部材から組み立てた電池は、低
電流にて充放電する過程(エージング過程)を経ること
で、その後電池として高電流密度での充放電及び高容量
機能を発現させることを特徴とするものである。なお、
本過程を経ない電池の高電流密度での充放電効率が低い
のは、結晶性ケイ素にリチウムが挿入されて非晶質化す
るという構造変化を伴う反応が高電流に追随できないた
めと推定される。
The battery assembled from the above members undergoes a charging / discharging process at a low current (aging process), and thereafter, exhibits a charge / discharge at a high current density and a high capacity function as the battery. It is assumed that. In addition,
The low charge / discharge efficiency at high current densities of batteries that do not undergo this process is presumed to be due to the fact that the reaction involving a structural change in which lithium is inserted into crystalline silicon and becomes amorphous cannot follow high current. You.

【0032】以下、実施例を用いて本発明を詳細に説明
する。 実施例1.市販の純度99.9%、平均粒子径1μmの
結晶質ケイ素粉末とフェノール樹脂を等重量混合攪拌
し、80℃で3日間硬化させた。ここで用いたフェノー
ル樹脂はクレゾール(m−クレゾール含有率38%)1
50重量部に30%ホルムアルデヒド水溶液135重量
部と25%アンモニア水7.5重量部を混合し、85℃
で105分加熱後、減圧蒸留で水を除いたものを用い
た。得られたケイ素含有フェノール樹脂硬化物を窒素雰
囲気下1100℃で3時間焼成し、乾式粉砕により、ケ
イ素/カーボン複合粉末を得た。得られたケイ素/カー
ボン複合粉末を、結着剤であるポリフッ化ビニリデンの
N−メチル−2−ピロリドン溶液を用いてスラリー状に
し、PET(ポリエチレンテレフタレート)フィルムに
塗布後乾燥させ、塗膜をフィルムから剥離して、20m
m×20mmに切り抜き、22mm×20mmの銅箔に
載せ、プレス機で圧着した。この銅箔含有塗膜を窒素雰
囲気下800℃で3時間焼成し、負極とした。負極材料
焼結体の厚さは220μmであった。
Hereinafter, the present invention will be described in detail with reference to examples. Embodiment 1 FIG. A commercially available crystalline silicon powder having a purity of 99.9% and an average particle diameter of 1 μm and a phenol resin were mixed by equal weight, stirred, and cured at 80 ° C. for 3 days. The phenol resin used here was cresol (m-cresol content 38%) 1
To 50 parts by weight, 135 parts by weight of a 30% aqueous formaldehyde solution and 7.5 parts by weight of 25% aqueous ammonia were mixed,
After heating for 105 minutes, water was removed by distillation under reduced pressure. The obtained silicon-containing phenol resin cured product was calcined at 1100 ° C. for 3 hours in a nitrogen atmosphere, and dry-pulverized to obtain a silicon / carbon composite powder. The obtained silicon / carbon composite powder is slurried using an N-methyl-2-pyrrolidone solution of polyvinylidene fluoride as a binder, applied to a PET (polyethylene terephthalate) film and dried, and the coating film is formed into a film. 20m
It was cut out to m × 20 mm, placed on a copper foil of 22 mm × 20 mm, and pressed by a press. This copper foil-containing coating film was fired at 800 ° C. for 3 hours in a nitrogen atmosphere to obtain a negative electrode. The thickness of the negative electrode material sintered body was 220 μm.

【0033】正極は次のようにして作製した。炭酸リチ
ウムLi2CO3と炭酸コバルトCoCO3をモル比1:
2で秤量し、イソプロピルアルコールを用いてボールミ
ルで湿式混合した後、溶媒を蒸発させて800℃1時間
で仮焼を行う。仮焼粉を、振動ミルで再粉砕した後、成
形圧127MPaで20mm×20mm、厚さ0.5m
mのペレットに加圧成型した後、800℃で10時間焼
成したものを正極とした。
The positive electrode was manufactured as follows. Lithium carbonate Li 2 CO 3 and cobalt carbonate CoCO 3 in a molar ratio of 1:
2 and wet-mixed with a ball mill using isopropyl alcohol, and then the solvent is evaporated and calcined at 800 ° C. for 1 hour. After the calcined powder was reground by a vibration mill, the molding pressure was 127 MPa, and the thickness was 20 mm × 20 mm and the thickness was 0.5 m.
After pressure molding into pellets of m, the pellets were fired at 800 ° C. for 10 hours to obtain a positive electrode.

【0034】電解液は、エチレンカーボネートとジメチ
ルカーボネートの体積比1:1混合溶媒にLiPF6
1mol/L溶解したものを用いた。
As the electrolytic solution, 1 mol / L of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and dimethyl carbonate at a volume ratio of 1: 1.

【0035】この様にして作製された角型電池は室温で
一昼夜放置された後、後述の充放電試験を行った。この
電池を1.5mAの定電流で充電し、その放電容量を調
べた。充放電サイクルは充電からスタートした。結果を
表1に示す。
After the thus manufactured rectangular battery was allowed to stand at room temperature for 24 hours, a charge / discharge test described later was performed. This battery was charged at a constant current of 1.5 mA, and its discharge capacity was examined. The charge / discharge cycle started from charging. Table 1 shows the results.

【0036】比較例1.負極に市販の厚さ200μmの
ケイ素ウエハーをそのまま用いた以外は、実施例1と同
様にして、角型電池を作製し、充放電試験を行った。こ
の場合充電量が20mAhをこえる電池は、すべて試験
中に短絡することがわかった。そのため、リチウムが負
極に挿入される量を制限する必要があるため、市販のケ
イ素ウエハーでは高い放電容量を得ることができなかっ
た。結果を表1に示す。
Comparative Example 1 A prismatic battery was prepared and subjected to a charge / discharge test in the same manner as in Example 1 except that a commercially available silicon wafer having a thickness of 200 μm was used as the negative electrode. In this case, it was found that all the batteries whose charge amount exceeded 20 mAh were short-circuited during the test. Therefore, it is necessary to limit the amount of lithium to be inserted into the negative electrode, and a high discharge capacity cannot be obtained with a commercially available silicon wafer. Table 1 shows the results.

【0037】比較例2.実施例1に準ずる方法で得られ
たケイ素/カーボン複合粉末を、結着剤であるポリフッ
化ビニリデンと溶媒N−メチル−2−ピロリドンを用い
てスラリー状にし、銅箔に塗布後、140℃にて乾燥し
20mm×20mmに切抜き、平板プレス機で圧着した
ものを負極とした。この負極の塗膜の厚さは210μm
であった。以下は、実施例1と同様にして角型電池を作
製し、充放電試験を行った。結果を表1に示す。
Comparative Example 2 The silicon / carbon composite powder obtained by the method according to Example 1 was slurried using polyvinylidene fluoride as a binder and N-methyl-2-pyrrolidone as a solvent, applied to a copper foil, and then heated to 140 ° C. It was dried, cut out to 20 mm x 20 mm, and pressed with a flat plate press to obtain a negative electrode. The coating thickness of this negative electrode is 210 μm
Met. Hereinafter, a prismatic battery was manufactured in the same manner as in Example 1, and a charge / discharge test was performed. Table 1 shows the results.

【0038】[0038]

【表1】 [Table 1]

【0039】表1から明らかなように、実施例1では、
78mAhという高い容量が得られたが、比較例1と2
では5mAhの低い容量しか得られなかった。
As is clear from Table 1, in Example 1,
Although a high capacity of 78 mAh was obtained, Comparative Examples 1 and 2
Only a low capacity of 5 mAh was obtained.

【0040】実施例2.塗膜を20mm×40mmの大
きさに切り抜き20mm×45mmの銅箔の上に載せた
以外は、実施例1と同様の操作により行い、負極を得
た。正極の大きさを20mm×40mmとした以外は、
実施例1と同様な操作により行い、正極を得た。電解液
はエチレンカーボネートとジメチルカーボネートの体積
比1:1の混合溶媒にLiPF6を1mol/L溶解し
たものを用いた。
Embodiment 2 FIG. A negative electrode was obtained by performing the same operation as in Example 1 except that the coating film was cut out to a size of 20 mm x 40 mm and mounted on a copper foil of 20 mm x 45 mm. Except that the size of the positive electrode was set to 20 mm x 40 mm,
By performing the same operation as in Example 1, a positive electrode was obtained. As the electrolytic solution, a solution prepared by dissolving 1 mol / L of LiPF 6 in a mixed solvent of ethylene carbonate and dimethyl carbonate at a volume ratio of 1: 1 was used.

【0041】この様にして作製された角型電池を、室温
で一昼夜放置した後、負極に対する電流が5.3mA
(40mA/g)でリチウムを挿入放出させる過程を施
した後、20mA(150mA/g)の電流値で充放電
試験を行った。結果を表2に示す。
After the thus manufactured prismatic battery was allowed to stand at room temperature for 24 hours, the current to the negative electrode was 5.3 mA.
After performing a process of inserting and releasing lithium at (40 mA / g), a charge / discharge test was performed at a current value of 20 mA (150 mA / g). Table 2 shows the results.

【0042】実施例3.実施例1記載の角型電池を室温
で一昼夜放置した後、即座に20mAの電流値で充放電
試験を行った。結果を表2に示す。
Embodiment 3 FIG. After leaving the prismatic battery described in Example 1 at room temperature for 24 hours, a charge / discharge test was immediately performed at a current value of 20 mA. Table 2 shows the results.

【0043】[0043]

【表2】 [Table 2]

【0044】表2から明らかなように、組み立てた電池
に電気化学的充放電処理を施すことにより、容量が大き
く増加する効果が得られた。
As is clear from Table 2, the effect of greatly increasing the capacity was obtained by subjecting the assembled battery to the electrochemical charge / discharge treatment.

【0045】[0045]

【発明の効果】以上の説明から明らかなように、本発明
の二次電池用負極の製造方法は、ケイ素を含む塗膜を剥
離可能なフィルムの上に形成し、次いで、塗膜をフィル
ムから剥離し、塗膜を導電性金属の箔又はメッシュから
なる基材上に圧着して焼成し、塗膜を基材と一体化させ
て焼結するようにしたので、焼結体と集電体との界面の
接触面積が増大し、焼結体と集電体との接触抵抗を低減
することができ、導電性の向上した負極を提供できる。
さらに、剥離可能なフィルムを用いたので、フィルム巻
取り装置等を用い、塗膜の作製及びフィルムの回収等を
連続して行うことが可能となり、製造プロセスを簡略化
でき、製造コストを低減できる。
As is apparent from the above description, the method for producing a negative electrode for a secondary battery of the present invention comprises forming a coating film containing silicon on a peelable film, and then forming the coating film from the film. Peeled, the coating was pressed on a base made of conductive metal foil or mesh and fired, and the coating was integrated with the base and sintered, so that the sintered body and the current collector The contact area of the interface with the sintered body increases, the contact resistance between the sintered body and the current collector can be reduced, and a negative electrode with improved conductivity can be provided.
Furthermore, since a peelable film is used, it is possible to continuously perform the production of a coating film and the collection of a film using a film winding device or the like, thereby simplifying the manufacturing process and reducing the manufacturing cost. .

【0046】本発明の二次電池用負極は、ケイ素を活物
質として含み、導電性金属の箔又はメッシュからなる基
材と一体化した焼結体であって、底面積が1cm2以上
であり、厚さが10〜500μmであるので、内部抵抗
を低減でき電池容量を向上させることができる。
The negative electrode for a secondary battery of the present invention is a sintered body that contains silicon as an active material and is integrated with a base made of a conductive metal foil or mesh, and has a bottom area of 1 cm 2 or more. Since the thickness is 10 to 500 μm, the internal resistance can be reduced and the battery capacity can be improved.

【0047】本発明の非水系二次電池は、上記の二次電
池用負極を負極に用いているので、所定容量を確保しな
がら、より薄型化の可能な電池を提供できる。
Since the nonaqueous secondary battery of the present invention uses the above negative electrode for a secondary battery as the negative electrode, it is possible to provide a battery which can be made thinner while ensuring a predetermined capacity.

【0048】また、本発明の非水系二次電池は、電気化
学的充放電処理を行なうようにしたので、高電流密度に
おいても高容量を有する電池を提供できる。
Further, since the non-aqueous secondary battery of the present invention performs an electrochemical charge / discharge treatment, a battery having a high capacity even at a high current density can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 徹 和歌山県和歌山市湊1334番地 花王株式会 社研究所内 (72)発明者 平林 忠 和歌山県和歌山市湊1334番地 花王株式会 社研究所内 (72)発明者 鈴木 淳 和歌山県和歌山市湊1334番地 花王株式会 社研究所内 Fターム(参考) 5H017 AA03 AS02 BB01 BB06 EE01 HH03 HH04 5H029 AJ06 AJ14 AK02 AK03 AK05 AL01 AM00 AM03 AM05 AM07 AM16 BJ04 CJ02 CJ03 CJ08 CJ12 CJ22 DJ07 DJ08 HJ04 HJ07  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Toru Nishimura 1334 Minato, Wakayama, Wakayama Pref., Kao Corporation Research Institute (72) Inventor Tada Hirabayashi 1334 Minato, Wakayama, Wakayama Pref., Kao Research Institute (72) Inventor Atsushi Suzuki 1334 Minato, Wakayama-shi, Wakayama Prefecture F-term in Kao Corporation Research Laboratories (reference) HJ04 HJ07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 a)ケイ素を含む負極材料にバインダー
及び溶剤を加えてスラリーを調製する工程と、 b)上記スラリーを剥離可能なフィルムの上に塗布し、
溶剤を除去して塗膜を作製する工程と、 c)上記フィルムから塗膜を剥離せしめ、塗膜を導電性
金属の箔又はメッシュからなる基材上に圧着して焼成
し、基材と一体化せしめるとともに、焼結させる工程と
からなる二次電池用負極の製造方法。
1. A) a step of preparing a slurry by adding a binder and a solvent to a negative electrode material containing silicon; and b) applying the slurry on a peelable film;
Removing the solvent to form a coating film; and c) peeling the coating film from the film, pressing the coating film on a substrate made of a conductive metal foil or mesh, and baking it. And a step of sintering.
【請求項2】 ケイ素を活物質として含み、導電性金属
の箔又はメッシュからなる基材と一体化した焼結体であ
って、底面積が1cm2以上であり、厚さが10〜50
0μmである二次電池用負極。
2. A sintered body containing silicon as an active material and integrated with a conductive metal foil or mesh substrate, having a bottom area of 1 cm 2 or more and a thickness of 10 to 50.
A negative electrode for a secondary battery having a thickness of 0 μm.
【請求項3】 請求項2記載の負極と、主としてリチウ
ム遷移金属酸化物からなる正極と、有機溶媒にリチウム
化合物を溶解させた電解液、又は高分子にリチウム化合
物を固溶或いはリチウム化合物を溶解させた有機溶媒を
保持させたリチウムイオン導電性の非水電解質を含む固
体電解質からなる非水系二次電池。
3. A negative electrode according to claim 2, a positive electrode mainly composed of a lithium transition metal oxide, and an electrolyte in which a lithium compound is dissolved in an organic solvent, or a solid solution of a lithium compound or a solution of a lithium compound in a polymer. A non-aqueous secondary battery comprising a solid electrolyte containing a lithium ion conductive non-aqueous electrolyte holding an organic solvent.
【請求項4】 請求項3記載の電池に電気化学的充放電
処理を行なった非水系二次電池。
4. A non-aqueous secondary battery obtained by subjecting the battery according to claim 3 to an electrochemical charge / discharge treatment.
JP2000066676A 1999-05-25 2000-03-10 Method for producing negative electrode for secondary battery Expired - Fee Related JP3510175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000066676A JP3510175B2 (en) 1999-05-25 2000-03-10 Method for producing negative electrode for secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/JP1999/002729 WO1999062131A1 (en) 1998-05-25 1999-05-25 Method of manufacturing secondary battery negative electrode
US99/02729 1999-05-25
JP2000066676A JP3510175B2 (en) 1999-05-25 2000-03-10 Method for producing negative electrode for secondary battery

Publications (2)

Publication Number Publication Date
JP2000340216A true JP2000340216A (en) 2000-12-08
JP3510175B2 JP3510175B2 (en) 2004-03-22

Family

ID=26440132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000066676A Expired - Fee Related JP3510175B2 (en) 1999-05-25 2000-03-10 Method for producing negative electrode for secondary battery

Country Status (1)

Country Link
JP (1) JP3510175B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197096A (en) * 2004-01-07 2005-07-21 Mitsui Mining & Smelting Co Ltd Negative electrode for nonaqueous electrolytic solution secondary battery, and its manufacturing method
WO2012001814A1 (en) * 2010-07-02 2012-01-05 トヨタ自動車株式会社 Lithium secondary battery
US8828103B2 (en) 2003-06-25 2014-09-09 Hydro-Quebec Process for the preparation of an electrode from a porous material, electrode thus obtained and corresponding electrochemical system
WO2018052213A1 (en) * 2016-09-13 2018-03-22 주식회사 엘지화학 Method for manufacturing eletrode
US10333136B2 (en) 2016-09-13 2019-06-25 Lg Chem, Ltd. Method for manufacturing electrode
KR20210052050A (en) * 2019-10-31 2021-05-10 삼성에스디아이 주식회사 Method for manufacturing electrode plate and electrode plate thereby

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8828103B2 (en) 2003-06-25 2014-09-09 Hydro-Quebec Process for the preparation of an electrode from a porous material, electrode thus obtained and corresponding electrochemical system
US9768441B2 (en) 2003-06-25 2017-09-19 Hydro-Quebec Process for the preparation of an electrode from a porous material, electrode thus obtained and corresponding electrochemical system
JP2005197096A (en) * 2004-01-07 2005-07-21 Mitsui Mining & Smelting Co Ltd Negative electrode for nonaqueous electrolytic solution secondary battery, and its manufacturing method
JP4546740B2 (en) * 2004-01-07 2010-09-15 三井金属鉱業株式会社 Method for producing negative electrode for non-aqueous electrolyte secondary battery
WO2012001814A1 (en) * 2010-07-02 2012-01-05 トヨタ自動車株式会社 Lithium secondary battery
WO2018052213A1 (en) * 2016-09-13 2018-03-22 주식회사 엘지화학 Method for manufacturing eletrode
US10333136B2 (en) 2016-09-13 2019-06-25 Lg Chem, Ltd. Method for manufacturing electrode
KR20210052050A (en) * 2019-10-31 2021-05-10 삼성에스디아이 주식회사 Method for manufacturing electrode plate and electrode plate thereby
KR102446291B1 (en) 2019-10-31 2022-09-22 삼성에스디아이 주식회사 Method for manufacturing electrode plate and electrode plate thereby

Also Published As

Publication number Publication date
JP3510175B2 (en) 2004-03-22

Similar Documents

Publication Publication Date Title
JP2948205B1 (en) Method for producing negative electrode for secondary battery
JP3124272B1 (en) Non-aqueous secondary battery
JP3431081B2 (en) Non-aqueous electrolyte secondary battery
JP4634515B2 (en) Negative electrode material for silicon oxide and lithium ion secondary battery
JP3291260B2 (en) Lithium secondary battery
WO2000033404A1 (en) Lithium secondary cell and method for manufacturing the same
KR101882975B1 (en) Method for menufacturing a cathode of lithium primary battery
KR20170034606A (en) Cathode of three dimensional lithium secondary battery and method of fabricating the same
CN109346710B (en) Lithium titanate nitride-aluminum oxide nitride composite material and preparation method and application thereof
JP2016192370A (en) Lithium ion conductor, electrode, battery and manufacturing method thereof, and electronic apparatus
JP2003100284A (en) Lithium secondary battery
JP3243239B2 (en) Method for producing positive electrode for non-aqueous secondary battery
JP3260118B2 (en) Negative electrode for non-aqueous secondary batteries
JP2000173596A (en) Nonaqueous secondary battery
JP2010522969A (en) Negative electrode active material for secondary battery, electrode for secondary battery including the same, and secondary battery
JP2948206B1 (en) Anode materials for non-aqueous secondary batteries
JP3510175B2 (en) Method for producing negative electrode for secondary battery
JPH11339778A (en) Manufacture of secondary battery negative electrode
CN109437290B (en) Preparation method of lithium titanate nanoribbon coil and lithium ion supercapacitor
JP3268770B2 (en) Non-aqueous secondary battery
KR20090103133A (en) Cathode active material for lithium secondary and method for preparing thereof and lithium secondary battery containing the same for cathode
CN112117438A (en) Negative plate, preparation method thereof and solid-state battery
JP2002100345A (en) Manufacturing method of positive electrode for nonaqueous secondary battery
JP2000195523A (en) Nonaqueous secondary battery
JP2000195503A (en) Manufacture of negative electrode for secondary battery

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031224

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees