JP3124272B1 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery

Info

Publication number
JP3124272B1
JP3124272B1 JP11341833A JP34183399A JP3124272B1 JP 3124272 B1 JP3124272 B1 JP 3124272B1 JP 11341833 A JP11341833 A JP 11341833A JP 34183399 A JP34183399 A JP 34183399A JP 3124272 B1 JP3124272 B1 JP 3124272B1
Authority
JP
Japan
Prior art keywords
negative electrode
silicon
current collector
carbonaceous material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11341833A
Other languages
Japanese (ja)
Other versions
JP2001160392A (en
Inventor
邦之 中西
鉄也 日下部
赤木  隆一
淳 鈴木
忠 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP11341833A priority Critical patent/JP3124272B1/en
Application granted granted Critical
Publication of JP3124272B1 publication Critical patent/JP3124272B1/en
Publication of JP2001160392A publication Critical patent/JP2001160392A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【要約】 【課題】 保存時の電池容量の低下のない保存安定性に
優れた非水系二次電池を提供する。 【解決手段】集電体とその集電体上に形成されたケイ素
と炭素との焼結体とから成り、ケイ素粒子を炭素質材料
で被覆して、電解液とケイ素粒子との反応を抑制した負
極を用いる。
An object of the present invention is to provide a non-aqueous secondary battery excellent in storage stability without lowering battery capacity during storage. The present invention comprises a current collector and a sintered body of silicon and carbon formed on the current collector, and covers silicon particles with a carbonaceous material to suppress the reaction between the electrolyte and the silicon particles. The used negative electrode is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ケイ素を活物質と
する焼結体からなる負極を有する非水系二次電池に関す
る。
The present invention relates to a non-aqueous secondary battery having a negative electrode made of a sintered body containing silicon as an active material.

【0002】[0002]

【従来の技術】携帯用電子機器の小型軽量化に伴い、よ
り高エネルギー密度の二次電池が要望されている。非水
系二次電池の中でも、リチウム二次電池はかかる要望に
応えるものとして期待されている。しかし、従来用いら
れている黒鉛等の炭素材料の負極活物質では要望されて
いるエネルギー密度の達成が困難なことから、炭素材料
に代えて、より高エネルギー密度を期待できるケイ素を
負極活物質に用いることが検討されている。
2. Description of the Related Art As portable electronic devices are reduced in size and weight, secondary batteries with higher energy density are demanded. Among non-aqueous secondary batteries, lithium secondary batteries are expected to meet such demands. However, since it has been difficult to achieve the required energy density with the conventionally used negative electrode active materials of carbon materials such as graphite, silicon, which can be expected to have a higher energy density, is used as the negative electrode active material instead of carbon materials. It is being considered for use.

【0003】例えば、特開平7−29602号公報に
は、ケイ素をリチウムイオン二次電池の負極活物質とし
て用いることが開示されている。
For example, Japanese Patent Application Laid-Open No. Hei 7-29602 discloses that silicon is used as a negative electrode active material of a lithium ion secondary battery.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、ケイ素
を負極活物質として電池を構成し、その電池を放電終了
後放置すると、過放電状態になり、負極中のケイ素の溶
出や、集電体、例えば、銅の溶出が始まり電池容量が低
下するとともに、電池の寿命が短くなるという問題があ
のケイ素や集電体の溶出を抑制することにより、保存時
の電池容量の低下のない保存安定性に優れた非水系二次
電池を提供することを課題とした。
However, when a battery is constituted by using silicon as a negative electrode active material and the battery is left after the discharge is completed, the battery is over-discharged, and the elution of silicon in the negative electrode and the current collector, for example, The elution of copper starts and the battery capacity decreases, and the life of the battery is shortened.Suppressing the elution of silicon and current collectors ensures excellent storage stability without lowering the battery capacity during storage. Another object of the present invention is to provide a non-aqueous secondary battery.

【0006】[0006]

【課題を解決するための手段】本発明者らは、自己放電
を抑制する研究の過程において、ケイ素を負極活物質と
する負極を、アルキルカーボネートからなる溶媒とLi
PF6を電解質とする代表的な電解液に浸漬し、その電
解液及び負極を分析したところ、ケイ素粒子と電解液の
接触面積が増大すると、ケイ素とフッ素を含む化合物及
びLiPF6と溶媒との反応生成物が増加し、さらに、
ケイ素粒子と電解液との接触面積の大きい負極を用いた
電池は保存安定性が良くないこと、及び負極活物質のケ
イ素又は集電体を炭素質材料で被覆した場合には、これ
らの反応が抑制され、保存安定性が良くなることを見出
した。
Means for Solving the Problems In the course of research for suppressing self-discharge, the present inventors have developed a method in which a negative electrode using silicon as a negative electrode active material is mixed with a solvent composed of an alkyl carbonate and Li
When immersed in a typical electrolytic solution using PF 6 as an electrolyte and analyzing the electrolytic solution and the negative electrode, when the contact area between the silicon particles and the electrolytic solution increases, the compound containing silicon and fluorine and the LiPF 6 and the solvent Reaction products increase,
A battery using a negative electrode having a large contact area between a silicon particle and an electrolytic solution has poor storage stability, and when silicon or a current collector of a negative electrode active material is coated with a carbonaceous material, these reactions may occur. It has been found that it is suppressed and the storage stability is improved.

【0007】すなわち、本発明の非水系二次電池は、
チウムイオンを吸蔵・放出可能な活物質を含む、正極と
負極と、リチウムイオン導電性の電解液とを有する非水
系二次電池であって、負極が、導電性金属から成り炭素
質材料で被覆された集電体と、集電体上に形成された、
負極活物質のケイ素と炭素質材料との焼結体と、から成
り、焼結体中のケイ素粒子が炭素質材料で被覆されて成
ことを特徴とする。
Namely, the nonaqueous secondary battery of the present invention, Li
A positive electrode containing an active material capable of occluding and releasing titanium ions;
Non-aqueous containing negative electrode and lithium ion conductive electrolyte
A secondary battery, wherein the negative electrode is made of a conductive metal
Current collector coated with a porous material, and formed on the current collector,
A sintered body of silicon as a negative electrode active material and a carbonaceous material.
And the silicon particles in the sintered body are covered with a carbonaceous material.
Characterized in that that.

【0008】上述のように、ケイ素粒子の露出した表面
で、ケイ素と電解液が直接反応し、ケイ素とフッ素を含
む化合物が生成し、さらに溶媒と電解質であるLiPF
6との反応が進行すると考えられる。そのため、電解液
と直接接触するケイ素粒子の面積が大きいほど反応が進
行する。したがって、炭素質材料でケイ素粒子の表面を
被覆することにより、ケイ素粒子表面における電解液と
の反応を抑制することができる。そのため、不可逆な反
応を抑制することができ、電池容量の低下を防止でき
る。また、集電体の表面を、炭素質材料で被覆して、集
電体と電解液との直接接触を抑制することにより、集電
体の過放電時における溶出を抑制することができる。
As described above, on the exposed surface of the silicon particles, the silicon and the electrolytic solution react directly to form a compound containing silicon and fluorine, and further, the solvent and the electrolyte LiPF
It is thought that the reaction with 6 proceeds. For this reason, the reaction proceeds as the area of the silicon particles in direct contact with the electrolytic solution increases. Therefore, by coating the surface of the silicon particles with the carbonaceous material, it is possible to suppress the reaction with the electrolyte on the surface of the silicon particles. Therefore, an irreversible reaction can be suppressed, and a decrease in battery capacity can be prevented. In addition, the surface of the current collector is coated with a carbonaceous material to collect the current.
Current collection by suppressing direct contact between the conductor and electrolyte
Elution during overdischarge of the body can be suppressed.

【0009】また、本発明の非水系二次電池は、上記負
極が、ケイ素粒子と、炭素質材料又は熱処理により炭素
質材料になる有機材料とを含む塗膜を集電体上に形成
し、塗膜と集電体とを、炭素質材料又は熱処理により炭
素質材料になる有機材料とを含む塗液に浸漬又は集電体
に該塗液を塗布し、乾燥し、非酸化雰囲気で焼結して成
る焼結体を負極として用いることができる。
[0009] The non-aqueous secondary battery of the present invention, the negative
The pole is made of silicon particles and carbonaceous material or carbon
Film on the current collector containing organic material to be a porous material
Then, the coating film and the current collector are
Immersion or current collector in a coating liquid containing an organic material to be a base material
The coating liquid is applied to the coating solution, dried, and sintered in a non-oxidizing atmosphere, and a sintered body can be used as the negative electrode.

【0010】[0010]

【0011】[0011]

【発明の実施の形態】本発明の非水系二次電池は、リチ
ウム二次電池に好適に用いることができる。以下、リチ
ウム二次電池について、本発明の実施の形態を詳細に説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION The non-aqueous secondary battery of the present invention can be suitably used for a lithium secondary battery. Hereinafter, embodiments of the present invention will be described in detail for a lithium secondary battery.

【0012】本発明に用いる負極には、原料粉末を成型
して焼結した焼結体も用いることができるが、原料粉末
を含む塗膜を焼結した焼結体を用いることが好ましい。
例えば、負極には、以下の方法により作製したものを用
いることができる。すなわち、負極活物質であるケイ素
粉末と炭素質材料又は熱処理により炭素質材料となる有
機材料を溶剤に加えて塗液を調製し、その塗液を導電性
金属からなる集電体上に塗布後、乾燥して溶剤を除去し
て塗膜を調製する。次いで、この塗膜を非酸化雰囲気で
焼結し、集電体と焼結体とが一体化した負極を得る。
As the negative electrode used in the present invention, a sintered body obtained by molding and sintering a raw material powder can be used, but it is preferable to use a sintered body obtained by sintering a coating film containing the raw material powder.
For example, a negative electrode manufactured by the following method can be used. That is, a coating liquid is prepared by adding a silicon powder as a negative electrode active material and a carbonaceous material or an organic material to be a carbonaceous material by heat treatment to a solvent, and applying the coating liquid on a current collector made of a conductive metal. After drying, the solvent is removed to prepare a coating film. Next, this coating film is sintered in a non-oxidizing atmosphere to obtain a negative electrode in which the current collector and the sintered body are integrated.

【0013】本発明に用いるケイ素粉末は、ケイ素単体
の結晶質、非晶質のいずれも用いることができ、非酸化
雰囲気での熱処理により分解又は還元されてケイ素に変
化し得るケイ素化合物であっても良い。ケイ素化合物と
しては、酸化ケイ素などの無機ケイ素化合物や、シリコ
ーン樹脂、含ケイ素高分子化合物などの有機ケイ素化合
物が挙げられる。これらの中でも、特にケイ素単体が好
ましい。ケイ素粉末の粒子径は特に限定されないが、電
解液との接触面積を減らす観点から、さらには、操作性
や原料価格、負極材料の均一性から、平均粒子径0.5
μm以上100μm以下のものを好ましく用いることが
できる。焼結体中のケイ素粒子は、炭素質材料で被覆さ
れており、炭素質材料の連続相中にケイ素の分散相があ
る構造を有する。また、焼結体は、リチウムイオンを吸
蔵・放出せず容量を持たないSiCやケイ素と集電体と
の反応物等のケイ素化合物を実質的に含まないことが好
ましい。
The silicon powder used in the present invention may be either crystalline silicon or amorphous silicon, and is a silicon compound which can be decomposed or reduced to silicon by heat treatment in a non-oxidizing atmosphere. Is also good. Examples of the silicon compound include an inorganic silicon compound such as silicon oxide, and an organic silicon compound such as a silicone resin and a silicon-containing polymer compound. Of these, silicon alone is particularly preferred. The particle size of the silicon powder is not particularly limited, but from the viewpoint of reducing the contact area with the electrolytic solution, and further, from the viewpoint of operability, raw material price, and uniformity of the negative electrode material, the average particle size is 0.5.
Those having a size of at least 100 μm can be preferably used. The silicon particles in the sintered body are coated with a carbonaceous material, and have a structure in which a dispersed phase of silicon is present in a continuous phase of the carbonaceous material. Further, it is preferable that the sintered body does not substantially contain silicon compounds such as SiC which does not occlude or release lithium ions and has no capacity or a reaction product of silicon and a current collector.

【0014】本発明の負極に用いる炭素質材料として
は、コ−クス、ガラス状炭素、黒鉛及びピッチの炭化物
及びこれらの混合物等が挙げられる。また、熱処理で炭
素質材料になる有機材料としては、フェノ−ル樹脂、フ
ェノールホルムアルデヒド樹脂、エポキシ樹脂、不飽和
ポリエステル樹脂、フラン樹脂、尿素樹脂、メラミン樹
脂、アルキッド樹脂、キシレン樹脂等の熱硬化性樹脂、
ナフタレン、アセナフチレン、フェナントレン、アント
ラセン、トリフェニレン、ピレン、クリセン、ナフタセ
ン、ピセン、ペリレン、ペンタフェン、ペンタセン等の
縮合系多環炭化水素化合物又はその誘導体、あるいはそ
の混合物を主成分とするピッチ等が挙げられるが、フェ
ノールホルムアルデヒド樹脂又はキシレン樹脂が好まし
い。
Examples of the carbonaceous material used for the negative electrode of the present invention include coke, glassy carbon, graphite, pitch carbides, and mixtures thereof. Organic materials that become carbonaceous materials by heat treatment include thermosetting resins such as phenol resins, phenol formaldehyde resins, epoxy resins, unsaturated polyester resins, furan resins, urea resins, melamine resins, alkyd resins, and xylene resins. resin,
Naphthalene, acenaphthylene, phenanthrene, anthracene, triphenylene, pyrene, chrysene, naphthacene, picene, perylene, pentaphen, pentacene and the like condensed polycyclic hydrocarbon compound or a derivative thereof, or a pitch mainly containing a mixture thereof. And a phenol formaldehyde resin or a xylene resin.

【0015】また、原料粉末を含む塗膜を集電体上に形
成し、非酸化性雰囲気で焼結させて負極を調製する場
合、焼成温度は、SiCやケイ素と集電体との反応物等
のケイ素化合物の生成を抑制するため1400℃以下
で、かつ、ケイ素と集電体との反応を抑制するため用い
る集電体の融点以下が望ましく、例えば、集電体に銅を
用いる場合には、銅の融点1083℃以下、より好まし
くは700〜850℃である。
When a negative electrode is prepared by forming a coating film containing the raw material powder on a current collector and sintering the same in a non-oxidizing atmosphere, the firing temperature is set to a reaction temperature between SiC or silicon and the current collector. In order to suppress the production of silicon compounds such as 1400 ℃ or less, and the melting point of the current collector used to suppress the reaction between silicon and the current collector is desirably not more than, for example, when copper is used for the current collector Has a melting point of 1083 ° C. or less, more preferably 700 to 850 ° C., for copper.

【0016】さらに、負極を調製する際に、以下の方法
を用いることができる。すなわち、塗膜を集電体上に形
成した後、塗膜と集電体とを一緒に、炭素質材料又は熱
処理により炭素質材料となる有機材料を含む塗液に浸漬
し、あるいは集電体にその塗液を塗布し、乾燥して溶剤
を除去して塗膜を調製する。次いで、この塗膜と集電体
とを非酸化雰囲気で焼結することにより、集電体を炭素
質材料で被覆することができる。これにより、集電体と
電解液との接触が抑制されるため、集電体金属の溶出反
応の進行を抑制することができる。
In preparing the negative electrode, the following method can be used. That is, after the coating film is formed on the current collector, the coating film and the current collector are immersed together in a coating liquid containing a carbonaceous material or an organic material that becomes a carbonaceous material by heat treatment, or the current collector The coating solution is applied to the resultant, and dried to remove the solvent to prepare a coating film. Next, the current collector can be covered with a carbonaceous material by sintering the coating film and the current collector in a non-oxidizing atmosphere. This suppresses the contact between the current collector and the electrolytic solution, so that the progress of the elution reaction of the current collector metal can be suppressed.

【0017】また、本発明に用いる正極には正極活物質
として、従来公知の何れの材料も使用でき、例えば、L
xCoO2,LixNiO2,MnO2,LiMnO2,L
xMn24,LixMn2-y4,α−V25,TiS2
等を用いることができる。
Further, as the positive electrode used in the present invention, any conventionally known materials can be used as the positive electrode active material.
i x CoO 2, Li x NiO 2, MnO 2, LiMnO 2, L
i x Mn 2 O 4, Li x Mn 2-y O 4, α-V 2 O 5, TiS 2
Etc. can be used.

【0018】また、本発明に用いる非水電解質として
は、エチレンカーボネート、ジメチルカーボネート等の
有機溶媒に電解質としてLiPF6等のリチウム化合物
を溶解させた非水電解液、又は高分子にリチウム化合物
を固溶或いはリチウム化合物を溶解させた有機溶媒を保
持させた高分子固体電解質を用いることができる。
The non-aqueous electrolyte used in the present invention may be a non-aqueous electrolyte in which a lithium compound such as LiPF 6 is dissolved as an electrolyte in an organic solvent such as ethylene carbonate or dimethyl carbonate, or a lithium compound solid in a polymer. A solid polymer electrolyte in which an organic solvent in which a dissolved or lithium compound is dissolved is held can be used.

【0019】[0019]

【実施例】実施例1. (1)負極の調製 市販のケイ素粉〔高純度化学製99.9%品、平均粒子
径約1μm〕70gを3%のピッチ含有トルエン溶液1
00gに含浸して乾燥後、窒素雰囲気で、1100℃で
3時間焼成することにより、ケイ素粉の表面を炭素皮膜
で覆った。この炭素被覆ケイ素粉と天然黒鉛(関西熱化
学製NG2、平均粒子径約2μm)20gをフェノール
ホルムアルデヒド樹脂のn-メチル-2-ピロリドン(N
MP)溶液(20%溶液)200gと混合して、振動ミ
ルで30分間均一分散して塗液を調製した。この塗液を
厚さ40μmの銅箔上にギャップ450μmのアプリケ
ータを用いて塗布し、90℃で30分間乾燥してから、
19φに打ち抜いて1.5×108Paでプレスした。
次いで、窒素雰囲気、850℃で3時間焼成を行った。
このようにして厚さ150μm、密度1.3g/cm3
の負極を調製した。
[Embodiment 1] (1) Preparation of Negative Electrode 70% of a commercially available silicon powder [99.9% product from Kojundo Chemical, average particle size about 1 μm] 3% pitch-containing toluene solution 1
After impregnating the powder with 00 g and drying, it was baked at 1100 ° C. for 3 hours in a nitrogen atmosphere to cover the surface of the silicon powder with a carbon film. 20 g of the carbon-coated silicon powder and natural graphite (NG2 manufactured by Kansai Thermochemical Co., Ltd., average particle size of about 2 μm) were mixed with phenol formaldehyde resin n-methyl-2-pyrrolidone (N
MP) solution (20% solution), and uniformly dispersed in a vibration mill for 30 minutes to prepare a coating solution. This coating solution was applied on a copper foil having a thickness of 40 μm using an applicator having a gap of 450 μm, and dried at 90 ° C. for 30 minutes.
It was punched out at 19φ and pressed at 1.5 × 10 8 Pa.
Next, baking was performed at 850 ° C. for 3 hours in a nitrogen atmosphere.
Thus, the thickness is 150 μm and the density is 1.3 g / cm 3.
Was prepared.

【0020】(2)正極の調製 炭酸リチウムと炭酸コバルトをモル比1:1で秤量し
て、イソプロピルアルコールを溶媒としてボールミルで
均一に湿式混合したものを乾燥し、800℃で5時間仮
焼したものを振動ミルにて粉砕した。次いで、この粉末
を1.3×108Paでプレスし、900℃で10時間
焼成することにより厚さ300μm、密度3.0g/c
3、19φのLiCoO2ペレットを調製し、このペレ
ットを正極とした。
(2) Preparation of Positive Electrode Lithium carbonate and cobalt carbonate were weighed at a molar ratio of 1: 1 and uniformly wet-mixed with a ball mill using isopropyl alcohol as a solvent, and dried and calcined at 800 ° C. for 5 hours. The product was pulverized with a vibration mill. Next, this powder was pressed at 1.3 × 10 8 Pa and baked at 900 ° C. for 10 hours to obtain a thickness of 300 μm and a density of 3.0 g / c.
LiCoO 2 pellets of m 3 and 19φ were prepared, and these pellets were used as a positive electrode.

【0021】(3)電池の作製 両極間にセパレータを挟んで、電解液はエチレンカーボ
ネート/ジメチルカーボネート=1:1(体積比)、電
解質は1M LiPF6のものを用いて電池を作製し
た。
(3) Production of Battery A battery was produced by using a separator having an electrolyte of ethylene carbonate / dimethyl carbonate = 1: 1 (volume ratio) and an electrolyte of 1 M LiPF 6 with a separator interposed between both electrodes.

【0022】(4)サイクル試験 電池を作製し、1日放置して、3mAの定電流で充電終
止電圧4.1Vと放電終止電圧2.0Vの間で充放電を
1回繰り返した後、充電終止電圧4.1Vまで10mA
の定電流定電圧充電を行い、放電終止電圧2.0Vまで
8mAで定電流放電を行うサイクル試験を10回繰り返
した後、放電状態で電池を30日間、室温で保存した。
サイクル試験の1回目の電池容量値を初期容量値とし、
その初期容量値に対する30日間保存後の電池容量値の
割合を容量保持率(%)とした。ここで、過放電状態で
の保存安定性を調べるため、充放電の電圧範囲を通常の
4.1V〜2.5Vから、放電終止電位をより低くし、
4.1V〜2.0Vとした。
(4) Cycle test A battery was prepared, left for 1 day, and charged and discharged once at a constant current of 3 mA between a charge end voltage of 4.1 V and a discharge end voltage of 2.0 V, and then charged. 10mA to 4.1V cutoff voltage
The battery was stored at room temperature for 30 days in a discharged state after repeating a cycle test in which the battery was discharged at a constant current and a constant voltage of 8 mA and a constant current was discharged at 8 mA to a discharge end voltage of 2.0 V.
The first battery capacity value of the cycle test is used as the initial capacity value,
The ratio of the battery capacity value after storage for 30 days to the initial capacity value was defined as a capacity retention rate (%). Here, in order to investigate the storage stability in the overdischarge state, the charging / discharging voltage range was set to 4.1 V to 2.5 V, and the discharge end potential was lowered.
It was set to 4.1V to 2.0V.

【0023】(5)分析 負極のケイ素粒子が炭素質材料で被覆されているか否か
は、X線光電子分光分析装置(ESCA)により、負極
の表面元素を分析することにより判定した。また、電解
液の分解の有無については、負極を電解液に所定時間浸
漬した後、電解液をガスクロマトグラフ質量分析計(G
C−MS)により分析して判定した。
(5) Analysis Whether or not the silicon particles of the negative electrode were covered with the carbonaceous material was determined by analyzing the surface elements of the negative electrode with an X-ray photoelectron spectrometer (ESCA). Further, regarding the presence or absence of decomposition of the electrolytic solution, after immersing the negative electrode in the electrolytic solution for a predetermined time, the electrolytic solution was subjected to gas chromatography mass spectrometry (G
(C-MS).

【0024】また、電池内における短絡の有無は、充電
時における電圧あるいは電流プロファイルの乱れにより
調べた。以上の測定結果及び判定結果を表1に示す。
The presence or absence of a short circuit in the battery was examined based on the disturbance of the voltage or current profile during charging. Table 1 shows the above measurement results and judgment results.

【0025】実施例2.以下に示す方法により負極を調
製した。市販のケイ素粉(高純度化学製99.9%品、
平均粒子径約1μm)70gと天然黒鉛(関西熱化学製
NG2、平均粒子径約2μm)20gをフェノールホル
ムアルデヒド樹脂のNMP溶液200gと混合し、振動
ミルで30分間分散して塗液を調製した。この塗液を厚
さ40μmの銅箔に塗布し、90℃で30分乾燥してか
ら、19φに打ち抜いて1.5×108Paでプレスし
た。これを3%のピッチ含有トルエン溶液に含浸して乾
燥後、窒素雰囲気下で850℃で3時間焼成を行った。
このようにして活物質を担持する銅箔を炭素質材料で覆
った厚さ150μm、密度1.4g/cm3の負極を調
製した。その他は実施例1と同様に行った。結果を表1
に示す。
Embodiment 2 FIG. A negative electrode was prepared by the following method. Commercially available silicon powder (99.9% high purity chemical product,
70 g of an average particle diameter (about 1 μm) and 20 g of natural graphite (NG2 manufactured by Kansai Thermal Chemical Co., Ltd., an average particle diameter of about 2 μm) were mixed with 200 g of an NMP solution of phenol formaldehyde resin, and dispersed by a vibration mill for 30 minutes to prepare a coating liquid. This coating solution was applied to a copper foil having a thickness of 40 μm, dried at 90 ° C. for 30 minutes, punched out to 19φ, and pressed at 1.5 × 10 8 Pa. This was impregnated with a 3% pitch-containing toluene solution and dried, and then fired at 850 ° C. for 3 hours in a nitrogen atmosphere.
In this way, a negative electrode having a thickness of 150 μm and a density of 1.4 g / cm 3 in which the copper foil supporting the active material was covered with the carbonaceous material was prepared. Others were performed similarly to Example 1. Table 1 shows the results
Shown in

【0026】実施例3.平均粒子径が0.5μmのケイ
素粉を用いて負極を調製した以外は、実施例1と同様に
行なった。結果を表1に示す。
Embodiment 3 FIG. The procedure was performed in the same manner as in Example 1 except that a negative electrode was prepared using silicon powder having an average particle diameter of 0.5 μm. Table 1 shows the results.

【0027】比較例1.以下に示す方法により負極を調
製した。市販のケイ素粉〔高純度化学製99.9%品、
平均粒子径約1μm〕70gと天然黒鉛(関西熱化学製
NG2、平均粒子径約2μm)20gをフェノールホル
ムアルデヒド樹脂のNMP溶液(20%溶液)200g
と混合して、振動ミルで30分間均一分散して塗液を調
製した。この塗液を厚さ40μmの銅箔上にギャップ4
50μmのアプリケータを用いて塗布し、90℃で30
分間乾燥してから、19φに打ち抜いて1.5×108
Paでプレスした。これを、焼成せずに、そのまま負極
とした。その他は、実施例1と同様に行った。結果を表
1に示す。
Comparative Example 1 A negative electrode was prepared by the following method. Commercially available silicon powder [99.9% high purity chemical product,
70 g of an average particle diameter of about 1 μm] and 20 g of natural graphite (NG2 manufactured by Kansai Thermochemical Co., Ltd., average particle diameter of about 2 μm) 200 g of an NMP solution (20% solution) of phenol formaldehyde resin
, And uniformly dispersed in a vibration mill for 30 minutes to prepare a coating liquid. This coating solution was coated on a copper foil having a thickness of 40 μm with a gap of 4 μm.
Apply using a 50 μm applicator,
After drying for 1 minute, punch out to 19φ and 1.5 × 10 8
Pressed at Pa. This was used as a negative electrode without firing. Other than that, it carried out similarly to Example 1. Table 1 shows the results.

【0028】比較例2.平均粒子径が0.3μmのケイ
素粉を用いた以外は、実施例1と同様に行った。結果を
表1に示す。
Comparative Example 2 The procedure was performed in the same manner as in Example 1 except that silicon powder having an average particle diameter of 0.3 μm was used. Table 1 shows the results.

【0029】比較例3.平均粒子径が0.3μmのケイ
素粉を用いた以外は、比較例1と同様に行った。結果を
表1に示す。
Comparative Example 3 The procedure was performed in the same manner as in Comparative Example 1, except that silicon powder having an average particle diameter of 0.3 μm was used. Table 1 shows the results.

【0030】比較例4.負極の塗膜の焼成温度を150
0℃とした以外は、実施例1と同様の方法で電池を組み
立て、サイクル試験を行なった。負極の色が焼成により
灰色に変化したことから、ケイ素化合物の生成を確認し
た。一方、実施例1,2,3、そして比較例1〜3の場
合、焼成後の負極は黒色であり、ケイ素化合物が生成し
ていないことを確認した。また、負極の裏面(銅箔面)
の灰色に変色した部分をX線回折により分析したとこ
ろ、CuとSiからなる化合物に帰属されるピークが認
められたことから、ケイ素と集電体の銅箔も反応したと
考えられる。この負極を用いた電池の充放電容量は非常
に小さい値であった。結果を表1に示す。
Comparative Example 4 The firing temperature of the coating film of the negative electrode was 150
A battery was assembled in the same manner as in Example 1 except that the temperature was set to 0 ° C., and a cycle test was performed. The formation of the silicon compound was confirmed from the fact that the color of the negative electrode changed to gray by firing. On the other hand, in Examples 1, 2, and 3 and Comparative Examples 1 to 3, the negative electrode after firing was black, and it was confirmed that no silicon compound was generated. Also, the back side of the negative electrode (copper foil side)
When the part discolored to gray was analyzed by X-ray diffraction, a peak attributed to a compound consisting of Cu and Si was recognized. It is considered that silicon and the copper foil of the current collector also reacted. The charge / discharge capacity of the battery using this negative electrode was a very small value. Table 1 shows the results.

【0031】ESCAによる分析より、実施例1,2,
3、そして比較例2はケイ素粒子が負極の表面に露出し
ておらず、炭素質材料で被覆されていることが確認でき
た。そして、実施例1は比較例1に比べ、初期容量及び
容量保存率が大きく向上した。さらに、集電体を炭素質
材料で被覆することにより(実施例2)、より容量保持
率が向上した。
According to the analysis by ESCA, Examples 1, 2 and
3 and Comparative Example 2 confirmed that the silicon particles were not exposed on the surface of the negative electrode and were covered with the carbonaceous material. In Example 1, the initial capacity and the capacity storage rate were greatly improved as compared with Comparative Example 1. Further, by coating the current collector with a carbonaceous material (Example 2), the capacity retention rate was further improved.

【0032】また、比較例1の電極を浸漬した電解液を
GC−MSで分析したところ、溶媒のジメチルカーボネ
ートと電解質のLiPF6とがケイ素表面で反応して生
成したジフルオロリン酸メチルが検出された。さらに、
浸漬した電極をESCAで分析したところ、構造は明ら
かではないが、ケイ素とフッ素を含む化合物が検出さ
れ、ケイ素粒子が電解液と直接反応することを確認でき
た。
When the electrolyte in which the electrode of Comparative Example 1 was immersed was analyzed by GC-MS, methyl difluorophosphate generated by the reaction of dimethyl carbonate as a solvent and LiPF 6 as an electrolyte on the silicon surface was detected. Was. further,
When the immersed electrode was analyzed by ESCA, the structure was not clear, but a compound containing silicon and fluorine was detected, and it was confirmed that the silicon particles reacted directly with the electrolytic solution.

【0033】また、原料に粒子径が0.3μmのケイ素
粉を用いた比較例2は、1μmのケイ素粉を用いた実施
例1に比べ、正極及び負極が短絡する割合が増加した。
さらに、ケイ素が炭素質材料で被覆されていない比較例
3では、溶媒と電解質のLiPF6との反応生成物が検
出され、初期容量も容量保持率も低下した。原料のケイ
素粉末の粒子径が小さいと電解液との接触面積が増加
し、電解液との反応が進行し易くなるだけでなく、セパ
レータを貫通し易いためと考えられる。
In Comparative Example 2 in which silicon powder having a particle diameter of 0.3 μm was used as a raw material, the ratio of short-circuiting between the positive electrode and the negative electrode was increased as compared with Example 1 in which silicon powder having a particle diameter of 1 μm was used.
Furthermore, in Comparative Example 3 in which silicon was not coated with the carbonaceous material, a reaction product of the solvent and the electrolyte LiPF 6 was detected, and both the initial capacity and the capacity retention were reduced. It is considered that when the particle diameter of the silicon powder as the raw material is small, the contact area with the electrolytic solution increases, so that not only the reaction with the electrolytic solution easily progresses but also the separator easily penetrates.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】以上、述べたように、本発明の非水系二
次電池は、負極が負極活物質のケイ素と炭素との焼結体
であって、ケイ素粒子が炭素質材料で被覆されているの
で、ケイ素と電解液との反応を抑制でき、電池の保存安
定性を向上させることができる。
As described above, in the non-aqueous secondary battery of the present invention, the negative electrode is a sintered body of silicon and carbon as the negative electrode active material, and the silicon particles are coated with the carbonaceous material. Therefore, the reaction between silicon and the electrolyte can be suppressed, and the storage stability of the battery can be improved.

【0036】また、本発明の非水系二次電池は、ケイ素
粒子と炭素質材料又は熱処理により炭素質材料になる有
機材料を含む塗膜を集電体上に形成し、非酸化性雰囲気
で焼結して調製された負極を用いるので、ケイ素粒子を
炭素質材料で容易に被覆することができる。
Further, the non-aqueous secondary battery of the present invention forms a coating film containing silicon particles and a carbonaceous material or an organic material which becomes a carbonaceous material by heat treatment on a current collector and fires the coating in a non-oxidizing atmosphere. Since the thus prepared negative electrode is used, the silicon particles can be easily coated with the carbonaceous material.

【0037】また、本発明の非水系二次電池は、集電体
を炭素質材料で被覆したので、過放電時における集電体
の溶出を抑制できるため、電池の保存安定性をさらに向
上させることができる。
Further, in the non-aqueous secondary battery of the present invention, since the current collector is coated with the carbonaceous material, elution of the current collector during overdischarge can be suppressed, and the storage stability of the battery is further improved. be able to.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 淳 和歌山県和歌山市湊1334番地 花王株式 会社研究所内 (72)発明者 平林 忠 和歌山県和歌山市湊1334番地 花王株式 会社研究所内 (56)参考文献 特開 平2−215043(JP,A) 特開 平11−40158(JP,A) 特開 平10−321226(JP,A) 特開 平8−213012(JP,A) 特開 平6−279112(JP,A) 特開 平11−297311(JP,A) 特開 平11−135120(JP,A) 特開 平8−236104(JP,A) 特開 平5−270938(JP,A) 特開 平5−286763(JP,A) 特開 平8−231273(JP,A) 特開 平7−315822(JP,A) 特開 平8−40716(JP,A) 特開 平6−96759(JP,A) 特開2000−36323(JP,A) 国際公開98/24135(WO,A1) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/38 - 4/62 H01M 10/40 ──────────────────────────────────────────────────続 き Continued on the front page (72) Atsushi Suzuki, Inventor 1334, Minato, Wakayama, Wakayama Prefecture, Japan Kao Co., Ltd. (72) Inventor Tada Hirabayashi, 1334, Minato, Wakayama, Wakayama Prefecture, Japan Kao Corporation (56) References JP-A-2-215043 (JP, A) JP-A-11-40158 (JP, A) JP-A-10-321226 (JP, A) JP-A-8-213012 (JP, A) JP-A-6-279112 (JP, A) JP-A-11-297311 (JP, A) JP-A-11-135120 (JP, A) JP-A-8-236104 (JP, A) JP-A-5-270938 (JP, A) Japanese Unexamined Patent Publication No. Hei 5-286763 (JP, A) Japanese Unexamined Patent Publication No. Hei 8-231273 (JP, A) Japanese Unexamined Patent Publication No. Hei 7-315822 (JP, A) Japanese Unexamined Patent Publication No. Hei 8-40716 (JP, A) Japanese Unexamined Patent Publication No. Hei 6-96759 (Japanese) JP, A) JP-A-2000-36323 (JP, A) WO 98/24135 (W O, A1) (58) Field surveyed (Int. Cl. 7 , DB name) H01M 4/02-4/04 H01M 4/38-4/62 H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リチウムイオンを吸蔵・放出可能な活物
質を含む、正極と負極と、リチウムイオン導電性の電解
液とを有する非水系二次電池であって、 負極が、 導電性金属から成り炭素質材料で被覆された集電体と、 集電体上に形成された、負極活物質のケイ素と炭素質材
料との焼結体と、から成り、 焼結体中のケイ素粒子が炭素質材料で被覆されて成る非
水系二次電池。
1. A non-aqueous secondary battery including a positive electrode, a negative electrode, and a lithium-ion conductive electrolyte containing an active material capable of inserting and extracting lithium ions, wherein the negative electrode is made of a conductive metal. A current collector coated with a carbonaceous material, and a sintered body of silicon as a negative electrode active material and a carbonaceous material formed on the current collector, and the silicon particles in the sintered body are made of carbonaceous material. A non-aqueous secondary battery coated with a material.
【請求項2】 上記負極が、ケイ素粒子と、炭素質材料
又は熱処理により炭素質材料になる有機材料とを含む塗
膜を集電体上に形成し、塗膜と集電体とを、炭素質材料
又は熱処理により炭素質材料になる有機材料とを含む塗
液に浸漬又は集電体に該塗液を塗布し、乾燥し、非酸化
雰囲気で焼結して成る請求項1記載の非水系二次電池。 雰囲気で焼結して成る請求項の非水系二次電池。
2. The method according to claim 1, wherein the negative electrode forms a coating film containing silicon particles and a carbonaceous material or an organic material that becomes a carbonaceous material by heat treatment on the current collector. 2. The non-aqueous system according to claim 1, wherein the non-aqueous system is formed by immersing in a coating solution containing a porous material or an organic material which becomes a carbonaceous material by heat treatment or applying the coating solution to a current collector, drying and sintering in a non-oxidizing atmosphere. Rechargeable battery. The non-aqueous secondary battery according to claim 1, which is sintered in an atmosphere.
JP11341833A 1999-12-01 1999-12-01 Non-aqueous secondary battery Expired - Fee Related JP3124272B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11341833A JP3124272B1 (en) 1999-12-01 1999-12-01 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11341833A JP3124272B1 (en) 1999-12-01 1999-12-01 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP3124272B1 true JP3124272B1 (en) 2001-01-15
JP2001160392A JP2001160392A (en) 2001-06-12

Family

ID=18349113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11341833A Expired - Fee Related JP3124272B1 (en) 1999-12-01 1999-12-01 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP3124272B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8808919B2 (en) 2008-12-01 2014-08-19 Samsung Sdi Co., Ltd. Negative electrode active material, negative electrode having the same and lithium secondary battery
CN108666521A (en) * 2017-03-28 2018-10-16 新强能电池公司 The method that carbon-silicon composite is formed on current-collector

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1313158A3 (en) 2001-11-20 2004-09-08 Canon Kabushiki Kaisha Electrode material for rechargeable lithium battery, electrode comprising said electrode material, rechargeable lithium battery having said electrode , and process for the production thereof
JP4965790B2 (en) * 2002-10-28 2012-07-04 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
KR101107041B1 (en) 2002-05-08 2012-01-25 가부시키가이샤 지에스 유아사 Nonaqueous electrolyte secondary cell
JP2004095306A (en) * 2002-08-30 2004-03-25 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2004127535A (en) * 2002-09-30 2004-04-22 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, and lithium secondary battery
JP4025995B2 (en) 2002-11-26 2007-12-26 信越化学工業株式会社 Nonaqueous electrolyte secondary battery negative electrode material, method for producing the same, and lithium ion secondary battery
JP2004259475A (en) * 2003-02-24 2004-09-16 Osaka Gas Co Ltd Lithium secondary battery negative electrode material and its manufacturing method as well as lithium secondary battery using the same
JP2005149786A (en) * 2003-11-12 2005-06-09 Sanyo Electric Co Ltd Lithium secondary battery and its manufacturing method
JP4497904B2 (en) * 2003-12-04 2010-07-07 三洋電機株式会社 Lithium secondary battery and manufacturing method thereof
JP4744076B2 (en) * 2003-12-09 2011-08-10 三洋電機株式会社 Lithium secondary battery and manufacturing method thereof
JP4747514B2 (en) * 2004-05-31 2011-08-17 パナソニック株式会社 Method for producing negative electrode for lithium ion secondary battery
JP5230904B2 (en) * 2005-06-17 2013-07-10 パナソニック株式会社 Non-aqueous electrolyte secondary battery
EP1909298B1 (en) 2005-06-30 2019-05-08 Showa Denko K.K. Method for producing solid electrolytic capacitor
KR101483123B1 (en) * 2006-05-09 2015-01-16 삼성에스디아이 주식회사 Anode active material comprising metal nanocrystal composite, method of preparing the same, and anode and lithium battery having the material
JP5348878B2 (en) * 2007-02-21 2013-11-20 Jfeケミカル株式会社 Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US8940192B2 (en) 2008-12-26 2015-01-27 Sekisui Chemical Co., Ltd. Process for producing carbon particles for electrode, carbon particles for electrode, and negative-electrode material for lithium-ion secondary battery
DE102009033739A1 (en) * 2009-07-17 2011-01-27 Evonik Degussa Gmbh Nanostructured silicon-carbon composites for battery electrodes
JP5369031B2 (en) * 2009-08-11 2013-12-18 積水化学工業株式会社 Carbon material, electrode material, and negative electrode material for lithium ion secondary battery
CN102834955B (en) * 2010-01-18 2016-01-20 新强能电池公司 For the composite material of electrochemical storage
US20170040598A1 (en) 2015-08-07 2017-02-09 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US11380890B2 (en) 2010-01-18 2022-07-05 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US10461366B1 (en) 2010-01-18 2019-10-29 Enevate Corporation Electrolyte compositions for batteries
US9553303B2 (en) 2010-01-18 2017-01-24 Enevate Corporation Silicon particles for battery electrodes
JP5970752B2 (en) * 2011-07-04 2016-08-17 日本電気株式会社 Manufacturing method of secondary battery
WO2014007161A1 (en) * 2012-07-06 2014-01-09 東レ株式会社 Negative electrode material for lithium ion secondary batteries, composite negative electrode material for lithium ion secondary batteries, resin composition for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
EP3435447B1 (en) * 2013-03-13 2020-10-14 Enevate Corporation Silicon particles for battery electrodes
CN116995210A (en) 2017-12-07 2023-11-03 新强能电池公司 Composite comprising silicon carbide and carbon particles
JP2020123465A (en) * 2019-01-30 2020-08-13 株式会社Gsユアサ Anode and manufacturing method of anode
US20230163309A1 (en) 2021-11-22 2023-05-25 Enevate Corporation Silicon based lithium ion battery and improved cycle life of same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8808919B2 (en) 2008-12-01 2014-08-19 Samsung Sdi Co., Ltd. Negative electrode active material, negative electrode having the same and lithium secondary battery
CN108666521A (en) * 2017-03-28 2018-10-16 新强能电池公司 The method that carbon-silicon composite is formed on current-collector
CN108666521B (en) * 2017-03-28 2023-08-25 新强能电池公司 Method for forming carbon-silicon composite material on current collector

Also Published As

Publication number Publication date
JP2001160392A (en) 2001-06-12

Similar Documents

Publication Publication Date Title
JP3124272B1 (en) Non-aqueous secondary battery
JP2948205B1 (en) Method for producing negative electrode for secondary battery
KR101513819B1 (en) Powder for negative electrode material of lithium ion secondary battery, negative electrode for lithium ion secondary battery and negative electrode for capacitor using same, and lithium ion secondary battery and capacitor
EP3203548B1 (en) Anode, lithium secondary battery comprising same, battery module comprising the lithium secondary battery
KR101495451B1 (en) Powder for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode and capacitor negative electrode, and lithium ion secondary battery and capacitor
CN108321438B (en) Full-graphite lithium-sulfur battery and preparation method thereof
JP3202249B2 (en) Anode material for non-aqueous secondary battery and non-aqueous secondary battery
CN109346710B (en) Lithium titanate nitride-aluminum oxide nitride composite material and preparation method and application thereof
KR101509358B1 (en) Powder for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode, capacitor negative electrode, lithium ion secondary battery, and capacitor
JP3243239B2 (en) Method for producing positive electrode for non-aqueous secondary battery
JP2948206B1 (en) Anode materials for non-aqueous secondary batteries
JP2000173596A (en) Nonaqueous secondary battery
JPH11339778A (en) Manufacture of secondary battery negative electrode
JP3218285B2 (en) Organic electrolyte battery
JP3510175B2 (en) Method for producing negative electrode for secondary battery
JPH1125982A (en) Negative electrode material for non-aqueous electrolyte battery
WO2015023857A1 (en) Lithium sulfur cell and preparation method
CN114097108A (en) Cathode material, preparation method thereof, electrochemical device and electronic device
JP3268770B2 (en) Non-aqueous secondary battery
JP3506386B2 (en) Non-aqueous electrolyte secondary battery
KR101693711B1 (en) Preparation method of lithium titanium oxide particles coated with carbon and nitrogen, electrode active material and lithium secondary batteries
US11728509B2 (en) Rechargeable high energy density magnesium / magnesium sulfide battery
CN115036492B (en) Preparation method, product and application of lithium ion battery surface modified silicon anode material
JP2000251879A (en) Nonaqueous secondary battery
JP2002100345A (en) Manufacturing method of positive electrode for nonaqueous secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071027

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees