JP3260118B2 - Negative electrode for non-aqueous secondary batteries - Google Patents

Negative electrode for non-aqueous secondary batteries

Info

Publication number
JP3260118B2
JP3260118B2 JP14095798A JP14095798A JP3260118B2 JP 3260118 B2 JP3260118 B2 JP 3260118B2 JP 14095798 A JP14095798 A JP 14095798A JP 14095798 A JP14095798 A JP 14095798A JP 3260118 B2 JP3260118 B2 JP 3260118B2
Authority
JP
Japan
Prior art keywords
negative electrode
aqueous secondary
secondary battery
fibrous reinforcing
reinforcing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14095798A
Other languages
Japanese (ja)
Other versions
JPH11329433A (en
Inventor
嘉夫 梶浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP14095798A priority Critical patent/JP3260118B2/en
Publication of JPH11329433A publication Critical patent/JPH11329433A/en
Application granted granted Critical
Publication of JP3260118B2 publication Critical patent/JP3260118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ケイ素を活物質と
する焼結体を電極材料として用いた非水系二次電池に関
するものであり、さらに詳しくは非水系二次電池用負極
に関する。
The present invention relates to a non-aqueous secondary battery using a sintered body containing silicon as an active material as an electrode material, and more particularly to a negative electrode for a non-aqueous secondary battery.

【0002】[0002]

【従来の技術】携帯電話やノートパソコン等の普及に伴
って、高容量なリチウム二次電池が注目されているが、
その中でも特に薄型で省スペースな角型電池の需要が高
まっている。現在の角型電池では、電極面積を大きくす
ることにより電池反応の効率を上げる目的から、電極活
物質とバインダ、導電材等を混合した塗料を帯状の金属
箔上に塗布した正負両極が用いられ、これらがセパレー
タと共に巻回された後、押し潰されて電池缶に収納され
ている。
2. Description of the Related Art With the spread of mobile phones and notebook computers, high-capacity lithium secondary batteries have attracted attention.
Among them, a demand for a thin and space-saving prismatic battery is increasing. Current prismatic batteries use both positive and negative electrodes in which a paint mixture of an electrode active material, a binder, and a conductive material is applied on a strip-shaped metal foil in order to increase the efficiency of the battery reaction by increasing the electrode area. After these are wound together with the separator, they are crushed and stored in the battery can.

【0003】この電極中に占める活物質の割合はおよそ
40vol%で、残りはバインダ、導電材、金属箔等2
0〜30vol%及び空孔30〜40vol%から構成
されている。したがって、バインダ、導電材、金属箔と
いった本来電極の容量に寄与しないものが、体積当たり
の容量を制限するという問題がある。また、金属箔は電
極の重量として大きな割合を占め、単位重量当たりの容
量をも制限している。また、上記の巻回した電極を角型
の電池缶に収納すると、電池缶の隅角の部分には充填で
きず、無駄なスペースができるため、単位体積当たりの
容量は一層低下する。
[0003] The ratio of the active material in the electrode is about 40 vol%, and the remainder is a binder, a conductive material, a metal foil or the like.
It is composed of 0 to 30 vol% and vacancies of 30 to 40 vol%. Therefore, there is a problem that a material that does not originally contribute to the capacity of the electrode, such as a binder, a conductive material, or a metal foil, limits the capacity per volume. Further, the metal foil occupies a large proportion as the weight of the electrode, and also limits the capacity per unit weight. Further, when the wound electrode is housed in a rectangular battery can, the corners of the battery can cannot be filled and a wasteful space is created, so that the capacity per unit volume is further reduced.

【0004】そこで、単位体積及び単位重量当たりの容
量を増大させるため、電極を焼結体で構成する試みがな
されている。たとえば、特開平5-299090号公報
には石油ピッチあるいは炭素質材料の焼結体からなる負
極が、また特開平8-180904号公報にはリチウム
複合酸化物の焼結体からなる正極が開示されている。
[0004] In order to increase the capacity per unit volume and unit weight, attempts have been made to form the electrode from a sintered body. For example, JP-A-5-299090 discloses a negative electrode made of a sintered body of petroleum pitch or a carbonaceous material, and JP-A-8-180904 discloses a positive electrode made of a sintered body of a lithium composite oxide. ing.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、電極を
焼結体で構成すると、活物質充填性の向上により容量は
増加するが、充放電の繰り返しに伴い、特にケイ素を活
物質とする負極において、電極の体積が大きく変化して
強度が低下し、電極の耐衝撃性や充放電のサイクル耐久
性が低下するという問題がある。特に、この問題は電極
を薄くしていった場合に顕著である。
However, when the electrode is formed of a sintered body, the capacity increases due to the improvement of the filling property of the active material. There is a problem in that the volume of the electrode greatly changes, the strength is reduced, and the impact resistance and the charge and discharge cycle durability of the electrode are reduced. In particular, this problem is remarkable when the electrode is made thinner.

【0006】そこで、本発明は、電極を薄くしても、電
極の耐衝撃性や充放電サイクル耐久性が低下することが
ない十分な強度を有する非水系二次電池用負極を提供す
ることを目的とした。
Accordingly, an object of the present invention is to provide a negative electrode for a non-aqueous secondary battery which has sufficient strength so that impact resistance and charge / discharge cycle durability of the electrode are not reduced even when the electrode is made thin. The purpose was.

【課題を解決するための手段】[Means for Solving the Problems]

【0007】上記の目的を達成するため、本発明は、リ
チウムイオンを挿入放出可能なケイ素粉末と繊維状補強
材を負極材料として用いれば、上記課題を解決できるこ
とを見い出して完成されたものである。すなわち、本発
明の非水系二次電池用負極は、ケイ素粉末と繊維状補強
材を所定形状に成形するとともに、非酸化雰囲気で熱処
理してなる焼結体であることを特徴とする。
In order to achieve the above object, the present invention has been completed by finding that the above-mentioned problems can be solved by using a silicon powder capable of inserting and releasing lithium ions and a fibrous reinforcing material as a negative electrode material. . That is, the negative electrode for a non-aqueous secondary battery of the present invention is characterized in that it is a sintered body formed by shaping a silicon powder and a fibrous reinforcing material into a predetermined shape and heat-treating in a non-oxidizing atmosphere.

【0008】この多孔質焼結体では、繊維状補強材が焼
結体内部に分散しているため、焼結体の強度が増大し、
耐衝撃性や充放電サイクル耐久性が向上する。
In this porous sintered body, since the fibrous reinforcing material is dispersed inside the sintered body, the strength of the sintered body increases,
Improves impact resistance and charge / discharge cycle durability.

【0009】また、負極に十分な容量と自己結着性及び
強度を確保するためには、焼結体中の上記ケイ素含有率
が30〜90重量%であり、繊維状補強材の含有率が1
〜70重量%であることが好ましい。
In order to secure sufficient capacity, self-binding property and strength for the negative electrode, the silicon content in the sintered body is 30 to 90% by weight, and the content of the fibrous reinforcing material is 30 to 90% by weight. 1
It is preferably about 70% by weight.

【0010】また、成形体を焼結させるためには、上記
熱処理温度が600〜1400℃であることが好まし
い。
In order to sinter the compact, the heat treatment temperature is preferably from 600 to 1400 ° C.

【0011】また、負極内のデッドスペースを減少さ
せ、単位体積当たりの容量を大きくするとともに、活物
質であるケイ素を電解液と十分に接触させるために、空
孔率が全体積の15〜60%の多孔質体であることが好
ましい。
Further, in order to reduce the dead space in the negative electrode and increase the capacity per unit volume, and to bring silicon as an active material into sufficient contact with the electrolytic solution, the porosity should be 15 to 60 times the total volume. % Of the porous body.

【0012】また、上記繊維状補強材に導電性を有する
ものを用いることにより、負極の導電性が向上し、電池
の内部抵抗が低下するため、充放電効率を向上できる。
さらに、集電体としての金属箔の使用を減少又は不要と
できるため、単位重量当たりの容量を大きくすることが
できる。
Further, by using a conductive material for the fibrous reinforcing material, the conductivity of the negative electrode is improved, and the internal resistance of the battery is reduced, so that the charge / discharge efficiency can be improved.
Furthermore, since the use of the metal foil as the current collector can be reduced or made unnecessary, the capacity per unit weight can be increased.

【0013】また、本発明の非水系二次電池は、ケイ素
粉末と繊維状補強材を非酸化雰囲気で熱処理してなる焼
結体の負極と、主としてリチウム遷移金属酸化物からな
る正極と、有機溶媒にリチウム化合物を溶解させた電解
液、又は高分子にリチウム化合物を固溶或いはリチウム
化合物を溶解させた有機溶媒を保持させたリチウムイオ
ン導電性の非水電解質を含む固体電解質からなることを
特徴とする。
Further, the non-aqueous secondary battery of the present invention has a sintered negative electrode obtained by heat-treating silicon powder and a fibrous reinforcing material in a non-oxidizing atmosphere, a positive electrode mainly composed of lithium transition metal oxide, It is characterized by comprising an electrolyte solution in which a lithium compound is dissolved in a solvent, or a solid electrolyte including a lithium ion conductive non-aqueous electrolyte in which a lithium compound is dissolved in a polymer or an organic solvent in which a lithium compound is dissolved is held. And

【0014】[0014]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明に用いるケイ素粉末は、粒子径0.1〜10μm
程度のものが好ましく、結晶質、非晶質のいずれも用い
ることができ、純度は90%以上であれば問題はない。
またケイ素粉末は、本発明の熱処理では実質的に変化せ
ず、焼結体においては、ケイ素がリチウムイオンを挿入
放出する作用を示す。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The silicon powder used in the present invention has a particle size of 0.1 to 10 μm.
It is preferable that the purity is about 90%, and both crystalline and amorphous can be used.
Further, the silicon powder does not substantially change by the heat treatment of the present invention, and in the sintered body, silicon exhibits an action of inserting and releasing lithium ions.

【0015】また、本発明に用いる繊維状補強材として
は、高温下において特性が低下しない繊維又はウイスカ
ーを用いることができる。具体例を挙げれば、繊維とし
ては、炭素繊維、銅族又は白金族の金属からなる金属繊
維、及びシリカ、アルミナ、炭化ケイ素、窒化ケイ素、
窒化ホウ素等のセラミックス繊維が挙げられ、ウイスカ
ーとしては、炭素ウイスカー、銅族又は白金族の金属か
らなる金属ウイスカー、及びアルミナ、炭化ケイ素、窒
化ケイ素、チタン酸カリウム等のセラミックスのウイス
カーが挙げられる。繊維状補強材の直径及び長さは、特
に限定されるものではないが、直径は0.01〜100
μmであることが好ましい。また、導電性があると、繊
維状補強材による導電性ネットワークが形成され、負極
の導電性が向上することから、繊維状補強材は導電性を
有することが望ましい。望ましい繊維状補強材として
は、導電性を有する炭素繊維が挙げられる。
As the fibrous reinforcing material used in the present invention, fibers or whiskers whose properties do not deteriorate at high temperatures can be used. If specific examples are given, as the fiber, carbon fiber, metal fiber made of a copper group or platinum group metal, and silica, alumina, silicon carbide, silicon nitride,
Examples of the ceramic fibers include boron nitride and the like. Examples of the whiskers include carbon whiskers, metal whiskers made of a copper or platinum group metal, and whiskers of ceramics such as alumina, silicon carbide, silicon nitride, and potassium titanate. The diameter and length of the fibrous reinforcing material are not particularly limited, but the diameter is 0.01 to 100.
μm is preferred. In addition, if there is conductivity, a conductive network is formed by the fibrous reinforcing material, and the conductivity of the negative electrode is improved. Therefore, it is desirable that the fibrous reinforcing material has conductivity. Desirable fibrous reinforcing materials include conductive carbon fibers.

【0016】また、繊維状補強材及び熱処理後の焼結材
は、リチウムイオンを挿入放出可能であっても良い。
The fibrous reinforcing material and the sintered material after the heat treatment may be capable of inserting and releasing lithium ions.

【0017】また、ケイ素の含有率は、高い容量を得る
には、焼結体中において30〜90重量%が望ましく、
さらに望ましくは50〜90重量%である。
In order to obtain a high capacity, the silicon content is preferably 30 to 90% by weight in the sintered body.
More preferably, it is 50 to 90% by weight.

【0018】また、負極に十分な機械的強度と導電性を
付与するには、繊維状補強剤の含有率は、1〜70重量
%、好ましくは5〜30重量%である。
In order to impart sufficient mechanical strength and conductivity to the negative electrode, the content of the fibrous reinforcing agent is 1 to 70% by weight, preferably 5 to 30% by weight.

【0019】また、ケイ素粉末と繊維状補強材からなる
混合粉を、熱処理前に所定の形状を付与するための成形
には、プレス機等による加圧成形を用いることができる
が、熱処理の過程でのホットプレスを用いて成形しても
良い。
In order to form the mixed powder comprising the silicon powder and the fibrous reinforcing material into a predetermined shape before the heat treatment, press molding by a press machine or the like can be used. May be formed by using a hot press.

【0020】また、ケイ素粉末と繊維状補強材からなる
混合粉を、非酸化雰囲気下、例えば窒素又はアルゴン、
好ましくは窒素で熱処理を行う温度は、ケイ素が溶融し
ない範囲で十分な焼結が起こる範囲、すなわち600〜
1400℃であり、好ましくは800〜1200℃であ
る。熱処理時間は、0.1時間以上10時間以下、好ま
しくは1〜6時間が望ましい。
Further, a mixed powder comprising a silicon powder and a fibrous reinforcing material is mixed in a non-oxidizing atmosphere, for example, with nitrogen or argon,
Preferably, the temperature at which the heat treatment is performed with nitrogen is in a range where sufficient sintering occurs in a range where silicon does not melt, that is, 600 to
The temperature is 1400 ° C, preferably 800 to 1200 ° C. The heat treatment time is from 0.1 hour to 10 hours, preferably from 1 to 6 hours.

【0021】また、本発明に用いる負極材料としては、
ケイ素粉末、繊維状補強材の他に焼結材等が含まれてい
ても構わない。焼結材としては、熱処理により炭素化す
る材料が好ましい。例えば、フェノール樹脂、エポキシ
樹脂、不飽和ポリエステル樹脂、フラン樹脂、尿素樹
脂、メラミン樹脂、アルキッド樹脂、キシレン樹脂等の
熱硬化性樹脂、ナフタレン、アセナフチレン、フェナン
トレン、アントラセン、トリフェニレン、ピレン、クリ
セン、ナフタセン、ピセン、ペリレン、ペンタフェン、
ペンタセン等の縮合系多環炭化水素化合物又はその誘導
体、あるいは上記化合物の混合物を主成分とするピッチ
等が挙げられるが、ピッチが好ましい。
The negative electrode material used in the present invention includes:
A sintered material or the like may be included in addition to the silicon powder and the fibrous reinforcing material. As the sintering material, a material that is carbonized by heat treatment is preferable. For example, phenolic resins, epoxy resins, unsaturated polyester resins, furan resins, urea resins, melamine resins, alkyd resins, thermosetting resins such as xylene resins, naphthalene, acenaphthylene, phenanthrene, anthracene, triphenylene, pyrene, chrysene, naphthacene, Picene, perylene, pentaphene,
Pitches containing a condensed polycyclic hydrocarbon compound such as pentacene or a derivative thereof, or a mixture of the above compounds as a main component, and the like are preferable, but pitch is preferable.

【0022】本発明の焼結体は、空孔率が15〜60%
の多孔質体であることが好ましい。空孔の開け方には単
に粉末を成形、熱処理するだけの方法もあるが、電解液
が十分に浸透し、イオンの流れを阻害されないようにす
るには、以下に述べる方法を用いることが望ましい。す
なわち、原料粉末にナイロン、アクリル、アセテート、
ポリエステルなどの有機繊維(直径0.1〜100μ
m)又は直径0.1〜100μmの有機ポリマー粒子を
混入し、本焼成して繊維を揮発させ、イオンの通る道を
効果的に開けると、イオンの拡散が阻害されないため、
イオンの濃度分極が生じにくくなり、大きな電流に対し
てより電圧降下を小さくできる。この際用いる有機繊維
又は粒子は非酸化雰囲気下、高温で揮散するものが好ま
しい。
The sintered body of the present invention has a porosity of 15 to 60%.
The porous body is preferably Although there is a method of simply forming powder and heat-treating the way of opening the holes, it is desirable to use the method described below in order to prevent the electrolyte solution from sufficiently penetrating and obstructing the flow of ions. . That is, nylon, acrylic, acetate,
Organic fibers such as polyester (0.1-100μ in diameter
m) or by mixing organic polymer particles having a diameter of 0.1 to 100 μm, and by performing main firing to volatilize the fiber and effectively opening the path through which ions pass, the diffusion of ions is not hindered.
Ion concentration polarization is less likely to occur, and the voltage drop can be reduced for a large current. The organic fibers or particles used at this time are preferably those that volatilize at high temperature in a non-oxidizing atmosphere.

【0023】ここで言う空孔率は開気孔率であり、以下
に述べるアルキメデス法により測定した。アルキメデス
法:もとのサンプル重量をW1、水中で真空にし(又は
煮沸し)、気孔中の空気を追い出し、冷却し水中で測定
した重量をW2、水中から取り出し、表面だけ拭って水
滴を取って測定した重量をW3とすると、空孔率=見か
け気孔率(開気孔率)=開気孔率/外形面積={(W3-
1)/(W3-W2)}×100で求められる。
The porosity referred to here is an open porosity, and was measured by the Archimedes method described below. Archimedes method: original sample weight W 1 , vacuum (or boil) in water, evacuate air in pores, cool down, cool and measure weight in water W 2 , remove from water, wipe surface only to remove water droplets Assuming that the weight measured and taken is W 3 , porosity = apparent porosity (open porosity) = open porosity / outer area = {(W 3
W 1 ) / (W 3 -W 2 )} × 100.

【0024】本発明の正極活物質として用いられる正極
材料は、従来公知の何れの材料も使用でき、例えば、L
xCoO2,LixNiO2,MnO2,LiMnO2,L
xMn24,LixMn2-y4,α−V25,TiS2
等が挙げられる。
As the positive electrode material used as the positive electrode active material of the present invention, any conventionally known materials can be used.
i x CoO 2, Li x NiO 2, MnO 2, LiMnO 2, L
i x Mn 2 O 4, Li x Mn 2-y O 4, α-V 2 O 5, TiS 2
And the like.

【0025】本発明に使用される非水電解質は、有機溶
媒にリチウム化合物を溶解させた非水電解液、又は高分
子にリチウム化合物を固溶或いはリチウム化合物を溶解
させた有機溶媒を保持させた高分子固体電解質を用いる
ことができる。非水電解液は、有機溶媒と電解質とを適
宜組み合わせて調製されるが、これら有機溶媒や電解質
はこの種の電池に用いられるものであればいずれも使用
可能である。有機溶媒としては、例えばプロピレンカー
ボネート、エチレンカーボネート、ビニレンカーボネー
ト、ジメチルカーボネート、ジエチルカーボネート、メ
チルエチルカーボネート、1,2−ジメトキシエタン、
1,2−ジエトキシエタンメチルフォルメイト、ブチロ
ラクトン、テトラヒドロフラン、2−メチルテトラヒド
ロフラン、1,3−ジオキソフラン、4−メチル−1,
3−ジオキソフラン、ジエチルエーテル、スルホラン、
メチルスルホラン、アセトニトリル、プロピオニトリ
ル、ブチロニトリル、バレロニトリル、ベンゾニトリ
ル、1,2−ジクロロエタン、4−メチル−2−ペンタ
ノン、1,4−ジオキサン、アニソール、ジグライム、
ジメチルホルムアミド、ジメチルスルホキシド等であ
る。これらの溶媒はその1種を単独で使用することがで
きるし、2種以上を併用することもできる。
The non-aqueous electrolyte used in the present invention is a non-aqueous electrolyte in which a lithium compound is dissolved in an organic solvent, or a polymer in which a lithium compound is dissolved in a polymer or an organic solvent in which a lithium compound is dissolved is held. A polymer solid electrolyte can be used. The non-aqueous electrolyte is prepared by appropriately combining an organic solvent and an electrolyte, and any of these organic solvents and electrolytes can be used as long as they are used for this type of battery. Examples of the organic solvent include propylene carbonate, ethylene carbonate, vinylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane,
1,2-diethoxyethanemethylformate, butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxofuran, 4-methyl-1,
3-dioxofuran, diethyl ether, sulfolane,
Methylsulfolane, acetonitrile, propionitrile, butyronitrile, valeronitrile, benzonitrile, 1,2-dichloroethane, 4-methyl-2-pentanone, 1,4-dioxane, anisole, diglyme,
Dimethylformamide, dimethylsulfoxide and the like. One of these solvents can be used alone, or two or more can be used in combination.

【0026】電解質としては、例えばLiClO4,L
iAsF6,LiPF6,LiBF4,LiB(C
654,LiCl,LiBr,LiI,LiCH3SO
3,LiCF3SO3,LiAlCl4等が挙げられ、これ
らの1種を単独で使用することもできるし、2種以上を
併用することもできる。
As the electrolyte, for example, LiClO 4 , L
iAsF 6 , LiPF 6 , LiBF 4 , LiB (C
6 H 5) 4, LiCl, LiBr, LiI, LiCH 3 SO
3 , LiCF 3 SO 3 , LiAlCl 4 and the like. One of these can be used alone, or two or more can be used in combination.

【0027】本発明に使用される高分子固体電解質は、
上記の電解質から選ばれる電解質を以下に示す高分子に
固溶させたものを用いることができる。例えば、ポリエ
チレンオキサイドやポリプロピレンオキサイドのような
ポリエーテル鎖を有する高分子、ポリエチレンサクシネ
ート、ポリカプロラクタムのようなポリエステル鎖を有
する高分子、ポリエチレンイミンのようなポリアミン鎖
を有する高分子、ポリアルキレンスルフィドのようなポ
リスルフィド鎖を有する高分子が挙げられる。また、本
発明に使用される高分子固体電解質として、ポリフッ化
ビニリデン、フッ化ビニリデン-テトラフルオロエチレ
ン共重合体、ポリエチレンオキサイド、ポリアクリロニ
トリル、ポリプロピレンオキサイド等の高分子に上記非
水電解液を保持させ上記高分子を可塑化させたものを用
いることもできる。
The solid polymer electrolyte used in the present invention comprises:
A solution obtained by dissolving an electrolyte selected from the above electrolytes in the following polymer can be used. For example, a polymer having a polyether chain such as polyethylene oxide or polypropylene oxide, a polymer having a polyester chain such as polyethylene succinate and polycaprolactam, a polymer having a polyamine chain such as polyethyleneimine, and a polyalkylene sulfide. Such a polymer having a polysulfide chain is exemplified. Further, as the polymer solid electrolyte used in the present invention, polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, polyethylene oxide, polyacrylonitrile, holding the non-aqueous electrolyte in a polymer such as polypropylene oxide What plasticized the said polymer can also be used.

【0028】[0028]

【実施例】以下、実施例を用いて本発明を詳細に説明す
る。 製造例1(正極の製造) 炭酸リチウム粉末と炭酸コバルト粉末を、モル比でLi
/Co=1/1となるように混合し、大気雰囲気中80
0℃で1時間仮焼する。次いでこれを粉砕し、平均粒径
5μmの球状PMMA粒子を混合して押固め、大気雰囲
気中800℃で10時間焼成し、直径19mm、厚さ
0.5mmの正極を得た。
The present invention will be described below in detail with reference to examples. Production Example 1 (Production of Positive Electrode) Lithium carbonate powder and cobalt carbonate powder were mixed at a molar ratio of Li
/ Co = 1/1 and mixed in air atmosphere
Calcinate at 0 ° C for 1 hour. Next, this was pulverized, mixed with spherical PMMA particles having an average particle diameter of 5 μm, compacted, and baked at 800 ° C. for 10 hours in an air atmosphere to obtain a positive electrode having a diameter of 19 mm and a thickness of 0.5 mm.

【0029】製造例2(負極の製造) 高純度化学(株)製の純度99.9%、平均粒子径1μ
mの結晶性ケイ素粉末を80部と焼結材としてピッチ系
炭素質材料(残炭率50%)10部、東レ(株)製の繊維
径7μm、繊維長130μmの炭素繊維15部をイソプ
ロピルアルコール中で振動ミルを用いて混合分散した。
懸濁スラリーを室温で一昼夜放置後、イソプロピルアル
コールを溶媒トラップにて除去後、ケイ素粉末とピッチ
系炭素と炭素繊維の混合粉を成形した。この時、ポリビ
ニルアルコールを成形助剤として1重量%添加した。成
形は、1.3x104Pa/cm2の圧力で行った。昇温は
100℃/時とし、1100℃で3時間焼成した成形体
を負極とした。焼成後の成形体は、直径20mm、厚さ
0.5mm、密度1.1g/cm3、空孔率50%であっ
た。
Production Example 2 (Production of Negative Electrode) Purity 99.9%, average particle size 1 μm, manufactured by Kojundo Chemical Co., Ltd.
m of crystalline silicon powder (80 parts) and 10 parts of pitch-based carbonaceous material (residual carbon ratio: 50%) as a sintering material, and 15 parts of carbon fiber having a fiber diameter of 7 μm and a fiber length of 130 μm manufactured by Toray Co., Ltd. The mixture was dispersed and dispersed in a vibration mill.
After the suspension slurry was allowed to stand at room temperature for 24 hours, isopropyl alcohol was removed by a solvent trap, and a mixed powder of silicon powder, pitch-based carbon, and carbon fiber was formed. At this time, 1% by weight of polyvinyl alcohol was added as a molding aid. The molding was performed at a pressure of 1.3 × 10 4 Pa / cm 2 . The temperature was raised at 100 ° C./hour, and a molded body fired at 1100 ° C. for 3 hours was used as a negative electrode. The fired compact had a diameter of 20 mm, a thickness of 0.5 mm, a density of 1.1 g / cm 3 , and a porosity of 50%.

【0030】製造例3(負極の製造) 製造例2の負極において、ピッチ系炭素40部、炭素繊
維0部とした以外は、同様にして作製した成形体を負極
とした。焼成後の成形体は、直径20mm、厚さ0.5
mm、密度1.2g/cm3、空孔率45%であった。
Production Example 3 (Production of Negative Electrode) A negative electrode was produced in the same manner as in the negative electrode of Production Example 2, except that 40 parts of pitch-based carbon and 0 parts of carbon fiber were used. The molded body after firing has a diameter of 20 mm and a thickness of 0.5.
mm, density 1.2 g / cm 3 and porosity 45%.

【0031】[0031]

【実施例1】製造例1の正極と製造例2の負極の間に、
セパレータとしてポリエチレン多孔膜を挟み、電解液に
エチレンカーボネートとジメチルカーボネートの体積比
1:1の混合溶媒に1mol/lの六フッ化リン酸リチ
ウムを加えたものを用いて、電池を構成した。このよう
にして作製した電池を、3mA/cm2の電流密度で充
放電試験を行った。充放電試験後、グローブボックス内
で電池を解体し、負極を取り出して目視により観察した
ところ、成形体の形状は保持されていた。
Example 1 Between the positive electrode of Production Example 1 and the negative electrode of Production Example 2,
A battery was constructed using a separator in which a polyethylene porous membrane was sandwiched, and a mixture of ethylene carbonate and dimethyl carbonate in a volume ratio of 1: 1 to which 1 mol / l lithium hexafluorophosphate was added as an electrolytic solution. The battery fabricated in this manner was subjected to a charge / discharge test at a current density of 3 mA / cm 2 . After the charge / discharge test, the battery was disassembled in the glove box, and the negative electrode was taken out and visually observed. As a result, the shape of the molded body was maintained.

【0032】[0032]

【比較例1】製造例2の負極の代わりに、製造例3の負
極を用いた以外は、実施例1と同様にして電池を構成し
て充放電を行った後、グローブボックス内でセルを解体
し、負極を取り出して目視により観察したところ、成形
体は破壊されていた。
Comparative Example 1 A battery was constructed and charged and discharged in the same manner as in Example 1 except that the negative electrode of Production Example 3 was used instead of the negative electrode of Production Example 2, and then the cell was placed in a glove box. After disassembly, the negative electrode was taken out, and visually observed, the molded article was broken.

【0033】[0033]

【発明の効果】以上の説明から明らかなように、本発明
の非水系二次電池用負極は、繊維状補強材により強度が
付与されるため、繰り返し充放電においても、また薄く
しても、実用に耐える十分な耐衝撃性や充放電サイクル
耐久性を有する非水系二次電池を提供できる。
As is apparent from the above description, since the strength of the negative electrode for a non-aqueous secondary battery of the present invention is imparted by the fibrous reinforcing material, the negative electrode can be used in repeated charge / discharge or even when thin. A nonaqueous secondary battery having sufficient impact resistance and charge / discharge cycle durability sufficient for practical use can be provided.

【0034】また、導電性を有する繊維状補強材を用い
ることにより、負極の導電性が向上するため、電池の内
部抵抗を下げることができ、充放電効率が高く、容量の
大きな非水系二次電池を提供できる。
In addition, by using the fibrous reinforcing material having conductivity, the conductivity of the negative electrode is improved, so that the internal resistance of the battery can be reduced, the charge / discharge efficiency is high, and the capacity of the non-aqueous secondary battery is large. Battery can be provided.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−29602(JP,A) 特開 平11−297311(JP,A) 特開 平11−185757(JP,A) 特開 平10−255768(JP,A) 特開 平10−223220(JP,A) 特開 平10−208740(JP,A) 特開 平10−199524(JP,A) 特開 平6−279112(JP,A) 特開 平5−74463(JP,A) 特開 平5−144474(JP,A) 国際公開98/24135(WO,A1) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 H01M 4/02 H01M 4/04 H01M 10/40 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-7-29602 (JP, A) JP-A-11-297311 (JP, A) JP-A-11-185557 (JP, A) JP-A-10-107 255768 (JP, A) JP-A-10-223220 (JP, A) JP-A-10-208740 (JP, A) JP-A-10-199524 (JP, A) JP-A-6-279112 (JP, A) JP-A-5-74463 (JP, A) JP-A-5-144474 (JP, A) WO 98/24135 (WO, A1) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4 / 58 H01M 4/02 H01M 4/04 H01M 10/40

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ケイ素粉末と繊維状補強材を所定形状に
成形するとともに、非酸化雰囲気で熱処理してなる焼結
体からなる非水系二次電池用負極。
1. A negative electrode for a non-aqueous secondary battery, comprising a sintered body formed by shaping a silicon powder and a fibrous reinforcing material into a predetermined shape and heat-treating in a non-oxidizing atmosphere.
【請求項2】 上記焼結体中のケイ素含有率が30〜9
0重量%であり、繊維状補強材の含有率が1〜70重量
%である請求項1記載の非水系二次電池用負極。
2. The silicon content in the sintered body is 30 to 9
The negative electrode for a non-aqueous secondary battery according to claim 1, wherein the amount is 0% by weight and the content of the fibrous reinforcing material is 1 to 70% by weight.
【請求項3】 上記熱処理温度が600〜1400℃で
ある請求項1又は2に記載の非水系二次電池用負極。
3. The negative electrode for a non-aqueous secondary battery according to claim 1, wherein the heat treatment temperature is 600 to 1400 ° C.
【請求項4】 上記焼結体が多孔質であって、空孔率が
全体積の15〜60%である請求項1〜3のいずれか一
つに記載の非水系二次電池用負極。
4. The negative electrode for a non-aqueous secondary battery according to claim 1, wherein the sintered body is porous and has a porosity of 15 to 60% of the total volume.
【請求項5】 上記繊維状補強材が導電性を有する請求
項1〜4のいずれか一つに記載の非水系二次電池用負
極。
5. The negative electrode for a non-aqueous secondary battery according to claim 1, wherein the fibrous reinforcing material has conductivity.
【請求項6】 ケイ素粉末と繊維状補強材を所定形状に
成形するとともに、非酸化雰囲気で熱処理してなる焼結
体からなる負極と、主としてリチウム遷移金属酸化物か
らなる正極と、有機溶媒にリチウム化合物を溶解させた
電解液、又は高分子にリチウム化合物を固溶或いはリチ
ウム化合物を溶解させた有機溶媒を保持させたリチウム
イオン導電性の非水電解質を含む固体電解質からなる非
水系二次電池。
6. A negative electrode made of a sintered body formed by heat-treating a silicon powder and a fibrous reinforcing material into a predetermined shape in a non-oxidizing atmosphere, a positive electrode mainly made of lithium transition metal oxide, and an organic solvent. A non-aqueous secondary battery comprising a solid electrolyte including a lithium ion-conductive non-aqueous electrolyte in which an electrolyte solution in which a lithium compound is dissolved or a solid solution of a lithium compound in a polymer or an organic solvent in which a lithium compound is dissolved is retained. .
JP14095798A 1998-05-22 1998-05-22 Negative electrode for non-aqueous secondary batteries Expired - Fee Related JP3260118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14095798A JP3260118B2 (en) 1998-05-22 1998-05-22 Negative electrode for non-aqueous secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14095798A JP3260118B2 (en) 1998-05-22 1998-05-22 Negative electrode for non-aqueous secondary batteries

Publications (2)

Publication Number Publication Date
JPH11329433A JPH11329433A (en) 1999-11-30
JP3260118B2 true JP3260118B2 (en) 2002-02-25

Family

ID=15280758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14095798A Expired - Fee Related JP3260118B2 (en) 1998-05-22 1998-05-22 Negative electrode for non-aqueous secondary batteries

Country Status (1)

Country Link
JP (1) JP3260118B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2420104C (en) * 2000-09-01 2012-10-30 Sanyo Electric Co., Ltd. Negative electrode for lithium secondary cell and method for producing the same
JP2002367602A (en) * 2001-06-06 2002-12-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary cell
JP5060010B2 (en) * 2002-10-18 2012-10-31 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
KR101107041B1 (en) 2002-05-08 2012-01-25 가부시키가이샤 지에스 유아사 Nonaqueous electrolyte secondary cell
JP2004022512A (en) * 2002-06-20 2004-01-22 Sony Corp Negative electrode material and battery using the same
US20060188784A1 (en) * 2003-07-28 2006-08-24 Akinori Sudoh High density electrode and battery using the electrode
GB0713896D0 (en) * 2007-07-17 2007-08-29 Nexeon Ltd Method
GB201014707D0 (en) * 2010-09-03 2010-10-20 Nexeon Ltd Electroactive material
JP5845706B2 (en) * 2011-02-18 2016-01-20 富士通株式会社 Secondary battery and manufacturing method thereof
JP5865672B2 (en) * 2011-10-28 2016-02-17 京セラ株式会社 Secondary battery
JP6211775B2 (en) * 2013-03-12 2017-10-11 学校法人慶應義塾 Method for manufacturing sintered body
JP2017212236A (en) * 2017-09-11 2017-11-30 学校法人慶應義塾 Sintered body
WO2023243013A1 (en) * 2022-06-15 2023-12-21 Tdk株式会社 Negative electrode active material layer, negative electrode, and lithium-ion secondary battery

Also Published As

Publication number Publication date
JPH11329433A (en) 1999-11-30

Similar Documents

Publication Publication Date Title
JP2948205B1 (en) Method for producing negative electrode for secondary battery
JP3431081B2 (en) Non-aqueous electrolyte secondary battery
US7767346B2 (en) Anode active material, method of preparing the same, and anode and lithium battery containing the material
KR101328982B1 (en) Anode active material and method of preparing the same
US7754381B2 (en) Anode and battery, and manufacturing methods thereof
JP3918311B2 (en) Negative electrode material and non-aqueous electrolyte secondary battery using the same
EP1519431A1 (en) Electrode and cell comprising the same
KR20100007974A (en) Lithium secondary battery
JP3260118B2 (en) Negative electrode for non-aqueous secondary batteries
KR102065256B1 (en) Silicone based negative active material, preparing method of the same and lithium ion secondary battery including the same
JP2001126733A (en) Nonaqueous electrolytic material
US9466828B2 (en) Method for preparing electrode active material for rechargeable lithium battery, electrode active material for rechargeable lithium battery, and rechargeable lithium battery
JP4792618B2 (en) Carbonaceous particles for negative electrode of lithium secondary battery, manufacturing method thereof, negative electrode of lithium secondary battery and lithium secondary battery
JP2948206B1 (en) Anode materials for non-aqueous secondary batteries
JPH11339778A (en) Manufacture of secondary battery negative electrode
JP2000011993A (en) Positive electrode for nonaqueous secondary battery
WO2002089235A1 (en) Carbonaceous material for nonaqueous electrolytic secondary cell and nonaqueous electrolytic secondary cell comprising the same
JP2013247022A (en) Electrode material, method for producing the same, and secondary battery
JP3268770B2 (en) Non-aqueous secondary battery
KR20050044330A (en) Battery
JP2000082464A (en) Nonaqueous secondary battery
JP2000012024A (en) Manufacture of positive electrode for nonaqueous secondary battery
JP4483560B2 (en) Negative electrode for lithium secondary battery
JP2002313320A (en) Nonaqueous secondary battery
JP2002343341A (en) Negative electrode for lithium secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees