JPH1135627A - Production of chlorinated vinyl chloride resin - Google Patents

Production of chlorinated vinyl chloride resin

Info

Publication number
JPH1135627A
JPH1135627A JP20024897A JP20024897A JPH1135627A JP H1135627 A JPH1135627 A JP H1135627A JP 20024897 A JP20024897 A JP 20024897A JP 20024897 A JP20024897 A JP 20024897A JP H1135627 A JPH1135627 A JP H1135627A
Authority
JP
Japan
Prior art keywords
reaction
temperature
chlorination
weight
cpvc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20024897A
Other languages
Japanese (ja)
Inventor
Hideaki Yoshitomi
英明 吉富
Yuki Maruyama
由紀 丸山
Keiji Fukuda
啓二 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Sekisui Co Ltd
Original Assignee
Tokuyama Sekisui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Sekisui Co Ltd filed Critical Tokuyama Sekisui Co Ltd
Priority to JP20024897A priority Critical patent/JPH1135627A/en
Publication of JPH1135627A publication Critical patent/JPH1135627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production process for CPVC of excellent processability and heat stability with high productivity. SOLUTION: A vinyl chloride resin is chlorinated as follows: the reaction is started in the temperature range from 50 to 90 deg.C, then the reaction is continued at a certain level of constant temperature or as the temperature is gradually raised according to the degree of the chlorination in a range of T=a(X2 -X1 )+ Y<=140 deg.C, wherein (a) is a temperature-increasing factor (0-5), X2 is the chlorination degree on the way of the reaction in wt.% and X1 is the chlorination degree of the starting PVC in wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、塩素化塩化ビニル
系樹脂の製造方法に関し、詳しくは加工性に優れた塩素
化塩化ビニル系樹脂の製造方法に関する。
The present invention relates to a method for producing a chlorinated vinyl chloride resin, and more particularly, to a method for producing a chlorinated vinyl chloride resin having excellent processability.

【0002】[0002]

【従来の技術】塩素化塩化ビニル系樹脂(以下「CPV
C」という)は、通常塩化ビニル系樹脂(以下「PV
C」という)を後塩素化して得られる。
2. Description of the Related Art Chlorinated vinyl chloride resin (hereinafter referred to as "CPV")
C) is usually a vinyl chloride resin (hereinafter referred to as “PV
C ") is obtained by post-chlorination.

【0003】CPVCは、PVCの長所といわれる優れ
た特性をそのまま保有し、かつPVCの欠点といわれる
性質が改良されているので、有用な樹脂として多方面の
用途に使用されている。即ち、CPVCは、PVCの長
所といわれる優れた難燃性、耐候性、耐薬品性などを保
有し、さらにPVCよりも熱変形温度が20〜40℃も
高いため、PVCの使用可能な上限温度が60〜70℃
付近であるのに対して、CPVCは100℃近くでも使
用可能であり、耐熱パイプ、耐熱継手、耐熱バルブなど
に好適に使用されている。
[0003] CPVC has been used as a useful resin for various applications because it retains the excellent properties which are said to be the advantages of PVC and has improved properties which are said to be disadvantages of PVC. In other words, CPVC has excellent flame retardancy, weather resistance, chemical resistance, and the like, which are said to be advantages of PVC, and further has a heat deformation temperature higher by 20 to 40 ° C. than PVC. Is 60-70 ° C
In contrast to this, CPVC can be used even at around 100 ° C., and is suitably used for heat-resistant pipes, heat-resistant joints, heat-resistant valves and the like.

【0004】しかしながら、上述したように、CPVC
はPVCより熱変形温度が高いため、PVCより高温で
加熱溶融しなければ成形加工することができない。とこ
ろが、CPVCは一般に熱安定性(初期着色性、耐熱安
定性)等が悪く、このように高い温度で加工しようとす
れば着色が著しく、分解してしまうこともある。そのた
め熱変形温度が高いにも関わらず、PVCと同等の低い
温度で成形加工しなければならない。従って、CPVC
の成形加工はPVCと較べて困難であり、十分にゲル化
させることができず、成形体の衝撃強度が劣るという問
題点があった。
However, as described above, the CPVC
Since has a higher heat deformation temperature than PVC, it cannot be molded unless it is heated and melted at a temperature higher than PVC. However, CPVC generally has poor heat stability (initial coloring property, heat resistance stability) and the like, and if it is processed at such a high temperature, coloring is remarkable, and it may be decomposed. For this reason, molding must be performed at a temperature as low as that of PVC, despite the high heat distortion temperature. Therefore, CPVC
Is difficult to form as compared with PVC, it is not possible to sufficiently gel, and there is a problem that the impact strength of the molded body is inferior.

【0005】PVCを後塩素化する方法としては、水懸
濁状態で行う方法、気相中で行う方法、液体塩素中に懸
濁させて行う方法等があり、反応促進の方法としては紫
外光を照射する方法、または、加熱加圧下で反応する方
法、あるいは有機過酸化物触媒を使う方法などが一般に
行われている。光照射下で塩素化反応を行う方法は10
0℃以下の比較的低温で行われているが、加熱加圧下で
塩素化反応を行う方法は、一般にPVCのガラス転移温
度よりも高い100℃を超える温度で反応が行われてい
る。しかしながらPVCのガラス転移温度よりも高い温
度で塩素化反応を行うと、PVC樹脂内部の微細な形態
が変化し、得られたCPVCの成形加工性に悪影響を与
えることがあった。そのため、光照射せずに加熱加圧下
で塩素化反応を行う場合でも、100℃以下の比較的低
温で行われることが好ましい。
[0005] Methods for post-chlorination of PVC include a method in which the reaction is carried out in a water suspension, a method in the gas phase, and a method in which the reaction is suspended in liquid chlorine. Irradiation, a reaction under heating and pressure, a method using an organic peroxide catalyst, and the like. The method of performing chlorination reaction under light irradiation is 10
Although the reaction is performed at a relatively low temperature of 0 ° C. or less, the method of performing the chlorination reaction under heating and pressurizing is generally performed at a temperature exceeding 100 ° C., which is higher than the glass transition temperature of PVC. However, when the chlorination reaction is performed at a temperature higher than the glass transition temperature of PVC, the fine morphology inside the PVC resin changes, which may adversely affect the molding processability of the obtained CPVC. Therefore, even when the chlorination reaction is performed under heat and pressure without irradiation with light, the chlorination reaction is preferably performed at a relatively low temperature of 100 ° C. or less.

【0006】ところが、光照射せずに100℃以下の比
較的低温で塩素化反応を行おうとすると、反応時間が長
時間となり生産性が低下するという問題点があった。そ
のため、反応時間を短くする方法として、特公昭45−
30833号公報に開示されているように、反応促進剤
として酸素を0.05〜0.35容量%含有する塩素を
使用する方法、または、特開平6−128320号公報
に開示されているように、有機過酸化物触媒等を添加す
る方法などが例示される。しかし、これらの方法では、
得られるCPVCの熱安定性が悪くなり好ましくない。
However, if the chlorination reaction is carried out at a relatively low temperature of 100 ° C. or lower without irradiation with light, there is a problem that the reaction time becomes long and the productivity is reduced. Therefore, as a method of shortening the reaction time,
As disclosed in Japanese Patent No. 30833, a method using chlorine containing 0.05 to 0.35% by volume of oxygen as a reaction accelerator, or as disclosed in Japanese Patent Application Laid-Open No. 6-128320. And a method of adding an organic peroxide catalyst and the like. However, with these methods,
The thermal stability of the obtained CPVC deteriorates, which is not preferable.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記問題点
を解決するものであって、加工性に優れ、熱安定性に優
れたCPVCが高い生産性で得られる製造方法を提供す
ることにある。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and an object of the present invention is to provide a production method capable of obtaining CPVC excellent in processability and heat stability with high productivity. is there.

【0008】[0008]

【課題を解決するための手段】本発明のCPVCの製造
方法は、PVCの塩素化反応を行うにあたり、反応開始
時における反応温度Y(℃)が50〜90℃の範囲であ
り、反応開始後の塩素化度に応じて、T=a(X2 −X
1 )+Y≦140℃で示される温度T(℃)条件の範囲
内で、一定温度下又は昇温しながら塩素化反応を行うこ
とを特徴とする。〔式中、aは昇温係数(0〜5)、X
2 は反応途中の塩素化度(重量%)、X 1 は出発原料P
VCの塩素化度(重量%)をそれぞれ示す〕
SUMMARY OF THE INVENTION The manufacture of the CPVC of the present invention
The method is based on the following:
When the reaction temperature Y (° C.) is in the range of 50 to 90 ° C.
Therefore, according to the degree of chlorination after the start of the reaction, T = a (XTwo-X
1) Range of temperature T (° C.) condition indicated by + Y ≦ 140 ° C.
The chlorination reaction should be carried out at a constant or elevated temperature.
And features. [Where a is a temperature rise coefficient (0-5), X
TwoIs the degree of chlorination during the reaction (% by weight), X 1Is the starting material P
VC chlorination degree (% by weight)]

【0009】本発明で用いられるPVCとしては特に制
限はないが、得られるCPVCの加工性が良好なもので
あるためには、水懸濁重合法によって得られた、高い空
隙率を有するもの及び/または比表面積が大であるもの
が好ましい。PVCの空隙率は、低くなると塩素化反応
に長時間かかるので、20容量%以上が好ましい。ま
た、比表面積は小さくなると塩素化反応に長時間がかか
るうえ、得られるCPVCの熱安定性も低下するので、
1m2 /g以上が好ましい。
[0009] The PVC used in the present invention is not particularly limited, but in order to obtain a good processability of the obtained CPVC, those having a high porosity obtained by a water suspension polymerization method and those having a high porosity. Those having a large specific surface area are preferred. The porosity of PVC is preferably 20% by volume or more, because the lower the porosity, the longer the chlorination reaction takes. In addition, when the specific surface area decreases, the chlorination reaction takes a long time, and the thermal stability of the obtained CPVC also decreases.
It is preferably at least 1 m 2 / g.

【0010】上記PVCの平均粒子径は小さくなると取
り扱いが難しくなり、大きくなると塩素化反応に長時間
かかるので、100〜200μmが好ましい。
When the average particle diameter of the PVC is small, handling becomes difficult. When the average particle diameter is large, the chlorination reaction takes a long time.

【0011】水懸濁重合法としては、公知の方法が好適
に用いられる。
As the water suspension polymerization method, a known method is suitably used.

【0012】本発明で用いられるPVCは、例えば、以
下の製造方法により得られる。重合器にまず塩化ビニル
系単量体、水性媒体、分散剤を投入し、更に重合開始剤
を投入する。この時水性媒体/塩化ビニル系単量体の重
量比率は1〜2が好ましい。
The PVC used in the present invention is obtained, for example, by the following production method. First, a vinyl chloride monomer, an aqueous medium, and a dispersant are charged into a polymerization vessel, and further a polymerization initiator is charged. At this time, the weight ratio of aqueous medium / vinyl chloride monomer is preferably 1-2.

【0013】次いで、所定の重合温度に昇温して重合反
応を行う。塩化ビニル系単量体の重合転化率が70重量
%以上90重量%以下の所定の割合に達した後、冷却、
排ガス、脱モノマ−の処理を行い、PVCを含むスラリ
−を得る。
Next, a polymerization reaction is carried out by raising the temperature to a predetermined polymerization temperature. After the polymerization conversion of the vinyl chloride monomer reaches a predetermined ratio of 70% by weight or more and 90% by weight or less, cooling,
Exhaust gas and demonomer treatment are performed to obtain a slurry containing PVC.

【0014】重合器は攪拌器、バッフル、ジャケットを
備えたステンレス製の耐圧容器を使用するのが好まし
い。この時、必要に応じてリフラックスコンデンサーを
備えたものを用いることができる。
As the polymerization vessel, it is preferable to use a stainless steel pressure vessel equipped with a stirrer, a baffle and a jacket. At this time, a device equipped with a reflux condenser can be used if necessary.

【0015】上記塩化ビニル系単量体とは、塩化ビニル
単量体単独、又は塩化ビニル単量体と共重合可能な他の
単量体との混合物のことをいう。上記塩化ビニルと共重
合可能な他の単量体としては、酢酸ビニル、プロピオン
酸ビニル等のビニルエステル;(メタ)アクリル酸メチ
ル、(メタ)アクリル酸エチル等の(メタ)アクリル酸
エステル;エチレン、プロピレン等のオレフィン;無水
マレイン酸;アクリロニトリル;スチレン;塩化ビニリ
デンなど公知の単量体が例示されるが、これらに限定さ
れるものではない。
The above-mentioned vinyl chloride monomer means a vinyl chloride monomer alone or a mixture with another monomer copolymerizable with the vinyl chloride monomer. Other monomers copolymerizable with vinyl chloride include vinyl esters such as vinyl acetate and vinyl propionate; (meth) acrylates such as methyl (meth) acrylate and ethyl (meth) acrylate; ethylene; And olefins such as propylene; maleic anhydride; acrylonitrile; styrene; vinylidene chloride, and other known monomers, but are not limited thereto.

【0016】上記分散剤としては一般に塩化ビニルの懸
濁重合に使用されるものが好適に用いられる。このよう
な分散剤としては、例えば、メチルセルロース、エチル
セルロース、ヒドロキシエチルセルロース、ヒドロキシ
プロピルメチルセルロース等水溶性セルロース類;部分
ケン化ポリビニルアルコール、ポリエチレンオキサイ
ド、アクリル酸重合体、ゼラチン等の水溶性高分子;ソ
ルビタンモノラウレ−ト、ポリオキシエチレンソルビタ
ンモノラウレ−ト等の水溶性乳化剤などが挙げられ、こ
れらは単独で用いられてもよく、2種以上が併用されて
もよい。上記分散剤の使用量としては、塩化ビニル系単
量体の重量に対して0.01〜0.5重量%が好まし
い。
As the above dispersant, those generally used for suspension polymerization of vinyl chloride are preferably used. Such dispersants include, for example, water-soluble celluloses such as methylcellulose, ethylcellulose, hydroxyethylcellulose, and hydroxypropylmethylcellulose; water-soluble polymers such as partially saponified polyvinyl alcohol, polyethylene oxide, acrylic acid polymers, and gelatin; Examples thereof include water-soluble emulsifiers such as laurate and polyoxyethylene sorbitan monolaurate, and these may be used alone or in combination of two or more. The dispersant is preferably used in an amount of 0.01 to 0.5% by weight based on the weight of the vinyl chloride monomer.

【0017】上記重合開始剤としては一般に塩化ビニル
の懸濁重合に使用される油溶性の開始剤が好適に用いら
れる。このような重合開始剤としては、例えば、ジ−2
−エチルヘキシルパーオキシジカーボネート、ジエトキ
シエチルパーオキシジカーボネート、α−クミルパーオ
キシネオデカーネート、t−ブチルパーオキシネオデカ
ーネート、t−ブチルパーオキシピバレ−ト、t−ブチ
ルパーオキシ−3,5,5−トリメチルヘキサノエ−
ト、アセチルシクロヘキシルスルホニルパ−オキサイ
ド、2,4,4−トリメチルペンチル−2−パ−オキシ
フェノキシアセテ−ト、ラウロイルパ−オキサイド等が
挙げられ、これらは単独で用いられてもよく、2種以上
が併用されてもよい。上記重合開始剤の使用量として
は、塩化ビニル系単量体の重量に対して0.001〜2
重量%が好ましい。
As the polymerization initiator, an oil-soluble initiator generally used for suspension polymerization of vinyl chloride is preferably used. As such a polymerization initiator, for example, di-2
-Ethylhexylperoxydicarbonate, diethoxyethylperoxydicarbonate, α-cumylperoxyneodecanate, t-butylperoxyneodecanate, t-butylperoxypivalate, t-butylperoxy-3 , 5,5-trimethylhexanoe
Acetylcyclohexylsulfonyl peroxide, 2,4,4-trimethylpentyl-2-peroxyphenoxyacetate, lauroyl peroxide, etc., which may be used alone or in combination of two or more. You may use together. The amount of the polymerization initiator used is 0.001 to 2 with respect to the weight of the vinyl chloride monomer.
% By weight is preferred.

【0018】さらに、塩化ビニル系単量体の重合に通常
使用される重合調整剤、連鎖移動剤、pH調整剤、帯電
防止剤、架橋剤、安定剤、充填剤、酸化防止剤、スケ−
ル防止剤等が添加されてもよい。
Furthermore, polymerization regulators, chain transfer agents, pH regulators, antistatic agents, cross-linking agents, stabilizers, fillers, antioxidants, scales commonly used in the polymerization of vinyl chloride monomers.
Antioxidants and the like may be added.

【0019】本発明においては、上記の方法によって得
られたPVCを後塩素化する方法として、水性媒体中に
懸濁状態で塩素化する方法、気相中でガス塩素と接触さ
せて行う方法等がある。水性媒体中で塩素化する場合に
は、反応器中に懸濁重合で得られたPVCを水性媒体か
ら分離せずに、または、上記懸濁物からPVCを分離し
た後、PVCを再び別の水性媒体中に分散させて、塩素
化反応を行いCPVCを製造する。気相中で塩素化する
方法は、乾燥後のPVCを塩素ガス気流中に流動させて
反応を行いCPVCを製造する。
In the present invention, as a method for post-chlorination of PVC obtained by the above method, a method of chlorination in a suspended state in an aqueous medium, a method of contacting with gaseous chlorine in a gas phase, and the like There is. In the case of chlorination in an aqueous medium, the PVC obtained by the suspension polymerization in the reactor is not separated from the aqueous medium, or after the PVC is separated from the suspension, the PVC is separated again by another method. It is dispersed in an aqueous medium and subjected to a chlorination reaction to produce CPVC. In the method of chlorination in the gas phase, the dried PVC is caused to flow in a chlorine gas stream to carry out a reaction to produce CPVC.

【0020】上記塩素化反応は反応器中を真空にして酸
素を除去した後、塩素を所定の圧力まで導入する。塩素
は反応器中の気相部に投入することが好ましい。次い
で、所定の範囲に昇温し、塩素化反応を開始する。反応
開始温度は高すぎると得られるCPVCの成形加工性が
低下し、低すぎると反応に長時間を要するので50〜9
0℃に限定され、60〜80℃が好ましい。この反応開
始時における反応器内の塩素分圧は0.01〜1MPa
が好ましく、0.2〜0.5MPaがより好ましい。
In the above chlorination reaction, after the inside of the reactor is evacuated to remove oxygen, chlorine is introduced to a predetermined pressure. Chlorine is preferably introduced into the gas phase in the reactor. Next, the temperature is raised to a predetermined range to start a chlorination reaction. If the reaction initiation temperature is too high, the molding processability of the resulting CPVC is reduced. If the reaction initiation temperature is too low, the reaction requires a long time.
The temperature is limited to 0 ° C, preferably 60 to 80 ° C. At the start of the reaction, the partial pressure of chlorine in the reactor is 0.01 to 1 MPa.
Is preferable, and 0.2 to 0.5 MPa is more preferable.

【0021】塩素化反応の進行に従い、CPVCの塩素
化度に応じて反応温度を高くしていく。その反応温度T
(℃)は下記の式に示される範囲内で行う。T=a(X
2 −X1 )+Y≦140℃〔式中、aは昇温係数(0〜
5)、X2は反応途中の塩素化度(重量%)、X1 は出
発原料塩化ビニル系樹脂の塩素化度(重量%)、Yは反
応開始時温度(℃)をそれぞれ示す〕 塩化ビニル単独重合体(塩素化度=56.8重量%)を
出発原料として塩素化反応を行ったとき、反応温度は図
1の斜線で示される範囲内で行われる。
As the chlorination reaction proceeds, the reaction temperature is increased in accordance with the degree of chlorination of CPVC. The reaction temperature T
(° C.) is performed within the range shown by the following formula. T = a (X
2- X 1 ) + Y ≦ 140 ° C. [In the formula, a is a temperature rise coefficient (0 to 0)
5), X 2 indicates the degree of chlorination (% by weight) during the reaction, X 1 indicates the degree of chlorination (% by weight) of the starting vinyl chloride resin, and Y indicates the temperature (° C.) at the start of the reaction.] When a chlorination reaction is carried out using a homopolymer (degree of chlorination = 56.8% by weight) as a starting material, the reaction temperature is within the range shown by hatching in FIG.

【0022】反応温度は、図1に示される斜線の範囲内
で任意に設定される。反応温度は塩素化度に応じて直線
的に昇温されても良く、塩素化度に応じて段階的に昇温
されても良い。また、一定の温度で反応されても良い。
例えば、80℃で反応を開始し、塩素化度が61重量%
に到達した時点で100℃に昇温し、さらに塩素化度が
65重量%に到達した時点で110℃に昇温しその後は
110℃の一定温度で反応する。
The reaction temperature is set arbitrarily within the range of the hatched area shown in FIG. The reaction temperature may be increased linearly according to the degree of chlorination, or may be increased stepwise according to the degree of chlorination. Further, the reaction may be performed at a constant temperature.
For example, the reaction is started at 80 ° C. and the chlorination degree is 61% by weight.
When the chlorination degree reaches 65% by weight, the temperature is raised to 110 ° C., and thereafter, the reaction is carried out at a constant temperature of 110 ° C.

【0023】本発明では、塩素化度が高くなるに従っ
て、反応温度も高く設定する方が好ましいが、反応温度
が高くなりすぎると塩素化反応とともに脱塩酸反応が起
こり、得られるPVCが着色したものとなるので140
℃以下に限定される。
In the present invention, it is preferable to set the reaction temperature higher as the degree of chlorination increases. However, if the reaction temperature is too high, a dechlorination reaction occurs together with the chlorination reaction, and the resulting PVC is colored. 140
It is limited to below ℃

【0024】本発明では、反応器内の塩素分圧は0.0
1〜1MPaが好ましく、0.2〜0.5MPaがより
好ましい。反応の進行にともなって塩素が消費され、反
応器内の塩素分圧が低下するが、適宜塩素を追加し反応
を継続する。この時塩素は気相部に投入する事が好まし
い。
In the present invention, the partial pressure of chlorine in the reactor is 0.0
1-1 MPa is preferable, and 0.2-0.5 MPa is more preferable. As the reaction proceeds, chlorine is consumed, and the partial pressure of chlorine in the reactor decreases. However, the reaction is continued by appropriately adding chlorine. At this time, chlorine is preferably introduced into the gas phase.

【0025】本発明では、反応を促進する目的で過酸化
水素等が添加されたり、高圧水銀灯などの紫外光が照射
されてもよい。また、水性媒体中に、アセトン、メチル
エチルケトンのようなケトン類が少量加えられてもよ
く、必要に応じて、塩酸、トリクロルエチレン、四塩化
炭素のような塩素系溶剤が少量加えられてもよい。
In the present invention, hydrogen peroxide or the like may be added for the purpose of accelerating the reaction, or ultraviolet light such as a high-pressure mercury lamp may be irradiated. Further, a small amount of ketones such as acetone and methyl ethyl ketone may be added to the aqueous medium, and a small amount of a chlorinated solvent such as hydrochloric acid, trichloroethylene and carbon tetrachloride may be added as necessary.

【0026】塩素化反応はCPVC中の塩素含有量が所
定の重量%に到達した時に、残存塩素を排ガスし、冷却
して、反応を停止する。得られたCPVCスラリーを水
洗して塩酸を除去し、必要に応じて中和剤等を加え、脱
水、乾燥の工程を経てCPVC粉末を得る。本発明で得
られるCPVCの塩素含有量は特に限定されないが、6
0〜70重量%とするのが好ましい。
In the chlorination reaction, when the chlorine content in the CPVC reaches a predetermined weight%, residual chlorine is exhausted, cooled, and the reaction is stopped. The obtained CPVC slurry is washed with water to remove hydrochloric acid, and if necessary, a neutralizing agent and the like are added, followed by dehydration and drying steps to obtain a CPVC powder. Although the chlorine content of CPVC obtained in the present invention is not particularly limited,
The content is preferably 0 to 70% by weight.

【0027】[0027]

【発明の実施の形態】以下に実施例を掲げて本発明を詳
しく説明するが、本発明はこれら実施例のみに限定され
るものではない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples.

【0028】(実施例1)内容積300リットルのグラ
スライニング製反応器に、脱イオン水500重量部と平
均重合度1000のPVC100重量部を投入し、攪拌
してPVCを水中に分散させた後反応器内を加熱して、
70℃に昇温した。次いで、反応器中を真空にして酸素
を除去した後、塩素ガスを塩素分圧が0.5MPaにな
るよう導入し、塩素化反応を開始した。反応懸濁液中の
塩酸濃度を測定して塩素化反応の進行状況を監視し、塩
素含有量が59重量%に達した時点で反応温度を80℃
に昇温し、さらに、塩素含有量が62重量%に達した時
点で反応温度を100℃に昇温し反応を行った。塩素含
有量が66.5重量%に達した時点で塩素ガスの供給を
停止し、塩素化反応を終了した。次いで、窒素ガスを通
気して、未反応塩素を除去し、得られたCPVCスラリ
ーを水酸化ナトリウムで中和し、水で洗浄し、脱水した
後、乾燥して粉末状のCPVCを得た。
Example 1 500 parts by weight of deionized water and 100 parts by weight of PVC having an average degree of polymerization of 1000 were charged into a glass-lined reactor having an internal volume of 300 liters, and stirred to disperse the PVC in water. Heat the inside of the reactor,
The temperature was raised to 70 ° C. Next, after the inside of the reactor was evacuated to remove oxygen, chlorine gas was introduced so that the chlorine partial pressure became 0.5 MPa, and the chlorination reaction was started. The progress of the chlorination reaction was monitored by measuring the concentration of hydrochloric acid in the reaction suspension, and when the chlorine content reached 59% by weight, the reaction temperature was raised to 80 ° C.
And when the chlorine content reached 62% by weight, the reaction temperature was raised to 100 ° C. to carry out the reaction. When the chlorine content reached 66.5% by weight, the supply of chlorine gas was stopped, and the chlorination reaction was terminated. Subsequently, nitrogen gas was passed to remove unreacted chlorine, and the obtained CPVC slurry was neutralized with sodium hydroxide, washed with water, dehydrated, and dried to obtain a powdery CPVC.

【0029】(実施例2)反応開始時の温度を80℃と
し、塩素含有量が61重量%に達した時点で反応温度を
100℃に昇温した事以外は、実施例1と同様に行い、
CPVCを得た。
Example 2 The same procedure as in Example 1 was carried out except that the temperature at the start of the reaction was 80 ° C. and the temperature of the reaction was raised to 100 ° C. when the chlorine content reached 61% by weight. ,
CPVC was obtained.

【0030】(比較例1)反応時の温度を110℃一定
とし、反応圧力は0.5MPaとした事以外は、実施例
1と同様に行い、CPVCを得た。
Comparative Example 1 CPVC was obtained in the same manner as in Example 1 except that the temperature during the reaction was kept constant at 110 ° C. and the reaction pressure was set at 0.5 MPa.

【0031】(比較例2)反応開始時の温度を80℃と
し、塩素含有量が59重量%に達した時点で反応温度を
120℃に昇温した事以外は、実施例1と同様に行い、
CPVCを得た。
(Comparative Example 2) The same procedure as in Example 1 was carried out except that the temperature at the start of the reaction was 80 ° C and the reaction temperature was raised to 120 ° C when the chlorine content reached 59% by weight. ,
CPVC was obtained.

【0032】(実施例3)内容積300リットルのグラ
スライニング製反応器に、脱イオン水500重量部と平
均重合度1000のPVC100重量部を投入し、攪拌
してPVCを水中に分散させた後反応器内を加熱して、
70℃に昇温した。次いで、反応器中を真空にして酸素
を除去した後、塩素ガスを塩素分圧が0.1MPaにな
るよう導入し、次いで高圧水銀灯を照射し、塩素化反応
を開始した。塩素化反応は70℃一定で行った。反応懸
濁液中の塩酸濃度を測定して塩素化反応の進行状況を監
視し、塩素含有量が66.5重量%に達した時点で塩素
ガスの供給を停止し、塩素化反応を終了した。次いで、
窒素ガスを通気して、未反応塩素を除去し、得られたC
PVCスラリーを水酸化ナトリウムで中和し、水で洗浄
し、脱水した後、乾燥して粉末状のCPVCを得た。
Example 3 500 parts by weight of deionized water and 100 parts by weight of PVC having an average polymerization degree of 1000 were charged into a glass-lined reactor having an internal volume of 300 liters, and stirred to disperse the PVC in water. Heat the inside of the reactor,
The temperature was raised to 70 ° C. Next, after the inside of the reactor was evacuated to remove oxygen, chlorine gas was introduced so that the chlorine partial pressure became 0.1 MPa, and then irradiation with a high-pressure mercury lamp was performed to start the chlorination reaction. The chlorination reaction was performed at a constant 70 ° C. The progress of the chlorination reaction was monitored by measuring the concentration of hydrochloric acid in the reaction suspension. When the chlorine content reached 66.5% by weight, the supply of chlorine gas was stopped, and the chlorination reaction was terminated. . Then
Unreacted chlorine is removed by bubbling nitrogen gas, and the resulting C
The PVC slurry was neutralized with sodium hydroxide, washed with water, dehydrated, and dried to obtain a powdery CPVC.

【0033】(実施例4)反応開始時の温度を60℃一
定とし、塩素含有量が61重量%に達した時点で反応温
度を90℃に昇温した事以外は、実施例3と同様に行
い、CPVCを得た。
Example 4 The procedure of Example 3 was repeated except that the temperature at the start of the reaction was kept constant at 60 ° C., and when the chlorine content reached 61% by weight, the reaction temperature was raised to 90 ° C. Performed to obtain CPVC.

【0034】(比較例3)反応時の温度を100℃一定
とし、反応圧力は0.2MPaとした事以外は、実施例
3と同様に行い、CPVCを得た。
(Comparative Example 3) CPVC was obtained in the same manner as in Example 3, except that the reaction temperature was kept constant at 100 ° C and the reaction pressure was set at 0.2 MPa.

【0035】(比較例4)反応開始時の温度を80℃と
し、塩素含有量が59重量%に達した時点で反応温度を
110℃に昇温した事以外は、実施例3と同様に行い、
CPVCを得た。
(Comparative Example 4) The same procedure as in Example 3 was carried out except that the temperature at the start of the reaction was 80 ° C and the reaction temperature was raised to 110 ° C when the chlorine content reached 59% by weight. ,
CPVC was obtained.

【0036】尚上記実施例及び比較例で得られたCPV
Cの物性評価を以下の通り行い、その結果を表1に示
す。 (1)ゲル化時間 CPVC100重量部、ブチルステアレ−ト0.5重量
部、MBS樹脂10重量部、加工助剤0.5重量部、及
びマレ−ト錫系安定剤2重量部からなる配合物60gを
プラストミル(東洋精機社製「ラボプラストミル」)を
使用して、回転数40rpm、試験温度190℃で混練
し、混練トルクがピークになる時の時間をゲル化時間と
した。
The CPVs obtained in the above Examples and Comparative Examples
The physical properties of C were evaluated as follows, and the results are shown in Table 1. (1) Gelation time 60 g of a composition composed of 100 parts by weight of CPVC, 0.5 parts by weight of butyl stearate, 10 parts by weight of MBS resin, 0.5 parts by weight of processing aid, and 2 parts by weight of maleate tin-based stabilizer Was kneaded using a plastmill (“Laboplast mill” manufactured by Toyo Seiki Co., Ltd.) at a rotation speed of 40 rpm and a test temperature of 190 ° C., and the time when the kneading torque peaked was defined as the gel time.

【0037】(2)熱安定性 上記配合物を2本の8インチロールに供給し、190℃
で3分混練して、厚さ0・5mmのシートを作成した。
このシートをギヤオーブン中で200℃の温度で加熱
し、黒化するまでの時間(分)を測定した。 (3)抗張力、伸び 上記と同様の方法で、厚さ0・5mmのシートを作成し
た。このシートを重ね合わせ195℃で5分間プレスし
て、厚さ2mmのプレス板を得た。このプレス板より試
験片を切り出し、JIS K 7113に準拠して測定
した。 (4)シャルピー衝撃値 上記と同様の方法で、厚さ3mmのプレス板を作成し、
このプレス板より試験片を切り出して、JISK 71
11に準拠して測定した。
(2) Thermal stability The above composition was supplied to two 8-inch rolls and heated at 190 ° C.
For 3 minutes to prepare a sheet having a thickness of 0.5 mm.
This sheet was heated at a temperature of 200 ° C. in a gear oven, and the time (minute) until blackening was measured. (3) Tensile strength and elongation A sheet having a thickness of 0.5 mm was prepared in the same manner as described above. The sheets were overlapped and pressed at 195 ° C. for 5 minutes to obtain a pressed plate having a thickness of 2 mm. A test piece was cut out from this press plate and measured according to JIS K 7113. (4) Charpy impact value In the same manner as above, a pressed plate having a thickness of 3 mm was prepared.
A test piece was cut out from this press plate, and JISK 71
11 was measured.

【0038】(5)フィッシュアイ CPVC100重量部、ジブチル錫メルカプト3重量
部、ステアリン酸カルシウム1重量部、エステル系ワッ
クス1重量部、フタル酸エステル可塑剤10重量部、及
び青色顔料2重量部からなる配合物50gを215℃の
6インチロールに供給し、2分間混練して、厚さ0・2
mmのシートを作成した。このシート100cm2 当た
りの透明粒子数を計数し、フィッシュアイ個数/100
cm2 とした。
(5) Formulation comprising 100 parts by weight of Fisheye CPVC, 3 parts by weight of dibutyltin mercapto, 1 part by weight of calcium stearate, 1 part by weight of an ester wax, 10 parts by weight of a phthalate plasticizer, and 2 parts by weight of a blue pigment 50 g of the product is supplied to a 6-inch roll at 215 ° C., and kneaded for 2 minutes to obtain a thickness of 0.2.
mm sheet was prepared. The number of transparent particles per 100 cm 2 of this sheet was counted, and the number of fish eyes / 100
cm 2 .

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【発明の効果】本発明のCPVCの製造方法は、上述の
通りであり、ゲル化し易く、成形品の物性が優れたCP
VCを製造することができる。
The method for producing CPVC of the present invention is as described above, and is easy to gel, and has excellent physical properties of molded articles.
VC can be manufactured.

【0041】[0041]

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は塩素化反応の温度範囲を示すグラフであ
る。
FIG. 1 is a graph showing a temperature range of a chlorination reaction.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 塩化ビニル系樹脂の塩素化反応を行うに
あたり、反応開始時における温度Y(℃)が50〜90
℃の範囲であり、反応開始後の塩素化度に応じて、T=
a(X2 −X1 )+Y≦140℃で示される温度T
(℃)条件の範囲内で、一定温度下又は昇温しながら塩
素化反応を行うことを特徴とする塩素化塩化ビニル系樹
脂の製造方法。 〔式中、aは昇温係数(0〜5)、X2 は反応途中の塩
素化度(重量%)、X1は出発原料塩化ビニル系樹脂の
塩素化度(重量%)をそれぞれ示す〕
When conducting a chlorination reaction of a vinyl chloride resin, the temperature Y (° C.) at the start of the reaction is 50 to 90.
° C, and depending on the degree of chlorination after the start of the reaction, T =
a (X 2 −X 1 ) + Y ≦ 140 ° C.
(C) A method for producing a chlorinated vinyl chloride resin, wherein the chlorination reaction is carried out at a constant temperature or at an elevated temperature within a range of conditions. Wherein, a is heated coefficient (0 to 5), X 2 is in the middle of the reaction chlorination degree (wt%), X 1 denotes a chlorination degree of the starting material vinyl chloride resin (wt%)]
JP20024897A 1997-07-25 1997-07-25 Production of chlorinated vinyl chloride resin Pending JPH1135627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20024897A JPH1135627A (en) 1997-07-25 1997-07-25 Production of chlorinated vinyl chloride resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20024897A JPH1135627A (en) 1997-07-25 1997-07-25 Production of chlorinated vinyl chloride resin

Publications (1)

Publication Number Publication Date
JPH1135627A true JPH1135627A (en) 1999-02-09

Family

ID=16421248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20024897A Pending JPH1135627A (en) 1997-07-25 1997-07-25 Production of chlorinated vinyl chloride resin

Country Status (1)

Country Link
JP (1) JPH1135627A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013081133A1 (en) * 2011-12-02 2013-06-06 徳山積水工業株式会社 Method for producing chlorinated vinyl chloride-based resin
CN103497264A (en) * 2013-09-29 2014-01-08 中国平煤神马能源化工集团有限责任公司 Reaction system and method for intermittent production of chlorinated polyvinyl chloride
WO2015152260A1 (en) * 2014-03-31 2015-10-08 積水化学工業株式会社 Production method for chlorinated vinyl chloride resin
CN109384862A (en) * 2018-10-25 2019-02-26 山东高信化学股份有限公司 A kind of production method of chlorinated polyvinyl chloride resin

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013081133A1 (en) * 2011-12-02 2013-06-06 徳山積水工業株式会社 Method for producing chlorinated vinyl chloride-based resin
CN104011091A (en) * 2011-12-02 2014-08-27 德山积水工业株式会社 Method for producing chlorinated vinyl chloride-based resin
JPWO2013081133A1 (en) * 2011-12-02 2015-04-27 徳山積水工業株式会社 Method for producing chlorinated vinyl chloride resin
US9346901B2 (en) 2011-12-02 2016-05-24 Tokuyama Sekisui Co., ;Td. Method for producing chlorinated vinyl chloride resin
CN103497264A (en) * 2013-09-29 2014-01-08 中国平煤神马能源化工集团有限责任公司 Reaction system and method for intermittent production of chlorinated polyvinyl chloride
CN103497264B (en) * 2013-09-29 2016-07-06 中国平煤神马能源化工集团有限责任公司 The response system of a kind of Batch Process chliorinated polyvinyl chloride and method
WO2015152260A1 (en) * 2014-03-31 2015-10-08 積水化学工業株式会社 Production method for chlorinated vinyl chloride resin
JPWO2015152260A1 (en) * 2014-03-31 2017-04-13 積水化学工業株式会社 Method for producing chlorinated vinyl chloride resin
CN109384862A (en) * 2018-10-25 2019-02-26 山东高信化学股份有限公司 A kind of production method of chlorinated polyvinyl chloride resin

Similar Documents

Publication Publication Date Title
WO2008062526A1 (en) Chlorinated vinyl chloride resins and process for production
KR101765842B1 (en) Method for preparing vinylchloride based polymer
JP5891242B2 (en) Method for producing chlorinated vinyl chloride resin
JP2001151815A (en) Method of manufacturing for chlorinated vinyl chloride resin
JP4728701B2 (en) Method for producing chlorinated vinyl chloride resin
JPH1135627A (en) Production of chlorinated vinyl chloride resin
JP4338703B2 (en) Method for producing chlorinated vinyl chloride resin
JP2000119333A (en) Production of chlorinated vinyl chloride-based resin
JP3863279B2 (en) Method for producing chlorinated vinyl chloride resin
JP2000344830A (en) Production of chlorinated vinyl chloride resin
JPH10279627A (en) Production of chlorinated vinyl chloride resin
JPH1129613A (en) Production of chlorinated vinyl chloride-based resin
JPH1143509A (en) Production of chlorinated vinyl chloride-based resin
JP4610877B2 (en) Method for producing chlorinated vinyl chloride resin
JP3164743B2 (en) Method for producing chlorinated vinyl chloride resin
JP2818101B2 (en) Method for producing chlorinated vinyl chloride resin
JPH11209425A (en) Production of chlorinated vinyl chloride resin
JPH1112318A (en) Production of chlorinated vinyl chloride-based resin
JPH10251333A (en) Production of chlorinated vinyl chloride resin
JPH1121312A (en) Production of chlorinated vinyl chloride resin
JP3802668B2 (en) Method for producing chlorinated vinyl chloride resin
JP2000063428A (en) Preparation of chlorinated vinyl chloride resin
JP3487742B2 (en) Method for producing chlorinated vinyl chloride resin
JPH10306108A (en) Production of vinyl chloride resin and chlorinated vinyl chloride resin
JP3652832B2 (en) Method for producing chlorinated vinyl chloride resin