JP2000273121A - Chlorinated polyvinyl chloride-based resin and its manufacture - Google Patents

Chlorinated polyvinyl chloride-based resin and its manufacture

Info

Publication number
JP2000273121A
JP2000273121A JP29384199A JP29384199A JP2000273121A JP 2000273121 A JP2000273121 A JP 2000273121A JP 29384199 A JP29384199 A JP 29384199A JP 29384199 A JP29384199 A JP 29384199A JP 2000273121 A JP2000273121 A JP 2000273121A
Authority
JP
Japan
Prior art keywords
vinyl chloride
chlorine
chloride resin
same manner
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29384199A
Other languages
Japanese (ja)
Inventor
Yuki Goto
祐樹 後藤
Yukio Shibazaki
行雄 柴崎
Yoshihiko Eguchi
吉彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP29384199A priority Critical patent/JP2000273121A/en
Publication of JP2000273121A publication Critical patent/JP2000273121A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a resin showing excellent in heat stability and gelation by forming the resin having a specific content of chlorine, a specific void ratio and a specific ratio of a specific void volume to total void volume. SOLUTION: A chlorinated polyvinyl chloride of the present invention has a chlorine content of 72-76 wt.%, a void ratio measured by means of mercury pressurization at 196 MPa of 30-40 vol.% and a void ratio of a void volume of distributed micro pores, the void volume being 0.001-0.1 μm, measured by means of mercury pressurization at 0-196 MPa to a total void volume of 2-15 vol.%. A formed item thereof shows a vicat softening temperature of not less than 145 deg.C under a load of 9.8 N, a Charpy impact strength of not less than 10 kJ/m2. A chlorinated polyvinyl chloride resin is obtained by chlorinating a polyvinyl chloride resin as a raw material, the polyvinyl chloride resin being suspended in an aqueous solution, which has an average polymerization degree of 400-3,000, BET specific surface area of 1.3-8 m2/g and a peak ratio of 1s bond energy of carbon element to that of chlorine element by surface analysis of not less than 0.6, with liquid chlorine or gaseous chlorine introduced to a reaction vessel at 70-135 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、塩素化塩化ビニル
系樹脂及びその製造方法に関する。
The present invention relates to a chlorinated vinyl chloride resin and a method for producing the same.

【0002】[0002]

【従来の技術】塩化ビニル系樹脂(以下、PVCとい
う)は、機械的強度、耐候性、耐薬品性に優れた材料と
して、多くの分野に用いられている。しかしながら、耐
熱性に劣るため、PVCを塩素化することにより耐熱性
を向上させた塩素化塩化ビニル系樹脂(以下、CPVC
という)が開発されている。
2. Description of the Related Art Vinyl chloride resin (hereinafter, referred to as PVC) is used in many fields as a material having excellent mechanical strength, weather resistance and chemical resistance. However, since the heat resistance is poor, chlorinated vinyl chloride resin (hereinafter referred to as CPVC) having improved heat resistance by chlorinating PVC.
Has been developed.

【0003】PVCは、熱変形温度が低く使用可能な上
限温度が60〜70℃付近であるため、熱水に対して使
用できないのに対し、CPVCは熱変形温度がPVCよ
りも20〜40℃も高いため、熱水に対しても使用可能
であり、例えば、給湯管に代表される耐熱管、耐熱バル
ブ、耐熱プレートに好適に使用されている。又、CPV
Cを用いることにより、従来使用されてきた金属管、金
属プレート等において問題であった腐食による錆発生も
なくなった。
[0003] PVC has a low heat distortion temperature and the maximum usable temperature is around 60 to 70 ° C, so that it cannot be used for hot water, whereas CPVC has a heat deformation temperature of 20 to 40 ° C than PVC. Therefore, it can be used for hot water, and is suitably used, for example, for heat-resistant pipes such as hot-water supply pipes, heat-resistant valves, and heat-resistant plates. Also, CPV
By using C, the generation of rust due to corrosion, which has been a problem in conventionally used metal tubes, metal plates, and the like, has been eliminated.

【0004】しかしながら、CPVCは熱変形温度が高
いため、成形加工時にゲル化させるには高温と強い剪断
力とを必要とし、成形加工時に分解して着色しやすいと
いう傾向があった。したがって、CPVCは成形加工幅
が狭く、不充分なゲル化状態で製品化されることが多
く、素材のもつ性能を充分発揮できているとはいえなか
った。又、これらゲル化性向上の要求に加えて、耐熱管
等の場合、安全装置の作動不良等が原因で、100℃以
上の高温蒸気が発生した場合、これらが膨張して、変
形、破裂することがあり、より高い耐熱性も必要になっ
てきている。
However, since CPVC has a high heat deformation temperature, it requires a high temperature and a strong shearing force to gel during molding, and tends to be decomposed and colored during molding. Therefore, CPVC is often formed into a product with an insufficient gelling state due to a narrow molding width, and it cannot be said that the performance of the material can be sufficiently exhibited. In addition to these demands for improving the gelling properties, in the case of heat-resistant tubes and the like, when high-temperature steam of 100 ° C. or more is generated due to malfunction of safety devices, they expand, deform, and burst. In some cases, higher heat resistance is also required.

【0005】このような問題を解決するために、例え
ば、特開平5−132602号公報には、CPVCとP
VCを特定の粘度範囲内になるようにブレンドし、高耐
熱性を得る方法が提案されている。しかしながら、この
方法では、耐熱性は、例えば、ビカット軟化温度値で3
〜4℃の向上効果と溶融粘度の改善による若干のゲル化
性能の向上が期待できる程度であり、より高い熱変形温
度とゲル化性能の向上には不十分である。
In order to solve such a problem, for example, Japanese Patent Laid-Open No. 5-132602 discloses a CPVC and a PVC.
A method has been proposed in which VC is blended so as to be within a specific viscosity range to obtain high heat resistance. However, in this method, the heat resistance is, for example, 3 in Vicat softening temperature value.
The effect of improving the melt viscosity by up to 4 ° C. and the improvement of the gelling performance can be expected to a certain extent, which is insufficient for a higher heat distortion temperature and a higher gelling performance.

【0006】更に、例えば、特開平6‐128320号
公報には、塩化ビニル系樹脂の塩素化方法において、2
段階の工程での塩素化(2段階後塩素化法)方法が提案
されている。この方法では塩素の重量%が70〜75重
量%という高い塩素化を達成しており、塩素含有率に応
じて耐熱性の高いCPVCが得られる。しかしながら、
この方法では、高塩素化により予測されるゲル化性の悪
化を抑制する手段が示されていないため、この方法は高
い耐熱性と良好なゲル化性の両方の性質を合わせ持つC
PVCの製造方法を開示するものではない。また、特開
平4‐81446号公報には、特定の塩素含有率の樹脂
組成物と耐衝撃性強化剤とを用いて、高い熱変形温度を
得る方法が開示されているが、我々が目指す高耐熱レベ
ルには十分ではない。
Further, for example, JP-A-6-128320 discloses a method for chlorinating a vinyl chloride resin.
A chlorination (two-stage post-chlorination method) method in a step process has been proposed. In this method, high chlorination of 70% to 75% by weight of chlorine is achieved, and CPVC having high heat resistance can be obtained according to the chlorine content. However,
This method does not show any means for suppressing the deterioration of the gelling property expected due to high chlorination. Therefore, this method is a C method having both high heat resistance and good gelling property.
It does not disclose a method for producing PVC. Japanese Patent Application Laid-Open No. 4-81446 discloses a method for obtaining a high heat distortion temperature by using a resin composition having a specific chlorine content and an impact resistance reinforcing agent. Not enough for heat-resistant level.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記現状に
鑑み、耐熱性とゲル化性能に優れた塩素化塩化ビニル系
樹脂及びその製造方法及びその成形体を提供することを
目的とする。
SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a chlorinated vinyl chloride resin excellent in heat resistance and gelling performance, a method for producing the same, and a molded product thereof.

【0008】[0008]

【課題を解決するための手段】本発明の塩素化塩化ビニ
ル系樹脂は、塩化ビニル系樹脂を塩素化してなる塩素化
塩化ビニル系樹脂であって、塩素含有率は、72〜76
重量%であり、水銀圧入法により圧力196MPaで測
定した空隙率は、30〜40容量%であり、水銀圧入法
により圧力が0〜196MPaで測定した細孔容積分布
において、0.001〜0.1μmの空隙容積は、全空
隙容積の2〜15容積%である。以下に本発明を詳述す
る。
The chlorinated vinyl chloride resin of the present invention is a chlorinated vinyl chloride resin obtained by chlorinating a vinyl chloride resin, and has a chlorine content of 72 to 76.
% By weight, and the porosity measured at a pressure of 196 MPa by a mercury intrusion method is 30 to 40% by volume. In a pore volume distribution measured at a pressure of 0 to 196 MPa by a mercury intrusion method, 0.001 to 0. A void volume of 1 μm is 2 to 15% by volume of the total void volume. Hereinafter, the present invention will be described in detail.

【0009】本発明のCPVCは、塩化ビニル単量体
(以下、VCMという)単独、又は、VCM及びVCM
と共重合可能な他の単量体の混合物を公知の方法で重合
してなる樹脂を塩素化することにより得られる。上記V
CMと共重合可能な他の単量体としては特に限定され
ず、例えば、酢酸ビニル等のアルキルビニルエステル
類;エチレン、プロピレン等のα‐モノオレフィン類;
塩化ビニリデン;スチレン等が挙げられる。これらは単
独で用いられてもよく、2種以上が併用されてもよい。
The CPVC of the present invention may be a vinyl chloride monomer (hereinafter referred to as VCM) alone, or VCM and VCM.
It can be obtained by chlorinating a resin obtained by polymerizing a mixture of other monomers copolymerizable with the above by a known method. V above
Other monomers copolymerizable with CM are not particularly limited, and include, for example, alkyl vinyl esters such as vinyl acetate; α-monoolefins such as ethylene and propylene;
Vinylidene chloride; styrene and the like. These may be used alone or in combination of two or more.

【0010】本発明のCPVCの塩素含有率は72〜7
6重量%である。塩素含有率が72重量%未満になると
耐熱性の向上、例えば、ビカット軟化温度値で65〜8
0℃の耐熱性の向上には不十分となり、現在用いられて
いる耐熱製品群よりも更に耐熱性が要求される分野にお
ける使用が難しくなる。また、塩素含有率が76重量%
を超えると成形加工が困難となりゲル化が不十分とな
る。また、反応性を上げるために触媒添加量が多くなる
ため、熱安定性が悪くなる。工業的に製造する場合、品
質と生産性の兼ね合いから塩素含有率の上限は76重量
%である。好ましくは72〜74重量%である。
The chlorine content of the CPVC of the present invention is 72-7.
6% by weight. When the chlorine content is less than 72% by weight, the heat resistance is improved, for example, the Vicat softening temperature is 65 to 8
It is insufficient to improve the heat resistance at 0 ° C., and it becomes difficult to use the heat-resistant products in fields requiring more heat resistance than currently used heat-resistant products. The chlorine content is 76% by weight.
If it exceeds 3, the molding process becomes difficult and gelation becomes insufficient. In addition, since the amount of the catalyst to be added is increased to increase the reactivity, the thermal stability is deteriorated. In the case of industrial production, the upper limit of the chlorine content is 76% by weight in view of the balance between quality and productivity. Preferably it is 72 to 74% by weight.

【0011】本発明のCPVCの空隙率は、30〜40
容量%である。前記空隙率は、水銀圧入法により圧力1
96MPaで測定される。空隙率が30容量%未満にな
ると、成形加工時のゲル化が遅くなり成形加工上好まし
くなく、40容量%を超えると、成形時にスクリューへ
の食い込みが悪くなり、ゲル化性が劣る。好ましくは、
31〜38容量%である。
The porosity of the CPVC of the present invention is 30-40.
% By volume. The porosity is determined by a mercury intrusion method at a pressure of 1
It is measured at 96 MPa. If the porosity is less than 30% by volume, the gelation during the molding process becomes slow, which is not preferable in the molding process. If the porosity exceeds 40% by volume, the bite into the screw during the molding becomes poor and the gelling property is inferior. Preferably,
It is 31 to 38% by volume.

【0012】本発明のCPVCは、水銀圧入法により圧
力が0〜196MPaで測定した細孔容積分布におい
て、0.001〜0.1μmの空隙容積が、全空隙容積
の2〜15容積%である。樹脂粒子内の空隙細孔径は、
樹脂の空隙細孔部に圧入される水銀の圧力との関数にな
っているため、圧入圧力と水銀重量を連続的に測定すれ
ば、細孔径の分布が測定できる。0.001〜0.1μ
mの範囲の空隙容積が、全空隙容積中の2容積%未満で
あると、粒子内部の微細孔の割合が少ないため成形加工
時のゲル化性に劣り、15容積%を超えると、塩素化時
の塩素の拡散がバランスよく行われておらず、粒子内の
塩素化度分布が大きくなりすぎて、熱安定性がよくな
い。好ましくは、0.001〜0.1μmの範囲の空隙
容積が、全空隙容積中の3〜13容積%である。
In the CPVC of the present invention, the pore volume of 0.001 to 0.1 μm is 2 to 15% by volume of the total pore volume in the pore volume distribution measured at a pressure of 0 to 196 MPa by a mercury intrusion method. . The pore size of the pores in the resin particles is
Since the pressure is a function of the pressure of mercury injected into the pores of the resin, the pore size distribution can be measured by continuously measuring the injection pressure and the mercury weight. 0.001-0.1μ
If the void volume in the range of m is less than 2% by volume of the total void volume, the proportion of micropores inside the particles is small, resulting in poor gelling property during molding. If it exceeds 15% by volume, chlorination occurs. The diffusion of chlorine at the time is not performed in a well-balanced manner, and the chlorination degree distribution in the particles becomes too large, resulting in poor thermal stability. Preferably, the void volume in the range of 0.001 to 0.1 μm is 3 to 13% by volume of the total void volume.

【0013】本発明2のCPVCは、BET比表面積値
が2〜12m2 /gである。BET比表面積が2m2
g未満になると、粒子内部の微細孔の割合が少ないた
め、成形加工時に、粒子内溶融が起こりにくくなりゲル
化性に劣る。BET比表面積値が12m2 /gを超える
と、内部からの摩擦熱の発生が急激に起こり成形時の熱
安定性が劣る。好ましいBET比表面積値は3〜10m
2 /gである。
The CPVC of the present invention 2 has a BET specific surface area of 2 to 12 m 2 / g. BET specific surface area is 2m 2 /
If it is less than g, the ratio of the micropores inside the particle is small, so that the melting in the particle hardly occurs during the molding process, and the gelling property is poor. If the BET specific surface area value exceeds 12 m 2 / g, the generation of frictional heat from the inside will occur rapidly, and the thermal stability during molding will be poor. Preferred BET specific surface area value is 3 to 10 m
2 / g.

【0014】本発明3の塩素化塩化ビニル系樹脂は、更
に、ESCA分析(電子分光化学分析)による粒子表面
分析において、炭素元素と塩素元素との1S結合エネル
ギー値(eV)におけるピーク比(塩素元素ピーク/炭
素元素ピーク)が、0.6を超えるものである本発明1
又は2のCPVCである。
The chlorinated vinyl chloride resin of the present invention 3 further has a peak ratio (chlorine) at 1S bond energy value (eV) between carbon element and chlorine element in particle surface analysis by ESCA analysis (electron spectrochemical analysis). The present invention 1 in which the element peak / carbon element peak) exceeds 0.6.
Or 2 CPVC.

【0015】上記ピーク比が0.6以下であると、CP
VC粒子表面に分散剤等の添加剤が吸着していると考え
られるため、成形加工上好ましくない。上記ピーク比
は、好ましくは、0.7を超えるものである。
When the peak ratio is 0.6 or less, CP
It is considered that an additive such as a dispersant is adsorbed on the surface of the VC particles, which is not preferable for molding. The peak ratio is preferably greater than 0.7.

【0016】上記ピーク比が0.6を超えるCPVCの
中には、CPVC粒子表面の表皮(以下、スキンとい
う)面積が少なく、粒子内部の微細構造(1次粒子)が
露出している粒子(スキンレスCPVCという)が存在
する。
Among the CPVC having a peak ratio of more than 0.6, particles having a small surface area (hereinafter referred to as skin) on the surface of the CPVC particles and exposing a fine structure (primary particles) inside the particles ( Skinless CPVC).

【0017】上記CPVCの化学的構造の原子存在比
は、塩素含有率72重量%の場合、塩素原子/炭素原子
=1.89/2であり(末端構造、分岐を考慮しないと
き)、上記1S結合エネルギー値(eV)におけるピー
ク比が0.945であれば、CPVC粒子表面が、完全
に塩素化塩化ビニル成分のみで覆われていることを意味
する。
The atomic abundance ratio of the chemical structure of the above-mentioned CPVC is such that when the chlorine content is 72% by weight, chlorine atom / carbon atom = 1.89 / 2 (when the terminal structure and branching are not taken into account). If the peak ratio in the binding energy value (eV) is 0.945, it means that the surface of the CPVC particles is completely covered with only the chlorinated vinyl chloride component.

【0018】上記に示した空隙率、細孔分布、BET比
表面積値及び1S結合エネルギー値(eV)におけるピ
ーク比を有するCPVCは、例えば、分散剤として高ケ
ン化度(60〜90モル%)若しくは低ケン化度(20
〜60モル%)又はその両方のポリ酢酸ビニル、高級脂
肪酸エステル類等を、乳化剤としてアニオン系乳化剤、
ノニオン系乳化剤等を添加して、水懸濁重合することに
より得られるPVCを塩素化することにより得られる。
CPVC having the above porosity, pore distribution, BET specific surface area value and peak ratio at 1S binding energy value (eV) can be used, for example, as a dispersant with a high degree of saponification (60 to 90 mol%). Or low saponification degree (20
Anionic emulsifiers as emulsifiers, such as polyvinyl acetate, higher fatty acid esters, etc.
It can be obtained by adding a nonionic emulsifier or the like and chlorinating PVC obtained by water suspension polymerization.

【0019】本発明のCPVCの製造方法は、上記の性
質を有するCPVCが得られる方法であれば、特に限定
されるわけではないが、例えば、本発明4の塩素化塩化
ビニル系樹脂の製造方法が挙げられる。
The method for producing the CPVC of the present invention is not particularly limited as long as it is a method capable of obtaining the CPVC having the above properties. For example, the method for producing the chlorinated vinyl chloride resin of the present invention 4 Is mentioned.

【0020】本発明4の塩素化塩化ビニル系樹脂の製造
方法は、塩化ビニル系樹脂を塩素化してなる塩素化塩化
ビニル系樹脂の製造方法であって、前記塩化ビニル系樹
脂は、BET比表面積値が1.3〜8m2 /gであり、
ESCA分析(電子分光化学分析)による粒子表面分析
において、炭素元素と塩素元素との1S結合エネルギー
値(eV)におけるピーク比(塩素元素ピーク×2/炭
素元素ピーク)が、0.6を超えるものであり、前記塩
素化において、塩化ビニル系樹脂を水性媒体中で懸濁状
態となした状態で、反応器内に液体塩素又は気体塩素を
導入し、反応温度を70〜135℃の範囲で塩素含有率
72〜76重量%まで塩素化反応を行うものである。
The method for producing a chlorinated vinyl chloride resin of the present invention 4 is a method for producing a chlorinated vinyl chloride resin obtained by chlorinating a vinyl chloride resin, wherein the vinyl chloride resin has a BET specific surface area. The value is 1.3 to 8 m 2 / g,
In the particle surface analysis by ESCA analysis (electron spectrochemical analysis), the peak ratio (chlorine element peak x 2 / carbon element peak) at 1S bond energy value (eV) between carbon element and chlorine element exceeds 0.6. In the chlorination, liquid chlorine or gaseous chlorine is introduced into the reactor in a state where the vinyl chloride resin is suspended in an aqueous medium, and the reaction temperature is in the range of 70 to 135 ° C. The chlorination reaction is carried out up to a content of 72 to 76% by weight.

【0021】本発明4の製造方法で用いられるPVCと
は、VCM単独、又は、VCM及びVCMと共重合可能
な他の単量体の混合物を公知の方法で重合してなる樹脂
である。上記VCMと共重合可能な他の単量体としては
特に限定されず、例えば、酢酸ビニル等のアルキルビニ
ルエステル類;エチレン、プロピレン等のα‐モノオレ
フィン類;塩化ビニリデン;スチレン等が挙げられる。
これらは単独で用いられてもよく、2種以上が併用され
てもよい。
The PVC used in the production method of the present invention 4 is a resin obtained by polymerizing VCM alone or a mixture of VCM and another monomer copolymerizable with VCM by a known method. Other monomers copolymerizable with the VCM are not particularly limited, and include, for example, alkyl vinyl esters such as vinyl acetate; α-monoolefins such as ethylene and propylene; vinylidene chloride; styrene and the like.
These may be used alone or in combination of two or more.

【0022】上記PVCの平均重合度は特に限定され
ず、通常用いられる400〜3,000のものが使用で
きる。
The average degree of polymerization of the above PVC is not particularly limited, and those commonly used in the range of 400 to 3,000 can be used.

【0023】本発明4で用いられるPVCのBET比表
面積値は、1.3〜8m2 /gに限定される。BET比
表面積値が1.3m2 /g未満であると、PVC粒子内
部に0.1μm以下の微細孔が少なくなるため、塩素化
が均一になされなくなり、熱安定性が向上しなくなる。
また、ゲル化が遅く、成形加工上好ましくない。BET
比表面積値が8m2 /gを超えると、塩素化前のPVC
粒子自体の熱安定性が低下するため、得られるCPVC
の加工性が悪くなる。好ましくは、1.5〜5m2 /g
である。
The BET specific surface area of the PVC used in the present invention 4 is limited to 1.3 to 8 m 2 / g. If the BET specific surface area is less than 1.3 m 2 / g, the number of fine pores of 0.1 μm or less in the PVC particles is reduced, so that the chlorination is not uniform and the thermal stability is not improved.
In addition, the gelation is slow, which is not preferable for molding. BET
When the specific surface area exceeds 8 m 2 / g, PVC before chlorination is used.
Since the thermal stability of the particles themselves is reduced, the resulting CPVC
Deteriorates workability. Preferably, 1.5 to 5 m 2 / g
It is.

【0024】上記PVCは、ESCA分析(電子分光化
学分析)による粒子表面分析において、炭素元素と塩素
元素との1S結合エネルギー値(eV)におけるピーク
比(塩素元素ピーク×2/炭素元素ピーク)が、0.6
を超えるものに制限される。0.6以下であると、PV
C粒子表面に分散剤等の添加剤が吸着していると考えら
れるため、後工程での塩素化速度が遅くなるだけでな
く、得られるCPVCの成形加工性に問題を生じ、ま
た、熱安定性が劣るようになる。好ましくは、上記ピー
ク比が0.7を超えるものである。
The above PVC has a peak ratio (chlorine element peak × 2 / carbon element peak) in 1S bond energy value (eV) of carbon element and chlorine element in particle surface analysis by ESCA analysis (electron spectrochemical analysis). , 0.6
Is limited to more than When it is 0.6 or less, PV
Since it is considered that additives such as a dispersant are adsorbed on the surface of the C particles, not only does the chlorination rate in the subsequent process become slow, but also there is a problem in the molding processability of the obtained CPVC and heat stability. The sex becomes inferior. Preferably, the peak ratio exceeds 0.7.

【0025】上記ピーク比が0.6を超えるPVCの中
には、PVC粒子表面の表皮(以下、スキンという)面
積が少なく、粒子内部の微細構造(1次粒子)が露出し
ている粒子(スキンレスPVC)が存在する。同じエネ
ルギー比である場合は、スキンレスPVCを用いること
が好ましい。
Among the PVC having a peak ratio of more than 0.6, particles having a small skin (hereinafter referred to as skin) area on the surface of the PVC particles and exposing a fine structure (primary particles) inside the particles ( Skinless PVC). If the energy ratio is the same, it is preferable to use skinless PVC.

【0026】上記PVCの化学的構造の原子存在比は、
塩素原子/炭素原子=1/2であり(末端構造、分岐を
考慮しないとき)、上記1S結合エネルギー値(eV)
におけるピーク比(塩素元素ピーク×2/炭素元素ピー
ク)は0〜1の値となる。ピーク比が0の場合は、PV
C粒子表面がPVC以外の物質で、かつ、塩素を含まな
い他の物質により覆われていることを意味し、ピーク比
が1の場合は、PVC粒子表面が、完全にPVC成分の
みで覆われていることを意味する。
The atomic abundance of the chemical structure of PVC is as follows:
Chlorine atom / carbon atom = 1/2 (when the terminal structure and branching are not considered), and the above 1S binding energy value (eV)
The peak ratio (chlorine element peak × 2 / carbon element peak) at 0 is a value of 0 to 1. If the peak ratio is 0, PV
It means that the surface of the C particles is covered with a substance other than PVC and other substances containing no chlorine. When the peak ratio is 1, the surface of the PVC particles is completely covered with only the PVC component. Means that.

【0027】上記のBET比表面積値及び1S結合エネ
ルギー値(eV)におけるピーク比を有するPVCは、
例えば、分散剤として高ケン化度(60〜90モル%)
若しくは低ケン化度(20〜60モル%)又はその両方
のポリ酢酸ビニル、高級脂肪酸エステル類等を、乳化剤
としてアニオン系乳化剤、ノニオン系乳化剤等を添加し
て水懸濁重合することにより得ることができる。
PVC having the above-mentioned peak ratio in the BET specific surface area value and the 1S binding energy value (eV) is as follows:
For example, a high saponification degree (60 to 90 mol%) as a dispersant
Alternatively, a low saponification degree (20 to 60 mol%) or both of polyvinyl acetate, higher fatty acid esters, and the like can be obtained by adding an anionic emulsifier, a nonionic emulsifier, or the like as an emulsifier and performing water suspension polymerization. Can be.

【0028】本発明4で上記PVCを重合する際に用い
ることができる重合器(耐圧オートクレーブ)の形状及
び構造としては特に限定されず、従来よりPVCの重合
に使用されているもの等を用いることができる。また、
攪拌翼としては特に限定されず、例えば、ファウドラー
翼、パドル翼、タービン翼、ファンタービン翼、ブルマ
ージン翼等の汎用的に用いられているもの等が挙げられ
るが、特にファウドラー翼が好適に用いられ、邪魔板
(バッフル)との組み合わせも特に限定されない。
The shape and structure of the polymerization vessel (pressure-resistant autoclave) that can be used for polymerizing the PVC in the present invention 4 are not particularly limited, and those that have conventionally been used for polymerization of PVC may be used. Can be. Also,
The stirring blade is not particularly limited, and includes, for example, those generally used such as a Faudler blade, a paddle blade, a turbine blade, a fan turbine blade, and a bull margin blade, and particularly, a Faudler blade is preferably used. The combination with the baffle is not particularly limited.

【0029】上記PVCを塩素化する方法としては、P
VCを水性媒体中で懸濁状態となした状態で、反応器内
に液体塩素又は気体塩素を導入し、反応温度を70〜1
35℃の範囲で、得られるCPVCの塩素含有率が、7
2〜76重量%となるまで行う。
As a method for chlorinating PVC, P
In a state where VC is suspended in an aqueous medium, liquid chlorine or gaseous chlorine is introduced into the reactor, and the reaction temperature is set to 70 to 1
In the range of 35 ° C., the resulting CPVC has a chlorine content of 7
This is performed until the content becomes 2 to 76% by weight.

【0030】本発明4に使用する塩素化反応器の材質
は、グラスライニングが施されたステンレス製反応器の
他、チタン製反応器等、一般に使用されるものが適用で
きる。本発明4では、塩素化において、PVCを水性媒
体により懸濁状態になした状態で、液体塩素又は気体塩
素を導入することにより、塩素源を塩素化反応器内に導
入するが、液体塩素を用いることが工程上からも効率的
である。反応途中の圧力調整や、また、塩素化反応の進
行に伴う塩素の補給のためには、液体塩素の他、気体塩
素を適宜吹き込むこともできる。
As the material of the chlorination reactor used in the present invention 4, in addition to a stainless steel reactor with a glass lining, a titanium reactor and the like can be used. In the present invention 4, in the chlorination, by introducing liquid chlorine or gaseous chlorine in a state where PVC is suspended in an aqueous medium, a chlorine source is introduced into the chlorination reactor. Use is efficient from the viewpoint of the process. In order to adjust the pressure during the reaction or to replenish chlorine with the progress of the chlorination reaction, gaseous chlorine may be appropriately blown in addition to liquid chlorine.

【0031】本発明4において、PVCを水性媒体中で
懸濁状態に調製する方法としては特に限定されず、重合
の後、PVCを脱モノマー処理したケーキ状の樹脂を用
いても、乾燥させたものを再度、水性媒体で懸濁化して
もよく、あるいは、重合系中より、塩素化反応に好まし
くない物質を除去した懸濁液を使用しても良い。好まし
くは、重合の後、PVCを脱モノマー処理したケーキ状
の樹脂を用いるのが良い。
In the present invention 4, the method for preparing PVC in an aqueous medium in a suspended state is not particularly limited. Even after using a cake-like resin obtained by depolymerizing PVC after polymerization, it is dried. The suspension may be re-suspended in an aqueous medium, or a suspension in which substances unfavorable for the chlorination reaction are removed from the polymerization system may be used. Preferably, a cake-like resin obtained by subjecting PVC to demonomerization after polymerization is used.

【0032】反応器内に仕込む水性媒体の量は、特に限
定されないが、一般にPVCの重量1に対して2〜10
倍(重量)量を仕込む。
The amount of the aqueous medium to be charged into the reactor is not particularly limited, but is generally 2 to 10 with respect to 1 weight of PVC.
Charge twice (weight).

【0033】本発明4では、上記懸濁した状態で塩素化
する方法は特に限定されず、熱により樹脂の結合や塩素
を励起させて塩素化を促進する方法(以下、熱塩素化と
いう)と、光を照射して光反応的に塩素化を促進する方
法(以下、光塩素化という)等が挙げられるが、好まし
くは熱塩素化が使用される。熱塩素化する場合は、加熱
方法としては特に限定されず、例えば、反応器壁からの
外部ジャケット方式の他、内部ジャケット方式、スチー
ム吹き込み方式等が挙げられ、通常は、外部ジャケット
方式又は内部ジャケット方式が効果的である。光塩素化
する場合は、光源としては、紫外光線;水銀灯、アーク
灯、白熱電球、蛍光灯、カーボンアーク灯などの可視光
線が好適に使用され、特に紫外光線が効果的である。ま
た、熱エネルギーに紫外光線等の光エネルギーを併用し
てもよいが、この場合は、高温、高圧下の条件下で紫外
線照射が可能な装置が必要になる。
In the present invention 4, the method of chlorination in the suspended state is not particularly limited, and the method of promoting chlorination by exciting resin binding or chlorine by heat (hereinafter referred to as hot chlorination) And a method of irradiating light to promote chlorination in a photoreactive manner (hereinafter referred to as photochlorination). Preferably, thermal chlorination is used. When performing thermal chlorination, the heating method is not particularly limited, and examples thereof include an outer jacket method from the reactor wall, an inner jacket method, a steam blowing method, and the like. The scheme is effective. In the case of photochlorination, as a light source, an ultraviolet ray; a visible ray such as a mercury lamp, an arc lamp, an incandescent lamp, a fluorescent lamp, or a carbon arc lamp is suitably used, and an ultraviolet ray is particularly effective. Light energy such as ultraviolet light may be used in combination with heat energy, but in this case, a device capable of irradiating ultraviolet light under high temperature and high pressure conditions is required.

【0034】上記塩素化の工程で、得られるCPVCの
塩素含有率は、72〜76重量%となるように調整し、
好ましくは72〜74重量%になるよう調整する。塩素
含有率が72重量%未満になると耐熱性の向上、例え
ば、ビカット軟化温度値で65〜80℃の耐熱性の向上
には不十分となり、現在用いられている耐熱製品群より
も更に耐熱性が要求される分野における使用が難しくな
る。また、塩素含有率が76重量%を超えると成形加工
が困難となりゲル化が不十分となる。また、反応性を上
げるために触媒添加量が多くなるため、熱安定性が悪く
なる。工業的に製造する場合、品質と生産性の兼ね合い
から塩素含有率の上限は76重量%である。好ましくは
72〜74重量%である。
In the above chlorination step, the chlorine content of the obtained CPVC is adjusted to be 72 to 76% by weight,
Preferably, it is adjusted to be 72 to 74% by weight. When the chlorine content is less than 72% by weight, the heat resistance becomes insufficient, for example, the heat resistance at a Vicat softening temperature of 65 to 80 ° C. is insufficient, and the heat resistance is higher than that of the currently used heat-resistant products. It becomes difficult to use in the field where is required. On the other hand, when the chlorine content exceeds 76% by weight, molding becomes difficult and gelation becomes insufficient. In addition, since the amount of the catalyst to be added is increased to increase the reactivity, the thermal stability is deteriorated. In the case of industrial production, the upper limit of the chlorine content is 76% by weight in view of the balance between quality and productivity. Preferably it is 72 to 74% by weight.

【0035】本発明4において、塩素化反応温度は、7
0〜135℃であり、好ましくは90〜125℃であ
る。反応温度が70℃未満では塩素化反応速度が低いた
め、反応に長時間を要する。また、光を照射しない場
合、反応を進行させるには、過酸化物に代表される反応
触媒を多量に添加する必要があり、その結果、得られる
樹脂の熱安定性が劣るようになる。反応温度が135℃
を超えると、高温反応による熱エネルギーによって樹脂
が劣化し、得られるCPVCが着色する。
In the present invention 4, the chlorination reaction temperature is 7
The temperature is 0 to 135 ° C, preferably 90 to 125 ° C. If the reaction temperature is lower than 70 ° C., the reaction takes a long time because the chlorination reaction rate is low. In addition, when light is not irradiated, a large amount of a reaction catalyst typified by a peroxide must be added to advance the reaction, and as a result, the thermal stability of the obtained resin becomes poor. Reaction temperature is 135 ° C
If it exceeds 300, the resin is deteriorated by thermal energy due to the high-temperature reaction, and the obtained CPVC is colored.

【0036】本発明5〜7の塩素化塩化ビニル樹脂系成
形体は、請求項1〜3いずれかに記載の塩素化塩化ビニ
ル系樹脂を成形して得られる成形体であって、JIS
K7206に準拠した方法で測定した9.8N荷重時の
ビカット軟化温度が145℃以上である。
The chlorinated vinyl chloride resin-based molded article of the present invention 5 to 7 is a molded article obtained by molding the chlorinated vinyl chloride-based resin according to any one of claims 1 to 3, which is JIS.
Vicat softening temperature under a load of 9.8 N measured by a method based on K7206 is 145 ° C. or higher.

【0037】本発明5〜7の塩素化塩化ビニル樹脂系成
形体ビカット軟化温度は、好ましくは155℃以上であ
り、管や継ぎ手であれば蒸気戻り配管に用いることがで
き、より好ましくは170℃以上である。前記ビカット
軟化温度は成形体の耐熱性の指標であり、ビカット軟化
温度が145℃未満であると給湯管に代表される現状の
使用分野よりも高い耐熱性が要求される分野として10
0℃以上の液体気体と接触する場合での使用が難しい。
前記ビカット軟化点の上限は高い方が好ましいが、実際
の成形を考慮すると185℃が限界である。
The Vicat softening temperature of the chlorinated vinyl chloride resin molded product of the present invention 5 to 7 is preferably 155 ° C. or more, and it can be used as a steam return pipe if it is a pipe or a joint, and more preferably 170 ° C. That is all. The Vicat softening temperature is an index of the heat resistance of the molded body. If the Vicat softening temperature is less than 145 ° C., the heat-resistant pipe is required to have a higher heat resistance than the current field of use represented by a hot water supply pipe.
It is difficult to use when it comes in contact with a liquid gas of 0 ° C. or higher.
The upper limit of the Vicat softening point is preferably higher, but 185 ° C. is the limit in consideration of actual molding.

【0038】本発明6は、更にJIS K 7111に
準拠した方法で測定したシャルピー衝撃値が10kJ/
2 以上であるCPVC成形体である。前記シャルピー
衝撃値は成形体の耐衝撃性の指標であり,シャルピー衝
撃値が10kJ/m2 以上であると100℃以上の液体
気体と接触する場合での使用に好ましい。
In the present invention 6, the Charpy impact value measured by a method according to JIS K 7111 is 10 kJ /
a CPVC molded body is m 2 or more. The Charpy impact value is an index of the impact resistance of the molded body. When the Charpy impact value is 10 kJ / m 2 or more, it is preferable to use the molded product in contact with a liquid gas at 100 ° C. or more.

【0039】本発明6のCPVC成形体は、請求項1〜
3のいずれかに記載のCPVC系樹脂を用いて成形する
が、一般には高塩素化度の樹脂を用いると、成形時のゲ
ル化が不十分なために、得られる成形体が脆くなり、衝
撃強度が低くなる。そのため、耐衝撃改質剤の添加量を
増やして成形することになるが、反面、耐熱性を低下さ
せる原因にもなる。よって好ましい範囲は10〜60k
J/m2 で、より好ましくは、15〜50kJ/m2
ある。
The CPVC molded article according to the sixth aspect of the present invention is characterized in that:
Molding is performed using the CPVC resin described in any one of 3). Generally, when a resin having a high degree of chlorination is used, the resulting molded article becomes brittle due to insufficient gelation at the time of molding, resulting in an impact. Strength is reduced. For this reason, molding is performed by increasing the amount of the impact modifier added, but on the other hand, it also causes a reduction in heat resistance. Therefore, a preferable range is 10 to 60 k.
J / m 2 , more preferably 15 to 50 kJ / m 2 .

【0040】本発明7は、更にJIS K 7111に
準拠した方法で測定したシャルピー衝撃値が20kJ/
2 以上であるCPVC成形体である。前記シャルピー
衝撃値は成形体の耐衝撃性の指標であり、シャルピー衝
撃値が20kJ/m2 以上であると、100℃以上の液
体、気体と接触する場合での使用に好ましい。
The present invention 7 further has a Charpy impact value of 20 kJ / measured by a method in accordance with JIS K 7111.
a CPVC molded body is m 2 or more. The Charpy impact value is an index of the impact resistance of the molded article. When the Charpy impact value is 20 kJ / m 2 or more, it is preferable to use the product in contact with a liquid or gas at 100 ° C. or more.

【0041】本発明のCPVCは、粒子構造に特徴を有
する。通常、塩素含有率72重量%以上では成形加工が
困難になるが、本発明では、特定のCPVC粒子の内部
多孔状態、及び粒子表面状態を有することにより成形加
工時の易ゲル化性を発現させることができる。こうし
て、本発明により、高耐熱性と易ゲル化性を併せ持つ樹
脂が提供される。
The CPVC of the present invention is characterized by a particle structure. Normally, molding processing becomes difficult when the chlorine content is 72% by weight or more, but in the present invention, the specific CPVC particles have an internal porous state and a particle surface state, thereby exhibiting an easy gelling property during the molding processing. be able to. Thus, according to the present invention, a resin having both high heat resistance and easy gelation property is provided.

【0042】本発明の製造方法では、まず、PVCの粒
子構造が特徴を有する。すなわち、特定の表面状態及び
内部多孔状態を有することにより成形加工時の易ゲル化
ポテンシャルを高めておく。次に、特定の反応温度と塩
素化度でPVCを塩素化する。通常、塩素含有率72重
量%以上では成形加工が困難になるが、本発明4では、
構造に特徴を持ったPVCと塩素化方法の組み合わせに
より成形加工時の易ゲル化性を発現させることができ
る。こうして、本発明4によると、高耐熱性と易ゲル化
性を併せ持つ樹脂を製造することが可能となる。
In the production method of the present invention, first, the particle structure of PVC is characterized. That is, by having a specific surface state and internal porous state, the gelling potential at the time of molding is increased. Next, PVC is chlorinated at a specific reaction temperature and chlorination degree. Usually, molding processing becomes difficult when the chlorine content is 72% by weight or more.
By a combination of PVC having a characteristic structure and a chlorination method, it is possible to exhibit gelling property at the time of molding. Thus, according to the fourth aspect, it is possible to produce a resin having both high heat resistance and easy gelation.

【0043】本発明のCPVC成形体は、まず、CPV
Cの粒子構造に特徴を有する。通常、塩素含有率72重
量%以上では成形が困難になるが、本発明では、特定の
CPVCの内部多孔状態及び粒子表面状態を有すること
により成形加工時の易ゲル化性を発現させることができ
る。こうして、本発明5〜7によると、高耐熱性と耐衝
撃性に優れるCPVC成形体が供給される。
First, the CPVC molded article of the present invention
Characteristic is the particle structure of C. Usually, molding becomes difficult when the chlorine content is 72% by weight or more, but in the present invention, the gelling property at the time of molding can be exhibited by having a specific CPVC having an internal porous state and a particle surface state. . Thus, according to the present inventions 5 to 7, a CPVC molded article excellent in high heat resistance and impact resistance is supplied.

【0044】[0044]

【実施例】以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0045】実施例1 〔PVCの調製〕内容積100リットルの重合器(耐圧
オートクレーブ)に脱イオン水50kg、塩化ビニル単
量体に対して、部分ケン化ポリ酢酸ビニル(平均ケン化
度72モル%、重合度700)400ppm、ソルビタ
ンモノラウレート(HLB8.6)1,600ppm、
ラウリン酸1,500ppm、ポリアクリルアミド(2
0℃、101325Paで0.1重量%水溶液のブルッ
クフィールズ粘度が51mPa・s)100ppm並び
にt−ブチルパーオキシネオデカノエート500ppm
を投入した。 次いで、重合器内を6KPaまで脱気し
た後、塩化ビニル単量体33kgを仕込み攪拌を開始し
た。重合器を57℃に昇温して重合を開始し、重合反応
終了までこの温度を保った。
Example 1 [Preparation of PVC] In a polymerization vessel (pressure-resistant autoclave) having an internal volume of 100 liters, partially saponified polyvinyl acetate (average degree of saponification: 72 mol) was added to 50 kg of deionized water and vinyl chloride monomer. %, Degree of polymerization 700) 400 ppm, sorbitan monolaurate (HLB 8.6) 1,600 ppm,
1,500 ppm lauric acid, polyacrylamide (2
Brookfield viscosity of 0.1 wt% aqueous solution at 0 ° C. and 101325 Pa is 51 mPa · s) 100 ppm and t-butyl peroxy neodecanoate 500 ppm
Was introduced. Next, after degassing the inside of the polymerization vessel to 6 KPa, 33 kg of a vinyl chloride monomer was charged and stirring was started. The polymerization was started by raising the temperature of the polymerization vessel to 57 ° C., and this temperature was maintained until the polymerization reaction was completed.

【0046】重合転化率が90%になった時点で反応を
終了し、重合器内の未反応単量体を回収し。次いで、重
合体をスラリー状で系外へ取り出し、脱水乾燥してPV
Cを得た。
The reaction was terminated when the polymerization conversion reached 90%, and the unreacted monomers in the polymerization vessel were recovered. Next, the polymer is taken out of the system in the form of a slurry, dehydrated and dried, and
C was obtained.

【0047】〔CPVCの調製〕内容積300リットル
のグラスライニング製耐圧反応槽に脱イオン水150k
gと上記で得たPVC40kgとを入れ、攪拌してPV
Cを水中に分散させ、真空ポンプにて内部空気を吸引
し、ゲージ圧が−78.4kPaになるまで減圧した。
窒素ガスで圧戻し(ゲージ圧が0になるまで戻すこと)
を行い、再び真空ポンプで吸引して反応槽内の酸素を除
去した。この間、加熱したオイルをジャケットに通して
反応槽内を加温した。
[Preparation of CPVC] 150 k of deionized water was placed in a 300 liter glass lining pressure-resistant reaction tank.
g and 40 kg of the PVC obtained above,
C was dispersed in water, the internal air was sucked by a vacuum pump, and the pressure was reduced until the gauge pressure became -78.4 kPa.
Pressure return with nitrogen gas (return until gauge pressure becomes 0)
Was carried out, and the oxygen in the reaction tank was removed again by suction with a vacuum pump. During this time, the inside of the reaction tank was heated by passing the heated oil through the jacket.

【0048】反応槽内の温度が90℃に達したとき、塩
素ガスを供給し始め、110℃定温で反応を進行させ
た。反応槽内の発生塩化水素濃度から塩素化度を計算
し、塩素化度63重量%の時点で濃度100ppmの過
酸化水素水を0.5kg/hrで連続添加しながら反応
を継続した。塩素化度が72.1重量%に達した時点で
塩素ガスの供給を停止し、塩素化反応を終了した。反応
中添加した過酸化水素の量は、仕込み樹脂量に対し30
ppmであった。
When the temperature in the reaction tank reached 90 ° C., the supply of chlorine gas was started, and the reaction was allowed to proceed at a constant temperature of 110 ° C. The degree of chlorination was calculated from the concentration of hydrogen chloride generated in the reaction tank, and the reaction was continued while a hydrogen peroxide solution having a concentration of 100 ppm was continuously added at a rate of 0.5 kg / hr at a chlorination degree of 63% by weight. When the chlorination degree reached 72.1% by weight, the supply of chlorine gas was stopped, and the chlorination reaction was terminated. The amount of hydrogen peroxide added during the reaction was 30 to the charged resin amount.
ppm.

【0049】更に、反応槽内に窒素ガスを吹き込んで未
反応塩素を除去し、得られた樹脂を水で洗浄し脱水、乾
燥して粉末状のCPVCを得た。
Further, nitrogen gas was blown into the reaction tank to remove unreacted chlorine, and the obtained resin was washed with water, dehydrated and dried to obtain a powdery CPVC.

【0050】実施例2 PVCの調製は、部分ケン化ポリ酢酸ビニルを550p
pmにした以外は実施例1と同様に実施した。CPVC
の調製は、実施例1と同様に実施した。
Example 2 The preparation of PVC was performed by adding 550 p of partially saponified polyvinyl acetate.
The operation was performed in the same manner as in Example 1 except that pm was used. CPVC
Was prepared in the same manner as in Example 1.

【0051】実施例3 PVCの調製は、実施例1と同様に実施した。CPVC
の調製は、反応温度を130℃にした以外は実施例1と
同様に実施した。反応中添加した過酸化水素の量は、仕
込み樹脂量に対して15ppmであった。
Example 3 Preparation of PVC was carried out in the same manner as in Example 1. CPVC
Was prepared in the same manner as in Example 1 except that the reaction temperature was 130 ° C. The amount of hydrogen peroxide added during the reaction was 15 ppm based on the charged resin amount.

【0052】実施例4 PVCの調製は、実施例2と同様に実施した。CPVC
の調製は、最終塩素化度を75.7重量%としたこと以
外は、実施例1と同様に実施した。反応中添加した過酸
化水素の量は、仕込み樹脂量に対し50ppmであっ
た。
Example 4 Preparation of PVC was carried out in the same manner as in Example 2. CPVC
Was prepared in the same manner as in Example 1 except that the final chlorination degree was 75.7% by weight. The amount of hydrogen peroxide added during the reaction was 50 ppm based on the charged resin amount.

【0053】比較例1 〔PVCの調製〕内容積100リットルの重合器(耐圧
オートクレーブ)に脱イオン水50kg、塩化ビニル単
量体に対して、部分ケン化ポリ酢酸ビニル(平均ケン化
度72モル%、重合度750)1,300ppmを懸濁
分散剤として添加後、t−ブチルパーオキシネオデカノ
エート550ppmを投入した。次いで、重合器内を6
kPaまで脱気した後、塩化ビニル単量体33kgを仕
込み攪拌を開始した。重合器を57℃に昇温して重合を
開始し、重合反応終了までこの温度を保った。
Comparative Example 1 [Preparation of PVC] In a polymerization vessel (pressure-resistant autoclave) having a capacity of 100 liters, 50 kg of deionized water and partially saponified polyvinyl acetate (average degree of saponification: 72 mol) based on vinyl chloride monomer %, Degree of polymerization 750) was added as a suspending dispersant, and then 550 ppm of t-butyl peroxyneodecanoate was added. Next, 6
After degassing to kPa, 33 kg of vinyl chloride monomer was charged and stirring was started. The polymerization was started by raising the temperature of the polymerization vessel to 57 ° C., and this temperature was maintained until the polymerization reaction was completed.

【0054】重合転化率が90%になった時点で反応を
終了し、重合器内の未反応単量体を回収した。次いで、
重合体をスラリー状で系外へ取り出し、脱水乾燥してP
VCを得た。
The reaction was terminated when the polymerization conversion reached 90%, and the unreacted monomer in the polymerization vessel was recovered. Then
The polymer is taken out of the system in the form of a slurry, dehydrated and dried, and
VC was obtained.

【0055】CPVCの調製は、実施例1と同様に実施
した。
The preparation of CPVC was carried out in the same manner as in Example 1.

【0056】比較例2 PVCの調製は、実施例1と同様に実施した。CPVC
の調製は、反応温度を137℃にしたこと、及び、過酸
化水素を添加しなかったこと以外は実施例1と同様に実
施した。
Comparative Example 2 Preparation of PVC was carried out in the same manner as in Example 1. CPVC
Was prepared in the same manner as in Example 1 except that the reaction temperature was 137 ° C. and hydrogen peroxide was not added.

【0057】比較例3 PVCの調製は、実施例2と同様に実施した。CPVC
の調製は、最終塩素化度を70.5重量%としたこと以
外は、実施例1と同様に実施した。反応中添加した過酸
化水素の量は、仕込み樹脂量に対して16ppmであっ
た。
Comparative Example 3 Preparation of PVC was carried out in the same manner as in Example 2. CPVC
Was prepared in the same manner as in Example 1 except that the final chlorination degree was 70.5% by weight. The amount of hydrogen peroxide added during the reaction was 16 ppm based on the charged resin amount.

【0058】上記実施例1〜4、比較例1〜3で得られ
たPVC、について後記の方法により、BET批評面
積、ESCA分析値を、又CPVCについて、後記の測
定方法により、塩素含有率、空隙率、空隙容積、BET
批評面積、ESCA分析値の測定を行った。結果を表1
に示す。
For the PVC obtained in Examples 1 to 4 and Comparative Examples 1 to 3, the BET critical area and the ESCA analysis value were determined by the method described below. For the CPVC, the chlorine content was determined by the measurement method described below. Porosity, void volume, BET
Critical area and ESCA analysis values were measured. Table 1 shows the results
Shown in

【0059】実施例5 〔PVCの調整〕実施例1と同様に実施した。 〔CPVCの調整〕最終塩素化度を70.5重量%とし
たこと以外は、実施例1と同様に実施した。 〔配合〕上記で得られたCPVC100重量部に対し
て、表2の配合1に示す各種添加剤を添加し、ヘンシェ
ルミキサーにて加熱混合した。 〔成形〕上記混合分を用い、下記の押出条件で成形を行
い、口径20mmの管を得た。 ・押出機:SLM50(2軸異方向コニカル押出機、長
田製作所社製) ・金型:パイプ用金型(出口部外半径;11. 66m
m、出口部内半径;9. 4mm、樹脂流動面クロムメッ
キ、Rmax=5μm、Ra=0. 1μm(出口部周方
向4カ所平均)、3本ブルッジ) ・押出量:25〜30kg/hr ・樹脂温度:215〜217℃ ・回転数:20〜30rpm ・バレル温度:185〜210℃ ・金型温度:200〜215℃
Example 5 [Adjustment of PVC] The same operation as in Example 1 was carried out. [Adjustment of CPVC] The same procedure as in Example 1 was carried out except that the final chlorination degree was 70.5% by weight. [Blending] To 100 parts by weight of the CPVC obtained above, various additives shown in the blending 1 of Table 2 were added, and the mixture was heated and mixed with a Henschel mixer. [Molding] The mixture was molded under the following extrusion conditions to obtain a tube having a diameter of 20 mm. -Extruder: SLM50 (Two-axis different direction conical extruder, manufactured by Nagata Seisakusho Co., Ltd.)-Die: Die for pipe (outer radius of outlet; 11.66 m)
m, inner radius of outlet portion: 9.4 mm, chrome plating on resin flowing surface, Rmax = 5 μm, Ra = 0.1 μm (average of four locations in the circumferential direction of outlet portion, 3 bruges) ・ Extrusion amount: 25 to 30 kg / hr ・ Resin Temperature: 215 to 217 ° C ・ Rotation speed: 20 to 30rpm ・ Barrel temperature: 185 to 210 ° C ・ Mold temperature: 200 to 215 ° C

【0060】実施例6 PVCの調整は、実施例5と同様にして実施した。CP
VCの調整は、実施例5で反応温度120℃で、過酸化
水素水添加を塩素化度が65重量%の時点で行うこと以
外は実施例5と同様にして実施した。配合、成形は実施
例5と同様にして実施した。
Example 6 The adjustment of PVC was carried out in the same manner as in Example 5. CP
The adjustment of VC was carried out in the same manner as in Example 5 except that the reaction temperature was 120 ° C. and the hydrogen peroxide solution was added when the chlorination degree was 65% by weight. The compounding and molding were performed in the same manner as in Example 5.

【0061】実施例7 PVCの調整は、実施例5と同様にして実施した。CP
VCの調整は、実施例5で最終塩素化度を71. 5重量
%としたこと以外は実施例5と同様にして実施した。配
合、成形は実施例5と同様にして実施した。
Example 7 The adjustment of PVC was carried out in the same manner as in Example 5. CP
The adjustment of VC was performed in the same manner as in Example 5, except that the final chlorination degree was 71.5% by weight. The compounding and molding were performed in the same manner as in Example 5.

【0062】実施例8 PVCの調整は、実施例5と同様にして実施した。CP
VCの調整は、実施例5で最終塩素化度を72. 1重量
%としたこと以外は実施例5と同様にして実施した。配
合、成形は樹脂温度を220〜223℃としたこと以外
は実施例5と同様にして実施した。
Example 8 The adjustment of PVC was carried out in the same manner as in Example 5. CP
The adjustment of VC was carried out in the same manner as in Example 5, except that the final chlorination degree was 72.1% by weight. The compounding and molding were performed in the same manner as in Example 5 except that the resin temperature was set to 220 to 223 ° C.

【0063】実施例9 PVCの調整は、実施例5と同様にして実施した。CP
VCの調整は、実施例6で最終塩素化度を72. 1重量
%としたこと以外は実施例5と同様にして実施した。配
合、成形は実施例3と同様にして実施した。
Example 9 The adjustment of PVC was carried out in the same manner as in Example 5. CP
The adjustment of VC was carried out in the same manner as in Example 5, except that the final chlorination degree was changed to 72.1% by weight. The compounding and molding were performed in the same manner as in Example 3.

【0064】実施例10 PVCの調整は、実施例5と同様にして実施した。CP
VCの調整は、実施例5で最終塩素化度を73. 5重量
%としたこと以外は実施例5と同様にして実施した。配
合、成形は実施例3と同様にして実施した。
Example 10 The adjustment of PVC was carried out in the same manner as in Example 5. CP
The adjustment of VC was carried out in the same manner as in Example 5, except that the final chlorination degree was 73.5% by weight. The compounding and molding were performed in the same manner as in Example 3.

【0065】実施例11 PVCの調整は、実施例5と同様にして実施した。CP
VCの調整は、実施例5で最終塩素化度を74. 6重量
%としたこと以外は実施例5と同様にして実施した。配
合は、安定剤の量を2. 5phrとした以外は実施例5
と同様にして実施した。成形は、樹脂温度を225〜2
28℃とした以外は実施例5と同様にして実施した。
Example 11 The adjustment of PVC was carried out in the same manner as in Example 5. CP
The adjustment of VC was performed in the same manner as in Example 5 except that the final chlorination degree was 74.6% by weight. The formulation was as in Example 5 except that the amount of stabilizer was 2.5 phr.
It carried out similarly to. Molding is performed by setting the resin temperature at 225 to 2
The procedure was performed in the same manner as in Example 5 except that the temperature was changed to 28 ° C.

【0066】実施例12 PVCの調整は、実施例5と同様にして実施した。CP
VCの調整は、実施例6で最終塩素化度を74. 6重量
%としたこと以外は実施例5と同様にして実施した。配
合、成形は実施例11と同様にして実施した。
Example 12 The adjustment of PVC was carried out in the same manner as in Example 5. CP
The adjustment of VC was carried out in the same manner as in Example 5, except that the final chlorination degree was 74.6% by weight. The compounding and molding were performed in the same manner as in Example 11.

【0067】比較例4 PVCの調整は、実施例5と同様にして実施した。CP
VCの調整は、実施例5で最終塩素化度を69. 0重量
%としたこと以外は実施例5と同様にして実施した。配
合、成形は実施例5と同様にして実施した。
Comparative Example 4 Adjustment of PVC was carried out in the same manner as in Example 5. CP
The adjustment of VC was carried out in the same manner as in Example 5, except that the final chlorination degree was 69.0% by weight. The compounding and molding were performed in the same manner as in Example 5.

【0068】上記実施例5〜12、比較例4で得られた
CPVCについて、後記の測定方法により、塩素含有
率、空隙率、空隙容積、BET批評面積、ESCA分析
値の測定を行った。又、管について後記の測定方法によ
り、ビカット軟化点を測定した、結果を表3に示す。
For the CPVC obtained in Examples 5 to 12 and Comparative Example 4, the chlorine content, the porosity, the void volume, the BET critical area, and the ESCA analysis value were measured by the measurement methods described below. The Vicat softening point of the tube was measured by the measurement method described below. The results are shown in Table 3.

【0069】実施例13 PVCの調整は、実施例5と同様にして実施した。CP
VCの調整は、実施例5と同様にして実施した。配合、
成形は実施例5と同様にして実施した。
Example 13 The adjustment of PVC was carried out in the same manner as in Example 5. CP
The adjustment of VC was performed in the same manner as in Example 5. Formulation,
The molding was performed in the same manner as in Example 5.

【0070】実施例14 PVCの調整は、実施例5と同様にして実施した。CP
VCの調整は、実施例6と同様にして実施した。配合、
成形は実施例5と同様にして実施した。
Example 14 The adjustment of PVC was carried out in the same manner as in Example 5. CP
Adjustment of VC was performed in the same manner as in Example 6. Formulation,
The molding was performed in the same manner as in Example 5.

【0071】実施例15 PVCの調整は、実施例7と同様にして実施した。CP
VCの調整は、実施例7と同様にして実施した。配合、
成形は実施例8と同様にして実施した。
Example 15 The adjustment of PVC was carried out in the same manner as in Example 7. CP
The adjustment of VC was performed in the same manner as in Example 7. Formulation,
The molding was performed in the same manner as in Example 8.

【0072】実施例16 PVCの調整は、実施例5と同様にして実施した。CP
VCの調整は、実施例8と同様にして実施した。配合、
成形は実施例8と同様にして実施した。
Example 16 The adjustment of PVC was carried out in the same manner as in Example 5. CP
Adjustment of VC was performed in the same manner as in Example 8. Formulation,
The molding was performed in the same manner as in Example 8.

【0073】実施例17 PVCの調整は、実施例5と同様にして実施した。CP
VCの調整は、実施例9と同様にして実施した。配合、
成形は実施例8と同様にして実施した。
Example 17 The adjustment of PVC was carried out in the same manner as in Example 5. CP
Adjustment of VC was performed in the same manner as in Example 9. Formulation,
The molding was performed in the same manner as in Example 8.

【0074】実施例18 PVCの調整は、実施例10と同様にして実施した。C
PVCの調整は、実施例10と同様にして実施した。配
合、成形は実施例8と同様にして実施した。
Example 18 The adjustment of PVC was carried out in the same manner as in Example 10. C
Adjustment of PVC was performed in the same manner as in Example 10. The compounding and molding were performed in the same manner as in Example 8.

【0075】実施例19 PVCの調整は、実施例5と同様にして実施した。CP
VCの調整は、実施例11と同様にして実施した。配
合、成形は実施例11と同様にして実施した。
Example 19 The adjustment of PVC was carried out in the same manner as in Example 5. CP
Adjustment of VC was performed in the same manner as in Example 11. The compounding and molding were performed in the same manner as in Example 11.

【0076】実施例20 PVCの調整は、実施例5と同様にして実施した。CP
VCの調整は、実施例12と同様にして実施した。配
合、成形は実施例19と同様にして実施した。
Example 20 The adjustment of PVC was carried out in the same manner as in Example 5. CP
Adjustment of VC was performed in the same manner as in Example 12. The compounding and molding were performed in the same manner as in Example 19.

【0077】比較例5 PVCの調整は、比較例1と同様にして実施した。CP
VCの調整は、実施例5と同様にして実施した。配合、
成形は実施例5と同様にして実施した。
Comparative Example 5 Adjustment of PVC was carried out in the same manner as in Comparative Example 1. CP
The adjustment of VC was performed in the same manner as in Example 5. Formulation,
The molding was performed in the same manner as in Example 5.

【0078】比較例6 PVCの調整は、実施例5と同様にして実施した。CP
VCの調整は、実施例1で反応温度を140℃とし、最
終塩素化度を70. 5重量%としたこと以外は実施例1
と同様にして実施した。配合、成形は実施例5と同様に
して実施した。
Comparative Example 6 Adjustment of PVC was carried out in the same manner as in Example 5. CP
The VC was adjusted in the same manner as in Example 1 except that the reaction temperature was 140 ° C. and the final chlorination degree was 70.5% by weight.
It carried out similarly to. The compounding and molding were performed in the same manner as in Example 5.

【0079】比較例7 PVCの調整は、実施例5と同様にして実施した。CP
VCの調整は、比較例6で反応温度を135℃とし、最
終塩素化度を72. 1重量%としたこと以外は比較例6
と同様にして実施した。配合、成形は実施例8と同様に
して実施した。
Comparative Example 7 Adjustment of PVC was performed in the same manner as in Example 5. CP
The adjustment of VC was performed in Comparative Example 6 except that the reaction temperature was 135 ° C. and the final chlorination degree was 72.1% by weight.
It carried out similarly to. The compounding and molding were performed in the same manner as in Example 8.

【0080】比較例8 PVCの調整は、実施例5と同様にして実施した。CP
VCの調整は、比較例7で最終塩素化度を74. 6重量
%としたこと以外は比較例7と同様にして実施した。配
合、成形は実施例19と同様にして実施した。
Comparative Example 8 Adjustment of PVC was carried out in the same manner as in Example 5. CP
The adjustment of VC was carried out in the same manner as in Comparative Example 7 except that the final chlorination degree was 74.6% by weight. The compounding and molding were performed in the same manner as in Example 19.

【0081】比較例9 PVCの調整は、比較例4と同様にして実施した。CP
VCの調整は、比較例4と同様にして実施した。配合、
成形は実施例5と同様にして実施した。
Comparative Example 9 Adjustment of PVC was performed in the same manner as in Comparative Example 4. CP
Adjustment of VC was performed in the same manner as in Comparative Example 4. Formulation,
The molding was performed in the same manner as in Example 5.

【0082】上記実施例13〜20、比較例5〜9で得
られたCPVCについて、後記の測定方法により、塩素
含有率、空隙率、空隙容積、BET批評面積、ESCA
分析値の測定を行った。又、管について後記の測定方法
により、ビカット軟化点、シャルピー衝撃値を測定し
た、結果を表4に示す。
For the CPVC obtained in Examples 13 to 20 and Comparative Examples 5 to 9, the chlorine content, porosity, void volume, BET critical area, ESCA
Analytical values were measured. The Vicat softening point and the Charpy impact value of the tube were measured by the measurement method described below. The results are shown in Table 4.

【0083】実施例21 PVCの調整は、実施例5と同様にして実施した。CP
VCの調整は、実施例5で最終塩素化度を71. 5重量
%としたこと以外は実施例5と同様にし実施した。配合
は表2の配合2に示す各種配合剤を添加して、ヘンシェ
ルミキサーにて加熱混合を行った。成形は実施例5と同
様にして実施した。
Example 21 The adjustment of PVC was carried out in the same manner as in Example 5. CP
The adjustment of VC was carried out in the same manner as in Example 5, except that the final chlorination degree was changed to 71.5% by weight. The compounding | mixing added the various compounding agents shown to the compounding 2 of Table 2, and heat-mixed with the Henschel mixer. The molding was performed in the same manner as in Example 5.

【0084】実施例22 PVCの調整は、実施例5と同様にして実施した。CP
VCの調整は、実施例6で最終塩素化度を71. 5重量
%としたこと以外は実施例6と同様にして実施した。配
合、成形は実施例21と同様にして実施した。
Example 22 The adjustment of PVC was carried out in the same manner as in Example 5. CP
The adjustment of VC was carried out in the same manner as in Example 6 except that the final chlorination degree was changed to 71.5% by weight. The compounding and molding were performed in the same manner as in Example 21.

【0085】実施例23 PVCの調整は、実施例7と同様にして実施した。CP
VCの調整は、実施例7で最終塩素化度を72. 5重量
%としたこと以外は実施例7と同様にして実施した。配
合は実施例21と同様にして実施した。成形は実施例8
と同様にして実施した。
Example 23 The adjustment of PVC was carried out in the same manner as in Example 7. CP
The adjustment of VC was carried out in the same manner as in Example 7, except that the final chlorination degree was 72.5% by weight. The compounding was carried out in the same manner as in Example 21. Molding is Example 8
It carried out similarly to.

【0086】実施例24 PVCの調整は、実施例5と同様にして実施した。CP
VCの調整は、実施例8で最終塩素化度を73. 1重量
%としたこと以外は実施例8と同様にして実施した。配
合は実施例21と同様にして実施した。成形は実施例8
と同様にして実施した。
Example 24 The adjustment of PVC was carried out in the same manner as in Example 5. CP
The adjustment of VC was carried out in the same manner as in Example 8, except that the final chlorination degree was changed to 73.1% by weight. The compounding was carried out in the same manner as in Example 21. Molding is Example 8
It carried out similarly to.

【0087】実施例25 PVCの調整は、実施例5と同様にして実施した。CP
VCの調整は、比較例8で最終塩素化度を74. 5重量
%としたこと以外は比較例8と同様にして実施した。配
合、成形は実施例24と同様にして実施した。
Example 25 The adjustment of PVC was carried out in the same manner as in Example 5. CP
The adjustment of VC was carried out in the same manner as in Comparative Example 8 except that the final chlorination degree was 74.5% by weight. The compounding and molding were performed in the same manner as in Example 24.

【0088】実施例26 PVCの調整は、実施例5と同様にして実施した。CP
VCの調整は、実施例11で最終塩素化度を75. 6重
量%としたこと以外は比較例8と同様にして実施した。
配合は安定剤を2. 5phr、MBSを12. 0phr
とした以外は実施例5と同様にして実施した。成形は実
施例11と同様にして実施した。
Example 26 The adjustment of PVC was carried out in the same manner as in Example 5. CP
The adjustment of VC was carried out in the same manner as in Comparative Example 8 except that the final chlorination degree was changed to 75.6% by weight in Example 11.
The formulation was 2.5 phr stabilizer and 12.0 phr MBS.
The procedure was performed in the same manner as in Example 5, except that The molding was performed in the same manner as in Example 11.

【0089】実施例27 PVCの調整は、実施例5と同様にして実施した。CP
VCの調整は、実施例11で最終塩素化度を75. 6重
量%としたこと以外は比較例8と同様にして実施した。
配合、成形は実施例27と同様にして実施した。
Example 27 The adjustment of PVC was carried out in the same manner as in Example 5. CP
The adjustment of VC was carried out in the same manner as in Comparative Example 8 except that the final chlorination degree was changed to 75.6% by weight in Example 11.
The compounding and molding were performed in the same manner as in Example 27.

【0090】比較例10 PVCの調整は、比較例1と同様にして実施した。CP
VCの調整は、実施例21と同様にして実施した。配
合、成形は実施例21と同様にして実施した。
Comparative Example 10 Adjustment of PVC was carried out in the same manner as in Comparative Example 1. CP
Adjustment of VC was performed in the same manner as in Example 21. The compounding and molding were performed in the same manner as in Example 21.

【0091】比較例11 PVCの調整は、実施例5と同様にして実施した。CP
VCの調整は、実施例1で反応温度を140℃、最終塩
素化度を71. 5重量%としたこと以外は実施例1と同
様にして実施した。配合、成形は実施例21と同様にし
て実施した。
Comparative Example 11 The adjustment of PVC was carried out in the same manner as in Example 5. CP
The adjustment of VC was carried out in the same manner as in Example 1 except that the reaction temperature was 140 ° C. and the final chlorination degree was 71.5% by weight. The compounding and molding were performed in the same manner as in Example 21.

【0092】比較例12 PVCの調整は、実施例5と同様にして実施した。CP
VCの調整は、実施例1で反応温度を135℃、最終塩
素化度を73. 1重量%としたこと以外は実施例1と同
様にして実施した。配合、成形は実施例24と同様にし
て実施した。
Comparative Example 12 The adjustment of PVC was carried out in the same manner as in Example 5. CP
The adjustment of VC was carried out in the same manner as in Example 1 except that the reaction temperature was 135 ° C. and the final chlorination degree was 73.1% by weight. The compounding and molding were performed in the same manner as in Example 24.

【0093】比較例13 PVCの調整は、実施例5と同様にして実施した。CP
VCの調整は、比較例12で最終塩素化度を75. 6重
量%としたこと以外は比較例12と同様にして実施し
た。配合、成形は実施例27と同様にして実施した。
Comparative Example 13 Adjustment of PVC was carried out in the same manner as in Example 5. CP
The adjustment of VC was carried out in the same manner as in Comparative Example 12, except that the final chlorination degree was 75.6% by weight. The compounding and molding were performed in the same manner as in Example 27.

【0094】比較例14 PVCの調整は、比較例4と同様にして実施した。CP
VCの調整は、比較例4と同様にして実施した。配合、
成形は実施例21と同様にして実施した。
Comparative Example 14 Adjustment of PVC was performed in the same manner as in Comparative Example 4. CP
Adjustment of VC was performed in the same manner as in Comparative Example 4. Formulation,
The molding was performed in the same manner as in Example 21.

【0095】上記実施例21〜27、比較例10〜14
で得られたCPVCについて、後記の測定方法により、
塩素含有率、空隙率、空隙容積、BET批評面積、ES
CA分析値の測定を行った。又、管について後記の測定
方法により、ビカット軟化点、シャルピー衝撃値を測定
した、結果を表5に示す。
Examples 21 to 27 and Comparative Examples 10 to 14
For the CPVC obtained in the above, by the measurement method described below,
Chlorine content, porosity, void volume, BET critical area, ES
CA analysis values were measured. The Vicat softening point and the Charpy impact value of the tube were measured by the measurement method described below. The results are shown in Table 5.

【0096】〔PVC評価方法〕 (1)BET比表面積値の測定 試料管に測定サンプル約2gを投入し、前処理として7
0℃で3時間サンプルを真空脱気した後、サンプル重量
を正確に測定した。前処理の終了したサンプルを測定部
(40℃恒温槽)に取り付けて測定を開始した。測定終
了後、吸着等温線の吸着側のデータからBETプロット
を行い、比表面積を算出した。なお、測定装置として比
表面積測定装置「BELSORP 28SA」(日本ベ
ル社製)を使用し、測定ガスとして窒素ガスを使用し
た。
[PVC Evaluation Method] (1) Measurement of BET Specific Surface Area About 2 g of a measurement sample was put into a sample tube, and 7
After degassing the sample for 3 hours at 0 ° C., the sample weight was measured accurately. The sample after the pretreatment was attached to a measuring section (40 ° C. constant temperature bath) to start measurement. After the measurement, a BET plot was performed from the data on the adsorption side of the adsorption isotherm to calculate the specific surface area. In addition, a specific surface area measuring apparatus “BELSORP 28SA” (manufactured by Nippon Bell Co., Ltd.) was used as a measuring apparatus, and nitrogen gas was used as a measuring gas.

【0097】(2)ESCA分析 PVC粒子の表面をESCA(Electoron Spectoroscop
y for Chemical Analysys :電子分光化学分析)でスキ
ャンし、C1S(炭素)、Cl1S(塩素)、O1S(酸素)
の各ピーク面積より塩素量を基準に粒子表面の塩化ビニ
ル樹脂成分を定量分析した。 ・使用機器:日本電子社製「JPS−90FX」 ・使用条件:X線源(Mg Kα線)、12kV−15
mA ・スキャン速度:200ms/0.1eV/scan ・パスエネルギー:30eV
(2) ESCA analysis The surface of the PVC particles was analyzed by ESCA (Electoron Spectoroscop).
y for Chemical Analysys: electron spectrochemical analysis) and scan C 1S (carbon), Cl 1S (chlorine), O 1S (oxygen)
The vinyl chloride resin component on the particle surface was quantitatively analyzed based on the amount of chlorine from each peak area. -Equipment used: "JPS-90FX" manufactured by JEOL Ltd.-Usage conditions: X-ray source (Mg Kα radiation), 12kV-15
mA Scan speed: 200 ms / 0.1 eV / scan Path energy: 30 eV

【0098】〔CPVC評価方法〕 (1)塩素含有率測定 JIS K 7229に準拠して行った。[CPVC evaluation method] (1) Measurement of chlorine content The measurement was carried out in accordance with JIS K 7229.

【0099】(2)空隙率、細孔分布測定 水銀圧入ポロシメーターを用いて、196MPaでCP
VC100gに圧入される水銀の容量を測定して空隙率
を求めた。空隙率とは樹脂粒子体積に占める空隙の容積
である。細孔分布は、空隙率を測定するために0〜19
6MPaまで圧力を上げるが、その際に水銀圧入量を連
続的に測定し、細孔径の分布を測定した。
(2) Measurement of porosity and pore distribution CP was measured at 196 MPa using a mercury intrusion porosimeter.
The porosity was determined by measuring the volume of mercury injected into 100 g of VC. The porosity is the volume of voids in the resin particle volume. The pore distribution is 0-19 for measuring porosity.
The pressure was increased to 6 MPa. At that time, the mercury intrusion amount was continuously measured, and the distribution of the pore diameter was measured.

【0100】(3)空隙容積 水銀圧入ポロシメーターを用いて、0〜196MPaま
で圧力を上げ、その際の水銀圧入量を連続的に測定し、
細孔径の分布を測定した。細孔径分布より、全空隙容積
中の0. 001〜0. 1μmの範囲の空隙容積をを算出
した。
(3) Void volume The pressure was increased to 0 to 196 MPa using a mercury intrusion porosimeter, and the mercury intrusion amount at that time was continuously measured.
The pore size distribution was measured. From the pore size distribution, the void volume in the range of 0.001 to 0.1 μm in the total void volume was calculated.

【0101】(4)BET比表面積値の測定 上記PVCのBET比表面積値の測定方法と同様であ
る。
(4) Measurement of BET specific surface area The same as the method of measuring the BET specific surface area of PVC.

【0102】(5)ESCA分析 測定サンプルをCPVCとする以外は、上記PVC粒子
表面のESCA分析の方法と同様である。
(5) ESCA Analysis The method is the same as the method for ESCA analysis on the surface of PVC particles except that the measurement sample is CPVC.

【0103】〔性能評価〕 (1)加工性(ゲル化温度の測定) Haake社製プラストミル「レオコード90」を使用
して、下記樹脂組成物55gを、回転数40rpmで、
温度を150℃から毎分5℃の昇温速度で上昇させなが
ら混練し、混練トルクが最大になる時の温度を測定し
た。なお、樹脂組成物としては、CPVC100重量部
に対して、三塩基性硫酸鉛3重量部、二塩基性ステアリ
ン酸鉛1重量部及びMBS樹脂(メタクリル酸メチル−
ブタジエン−スチレン共重合体)10重量部からなるも
のを使用した。
[Performance Evaluation] (1) Processability (Measurement of Gelation Temperature) Using a plastmill “Rheocord 90” manufactured by Haake, 55 g of the following resin composition was applied at a rotation speed of 40 rpm.
The kneading was carried out while increasing the temperature at a rate of 5 ° C./min from 150 ° C., and the temperature at which the kneading torque was maximized was measured. As the resin composition, 3 parts by weight of tribasic lead sulfate, 1 part by weight of dibasic lead stearate, and MBS resin (methyl methacrylate
Butadiene-styrene copolymer) of 10 parts by weight was used.

【0104】(2)ビカット軟化温度 JIS K 7206(荷重9.8N)に準拠して測定
した。サンプルは、測定しようとするCPVC100重
量部に対して、三塩基性硫酸鉛3重量部、二塩基性ステ
アリン酸鉛1重量部及びMBS樹脂(メタクリル酸メチ
ル−ブタジエン−スチレン共重合体)10重量部からな
る樹脂組成物を、8インチロール2本からなる混練機に
混練してシートを作成し、そのシートをプレスすること
により準備した。
(2) Vicat softening temperature Measured according to JIS K 7206 (9.8 N load). The sample was prepared by measuring 3 parts by weight of tribasic lead sulfate, 1 part by weight of dibasic lead stearate and 10 parts by weight of MBS resin (methyl methacrylate-butadiene-styrene copolymer) based on 100 parts by weight of CPVC to be measured. Was kneaded in a kneader comprising two 8-inch rolls to form a sheet, and the sheet was prepared by pressing.

【0105】(3)シャルピー衝撃値 JISK7111に準拠して測定した。(3) Charpy impact value Measured according to JIS K7111.

【0106】[0106]

【表1】 [Table 1]

【0107】[0107]

【表2】 [Table 2]

【0108】[0108]

【表3】 [Table 3]

【0109】[0109]

【表4】 [Table 4]

【0110】[0110]

【表5】 [Table 5]

【0111】[0111]

【発明の効果】本発明の塩素化塩化ビニル系樹脂の構成
は、上記の通りであり、本発明によると、耐熱性とゲル
化発現性に優れた塩素化塩化ビニル系樹脂が提供され
る。本発明の塩素化塩化ビニル系樹脂の製造方法の構成
は、上記の通りであり、本発明によると、耐熱性とゲル
化発現性に優れた塩素化塩化ビニル系樹脂を製造するこ
とができる。本発明の塩素化塩化ビニル系樹脂成形体の
構成は上記の通りであり、耐熱性とゲル化発現性に優れ
た塩素化塩化ビニル系樹脂成形体を提供することができ
る。
The constitution of the chlorinated vinyl chloride resin of the present invention is as described above. According to the present invention, a chlorinated vinyl chloride resin having excellent heat resistance and gelling property is provided. The configuration of the method for producing a chlorinated vinyl chloride resin of the present invention is as described above. According to the present invention, a chlorinated vinyl chloride resin having excellent heat resistance and gelling properties can be produced. The configuration of the chlorinated vinyl chloride-based resin molded article of the present invention is as described above, and a chlorinated vinyl chloride-based resin molded article having excellent heat resistance and excellent gelation can be provided.

フロントページの続き Fターム(参考) 4F071 AA79 AA85 AF23Y BC07 4J002 BD181 4J100 AA02Q AA03Q AB02Q AC03P AC04Q AG04Q CA01 CA04 CA31 DA22 DA23 EA13 HA21 HA61 HB04 Continued on the front page F term (reference) 4F071 AA79 AA85 AF23Y BC07 4J002 BD181 4J100 AA02Q AA03Q AB02Q AC03P AC04Q AG04Q CA01 CA04 CA31 DA22 DA23 EA13 HA21 HA61 HB04

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 塩化ビニル系樹脂を塩素化してなる塩素
化塩化ビニル系樹脂であって、塩素含有率が、72〜7
6重量%であり、水銀圧入法により圧力196MPaで
測定した空隙率が、30〜40容量%であり、水銀圧入
法により圧力が0〜196MPaで測定した細孔容積分
布において、0.001〜0.1μmの空隙容積が、全
空隙容積の2〜15容積%であることを特徴とする塩素
化塩化ビニル系樹脂。
1. A chlorinated vinyl chloride resin obtained by chlorinating a vinyl chloride resin, the chlorine content of which is 72 to 7
The porosity measured at a pressure of 196 MPa by a mercury intrusion method is 30 to 40% by volume, and the pore volume distribution measured at a pressure of 0 to 196 MPa by a mercury intrusion method is 0.001 to 0%. A chlorinated vinyl chloride resin, wherein a void volume of 1 μm is 2 to 15% by volume of a total void volume.
【請求項2】 塩化ビニル系樹脂を塩素化してなる塩素
化塩化ビニル系樹脂であって、塩素含有率が、72〜7
6重量%であり、水銀圧入法により圧力196MPaで
測定した空隙率が、30〜40容量%であり、BET比
表面積値が、2〜12m2 /gであることを特徴とする
塩素化塩化ビニル系樹脂。
2. A chlorinated vinyl chloride resin obtained by chlorinating a vinyl chloride resin having a chlorine content of 72 to 7%.
6% by weight, a porosity measured at a pressure of 196 MPa by a mercury intrusion method is 30 to 40% by volume, and a BET specific surface area value is 2 to 12 m 2 / g. Resin.
【請求項3】 更に、ESCA分析(電子分光化学分
析)による粒子表面分析において、炭素元素と塩素元素
との1S結合エネルギー値(eV)におけるピーク比
(塩素元素ピーク/炭素元素ピーク)が、0.6を超え
るものであることを特徴とする請求項1又は2記載の塩
素化塩化ビニル系樹脂。
3. In a particle surface analysis by ESCA analysis (electron spectrochemical analysis), the peak ratio (chlorine element peak / carbon element peak) in the 1S bond energy value (eV) between carbon element and chlorine element is 0. 3. The chlorinated vinyl chloride resin according to claim 1, wherein the chlorinated vinyl chloride resin has a viscosity of more than 0.6.
【請求項4】 塩化ビニル系樹脂を塩素化してなる塩素
化塩化ビニル系樹脂の製造方法であって、前記塩化ビニ
ル系樹脂は、BET比表面積値が1.3〜8m 2 /gで
あり、ESCA分析(電子分光化学分析)による粒子表
面分析において、炭素元素と塩素元素との1S結合エネ
ルギー値(eV)におけるピーク比(塩素元素ピーク×
2/炭素元素ピーク)が、0.6を超えるものであり、
前記塩素化において、塩化ビニル系樹脂を水性媒体中で
懸濁状態となした状態で、反応器内に液体塩素又は気体
塩素を導入し、反応温度を70〜135℃の範囲で塩素
含有率72〜76重量%まで塩素化反応を行うことを特
徴とする塩素化塩化ビニル系樹脂の製造方法。
4. A chlorine obtained by chlorinating a vinyl chloride resin.
A method for producing a vinyl chloride-based resin, comprising:
The resin has a BET specific surface area of 1.3 to 8 m. Two/ G
Yes, particle table by ESCA analysis (electron spectrochemical analysis)
In the surface analysis, the 1S bond energy of carbon element and chlorine element
Peak ratio at the energy value (eV) (chlorine element peak ×
2 / carbon element peak) exceeds 0.6,
In the chlorination, a vinyl chloride resin is mixed in an aqueous medium.
Liquid chlorine or gas in the reactor in a suspended state
Chlorine is introduced at a reaction temperature of 70 to 135 ° C.
The chlorination reaction is performed up to a content of 72 to 76% by weight.
Production method of chlorinated vinyl chloride resin.
【請求項5】 請求項1〜3いずれかに記載の塩素化塩
化ビニル系樹脂を成形して得られる成形体であって、J
IS K 7206に準拠した方法で測定した9.8N
荷重時のビカット軟化点温度が145℃以上であること
を特徴とする塩素化塩化ビニル系樹脂成形体。
5. A molded product obtained by molding the chlorinated vinyl chloride resin according to claim 1, wherein
9.8 N measured by a method according to IS K 7206
A chlorinated vinyl chloride resin molded product having a Vicat softening point temperature of 145 ° C. or more under load.
【請求項6】 請求項1〜3いずれかに記載の塩素化塩
化ビニル系樹脂を成形して得られる成形体であって、J
IS K 7206に準拠した方法で測定した9.8N
荷重時のビカット軟化点温度が145℃以上、及びJI
SK7111に準拠した方法で測定したシャルピー衝撃
値が10kJ/m2 以上であることを特徴とする塩素化
塩化ビニル系樹脂成形体。
6. A molded article obtained by molding the chlorinated vinyl chloride resin according to claim 1, wherein
9.8 N measured by a method according to IS K 7206
Vicat softening point temperature under load of 145 ° C or higher, and JI
A chlorinated vinyl chloride-based resin molded product having a Charpy impact value measured by a method based on SK7111 of 10 kJ / m 2 or more.
【請求項7】 請求項1〜3いずれかに記載の塩素化塩
化ビニル系樹脂を成形して得られる成形体であって、J
IS K 7206に準拠した方法で測定した9.8N
荷重時のビカット軟化点温度が145℃以上、及びJI
SK7111に準拠した方法で測定したシャルピー衝撃
値が20kJ/m2 以上であることを特徴とする塩素化
塩化ビニル系樹脂成形体。
7. A molded article obtained by molding the chlorinated vinyl chloride resin according to claim 1, wherein
9.8 N measured by a method according to IS K 7206
Vicat softening point temperature under load of 145 ° C or higher, and JI
A chlorinated vinyl chloride-based resin molded product having a Charpy impact value measured by a method based on SK7111 of 20 kJ / m 2 or more.
JP29384199A 1998-10-16 1999-10-15 Chlorinated polyvinyl chloride-based resin and its manufacture Pending JP2000273121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29384199A JP2000273121A (en) 1998-10-16 1999-10-15 Chlorinated polyvinyl chloride-based resin and its manufacture

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP29517798 1998-10-16
JP1317599 1999-01-21
JP11-13175 1999-01-21
JP10-295177 1999-01-21
JP29384199A JP2000273121A (en) 1998-10-16 1999-10-15 Chlorinated polyvinyl chloride-based resin and its manufacture

Publications (1)

Publication Number Publication Date
JP2000273121A true JP2000273121A (en) 2000-10-03

Family

ID=27280146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29384199A Pending JP2000273121A (en) 1998-10-16 1999-10-15 Chlorinated polyvinyl chloride-based resin and its manufacture

Country Status (1)

Country Link
JP (1) JP2000273121A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284950A (en) * 2001-03-26 2002-10-03 Sekisui Chem Co Ltd Vinyl chloride-base resin composition
WO2009134694A3 (en) * 2008-05-02 2009-12-23 3M Innovative Properties Company Gel composition, method for preparing the same, and impact resistant absorbing material using the same
CN115298252A (en) * 2020-03-24 2022-11-04 株式会社钟化 Expandable chlorinated vinyl chloride resin particles, expanded particles thereof, foamed molded article of chlorinated vinyl chloride resin using same, and method for producing expandable chlorinated vinyl chloride resin particles

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284950A (en) * 2001-03-26 2002-10-03 Sekisui Chem Co Ltd Vinyl chloride-base resin composition
JP4555494B2 (en) * 2001-03-26 2010-09-29 積水化学工業株式会社 Vinyl chloride resin composition
WO2009134694A3 (en) * 2008-05-02 2009-12-23 3M Innovative Properties Company Gel composition, method for preparing the same, and impact resistant absorbing material using the same
AU2009241418B2 (en) * 2008-05-02 2012-08-23 3M Innovative Properties Company Gel composition, method for preparing the same, and impact resistant absorbing material using the same
US8461237B2 (en) 2008-05-02 2013-06-11 3M Innovative Properties Company Gel composition, method of preparing the same, and impact resistant absorbing material using the same
CN115298252A (en) * 2020-03-24 2022-11-04 株式会社钟化 Expandable chlorinated vinyl chloride resin particles, expanded particles thereof, foamed molded article of chlorinated vinyl chloride resin using same, and method for producing expandable chlorinated vinyl chloride resin particles

Similar Documents

Publication Publication Date Title
KR100627122B1 (en) Chlorinated vinyl chloride-based resin and molded articles
JP2000273121A (en) Chlorinated polyvinyl chloride-based resin and its manufacture
JP4331813B2 (en) Method for producing chlorinated vinyl chloride resin particles and resin particles obtained thereby
JPH11209425A (en) Production of chlorinated vinyl chloride resin
JP3487742B2 (en) Method for producing chlorinated vinyl chloride resin
JP3802668B2 (en) Method for producing chlorinated vinyl chloride resin
JP2001181340A (en) Chlorinated vinyl chloride resin, its production method, and its molded article
JP2000186113A (en) Molded article of heat resistant polyvinyl chloride based resin and pipe comprising heat resistant polyvinyl chloride based resin
JP2002060421A (en) Method for producing chlorinated vinyl chloride resin
JP3481099B2 (en) Chlorinated vinyl chloride resin and production method
JP2006322013A (en) Method for producing chlorinated vinyl chloride-based resin
JPH11158221A (en) Vinyl chloride-based resin and chlorinated vinyl chloride-based resin
JP3863279B2 (en) Method for producing chlorinated vinyl chloride resin
JPH11124407A (en) Production of chlorinated vinyl chloride-based resin
JPH11140122A (en) Manufacture of chlorinated vinyl chloride resin
JPH1135627A (en) Production of chlorinated vinyl chloride resin
JPH1192525A (en) Preparation of chlorinated vinyl chloride-based resin
JPH11263808A (en) Preparation of chlorinated vinyl chloride-based resin
JP2000344830A (en) Production of chlorinated vinyl chloride resin
JP2000136213A (en) Chlorinated vinyl chloride-based resin and its production
JP2000352481A (en) Chlorinated vinyl chloride resin pipe, joint, plate and lining pipe
JP2001278992A (en) Molded product of chlorinated vinyl chloride resin and resin pipe
JP2818101B2 (en) Method for producing chlorinated vinyl chloride resin
JP2006104485A (en) Method for producing chlorinated vinyl chloride resin
JPH11189606A (en) Suspension polymerization of vinylchloride resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060721

A977 Report on retrieval

Effective date: 20081104

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090415