JP2000269637A - Copper foil for high-density ultrafine wiring board - Google Patents

Copper foil for high-density ultrafine wiring board

Info

Publication number
JP2000269637A
JP2000269637A JP11073803A JP7380399A JP2000269637A JP 2000269637 A JP2000269637 A JP 2000269637A JP 11073803 A JP11073803 A JP 11073803A JP 7380399 A JP7380399 A JP 7380399A JP 2000269637 A JP2000269637 A JP 2000269637A
Authority
JP
Japan
Prior art keywords
copper foil
carrier
layer
copper
plating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11073803A
Other languages
Japanese (ja)
Inventor
Akitoshi Suzuki
昭利 鈴木
Shin Fukuda
福田  伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Circuit Foil Co Ltd
Original Assignee
Furukawa Circuit Foil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Circuit Foil Co Ltd filed Critical Furukawa Circuit Foil Co Ltd
Priority to JP11073803A priority Critical patent/JP2000269637A/en
Publication of JP2000269637A publication Critical patent/JP2000269637A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the joint strength to a substrate by laminating a peeling layer and electrolytic copper plating layer on the surface of copper foil whose surface roughness is equal to a specific value or less, and roughening the surface of the electrolytic copper plating layer. SOLUTION: On one side of a copper foil 1, which is a carrier with surface roughness 1.5 μ or less, a peeling layer 2 and an electrolytic copper plating layer 3 are formed sequentially, and a surface 3a of the electrolytic copper plating layer 3 is roughened. The roughened surface 3a is stacked to a base material before the entire is thermally press-fitted, and the carrier copper foil 1 is peeled and removed, and the side of the electrolytic copper plating layer 3 which is to be jointed to the carrier copper foil 1 is exposed, where a prescribed wiring pattern is formed. Thus, the joint strength to the base material is improved, with not pinhole despite the small value for surface roughness.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はプリント配線基板の
製造時に用いるキャリヤー付き銅箔に関し、特に高密度
超微細配線の多層プリント配線基板の製造に用いて好適
なキャリヤー付き銅箔に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper foil with a carrier used for manufacturing a printed wiring board, and more particularly to a copper foil with a carrier suitable for manufacturing a multilayer printed wiring board having a high-density ultrafine wiring.

【0002】[0002]

【従来の技術】プリント配線基板は、次のようにして製
造されている。まず、ガラス・エポキシ樹脂やポリイミ
ド樹脂などから成る電気絶縁性の基板の表面に、表面回
路形成用の薄い銅箔を置いたのち、加熱・加圧して銅張
り積層板を製造する。
2. Description of the Related Art A printed wiring board is manufactured as follows. First, a thin copper foil for forming a surface circuit is placed on the surface of an electrically insulating substrate made of glass epoxy resin, polyimide resin, or the like, and then heated and pressed to produce a copper-clad laminate.

【0003】ついで、その銅張り積層板に、スルーホー
ルの穿設,スルーホールめっきを順次行ったのち、該銅
張り積層板の表面にある銅箔にエッチング処理を行って
所望する線幅と所望する線間ピッチを備えた配線パター
ンを形成し、最後に、ソルダーレジストの形成やその他
の仕上げ処理が行われる。
[0003] Then, through holes are drilled and plated through the holes sequentially in the copper-clad laminate, and then the copper foil on the surface of the copper-clad laminate is etched to obtain a desired line width and a desired line width. A wiring pattern having an inter-line pitch is formed, and finally, a solder resist is formed and other finishing processes are performed.

【0004】このとき用いる銅箔に対しては、基材に熱
圧着される側の表面を粗化面とし、この粗化面で該基材
に対するアンカー効果を発揮させ、もって該基材と銅箔
との接合強度を高めてプリント配線基板としての信頼性
を確保することがなされている。
[0004] The surface of the copper foil used at this time, which is to be thermocompression-bonded to the substrate, is a roughened surface, and the roughened surface exerts an anchoring effect on the substrate. It has been attempted to increase the bonding strength with a foil to ensure the reliability as a printed wiring board.

【0005】更に最近では、銅箔の粗化面を予めエポキ
シ樹脂のような接着用樹脂で被覆し、該接着用樹脂を半
硬化状態(Bステージ)の絶縁樹脂層にした樹脂付き銅
箔を表面回路形成用の銅箔として用い、その絶縁樹脂層
の側を基材に熱圧着してプリント配線基板、とりわけ多
層プリント配線基板を製造することが行われている。
More recently, a resin-coated copper foil in which a roughened surface of a copper foil is coated in advance with an adhesive resin such as an epoxy resin, and the adhesive resin is formed into an insulating resin layer in a semi-cured state (B stage). 2. Description of the Related Art A printed circuit board, particularly a multilayer printed circuit board, has been used by using it as a copper foil for forming a surface circuit and thermocompression bonding the insulating resin layer side to a substrate.

【0006】ところで、最近の各種電子部品は高度に集
積化され、小型でかつ高密度のプリント配線を内蔵する
ICやLSIなどが使用されている。これに対応して、
プリント配線基板における配線パターンも高密度化が要
求され、微細な線幅や線間ピッチの配線から成る配線パ
ターン、いわゆるファインパターンのプリント配線基板
が要求されるようになった。例えば半導体パッケージに
使用されるプリント配線基板の場合には、線幅や線間ピ
ッチがそれぞれ30μm前後という高密度極微細配線を
有するプリント配線基板が要求されている。
Recently, various electronic components have been highly integrated, and small-sized ICs and LSIs having high-density printed wiring are used. Correspondingly,
Higher density is also required for the wiring pattern on the printed wiring board, and a wiring pattern composed of wiring having a fine line width and a line pitch, that is, a so-called fine pattern printed wiring board has been required. For example, in the case of a printed wiring board used for a semiconductor package, a printed wiring board having high-density ultrafine wiring having a line width and a line pitch of about 30 μm is required.

【0007】このようなプリント配線形成用の銅箔とし
て厚い銅箔を用いると、基材の表面までエッチングする
ために必要な時間が長くなり、その結果、形成される配
線パターンにおける側壁の垂直性が崩れて、次式: Ef=2H/(B−T) (ここで、Hは銅箔の厚み、Bは形成された配線パター
ンのボトム幅、Tは形成された配線パターンのトップ幅
である)で示されるエッチングファクタ(Ef)が小さ
くなる。このような問題は、形成する配線パターンにお
ける配線の線幅が広い場合にはそれほど深刻な問題にな
らないが、線幅が狭い配線パターンの場合には断線に結
びつくことも起こり得る。
[0007] When a thick copper foil is used as the copper foil for forming such a printed wiring, the time required for etching to the surface of the base material becomes longer, and as a result, the verticality of the side wall in the formed wiring pattern is increased. Ef = 2H / (BT) (where H is the thickness of the copper foil, B is the bottom width of the formed wiring pattern, and T is the top width of the formed wiring pattern. ) Becomes smaller. Such a problem does not become a serious problem when the line width of the wiring in the wiring pattern to be formed is wide, but may cause a disconnection in a wiring pattern with a small line width.

【0008】一方、薄い銅箔の場合は、確かにEf値を
大きくすることができる。しかしながら、基材との接合
強度を確保するためにこの銅箔の基材側の表面は粗化面
になっており、この粗化面の突起部が基材に喰い込むた
め、この喰い込んだ突起部を完全にエッチング除去する
ためには長時間エッチング処理が必要とされる。該喰い
込んだ突起部を完全に除去しないと、それが残銅とな
り、配線パターンの線間ピッチが狭い場合には絶縁不良
を引き起こすからである。
On the other hand, in the case of a thin copper foil, the Ef value can be certainly increased. However, the surface of the copper foil on the substrate side is a roughened surface in order to secure the bonding strength with the base material, and the projections of the roughened surface bite into the base material. In order to completely remove the protrusions by etching, a long etching process is required. This is because if the biting projection is not completely removed, it becomes copper, and if the pitch between wiring patterns is narrow, insulation failure occurs.

【0009】したがって、該喰い込んだ突起部をエッチ
ング除去する過程で、既に形成されている配線パターン
の側壁のエッチングも進行してしまい、結局はEf値が
小さくなってしまう。
Therefore, in the process of etching and removing the biting projection, the etching of the side wall of the already formed wiring pattern also progresses, and the Ef value eventually decreases.

【0010】薄い銅箔を用いる場合、その表面粗度を小
さくすればこのような問題を解消できることは事実であ
るが、その場合には銅箔と基材との接合強度は小さくな
るため信頼性に富むファインな配線パターンのプリント
配線基板を製造することは困難である。
In the case of using a thin copper foil, it is true that such a problem can be solved by reducing the surface roughness, but in that case, the bonding strength between the copper foil and the base material is reduced, so that the reliability is reduced. It is difficult to manufacture a printed wiring board having a fine wiring pattern rich in the wiring pattern.

【0011】また、薄い銅箔の場合は、その機械的強度
が低いので、プリント配線基板の製造時に皺や折れ目が
発生しやすく、更には銅箔切れを起こすこともあり、取
り扱いに細心の注意を払わなければならないという問題
もある。
In the case of a thin copper foil, since its mechanical strength is low, wrinkles and folds are liable to occur during the manufacture of a printed wiring board, and furthermore, the copper foil may be broken, so that it must be carefully handled. There is also the problem of having to pay attention.

【0012】このように、Ef値が大きく、かつ基材と
の接合強度も高いファインな配線パターンが形成されて
いるプリント配線基板を製造することは、実際問題とし
て、かなり困難である。とくに、線間や線幅が30μm
前後の高密度極微細配線の配線パターンを市販されてい
る銅箔を用いて形成することは事実上不可能であり、そ
れを可能にする銅箔の開発が強く望まれているのが実状
である。
As a practical problem, it is quite difficult to manufacture a printed wiring board on which a fine wiring pattern having a large Ef value and a high bonding strength with a substrate is formed. Especially, the space between lines and line width is 30μm
It is virtually impossible to form the wiring pattern of the high-density ultra-fine wiring before and after using commercially available copper foil, and the development of a copper foil that makes it possible is strongly desired. is there.

【0013】こうしたファインパターン用途に使われる
銅箔としては、厚さ9μm以下、特に5μm以下の銅箔が
適している。
As the copper foil used for such fine pattern applications, a copper foil having a thickness of 9 μm or less, particularly 5 μm or less is suitable.

【0014】このようなファインパターン用途に使われ
る極薄銅箔の製造方法としては、下記の方法が知られて
いる。
The following method is known as a method for producing an ultra-thin copper foil used for such fine pattern applications.

【0015】(1) 回転するTi又はSUSドラム上に極
薄銅箔を電着し該銅箔を剥離する方法。
(1) A method in which an ultra-thin copper foil is electrodeposited on a rotating Ti or SUS drum and the copper foil is peeled off.

【0016】(2) アルミニウム箔上に陽極酸化処理によ
り酸化アルミニウムを被覆し、この被膜上に極薄銅箔を
電着し、基材と加熱・加圧して張り合わせた後、該アル
ミニウム箔を機械的に剥離・除去する方法。
(2) An aluminum oxide is coated on the aluminum foil by anodizing treatment, an ultra-thin copper foil is electrodeposited on the aluminum foil, and the aluminum foil is bonded to the substrate by heating and pressing. Method to peel off / remove.

【0017】(3) アルミニウム箔又はアルミニウム合金
箔の表面に亜鉛めっきを施し、更にその上に極薄銅箔を
電着し、基材と加熱・加圧して張り合わせた後、該アル
ミニウム箔又はアルミニウム合金箔を化学的に溶解・除
去する方法。
(3) The surface of an aluminum foil or an aluminum alloy foil is galvanized, and an ultra-thin copper foil is electrodeposited thereon and bonded to the base material by heating and pressing. A method for chemically dissolving and removing alloy foil.

【0018】(4) 表面が鉄又は鉄合金よりなる箔状素材
をキャリヤーとし、ピロリン酸銅電解浴を用いてその上
に極薄銅箔を電着し、基材と極薄銅箔を接着剤により接
着した後、キャリヤーである該鉄箔又は鉄合金箔を機械
的に剥離・除去する方法。
(4) Using a foil-like material whose surface is made of iron or an iron alloy as a carrier, electrodepositing an ultra-thin copper foil thereon using a copper pyrophosphate electrolytic bath and bonding the substrate and the ultra-thin copper foil A method of mechanically peeling and removing the iron foil or iron alloy foil as a carrier after bonding with an agent.

【0019】(5) キャリヤーとなる電解銅箔の光沢面上
に剥離層を被覆し、更に該剥離層の表面に極薄銅箔を電
着し、基材と加熱・加圧して張り合わせた後、キャリヤ
ーである電解銅箔を機械的に剥離・除去する方法。
(5) After a release layer is coated on the glossy surface of the electrolytic copper foil serving as a carrier, an ultra-thin copper foil is electrodeposited on the surface of the release layer, and then bonded to the substrate by heating and pressing. A method of mechanically peeling and removing an electrolytic copper foil as a carrier.

【0020】しかし、これらの方法では、高品位の極薄
銅箔を得ることができず、又、プリント配線板を製造す
る場合においても種々の不都合を生じる。
However, according to these methods, a high-quality ultra-thin copper foil cannot be obtained, and various inconveniences also occur when manufacturing a printed wiring board.

【0021】(1)の方法にあっては、得られる極薄銅箔
にピンホールやマイクロポロシティーが多く、また陰極
ロールより剥離した極薄銅箔はシワ・破れ等を起こしや
すくその取扱いが困難な為、実用化されていない。
In the method (1), the obtained ultra-thin copper foil has many pinholes and microporosity, and the ultra-thin copper foil peeled off from the cathode roll is liable to be wrinkled or torn, and its handling is difficult. Due to the difficulty, it has not been put to practical use.

【0022】(2)の方法では、酸化アルミニウム上に銅
をめっきするので、得られる極薄銅箔に多くのピンホー
ルやマイクロポロシティーの欠陥がみられる。
In the method (2), since copper is plated on aluminum oxide, the resulting ultra-thin copper foil has many pinholes and microporosity defects.

【0023】(3)の方法にあっては、得られる極薄銅箔
のピンホールやマイクロポロシティーは(2)の方法で得
られるものより少ないがまだかなりあり、更に、基板と
張り合せた後でアルミニウム又はアルミニウム合金と亜
鉛とを化学的に溶解・除去する工程を必要とし、その結
果この工程より排出される排液の処理等に費用が掛る、
という欠点を有する。
In the method (3), the pinholes and microporosity of the obtained ultra-thin copper foil are smaller than those obtained by the method (2) but are still considerable. It requires a step of chemically dissolving and removing aluminum or aluminum alloy and zinc later, and as a result, it takes a lot of money to treat the wastewater discharged from this step.
There is a disadvantage that.

【0024】(4)の方法によれば、極薄銅箔のピンホー
ルやマイクロポロシティーは(2)の方法で得られるもの
よりはるかに少ない。しかし、鉄又は鉄合金上にピロリ
ン酸銅電解浴を用いて極薄銅箔の電着を行うため、ピロ
リン酸銅電解浴の電流密度がせいぜい0.5〜5.0A/
dm と非常に小さいことから生産性が悪い。また、使
用後、鉄又は鉄合金箔は鉄屑となるため不経済で、この
方法は現在工業的には実用化されていない。
According to the method (4), the pinholes and microporosity of the ultra-thin copper foil are far less than those obtained by the method (2). However, since the ultra-thin copper foil is electrodeposited on the iron or iron alloy using the copper pyrophosphate electrolytic bath, the current density of the copper pyrophosphate electrolytic bath is at most 0.5 to 5.0 A /.
productivity from the very small and dm 2 is bad. Also, after use, iron or iron alloy foils become iron scraps, which is uneconomical, and this method has not been industrially used at present.

【0025】(5)の方法が現在工業的に行われている方
法である。この場合もピンホールやマイクロポロシティ
ーは(2)の方法で得られるものよりはるかに少ないが依
然として存在し、また、キャリヤーとしての電解銅箔の
上に1μm以下の剥離層をめっきしてから銅を析出させ
るので、5μm程度の銅厚みではキャリヤーとしての電
解銅箔の光沢面の形状をそのまま引継ぎ、出来上がる5
μm銅めっき層のマット面はかなり粗いものとなってし
まう。キャリヤーとしての電解銅箔の光沢面は平滑に見
えるが、Rzは約2μm前後で、この上に5μmの銅めっ
きを行うと該銅めっき層のRzは3μm程度になってし
まう。更に、基板との接着性を高めるために粗化処理を
施すと表面粗さが大きい銅箔になってしまう。こうした
ピンホールとマット面の粗さのために、この方法により
製造された銅箔は、要求レベルの高い最近のファインパ
ターン用銅箔には向かない。
The method (5) is a method currently used industrially. In this case as well, the pinholes and microporosity are far less than those obtained by the method (2), but still exist, and a 1 μm or less release layer is plated on the electrolytic copper foil as a carrier before the copper. When the copper thickness is about 5 μm, the shape of the glossy surface of the electrolytic copper foil as a carrier is taken over as it is.
The matte surface of the μm copper plating layer becomes considerably rough. Although the glossy surface of the electrolytic copper foil as a carrier looks smooth, Rz is about 2 μm, and when 5 μm copper plating is performed thereon, Rz of the copper plating layer becomes about 3 μm. Further, when a roughening treatment is performed to enhance the adhesion to the substrate, the copper foil has a large surface roughness. Due to the roughness of the pinholes and the matte surface, the copper foil produced by this method is not suitable for recent fine pattern copper foils having a high required level.

【0026】[0026]

【発明が解決しようとする課題】本発明は、従来の極薄
銅箔における課題を解決せんとしてなされたものであ
り、線幅や線間ピッチが30μ前後のファインな配線パ
ターンの場合であっても大きいEf値と、基材との高い
接合強度を実現できるのは勿論のこと、取り扱いも容易
であるキャリヤー付き銅箔を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the problem of the conventional ultra-thin copper foil, and is intended for a fine wiring pattern having a line width and a line pitch of about 30 .mu.m. It is an object of the present invention to provide a carrier-equipped copper foil that can realize not only a large Ef value and a high bonding strength with a substrate, but also easy to handle.

【0027】[0027]

【課題を解決するための手段】本発明は、キャリヤー付
銅箔であって、表面粗さ:Rzが1.5μ以下の銅箔を
キャリヤーとし、その表面に剥離層と電解銅めっき層を
この順序で積層してなり、該電解銅めっき層の表面が粗
化面とされていることを特徴とする(以下、この銅箔を
「第一の銅箔」という)。
SUMMARY OF THE INVENTION The present invention relates to a copper foil with a carrier, the copper foil having a surface roughness Rz of 1.5 μm or less, and a release layer and an electrolytic copper plating layer on the surface. The copper foil is laminated in this order, and the surface of the electrolytic copper plating layer is a roughened surface (hereinafter, this copper foil is referred to as “first copper foil”).

【0028】ここで、前記のキャリヤーとしての銅箔が
圧延銅箔又は電解銅箔であってよい。なお、電解銅箔に
あっては、その上に剥離層が形成される表面は、前記の
条件が満足される限りにおいてマット面であってもよい
し、光沢面であってもよい。
Here, the copper foil as the carrier may be a rolled copper foil or an electrolytic copper foil. In the case of the electrolytic copper foil, the surface on which the release layer is formed may be a matte surface or a glossy surface as long as the above conditions are satisfied.

【0029】前記の剥離層としては、クロムめっき、鉛
めっき又はニッケルめっきの層であることが好ましい。
The release layer is preferably a layer of chromium plating, lead plating or nickel plating.

【0030】更に、前記電解銅めっき層の粗化面が、B
ステージ状態の絶縁樹脂層で更に被覆されているもの
(以下、この銅箔を「第二の銅箔」という)であっても
よい。
Further, the roughened surface of the electrolytic copper plating layer is
The copper foil may be further covered with an insulating resin layer in a stage state (hereinafter, this copper foil is referred to as “second copper foil”).

【0031】なお、表面粗さ:Rzとは、JISB06
012で規定する10点平均粗さのことである。
The surface roughness Rz is defined by JIS B06.
This refers to a 10-point average roughness defined by 012.

【0032】[0032]

【発明の実施の形態】まず、本発明の第一の銅箔の一例
を図1に示す。第一の銅箔:Aはキャリヤーとしての銅
箔1(以下、「キャリヤー銅箔」と言う)の片面に、剥
離層2と電解銅めっき層3がこの順序で形成されたもの
であって、該電解銅めっき層の表面3aが粗化面になっ
ている。そして、この第1の銅箔:Aは、その粗化面3
aを基材(図示せず)に重ね合わせたのち全体を熱圧着
し、ついでキャリヤー銅箔1を剥離・除去して該電解銅
めっき層の該キャリヤー銅箔との接合側を表出せしめ、
そこに所定の配線パターンを形成するという態様で使用
される。
FIG. 1 shows an example of the first copper foil of the present invention. A first copper foil: A is a copper foil 1 as a carrier (hereinafter referred to as “carrier copper foil”), on one side of which a release layer 2 and an electrolytic copper plating layer 3 are formed in this order, The surface 3a of the electrolytic copper plating layer is a roughened surface. Then, the first copper foil: A has a roughened surface 3
a is overlaid on a base material (not shown), the whole is thermocompression-bonded, and then the carrier copper foil 1 is peeled off and removed to expose the joint side of the electrolytic copper plating layer with the carrier copper foil,
It is used in such a manner that a predetermined wiring pattern is formed there.

【0033】キャリヤー銅箔1は前記の薄い電解銅めっ
き層3を基板と接合するまでバックアップする補強材
(キャリヤー)として機能する。更に、剥離層2は、前
記の電解銅めっき層3と該キャリヤー銅箔を分離する際
の剥離をよくするための層であり、該キャリヤー銅箔を
きれいにかつ容易に剥がすことが出来るようになってい
る(該剥離層は該キャリヤー銅箔を剥離除去する際に該
キャリヤー銅箔と一体的に除去される)。
The carrier copper foil 1 functions as a reinforcing material (carrier) for backing up the thin electrolytic copper plating layer 3 until it is joined to the substrate. Further, the peeling layer 2 is a layer for improving the peeling when the electrolytic copper plating layer 3 and the carrier copper foil are separated, and the carrier copper foil can be peeled cleanly and easily. (The peeling layer is removed integrally with the carrier copper foil when the carrier copper foil is peeled off).

【0034】ここで、キャリヤー銅箔1の表面粗さによ
り、その上に被覆される剥離層2の表面の均一性が影響
を受ける。粗さが大きいほど均一性が悪く、ピンホール
の多いめっきとなり、この上に形成する電解銅めっき層
3と該キャリヤー銅箔との剥離性のばらつきが大きくな
る。極端な場合には一部分は剥がれるが、一部分は剥が
れないという現象が発生する。該キャリヤー銅箔の表面
粗さは、Rzが1.5μm以下であることが好ましい。
Rzが2.0μm前後だと、該剥離層の表面の均一性が
悪く、ピンホールの多いめっきとなる。従って、この上
に形成する電解銅めっき層3と該キャリヤー銅箔との剥
離性のばらつきが大きくなる。更に、電解銅めっき層3
がキャリヤー銅箔1の凹凸の凹部に食い込むので該キャ
リヤー銅箔の該電解銅めっき層からの剥離強度が大きく
なる。
Here, the surface roughness of the carrier copper foil 1 affects the uniformity of the surface of the release layer 2 coated thereon. The larger the roughness, the poorer the uniformity and the plating with many pinholes, and the greater the variation in the releasability between the electrolytic copper plating layer 3 formed thereon and the carrier copper foil. In an extreme case, a phenomenon occurs in which a part is peeled off but a part is not peeled off. As for the surface roughness of the carrier copper foil, Rz is preferably 1.5 μm or less.
When Rz is about 2.0 μm, the surface of the release layer has poor uniformity, resulting in plating having many pinholes. Therefore, the variation in the releasability between the electrolytic copper plating layer 3 formed thereon and the carrier copper foil increases. Furthermore, electrolytic copper plating layer 3
Penetrates into the concave and convex portions of the carrier copper foil 1, so that the peel strength of the carrier copper foil from the electrolytic copper plating layer increases.

【0035】また、キャリヤー銅箔1の表面粗さは、電
解銅めっき層3のピンホールやその表面3aの粗さにも
影響する。該キャリヤー銅箔1の表面粗さが粗いと該電
解銅めっき層にピンホールが多くなり、更にその表面3
aの粗さも増大して、線幅や線間ピッチがそれぞれ30
μm前後という高密度極微細配線を有するプリント配線
基板には使用することが出来ない銅箔となってしまう。
この点においても該キャリヤー銅箔の表面粗さは、Rz
として1.5μm以下であることが好ましいのである。
The surface roughness of the carrier copper foil 1 also affects the pinholes of the electrolytic copper plating layer 3 and the roughness of its surface 3a. If the surface roughness of the carrier copper foil 1 is rough, pinholes increase in the electrolytic copper plating layer, and the surface 3
a also increases the line width and line pitch to 30
The resulting copper foil cannot be used for a printed wiring board having a high-density ultrafine wiring of about μm.
Also in this regard, the surface roughness of the carrier copper foil is Rz
Is preferably 1.5 μm or less.

【0036】キャリヤー銅箔1自体、厚さは10μmか
ら200μm位が適当である。これより薄いとキャリヤ
ーとしての用をなさなくなる。一方これより厚い場合、
キャリヤーとしての機能上問題はないが、剥離層の形成
及び電解銅めっき層の形成のために連続してめっきする
場合、連続めっきライン内での箔の張力を大きくする必
要があり、大がかりな設備となり好ましくない。
It is appropriate that the thickness of the carrier copper foil 1 itself is about 10 μm to 200 μm. If it is thinner, it will not be used as a carrier. On the other hand, if it is thicker,
Although there is no problem in terms of the function as a carrier, when plating continuously to form a peeling layer and an electrolytic copper plating layer, it is necessary to increase the tension of the foil in the continuous plating line. Is not preferred.

【0037】キャリヤー銅箔の表面粗さがRzとして
1.5μm以下のものを得るために最も好適なものは圧
延銅箔である。圧延銅箔の場合、製造時の圧延ロールの
粗度により影響を受けるが、Rzとして1.0μm以下
のものを市場より入手するのはさほど困難ではない。
Rolled copper foil is most suitable for obtaining a carrier copper foil having a surface roughness Rz of 1.5 μm or less. In the case of rolled copper foil, it is affected by the roughness of the rolling roll at the time of production, but it is not so difficult to obtain a roll having a Rz of 1.0 μm or less from the market.

【0038】この他には、鏡面光沢が出るようなめっき
浴を使用して製箔を行った電解銅箔のマット面又はTi
ドラムの表面のRzを1.5μm以下に抑えたドラムに
より製箔を行った電解銅箔の光沢面をその上に剥離層2
を形成するための表面としてもよい。
In addition to the above, a matte surface of an electrolytic copper foil or a Ti
The glossy surface of the electrolytic copper foil produced by the drum with the Rz of the surface of the drum suppressed to 1.5 μm or less was placed on the release layer 2
May be used as a surface for forming the surface.

【0039】本発明における剥離層2は、クロム、鉛又
はニッケルのような金属のめっき層であることが好まし
い。該剥離層の上に電析させて電解銅めっき層を形成す
るには、生産性の面で硫酸/硫酸銅浴を使用するのが最
も適している。但し、該剥離層の構成金属は耐酸性を有
したものであることが必要である。また、基材と熱圧着
後に極薄の銅箔からきれいにかつ容易に剥がれることが
必要である。
The release layer 2 in the present invention is preferably a plating layer of a metal such as chromium, lead or nickel. In order to form an electrolytic copper plating layer by electrodeposition on the release layer, it is most suitable to use a sulfuric acid / copper sulfate bath in terms of productivity. However, the constituent metal of the peeling layer needs to have acid resistance. Further, it is necessary to cleanly and easily peel off from the ultra-thin copper foil after thermocompression bonding with the substrate.

【0040】クロムは銅の上に電着した場合には強固な
結合力をもつが、クロムをめっきした上に更に銅をめっ
きした場合にはクロム層上に形成した銅はきれいに剥が
れ、銅の側に全くクロムが残らず補助の剥離層を全く必
要としないので、剥離層構成材料としては最も好ましい
ものである。これは、クロムめっき時に同時にその最外
層にクロム酸塩の被膜が形成されているためと考えられ
る。一方、鉛めっきにて形成した剥離層の場合には、キ
ャリヤー銅箔を剥離・除去した後、電解銅めっき層3の
該剥離層との接合側の表面上に薄く鉛の痕跡が残る傾向
があるのでこの点に留意する必要がある。また、ニッケ
ルめっきにて形成した剥離層の場合には、クロム酸塩の
ような補助剥離層を該剥離層上に更に形成する必要があ
る。
Chromium has a strong bonding force when electrodeposited on copper, but when chromium is further plated on copper, the copper formed on the chromium layer is peeled off cleanly, Since no chromium remains on the side and no auxiliary release layer is required, it is the most preferable material for the release layer. This is presumably because a chromate film was formed on the outermost layer during chromium plating. On the other hand, in the case of a peeling layer formed by lead plating, after the carrier copper foil is peeled and removed, a trace of lead tends to remain on the surface of the electrolytic copper plating layer 3 on the bonding side with the peeling layer. It is necessary to keep this in mind. In the case of a release layer formed by nickel plating, it is necessary to further form an auxiliary release layer such as chromate on the release layer.

【0041】クロムめっきにて形成した剥離層は、その
厚さが0.1μm以下でも該剥離層上の銅(電解銅めっ
き層3)はきれいに剥がれる。これ以上の厚みであって
も勿論問題はないが、3μm以上になると剥離性が良す
ぎて、該剥離層の上に電析・形成せしめる該電解銅めっ
き層が箔の取り扱い時に剥離するようなことがある。
Even if the release layer formed by chromium plating has a thickness of 0.1 μm or less, copper (electrolytic copper plating layer 3) on the release layer is peeled off cleanly. Of course, there is no problem even if the thickness is more than 3 μm or more, the releasability is too good, such that the electrolytic copper plating layer to be deposited and formed on the release layer peels off when handling the foil. Sometimes.

【0042】本発明の方法によれば、クロムめっきにて
形成した剥離層2は、キャリヤー自身の表面が平滑であ
るためその表面の均一性が良好であり、通常の表面が粗
いキャリヤーを使用した場合に比較して、ピンホールの
少ないめっきとなる。更に、該剥離層の上に形成する電
解銅めっき層3の該剥離層との間の剥離強度は充分に低
く、しかも該電解銅めっき層の表面のばらつきが少なく
安定している。
According to the method of the present invention, the release layer 2 formed by chromium plating has a uniform surface due to the smooth surface of the carrier itself, and a carrier having an ordinary rough surface is used. Compared with the case, the plating with less pinholes is obtained. Further, the peel strength between the electrolytic copper plating layer 3 formed on the release layer and the release layer is sufficiently low, and the surface of the electrolytic copper plating layer has little variation and is stable.

【0043】クロムからなる剥離層2のめっき形成後、
該剥離層の表面に更に電解銅めっき層3をめっき形成す
る。極薄銅箔の厚みは通常9μm以下、5μm程度が要求
されるが、本発明の極薄銅箔はキャリヤーの表面が平滑
であるため、該電解銅めっき層のピンホールが少なく、
また該電解銅めっき層の表面3aの粗さも小さくて平滑
であるのが特徴である。表面3aの粗さが大きいと、こ
のあとに行う粗化処理によって更に表面3aが粗くなっ
てしまい、ファインパターン用の銅箔として適さなくな
ってしまう。
After plating of the release layer 2 made of chromium,
An electrolytic copper plating layer 3 is further formed on the surface of the release layer by plating. The thickness of the ultra-thin copper foil is usually required to be about 9 μm or less and about 5 μm.However, since the ultra-thin copper foil of the present invention has a smooth carrier surface, there are few pinholes in the electrolytic copper plating layer,
Further, it is characterized in that the surface 3a of the electrolytic copper plating layer has a small roughness and is smooth. If the roughness of the surface 3a is large, the surface 3a will be further roughened by the subsequent roughening treatment, and will not be suitable as a copper foil for fine patterns.

【0044】ついで電解銅めっき層3の形成後に、その
表面3aを粗化面にする。具体的には、該電解銅めっき
層の形成における最終段階で、浴組成や浴温、電流密度
や電解時間などを変化させることにより、既に形成され
ている銅めっき層の表面に0.2〜2.0μm程度の銅
粒子を突起物として析出させる(この処理を通常「粗化
処理」と呼んでいる)。このような処理によって電解銅
めっき層の表面を粗化面にするのは、この第1の銅箔A
を基材に熱圧着したときに基材との間の接合強度を高め
るためである。
After the formation of the electrolytic copper plating layer 3, the surface 3a is roughened. Specifically, at the final stage in the formation of the electrolytic copper plating layer, by changing the bath composition, bath temperature, current density, electrolysis time, etc., the surface of the already formed copper plating layer has a thickness of 0.2 to Copper particles of about 2.0 μm are precipitated as protrusions (this treatment is usually called “roughening treatment”). It is the first copper foil A that makes the surface of the electrolytic copper plating layer roughened by such treatment.
This is for increasing the bonding strength between the base material and the base material when the base material is thermocompression-bonded to the base material.

【0045】この第1の銅箔Aにおいては、粗化面3a
の上に更にニッケル層、亜鉛層をこの順序で形成するこ
とが好ましい。
In the first copper foil A, the roughened surface 3a
It is preferable that a nickel layer and a zinc layer are further formed on this in this order.

【0046】この亜鉛層は、第1の銅箔Aと基材とを熱
圧着したときに、電解銅めっき層3と基材樹脂との反応
による該基材樹脂の劣化や電解銅めっき層3の表面酸化
を防止して基材との接合強度を高める働きをし、更に
は、該電解銅めっき層の粗化面3aの突起部が基材に喰
い込んでいる場合、該突起部と基材との界面に存在して
いる亜鉛の働きで該突起部の銅がエッチングされやすく
なり、もってEf値を向上させる。またニッケル層は、
該第1の銅箔Aの基板への熱圧着時に該亜鉛層の亜鉛が
該電解銅めっき層側へ熱拡散することを防止し、もって
亜鉛層の上記機能を有効に発揮させる働きをする。
When the first copper foil A and the base material are thermocompression-bonded to each other, the zinc layer is deteriorated due to the reaction between the electrolytic copper plating layer 3 and the base resin, and the electrolytic copper plating layer 3 The surface of the electrolytic copper plating layer has a function of preventing surface oxidation and increasing the bonding strength with the base material. By the action of zinc present at the interface with the material, the copper in the protrusions is easily etched, thereby improving the Ef value. The nickel layer
This prevents the zinc of the zinc layer from thermally diffusing to the electrolytic copper plating layer side during the thermocompression bonding of the first copper foil A to the substrate, and thus functions to effectively exert the above function of the zinc layer.

【0047】なお、これらのニッケル層や亜鉛層は、公
知の電解めっき法や無電解めっき法を適用して形成すれ
ばよい。また、該ニッケル層は純ニッケルで形成しても
よいし、6重量%以下のリンを含有する含リンニッケル
で形成してもよい。
The nickel layer and the zinc layer may be formed by applying a known electrolytic plating method or electroless plating method. The nickel layer may be formed of pure nickel, or may be formed of phosphorus-containing nickel containing 6% by weight or less of phosphorus.

【0048】また、亜鉛層の表面に更にクロメート処理
を行うと、該表面に酸化防止層が形成されるので好まし
い。適用するクロメート処理としては、公知の方法に従
えばよく、例えば、特開昭60−86894号公報に開
示されている方法をあげることができる。クロム量に換
算して0.01〜0.2mg/dm2程度のクロム酸化物とそ
の水和物などを付着させることにより、銅箔に優れた防
錆能を付与することができる。
Further, it is preferable that the surface of the zinc layer is further subjected to a chromate treatment because an antioxidant layer is formed on the surface. The chromate treatment to be applied may be in accordance with a known method, for example, a method disclosed in Japanese Patent Application Laid-Open No. 60-86894. By adhering about 0.01 to 0.2 mg / dm 2 of chromium oxide and a hydrate thereof in terms of the amount of chromium, an excellent rust-preventive ability can be imparted to the copper foil.

【0049】また、前記のクロメート処理した表面に対
し更にシランカップリング材を用いた表面処理を行う
と、銅箔表面(基板との接合側の表面)には接着剤との
親和力の強い官能基が付与されるので、該銅箔と基材と
の接合強度は一層向上し、銅箔の防錆性,耐熱性を更に
向上するので好適である。
When the surface subjected to the chromate treatment is further subjected to a surface treatment using a silane coupling agent, the surface of the copper foil (the surface on the bonding side with the substrate) has a functional group having a strong affinity for the adhesive. , The bonding strength between the copper foil and the base material is further improved, and the rust resistance and heat resistance of the copper foil are further improved, which is preferable.

【0050】用いるシランカップリング材としては、例
えばビニルトリス(2−メトキシエトキシ)シラン,3
−グリシドキシプロピルトリメトキシシラン,N−(2
−アミノエチル)−3−アミノプロピルトリメトキシシ
ラン,3−アミノプロピルトリエトキシシランなどをあ
げることができる。これらのシランカップリング剤は通
常0.001〜5%の水溶液にし、これを銅箔の表面に
塗布したのちそのまま加熱乾燥すればよい。なお、シラ
ンカップリング剤に代えて、チタネート系,ジルコネー
ト系などのカップリング剤を用いても同様の効果を得る
ことができる。
Examples of the silane coupling material to be used include vinyl tris (2-methoxyethoxy) silane, 3
-Glycidoxypropyltrimethoxysilane, N- (2
-Aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane and the like. These silane coupling agents are usually made into a 0.001 to 5% aqueous solution, applied to the surface of a copper foil, and then dried by heating. The same effect can be obtained by using a titanate-based or zirconate-based coupling agent instead of the silane coupling agent.

【0051】第1の銅箔Aは上記したような構成になっ
ているので、基材との接合強度は大きく、またファイン
な配線パターンの形成も可能である。そして、回路形成
用の銅箔は全体で9μm以下という極薄であっても、そ
れは剛性に富んだキャリヤー銅箔により補強されている
ので、取り扱い時に皺や折れ目を生ずることはない。
Since the first copper foil A is configured as described above, the bonding strength with the base material is large, and a fine wiring pattern can be formed. Even if the copper foil for forming a circuit is as thin as 9 μm or less as a whole, it is reinforced with a rigid carrier copper foil, so that wrinkles and folds do not occur during handling.

【0052】次に、本発明の第2の銅箔を説明する。こ
の第2の銅箔Bは、図2に示すように、図1に示した第
1の銅箔Aにおける粗化面3aを接着用樹脂で被覆し、
該接着用樹脂の半硬化状態の絶縁樹脂層4が該銅箔に密
着・接合した構造になっているものである(以下、「樹
脂付き銅箔」という)。ここでいう半硬化状態とは、い
わゆるBステージ状態であって、その表面に指で触れて
も粘着感はなく、該絶縁樹脂層を重ね合わせて保管する
ことができ、更に加熱処理を受けると硬化反応が起こる
状態のことをいう。
Next, the second copper foil of the present invention will be described. As shown in FIG. 2, the second copper foil B covers the roughened surface 3a of the first copper foil A shown in FIG. 1 with an adhesive resin.
The insulating resin layer 4 in a semi-cured state of the bonding resin has a structure in which the insulating resin layer 4 is in close contact with and joined to the copper foil (hereinafter, referred to as “copper foil with resin”). Here, the semi-cured state is a so-called B-stage state, in which the surface of the insulating resin layer has no stickiness even when touched with a finger, and can be stored while being superposed on the insulating resin layer. This refers to the state in which a curing reaction occurs.

【0053】この絶縁樹脂層4の形成には熱硬化性樹脂
が用いられる。その種類は格別限定されるものではない
が、例えば、エポキシ樹脂,ポリイミド樹脂,多官能性
シアン酸エステル化合物などを好適なものとしてあげる
ことができる。
A thermosetting resin is used for forming the insulating resin layer 4. Although the type is not particularly limited, for example, an epoxy resin, a polyimide resin, a polyfunctional cyanate compound and the like can be mentioned as preferable ones.

【0054】これらの樹脂を例えばメチルエチルケトン
(MEK),トルエンなどの溶剤に溶解して樹脂液と
し、これを電解銅めっき層3の粗化面3aに例えばロー
ルコータ法などによって塗布し、ついで必要に応じて加
熱乾燥して溶剤を除去しBステージ状態にする。乾燥に
は例えば熱風乾燥炉を用いればよく、乾燥温度は100
〜250℃、好ましくは130〜200℃であればよ
い。
These resins are dissolved in a solvent such as methyl ethyl ketone (MEK) or toluene to form a resin solution, which is applied to the roughened surface 3a of the electrolytic copper plating layer 3 by, for example, a roll coater method. Accordingly, the mixture is heated and dried to remove the solvent, and is brought into a B stage state. For drying, for example, a hot-air drying furnace may be used.
The temperature may be up to 250 ° C, preferably 130 to 200 ° C.

【0055】この樹脂付き銅箔Bは、その絶縁樹脂層4
を基材(図示せず)に重ね合わせたのち全体を熱圧着し
て該絶縁樹脂層を熱硬化せしめ、ついでキャリヤー銅箔
1を剥離して電解銅めっき層2を表出せしめ(当然に表
出するのは該電解銅めっき層の剥離層2側の表面であ
る)、そこに所定の配線パターンを形成するという態様
で使用される。
This resin-coated copper foil B is formed on the insulating resin layer 4
Is laminated on a base material (not shown), the whole is thermocompressed to thermally cure the insulating resin layer, and then the carrier copper foil 1 is peeled off to expose the electrolytic copper plating layer 2 (of course, the What is exposed is the surface of the electrolytic copper plating layer on the release layer 2 side), and a predetermined wiring pattern is formed thereon.

【0056】この樹脂付き銅箔Bを使用すると、多層プ
リント配線基板の製造時におけるプリプレグ材の使用枚
数を減らすことができる。しかも、絶縁樹脂層4の厚み
を層間絶縁が確保できるような厚みにしたり、プリプレ
グ材を全く使用していなくても銅張り積層板を製造する
ことができる。またこのとき、基材の表面に絶縁樹脂を
アンダーコートして表面の平滑性を更に改善することも
できる。
The use of the resin-coated copper foil B makes it possible to reduce the number of prepreg materials used in manufacturing a multilayer printed wiring board. In addition, a copper-clad laminate can be manufactured even if the thickness of the insulating resin layer 4 is set to a value that ensures interlayer insulation, or if no prepreg material is used. At this time, the surface of the base material may be undercoated with an insulating resin to further improve the smoothness of the surface.

【0057】なお、プリプレグ材を使用しない場合に
は、プリプレグ材の材料コストが節約され、また積層工
程も簡略になるので経済的に有利となり、しかも、プリ
プレグ材の厚み分だけ製造される多層プリント配線基板
の厚みは薄くなり、1層の厚みが100μm以下である
極薄の多層プリント配線基板を製造することができると
いう利点がある。
When the prepreg material is not used, the material cost of the prepreg material is saved, and the laminating process is simplified, so that it is economically advantageous. The thickness of the wiring board is reduced, and there is an advantage that an extremely thin multilayer printed wiring board in which one layer has a thickness of 100 μm or less can be manufactured.

【0058】この絶縁樹脂層4の厚みは20〜80μm
であることが好ましい。
The thickness of the insulating resin layer 4 is 20 to 80 μm
It is preferred that

【0059】絶縁樹脂層4の厚みが20μmより薄くな
ると、接着力が低下し、プリプレグ材を介在させること
なくこの樹脂付き銅箔を内層材を備えた基材に積層した
ときに、内層材の回路との間の層間絶縁を確保すること
が困難になる。
If the thickness of the insulating resin layer 4 is less than 20 μm, the adhesive strength is reduced, and when this copper foil with resin is laminated on a substrate having an inner layer material without interposing a prepreg material, It becomes difficult to ensure interlayer insulation between the circuit and the circuit.

【0060】一方、絶縁樹脂層4の厚みを80μmより
厚くすると、1回の塗布工程で目的厚みの絶縁樹脂層を
形成することが困難となり、余分な材料費と工数がかか
るため経済的に不利となる。更には、形成された絶縁樹
脂層はその可撓性が劣るので、ハンドリング時にクラッ
クなどが発生しやすくなり、また内層材との熱圧着時に
過剰な樹脂流れが起こって円滑な積層が困難になる。
On the other hand, if the thickness of the insulating resin layer 4 is more than 80 μm, it becomes difficult to form an insulating resin layer having a desired thickness in one coating step, which requires extra material costs and man-hours, which is economically disadvantageous. Becomes Furthermore, since the formed insulating resin layer is inferior in flexibility, cracks and the like are likely to occur during handling, and excessive resin flow occurs during thermocompression bonding with the inner layer material, making smooth lamination difficult. .

【0061】更に、この樹脂付き銅箔Bのもう一つの製
品形態としては、粗化面3aを絶縁樹脂層で被覆し、半
硬化状態とした後、ついでキャリヤー銅箔1を剥離し
て、キャリヤー銅箔1が存在しない樹脂付き銅箔の形で
製造することも可能である。
Further, as another product form of the copper foil with resin B, the roughened surface 3a is covered with an insulating resin layer to be in a semi-cured state, and then the carrier copper foil 1 is peeled off. It is also possible to manufacture in the form of a copper foil with resin in which the copper foil 1 is not present.

【0062】実施例1 幅500mm,厚み100μmの圧延銅箔(キャリヤー銅
箔1)の片面にクロムの電解めっきを連続的に行って厚
み0.05μmのクロムめっき層(剥離層2)を形成し
た。使用した圧延銅箔の表面粗度(10点平均粗さ:R
z)は0.6μmであった(JISB0601で規定す
る方法によって測定した)。ついで、このクロムめっき
層の上に下記の条件で銅の電解めっきを行って厚み5μ
mの電解銅めっき層3を形成した。 ・浴組成:金属銅90g/L,硫酸100g/L,塩化物イオ
ン30ppm(NaClとして),ヒドロキシエチルセル
ロース5ppm。 ・浴温:58℃、 ・対極:DSE、 ・電流密度:50A/dm2。 得られた電解銅めっき層3の表面粗度(10点平均表面
粗度:Rz)は1.2μmであった。
Example 1 A chromium plating layer (release layer 2) having a thickness of 0.05 μm was formed on one side of a rolled copper foil (carrier copper foil 1) having a width of 500 mm and a thickness of 100 μm by continuously performing chromium electroplating. . Surface roughness of the rolled copper foil used (10-point average roughness: R
z) was 0.6 μm (measured by the method specified in JIS B0601). Then, copper electroplating was performed on the chromium plating layer under the following conditions to a thickness of 5 μm.
m of electrolytic copper plating layer 3 was formed. Bath composition: 90 g / L of metallic copper, 100 g / L of sulfuric acid, 30 ppm of chloride ion (as NaCl), 5 ppm of hydroxyethyl cellulose. Bath temperature: 58 ° C. Counter electrode: DSE Current density: 50 A / dm 2 . The surface roughness (10-point average surface roughness: Rz) of the obtained electrolytic copper plating layer 3 was 1.2 μm.

【0063】この電解銅めっき層3の表面に更に下記の
操作を行って粗化面を形成した。
A roughened surface was formed on the surface of the electrolytic copper plating layer 3 by further performing the following operation.

【0064】まず、主成分が金属銅:20g/L,硫酸:
100g/Lから成る組成の電析浴を建浴した(これを浴
(1)とする)。また、同様に主成分が金属銅:60g/L,
硫酸:100g/Lから成る電析浴を建浴した(これを浴
(2)とする)。
First, the main component is metallic copper: 20 g / L, sulfuric acid:
An electrodeposition bath having a composition of 100 g / L was constructed.
(1)). Similarly, the main component is metallic copper: 60 g / L,
Sulfuric acid: An electrodeposition bath consisting of 100 g / L was built (this was
(2)).

【0065】前記の電解銅めっき層3に対し、浴(1)を
用い、浴温35℃,電流密度40A/dm2の条件下で3.
5秒間の粗化処理を行い、その表面に銅粒子を析出させ
た。ついで、浴(2)を用い、浴温60℃,電流密度20A
/dm2の条件下で7.0秒間のめっき処理を行い、該銅粒
子を被覆する緻密な銅のカプセルめっき層を形成した。
この後、更に浴(1)を用いた処理と浴(2)を用いた処理を
もう一度繰り返し行って、図1に示したキャリヤー銅箔
付き銅箔A1を得た。
A bath (1) was used for the electrolytic copper plating layer 3 at a bath temperature of 35 ° C. and a current density of 40 A / dm 2 .
Roughening treatment was performed for 5 seconds to precipitate copper particles on the surface. Next, using the bath (2), the bath temperature was 60 ° C. and the current density was 20 A.
Plating treatment was performed for 7.0 seconds under the condition of / dm 2 to form a dense copper capsule plating layer covering the copper particles.
Thereafter, the treatment using the bath (1) and the treatment using the bath (2) were repeated once again to obtain a copper foil A1 with a carrier copper foil shown in FIG.

【0066】この時点で電解銅めっき層3の表面を顕微
鏡観察したところ、全面に微粒子状の突起物が形成され
ている粗化面になっていた。この突起物の粒子径の最大
値は1.9μm,最小値は0.7μmであり、Rz値は
2.0μmであった。
At this time, when the surface of the electrolytic copper plating layer 3 was observed with a microscope, it was found that the entire surface had a roughened surface on which fine projections were formed. The maximum value of the particle diameter of the protrusion was 1.9 μm, the minimum value was 0.7 μm, and the Rz value was 2.0 μm.

【0067】ついで、この粗化面3aの上に次のように
してニッケル層,亜鉛めっき層をこの順に形成した。
Then, a nickel layer and a zinc plating layer were formed on the roughened surface 3a in this order as follows.

【0068】ここで、建浴したメッキ浴の組成は下記の
とおりである。 ・ニッケルめっき浴:硫酸ニッケル六水塩240g/L,
塩化ニッケル六水塩45g/L,ホウ酸30g/L,次亜リン
酸ナトリウム5g/L。 ・亜鉛めっき浴:硫酸亜鉛七水塩24g/L,水酸化ナト
リウム85g/L。
Here, the composition of the established plating bath is as follows.・ Nickel plating bath: Nickel sulfate hexahydrate 240g / L,
Nickel chloride hexahydrate 45 g / L, boric acid 30 g / L, sodium hypophosphite 5 g / L.・ Zinc plating bath: zinc sulfate heptahydrate 24 g / L, sodium hydroxide 85 g / L.

【0069】前記のキャリヤー銅箔付き銅箔A1の粗化
面に、ニッケルめっき浴の浴温を50℃とし、対極にス
テンレス鋼板を用い、電流密度0.5A/dm2で1秒間の
ニッケルめっきを行い、粗化面に厚みが約0.02mg/d
m2の含リンニッケルめっき層を形成し、更にその上に、
亜鉛めっき浴の浴温を25℃とし、対極にステンレス鋼
板を用い、電流密度0.4A/dm2で2秒間の亜鉛めっき
を行い、厚みが約0.20mg/dm2の亜鉛めっき層を形成
して図2に示したキャリヤー銅箔付き銅箔A2を得た。
On the roughened surface of the copper foil A1 with the carrier copper foil, the bath temperature of the nickel plating bath was set to 50 ° C., and a stainless steel plate was used as a counter electrode at a current density of 0.5 A / dm 2 for 1 second. And a thickness of about 0.02 mg / d
m 2 phosphorus-containing nickel plating layer is formed, and further thereon,
The galvanizing bath temperature is 25 ° C, galvanizing is performed for 2 seconds at a current density of 0.4 A / dm 2 using a stainless steel plate as the counter electrode to form a galvanized layer having a thickness of about 0.20 mg / dm 2. Thus, a copper foil A2 with a carrier copper foil shown in FIG. 2 was obtained.

【0070】ついで、この銅箔を水洗したのち、三酸化
クロム1g/L水溶液(液温:55℃)に5秒間浸漬して
クロメート処理を行い、水洗乾燥してキャリヤー銅箔付
き銅箔A3を得た。
Then, after washing the copper foil with water, it was immersed in a 1 g / L aqueous solution of chromium trioxide (liquid temperature: 55 ° C.) for 5 seconds to perform a chromate treatment, washed with water and dried to obtain a copper foil A3 with a carrier copper foil. Obtained.

【0071】更に、キャリヤー銅箔付き銅箔A3を、ビ
ニルトリス(2−メトキシエトキシ)シラン2g/Lの水
溶液に5秒間浸漬したのち取り出し、温度100℃の温
風で乾燥してシランカップリング剤処理を行いキャリヤ
ー銅箔付き銅箔A4を得た。
Further, the copper foil A3 with the carrier copper foil was immersed in an aqueous solution of vinyl tris (2-methoxyethoxy) silane 2 g / L for 5 seconds, taken out, dried with hot air at a temperature of 100 ° C., and treated with a silane coupling agent. Was performed to obtain a copper foil A4 with a carrier copper foil.

【0072】前記のキャリヤー銅箔付き銅箔A4を縦3
00mm,横300mmに切断したのちその粗化面3aの側
の面がそれに対向するように、厚み1mmのガラス繊維エ
ポキシプレプリグシート(FR−4)の上に配置し、全
体を2枚の平滑なステンレス鋼板で挟み、温度170
℃,圧力50kg/cm2で60分間熱圧着し、更にキャリヤ
ー銅箔1(正確には剥離層2と共に)を剥離して厚み1
mmの片面銅張り積層板を製造した。
The above copper foil A4 with carrier copper foil was
After being cut into 00 mm and 300 mm in width, it is placed on a glass fiber epoxy prepreg sheet (FR-4) having a thickness of 1 mm so that the surface on the side of the roughened surface 3a is opposed to the roughened surface 3a. Stainless steel plate, temperature 170
Thermocompression bonding at a temperature of 50 ° C. and a pressure of 50 kg / cm 2 for 60 minutes.
mm single-sided copper-clad laminates were produced.

【0073】この片面銅張り積層板の表面の銅層につい
て、下記要領にてエッチング特性と、プレプリグ材との
接合強度を測定した。 ・エッチング特性:片面銅張り積層板の電解銅めっき層
3の表面(表出面)に厚み13μmの銅めっきを施した
のち縦100mm,横100mmの試料を切り出した。該試
料の銅めっき層の上に、厚み2.5μmのレジスト膜を
形成したのち線幅35μm,線間ピッチ25μmの直線平
行パターンを描画現像した。ついで、塩化第二鉄2.0
モル/L,塩酸0.4モル/Lから成るエッチャントをスプ
レーしてエッチング処理を行い配線パターンを形成し
た。
With respect to the copper layer on the surface of the single-sided copper-clad laminate, the etching characteristics and the bonding strength with the prepreg material were measured in the following manner. Etching characteristics: A copper plating having a thickness of 13 μm was applied to the surface (exposed surface) of the electrolytic copper plating layer 3 of the single-sided copper-clad laminate, and then a sample having a length of 100 mm and a width of 100 mm was cut out. After a resist film having a thickness of 2.5 μm was formed on the copper plating layer of the sample, a linear parallel pattern having a line width of 35 μm and a line pitch of 25 μm was drawn and developed. Then, ferric chloride 2.0
An etching process was performed by spraying an etchant consisting of mol / L and hydrochloric acid 0.4 mol / L to form a wiring pattern.

【0074】なお、エッチング時間は、同一積層板を用
いて予備試験を行い、配線パターンの基部に残銅が認め
られなくなるまでの最適時間を調べ、当該時間を採用し
た。
The etching time was determined by conducting a preliminary test using the same laminated board, examining the optimum time until no residual copper was observed at the base of the wiring pattern, and employing the time.

【0075】得られた配線パターンにつき、ショート部
と切断部の有無を顕微鏡観察した。いずれも存在しない
ものを良好とした。
The resulting wiring pattern was observed under a microscope for the presence of shorts and cuts. Those which did not exist were evaluated as good.

【0076】・接合強度:片面銅張り積層板から試料を
切りだし、その試料につき、JISC6511で規定す
る方法に準拠して測定試料幅10mmで引き剥がし強度を
測定した。なお、この値が0.8kgf/cm以上であるもの
は良品と判定される。
Bonding strength: A sample was cut out from a single-sided copper-clad laminate, and the sample was peeled off at a measurement sample width of 10 mm in accordance with the method specified in JIS C6511. If the value is 0.8 kgf / cm or more, it is determined to be good.

【0077】またキャリヤー付き銅箔Aのキャリヤー銅
箔1と電解銅めっき層3間の接合強度(キャリヤー接合
強度)の測定と電解銅めっき層3のピンホール及びマイ
クロポロシィティ存在の有無の観察を以下のようにして
行った。
The measurement of the bonding strength (carrier bonding strength) between the carrier copper foil 1 and the electrolytic copper plating layer 3 of the copper foil with carrier A and the observation of the presence or absence of pinholes and microporosity of the electrolytic copper plating layer 3 were performed. This was performed as follows.

【0078】・キャリヤー接合強度:キャリヤー付き銅
箔Aから試料を切りだし、その試料につき、JISC6
511で規定する方法に準拠して測定試料幅10mmでキ
ャリヤー銅箔1から電解銅めっき層3を引き剥がし、両
者間の接合強度を測定した。なお、この値が0.02〜
0.05kgf/cmであるものは剥離容易とされる。
Carrier bonding strength: A sample was cut from a copper foil A with a carrier, and the sample was subjected to JISC6
According to the method specified in 511, the electrolytic copper plating layer 3 was peeled off from the carrier copper foil 1 with a measurement sample width of 10 mm, and the bonding strength between the two was measured. In addition, this value is 0.02-
Those with 0.05 kgf / cm are considered easy to peel.

【0079】・ピンホール、マイクロポロシィティの存
在有無:キャリヤー銅箔付き銅箔Aから縦200mm,横
200mmの試料を切り出し、粗化面3aの側に粘着テー
プを張り付け、電解銅めっき層3をキャリヤー銅箔1か
ら引き剥がした。この後、電解銅めっき層3の表面に赤
色の浸透液(マーテック(株)製 UP−ST)を塗布
し、5分後に電解銅めっき層3の裏側にしみ出す浸透液
により、ピンホール、マイクロポロシィティの有無を判
定した。
Presence / absence of pinholes and microporosity: A sample of 200 mm long and 200 mm wide is cut out from the copper foil A with the carrier copper foil, an adhesive tape is stuck on the roughened surface 3 a side, and the electrolytic copper plating layer 3 is formed. The carrier copper foil 1 was peeled off. Thereafter, a red penetrating liquid (UP-ST manufactured by Martec Co., Ltd.) is applied to the surface of the electrolytic copper plating layer 3, and after 5 minutes, the penetrating liquid that seeps into the back side of the electrolytic copper plating layer 3 causes pinholes and micro holes. The presence or absence of porosity was determined.

【0080】測定結果を表1に示す。Table 1 shows the measurement results.

【0081】実施例2 エピクロン1121−75M(商品名、大日本インキ化
学工業(株)製のビスフェノールA型エポキシ樹脂)1
30重量部と、ジシアンジアミド2.1重量部と、2−
エチル−4−メチルイミダゾール0.1重量部と、メチ
ルセロソルブ20重量部とを混合して熱硬化性の樹脂ワ
ニスを調製した。シランカップリング剤処理が終了した
実施例1のキャリヤー銅箔付き銅箔A4の表面に、該樹
脂ワニスをロールコータで厚み6.0mg/dm2となるよう
に塗布したのち、温度160℃で5分間熱処理してBス
テージの絶縁樹脂層にし、図2に示した樹脂付き銅箔B
を製造した。
Example 2 Epicron 1121-75M (trade name, bisphenol A type epoxy resin manufactured by Dainippon Ink and Chemicals, Inc.) 1
30 parts by weight, 2.1 parts by weight of dicyandiamide, 2-
A thermosetting resin varnish was prepared by mixing 0.1 parts by weight of ethyl-4-methylimidazole and 20 parts by weight of methyl cellosolve. The resin varnish was applied to the surface of the copper foil A4 with carrier copper foil of Example 1 having been subjected to the silane coupling agent treatment so as to have a thickness of 6.0 mg / dm 2 by a roll coater. Heat treatment for 2 minutes to form a B-stage insulating resin layer, and the resin-coated copper foil B shown in FIG.
Was manufactured.

【0082】この樹脂付き銅箔Bを用いて実施例1の場
合と同様にして片面銅張り積層板を製造し、そのエッチ
ング特性、接合強度を評価した。また、実施例1と同様
にしてキャリヤー接合強度を測定した。なお、ピンホー
ル、マイクロポロシィティの有無は、樹脂塗布後では、
仮にあったとしても樹脂によって埋まってしまい、正確
な評価にならないので省略した。結果は表1のとおりで
ある。
Using this resin-coated copper foil B, a single-sided copper-clad laminate was manufactured in the same manner as in Example 1, and its etching characteristics and bonding strength were evaluated. Further, the carrier bonding strength was measured in the same manner as in Example 1. In addition, the presence or absence of pinholes and microporosity is determined after resin application.
Even if there was, it was buried in the resin and the evaluation was not accurate, so it was omitted. The results are as shown in Table 1.

【0083】実施例3 下記組成の光沢めっき浴により、幅500mm,厚み35
μmの電解銅箔を作製した。電解銅箔製造装置は一般的
に行われている方法によった。すなわち、回転するドラ
ム状のカソード(表面はSUS又はチタン製)と該カソ
ードに対して同心円状に配置されたアノード(鉛又は貴
金属酸化物被覆チタン電極)からなる装置に、光沢めっ
き浴を流通させつつ両極間に電流を流して、該カソード
表面に所定の厚さに銅を析出させ、その後該カソード表
面から銅をはぎ取り銅箔を作製した。
Example 3 A bright plating bath having the following composition was used to prepare a width of 500 mm and a thickness of 35 mm.
A μm electrolytic copper foil was produced. The apparatus for producing an electrolytic copper foil was based on a generally used method. That is, a bright plating bath is passed through an apparatus consisting of a rotating drum-shaped cathode (surface is made of SUS or titanium) and an anode (lead or noble metal oxide-coated titanium electrode) arranged concentrically with the cathode. A current was passed between the two electrodes while depositing copper to a predetermined thickness on the cathode surface, and then copper was stripped from the cathode surface to produce a copper foil.

【0084】・浴組成:金属銅55g/L,硫酸55g/L,
塩化物イオン90ppm(NaClとして),装飾用光沢
銅めっき添加剤(日本シェーリング製カパラシド21
0:メーキャップ剤5ml及び光沢剤A0.5ml含有)。 ・浴温:27℃、 ・電流密度:6A/dm2
Bath composition: metallic copper 55 g / L, sulfuric acid 55 g / L,
90 ppm chloride ion (as NaCl), bright copper plating additive for decoration (Kapallaside 21 manufactured by Nippon Schering)
0: contains 5 ml of makeup agent and 0.5 ml of brightener A). Bath temperature: 27 ° C .; current density: 6 A / dm 2 .

【0085】得られた電解銅箔のマット面(めっき液と
接していた部分)の表面粗度を測定したところ、Rzは
1.1μmであった。ついで、この上にクロムの電解め
っきを連続的に行って厚み0.05μmのクロムめっき
層(剥離層2)を形成した。このクロムめっき層の上に
下記の条件で銅の電解めっきを行って厚み5μmの電解
銅めっき層3を形成した。 ・浴組成:金属銅90g/L,硫酸100g/L,塩化物イオ
ン30ppm(NaClとして),ヒドロキシエチルセル
ロース5ppm。 ・浴温:58℃、 ・対極:DSE、 ・電流密度:50A/dm2。 得られた電解銅めっき層3の表面粗度:Rzは1.8μ
mであった。
When the surface roughness of the matte surface (the part in contact with the plating solution) of the obtained electrolytic copper foil was measured, Rz was 1.1 μm. Then, a chromium plating layer (peeling layer 2) having a thickness of 0.05 μm was formed thereon by continuously performing chromium electrolytic plating. An electrolytic copper plating layer 3 having a thickness of 5 μm was formed on the chromium plating layer by electroplating copper under the following conditions. Bath composition: 90 g / L of metallic copper, 100 g / L of sulfuric acid, 30 ppm of chloride ion (as NaCl), 5 ppm of hydroxyethyl cellulose. Bath temperature: 58 ° C. Counter electrode: DSE Current density: 50 A / dm 2 . The surface roughness Rz of the obtained electrolytic copper plating layer 3 is 1.8 μm.
m.

【0086】この後、実施例1と同様にして、電解銅め
っき層3の表面3aに粗化処理を施し、Rz=2.6μ
mのキャリヤー銅箔付き銅箔を得た。ついで、この粗化
面の上に実施例1と同様にしてニッケルめっき、亜鉛め
っき、クロメート処理、シランカップリング剤処理をこ
の順に施した。
Thereafter, in the same manner as in Example 1, the surface 3a of the electrolytic copper plating layer 3 is subjected to a roughening treatment so that Rz = 2.6 μm.
A copper foil with a carrier copper foil of m was obtained. Then, nickel plating, zinc plating, chromate treatment, and silane coupling agent treatment were performed on the roughened surface in the same manner as in Example 1.

【0087】このキャリヤー銅箔付き銅箔Aを用いて実
施例1の場合と同様にして片面銅張り積層板を製造し、
そのエッチング特性、接合強度を評価した。また、実施
例1と同様にしてキャリヤー接合強度、ピンホール、マ
イクロポロシィティの有無を評価した。結果は表1のと
おりである。
Using this copper foil A with carrier copper foil, a single-sided copper-clad laminate was manufactured in the same manner as in Example 1.
The etching characteristics and bonding strength were evaluated. In the same manner as in Example 1, the carrier bonding strength, the presence of pinholes, and the presence or absence of microporosity were evaluated. The results are as shown in Table 1.

【0088】実施例4 回転するドラム状のチタン製カソードの表面(鏡面研磨
実施)上に下記の組成のめっき浴により銅を析出させ幅
500mm,厚み35μmの電解銅箔を作製した。 ・浴組成:金属銅90g/L,硫酸100g/L,塩化物イオ
ン30ppm(NaClとして),ヒドロキシエチルセル
ロース5ppm ・浴温:58℃、 ・電流密度:50A/dm2 電解銅箔の光沢面(チタンカソードと接していた面)を
測定したところ、Rzは1.2μmであった。
Example 4 Copper was deposited on the surface (mirror-polished) of a rotating drum-shaped titanium cathode by a plating bath having the following composition to prepare an electrolytic copper foil having a width of 500 mm and a thickness of 35 μm. Bath composition: 90 g / L metallic copper, 100 g / L sulfuric acid, 30 ppm chloride ion (as NaCl), 5 ppm hydroxyethylcellulose Bath temperature: 58 ° C. Current density: 50 A / dm 2 Glossy surface of electrolytic copper foil (titanium The Rz was found to be 1.2 μm when the surface in contact with the cathode was measured.

【0089】ついで、この上にクロムの電解めっきを連
続的に行って厚み0.05μmのクロムめっき層(剥離
層2)を形成した。このクロムめっき層の上に下記の条
件で銅の電解めっきを行って厚み5μmの電解銅めっき
層3を形成した。 ・浴組成:金属銅90g/L,硫酸100g/L,塩化物イオ
ン30ppm(NaClとして),ヒドロキシエチルセル
ロース5ppm。 浴温:58℃、対極:DSE、電流密度:50A/dm2。 得られた電解銅めっき層3の表面粗度:Rzは1.8μ
mであった。
Then, a chromium plating layer (peeling layer 2) having a thickness of 0.05 μm was formed thereon by continuously performing chromium electrolytic plating. An electrolytic copper plating layer 3 having a thickness of 5 μm was formed on the chromium plating layer by electroplating copper under the following conditions. Bath composition: 90 g / L of metallic copper, 100 g / L of sulfuric acid, 30 ppm of chloride ion (as NaCl), 5 ppm of hydroxyethyl cellulose. Bath temperature: 58 ° C., counter electrode: DSE, current density: 50 A / dm 2 . The surface roughness Rz of the obtained electrolytic copper plating layer 3 is 1.8 μm.
m.

【0090】この後、実施例1と同様にして電解銅めっ
き層3の表面3aに粗化処理を施し、Rz=2.5μm
のキャリヤー銅箔付き銅箔を得た。ついで、この粗化面
の上に実施例1と同様にしてニッケルめっき、亜鉛めっ
き、クロメート処理、シランカップリング剤処理をこの
順に施した。
Thereafter, the surface 3a of the electrolytic copper plating layer 3 is subjected to a roughening treatment in the same manner as in Example 1, and Rz = 2.5 μm
A copper foil with a carrier copper foil was obtained. Then, nickel plating, zinc plating, chromate treatment, and silane coupling agent treatment were performed on the roughened surface in the same manner as in Example 1.

【0091】このキャリヤー銅箔付き銅箔Aを用いて実
施例1の場合と同様にして片面銅張り積層板を製造し、
そのエッチング特性、接合強度を評価した。また、実施
例1と同様にしてキャリヤー接合強度、ピンホール、マ
イクロポロシィティの有無を評価した。結果は表1のと
おりである。
Using this copper foil A with carrier copper foil, a single-sided copper-clad laminate was produced in the same manner as in Example 1.
The etching characteristics and bonding strength were evaluated. In the same manner as in Example 1, the carrier bonding strength, the presence of pinholes, and the presence or absence of microporosity were evaluated. The results are as shown in Table 1.

【0092】比較例1 回転するドラム状のチタン製カソードの表面(フラップ
バフ研磨を実施)上に下記の組成のめっき浴により銅を
析出させ幅500mm,厚み35μmの電解銅箔を作製し
た。
Comparative Example 1 Copper was deposited on the surface of a rotating drum-shaped titanium cathode (flap buffing was performed) by a plating bath having the following composition to produce an electrolytic copper foil having a width of 500 mm and a thickness of 35 μm.

【0093】・浴組成:金属銅90g/L,硫酸100g/
L,塩化物イオン30ppm(NaClとして),ヒドロキ
シエチルセルロース10ppm ・浴温:58℃、 ・電流密度:50A/dm2 電解銅箔の光沢面(チタンカソードと接していた面)を
測定したところ、Rzは2.2μmであった。
Bath composition: 90 g / L metallic copper, 100 g / sulfuric acid
L, chloride ion 30 ppm (as NaCl), hydroxyethyl cellulose 10 ppm Bath temperature: 58 ° C. Current density: 50 A / dm 2 The glossy surface (surface in contact with the titanium cathode) of the electrolytic copper foil was measured to be Rz Was 2.2 μm.

【0094】ついで、この上にクロムの電解めっきを連
続的に行って厚み0.05μmのクロムめっき層(剥離
層)を形成した。このクロムめっき層の上に下記の条件
で銅の電解めっきを行って厚み5μmの電解銅めっき層
を形成した。 ・浴組成:金属銅90g/L,硫酸100g/L,塩化物イオ
ン30ppm(NaClとして),ヒドロキシエチルセル
ロース5ppm ・浴温:58℃、 ・対極:DSE、 ・電流密度:50A/dm
Then, a chromium plating layer (peeling layer) having a thickness of 0.05 μm was formed thereon by continuously performing chromium electrolytic plating. Copper electrolytic plating was performed on the chromium plating layer under the following conditions to form a 5 μm-thick electrolytic copper plating layer. Bath composition: 90 g / L metallic copper, 100 g / L sulfuric acid, 30 ppm chloride ion (as NaCl), 5 ppm hydroxyethylcellulose Bath temperature: 58 ° C. Counter electrode: DSE Current density: 50 A / dm 2

【0095】得られた電解銅めっき層の表面粗度:Rz
は3.0μmであった。この後、実施例1と同様にして
クロムめっき層の表面に粗化処理を施し、Rz=3.7
μmのキャリヤー銅箔付き銅箔を得た。ついで、この粗
化面の上に実施例1と同様にしてニッケルめっき、亜鉛
めっき、クロメート処理、シランカップリング剤処理を
この順に施した。
The surface roughness of the obtained electrolytic copper plating layer: Rz
Was 3.0 μm. Thereafter, the surface of the chromium plating layer is subjected to a roughening treatment in the same manner as in Example 1, and Rz = 3.7.
A copper foil with a carrier copper foil of μm was obtained. Then, nickel plating, zinc plating, chromate treatment, and silane coupling agent treatment were performed on the roughened surface in the same manner as in Example 1.

【0096】このキャリヤー銅箔付き銅箔を用いて実施
例1の場合と同様にして片面銅張り積層板を製造し、そ
のエッチング特性、接合強度を評価した。また、実施例
1と同様にしてキャリヤー接合強度、ピンホール、マイ
クロポロシィティの有無を評価した。結果は表1のとお
りである。
Using this copper foil with carrier copper foil, a single-sided copper-clad laminate was manufactured in the same manner as in Example 1, and its etching characteristics and bonding strength were evaluated. In the same manner as in Example 1, the carrier bonding strength, the presence of pinholes, and the presence or absence of microporosity were evaluated. The results are as shown in Table 1.

【0097】[0097]

【表1】 [Table 1]

【0098】[0098]

【発明の効果】以上の説明で明らかなように、本発明の
キャリヤー銅箔付き銅箔及び樹脂付き銅箔は、ピンホー
ルが無く、表面のRz値が比較的小さい値であるにもか
かわらず、基材との接合強度は高く、しかもエッチング
時のEf値も大きく、線間ピッチや線幅が30μm前後
の高密度超微細配線を有するプリント配線基板用の銅箔
として好適である。
As is apparent from the above description, the copper foil with a carrier copper foil and the copper foil with a resin of the present invention have no pinholes and have a relatively small surface Rz value. It is suitable as a copper foil for a printed wiring board having a high-density ultra-fine wiring with a high line-to-line pitch and a line width of about 30 μm, having a high bonding strength with a base material and a large Ef value at the time of etching.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のキャリヤー付き銅箔Aの断面構造を示
す断面図である。
FIG. 1 is a cross-sectional view showing a cross-sectional structure of a copper foil with carrier A of the present invention.

【図2】本発明の樹脂付き銅箔Bの断面構造を示す断面
図である。
FIG. 2 is a cross-sectional view illustrating a cross-sectional structure of a copper foil with resin B of the present invention.

【符号の説明】[Explanation of symbols]

1 キャリヤー銅箔 2 剥離層 3 電解銅めっき層 3a 粗化面 4 Bステージの絶縁樹脂層 Reference Signs List 1 carrier copper foil 2 release layer 3 electrolytic copper plating layer 3a roughened surface 4 B-stage insulating resin layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4E351 BB01 BB33 CC06 DD04 GG02 4K024 AA02 AA03 AA05 AA08 AA09 AB02 AB03 AB04 AB06 AB19 BB11 BC02 CA16 DA01 DA10 DB03 DB04 DB10 GA16 5E343 BB24 DD43 DD56 GG02  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4E351 BB01 BB33 CC06 DD04 GG02 4K024 AA02 AA03 AA05 AA08 AA09 AB02 AB03 AB04 AB06 AB19 BB11 BC02 CA16 DA01 DA10 DB03 DB04 DB10 GA16 5E343 BB24 DD43 DD56 GG02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 表面粗さ:Rzが1.5μ以下の銅箔を
キャリヤーとし、その表面に剥離層と電解銅めっき層を
この順序に積層してなるキャリヤー付銅箔であって、該
電解銅めっき層の表面が粗化面とされていることを特徴
とするキャリヤー付き銅箔。
1. A copper foil with a carrier comprising a copper foil having a surface roughness Rz of 1.5 μm or less as a carrier, and a release layer and an electrolytic copper plating layer laminated on the carrier in this order. A copper foil with a carrier, characterized in that the surface of the copper plating layer is roughened.
【請求項2】 前記のキャリヤーとしての銅箔が、圧延
銅箔又は電解銅箔である請求項1に記載のキャリヤー付
き銅箔。
2. The copper foil with a carrier according to claim 1, wherein the copper foil as the carrier is a rolled copper foil or an electrolytic copper foil.
【請求項3】 前記の剥離層がクロムめっき、鉛めっき
又はニッケルめっきの層である請求項1又は2に記載の
キャリヤー付き銅箔。
3. The copper foil with a carrier according to claim 1, wherein the release layer is a layer of chrome plating, lead plating or nickel plating.
【請求項4】 前記電解銅めっき層の粗化面が、Bステ
ージ状態の絶縁樹脂層で更に被覆されている請求項1乃
至3のいずれか1項に記載のキャリヤー付き銅箔。
4. The copper foil with a carrier according to claim 1, wherein the roughened surface of the electrolytic copper plating layer is further covered with an insulating resin layer in a B-stage state.
JP11073803A 1999-03-18 1999-03-18 Copper foil for high-density ultrafine wiring board Pending JP2000269637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11073803A JP2000269637A (en) 1999-03-18 1999-03-18 Copper foil for high-density ultrafine wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11073803A JP2000269637A (en) 1999-03-18 1999-03-18 Copper foil for high-density ultrafine wiring board

Publications (1)

Publication Number Publication Date
JP2000269637A true JP2000269637A (en) 2000-09-29

Family

ID=13528705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11073803A Pending JP2000269637A (en) 1999-03-18 1999-03-18 Copper foil for high-density ultrafine wiring board

Country Status (1)

Country Link
JP (1) JP2000269637A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002100136A1 (en) * 2001-06-04 2002-12-12 Nikko Materials Company, Limited Composite copper foil with copper or copper alloy support body, and printed circuit board using the composite copper foil
JP2003524078A (en) * 2000-02-24 2003-08-12 サーキット フォイル ルクセンブルグ トレーディング エス.エイ アール.エル. Composite copper foil and method for producing the same
WO2003096776A1 (en) * 2002-05-13 2003-11-20 Mitsui Mining & Smelting Co.,Ltd. Flexible printed wiring board for chip-on-film
EP1435193A2 (en) * 2001-10-04 2004-07-07 Oak-Mitsui, Inc. Nickel coated copper as electrodes for embedded passive devices
EP1531656A2 (en) * 2003-11-11 2005-05-18 Furukawa Circuit Foil Co., Ltd. Ultra-thin copper foil with carrier and printed wiring board using ultra-thin copper foil with carrier
JP2005161840A (en) * 2003-11-11 2005-06-23 Furukawa Circuit Foil Kk Ultra-thin copper foil with carrier and printed circuit
JP2006022406A (en) * 2000-09-22 2006-01-26 Furukawa Circuit Foil Kk Ultrathin copper foil with carrier
US7223481B2 (en) 2003-09-01 2007-05-29 Furukawa Circuit Foil Co., Inc. Method of producing ultra-thin copper foil with carrier, ultra-thin copper foil with carrier produced by the same, printed circuit board, multilayer printed circuit board and chip on film circuit board
WO2008139994A1 (en) * 2007-05-09 2008-11-20 Hitachi Chemical Company, Ltd. Conductor connection member, connection structure, and solar cell module
US7473458B2 (en) 2002-03-05 2009-01-06 Hitachi Chemical Co., Ltd. Metal foil with resin and metal-clad laminate, and printed wiring board using the same and method for production thereof
JP2009166404A (en) * 2008-01-18 2009-07-30 Sumitomo Bakelite Co Ltd Laminate, method for manufacturing laminate, multilayer printed wiring board and semiconductor device
JP2009188429A (en) * 2003-11-14 2009-08-20 Hitachi Chem Co Ltd Printed wiring board, and method of manufacturing the same
WO2010010892A1 (en) 2008-07-22 2010-01-28 古河電気工業株式会社 Flexible copper-clad laminate
WO2010010893A1 (en) 2008-07-22 2010-01-28 古河電気工業株式会社 Surface-treated copper foil and copper-clad laminate
WO2011028004A2 (en) * 2009-09-01 2011-03-10 일진소재산업(주) Copper foil for an embedded pattern for forming a microcircuit
WO2011090174A1 (en) 2010-01-22 2011-07-28 古河電気工業株式会社 Surface-treated copper foil, method for producing same, and copper clad laminated board
WO2012046804A1 (en) 2010-10-06 2012-04-12 古河電気工業株式会社 Copper foil and manufacturing method therefor, copper foil with carrier and manufacturing method therefor, printed circuit board, and multilayer printed circuit board
KR101112979B1 (en) * 2007-11-26 2012-04-18 후루카와 덴키 고교 가부시키가이샤 Surface treated copper foil and method for surface treating the same, and stack circuit board
JP2012102407A (en) * 2005-12-15 2012-05-31 Furukawa Electric Co Ltd:The Ultra-thin copper foil with carrier and printed circuit board
US8808873B2 (en) 2010-10-21 2014-08-19 Industrial Technology Research Institute Carrier-attached copper foil and method for manufacturing the same
WO2014157728A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石金属株式会社 Copper foil with carrier, printed circuit board, copper clad laminated sheet, electronic device, and printed circuit board fabrication method
JP2014195871A (en) * 2013-03-05 2014-10-16 Jx日鉱日石金属株式会社 Copper foil with carrier, manufacturing method of copper foil with carrier, printed wiring board, printed circuit board, copper clad laminated sheet, and manufacturing method of printed wiring board
JP2014208910A (en) * 2013-03-29 2014-11-06 Jx日鉱日石金属株式会社 Copper foil with a carrier, printed wiring board, copper-clad laminate, electronic apparatus and method for producing printed wiring board
KR20140130755A (en) * 2012-03-26 2014-11-11 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Copper foil with carrier, method for manufacturing copper foil with carrier, copper foil with carrier for printed circuit board, and printed circuit board
JP2015227060A (en) * 2014-05-09 2015-12-17 Jx日鉱日石金属株式会社 Copper foil with carrier, printed wiring board, copper-clad laminate, electronic apparatus, manufacturing method of copper foil with carrier, and manufacturing method of printed wiring board
EP3054751A3 (en) * 2015-02-06 2017-04-12 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, electronic device and method for fabricating printed wiring board
US9660131B2 (en) 2007-05-09 2017-05-23 Hitachi Chemical Company, Ltd. Method for connecting conductor, member for connecting conductor, connecting structure and solar cell module
JP2017088961A (en) * 2015-11-10 2017-05-25 Jx金属株式会社 Copper foil with carrier, printed wiring board, laminate, electronic device, manufacturing method of copper foil with carrier and manufacturing method of printed wiring board
EP3046400A3 (en) * 2015-01-16 2017-12-13 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, electronic device, and method for fabricating printed wiring board
CN110832120A (en) * 2017-03-30 2020-02-21 古河电气工业株式会社 Surface-treated copper foil, and copper-clad plate and printed circuit board using the same
KR20210090257A (en) * 2018-12-10 2021-07-19 광저우 팡 방 일렉트로닉 컴퍼니, 리미티드 Metal foil provided with carrier and method for manufacturing the same
CN115087198A (en) * 2022-08-11 2022-09-20 广州方邦电子股份有限公司 Support for metal foil, metal foil and use thereof
CN116939998A (en) * 2023-09-07 2023-10-24 江苏普诺威电子股份有限公司 Circuit substrate with high peeling strength, manufacturing method thereof and voice coil motor

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524078A (en) * 2000-02-24 2003-08-12 サーキット フォイル ルクセンブルグ トレーディング エス.エイ アール.エル. Composite copper foil and method for producing the same
US7153590B2 (en) * 2000-02-24 2006-12-26 Circuit Foil Luxembourg Trading S.A.R.L. Composite copper foil and manufacturing method thereof
JP2006022406A (en) * 2000-09-22 2006-01-26 Furukawa Circuit Foil Kk Ultrathin copper foil with carrier
JP4728723B2 (en) * 2000-09-22 2011-07-20 古河電気工業株式会社 Ultra-thin copper foil with carrier
JP2002368365A (en) * 2001-06-04 2002-12-20 Nikko Materials Co Ltd Composite copper foil equipped with copper or copper alloy support and printed board using the same
WO2002100136A1 (en) * 2001-06-04 2002-12-12 Nikko Materials Company, Limited Composite copper foil with copper or copper alloy support body, and printed circuit board using the composite copper foil
JP4672907B2 (en) * 2001-06-04 2011-04-20 Jx日鉱日石金属株式会社 Composite copper foil provided with copper or copper alloy support and printed circuit board using the composite copper foil
EP1435193A2 (en) * 2001-10-04 2004-07-07 Oak-Mitsui, Inc. Nickel coated copper as electrodes for embedded passive devices
US7749605B2 (en) 2002-03-05 2010-07-06 Hitachi Chemical Co., Ltd. Resin coated metal foil, metal clad laminate, printed wiring board using them, and manufacturing method thereof
US7749612B2 (en) 2002-03-05 2010-07-06 Hitachi Chemical Company, Ltd. Resin coated metal foil, metal clad laminate, printed wiring board using them, and manufacturing method thereof
US7473458B2 (en) 2002-03-05 2009-01-06 Hitachi Chemical Co., Ltd. Metal foil with resin and metal-clad laminate, and printed wiring board using the same and method for production thereof
US7955689B2 (en) 2002-03-05 2011-06-07 Hitachi Chemical Co, Ltd. Resin coated metal foil, metal clad laminate, printed wiring board using them, and manufacturing method thereof
CN1301046C (en) * 2002-05-13 2007-02-14 三井金属鉱业株式会社 Flexible printed wiring board for chip-on-film
WO2003096776A1 (en) * 2002-05-13 2003-11-20 Mitsui Mining & Smelting Co.,Ltd. Flexible printed wiring board for chip-on-film
US6984456B2 (en) 2002-05-13 2006-01-10 Mitsui Mining & Smelting Co., Ltd. Flexible printed wiring board for chip-on flexibles
US7223481B2 (en) 2003-09-01 2007-05-29 Furukawa Circuit Foil Co., Inc. Method of producing ultra-thin copper foil with carrier, ultra-thin copper foil with carrier produced by the same, printed circuit board, multilayer printed circuit board and chip on film circuit board
KR101056692B1 (en) * 2003-09-01 2011-08-12 후루카와 덴키 고교 가부시키가이샤 Manufacturing method of ultra-thin copper foil with carrier and ultra-thin copper foil with carrier manufactured by this manufacturing method, printed wiring board, multilayer printed wiring board and wiring board for chip-on film
EP1511366A3 (en) * 2003-09-01 2009-09-23 The Furukawa Electric Co., Ltd. Method of producing ultra-thin copper foil with carrier, ultra-thin copper foil with carrier produced by the same, printed circuit board, multilayer printed circuit board and chip on film circuit board
JP2005161840A (en) * 2003-11-11 2005-06-23 Furukawa Circuit Foil Kk Ultra-thin copper foil with carrier and printed circuit
US7790269B2 (en) 2003-11-11 2010-09-07 The Furukawa Electric Co., Ltd. Ultra-thin copper foil with carrier and printed wiring board using ultra-thin copper foil with carrier
EP1531656A2 (en) * 2003-11-11 2005-05-18 Furukawa Circuit Foil Co., Ltd. Ultra-thin copper foil with carrier and printed wiring board using ultra-thin copper foil with carrier
EP1531656A3 (en) * 2003-11-11 2007-10-03 Furukawa Circuit Foil Co., Ltd. Ultra-thin copper foil with carrier and printed wiring board using ultra-thin copper foil with carrier
KR101108991B1 (en) * 2003-11-11 2012-01-31 후루카와 덴키 고교 가부시키가이샤 Thin cooper foil adhered to carrier and, printed circuit board using the same
JP2009188429A (en) * 2003-11-14 2009-08-20 Hitachi Chem Co Ltd Printed wiring board, and method of manufacturing the same
JP2012102407A (en) * 2005-12-15 2012-05-31 Furukawa Electric Co Ltd:The Ultra-thin copper foil with carrier and printed circuit board
US10032952B2 (en) 2007-05-09 2018-07-24 Hitachi Chemical Company, Ltd. Connecting structure and solar cell module
US10186627B2 (en) 2007-05-09 2019-01-22 Hitachi Chemical Company, Ltd. Conductor connection member, connection structure, and solar cell module
US9660131B2 (en) 2007-05-09 2017-05-23 Hitachi Chemical Company, Ltd. Method for connecting conductor, member for connecting conductor, connecting structure and solar cell module
WO2008139994A1 (en) * 2007-05-09 2008-11-20 Hitachi Chemical Company, Ltd. Conductor connection member, connection structure, and solar cell module
KR101112979B1 (en) * 2007-11-26 2012-04-18 후루카와 덴키 고교 가부시키가이샤 Surface treated copper foil and method for surface treating the same, and stack circuit board
JP2009166404A (en) * 2008-01-18 2009-07-30 Sumitomo Bakelite Co Ltd Laminate, method for manufacturing laminate, multilayer printed wiring board and semiconductor device
US8512873B2 (en) 2008-07-22 2013-08-20 Furukawa Electric Co., Ltd. Surface treated copper foil and copper clad laminate
US8557392B2 (en) 2008-07-22 2013-10-15 Furukawa Electric Co., Ltd. Flexible copper clad laminate
WO2010010892A1 (en) 2008-07-22 2010-01-28 古河電気工業株式会社 Flexible copper-clad laminate
WO2010010893A1 (en) 2008-07-22 2010-01-28 古河電気工業株式会社 Surface-treated copper foil and copper-clad laminate
WO2011028004A2 (en) * 2009-09-01 2011-03-10 일진소재산업(주) Copper foil for an embedded pattern for forming a microcircuit
CN102577645A (en) * 2009-09-01 2012-07-11 日进素材产业株式会社 Copper foil for an embedded pattern for forming a microcircuit
WO2011028004A3 (en) * 2009-09-01 2011-07-14 일진소재산업(주) Copper foil for an embedded pattern for forming a microcircuit
KR101298999B1 (en) * 2009-09-01 2013-08-23 일진머티리얼즈 주식회사 Embedded Copper foil for fine pattern
WO2011090174A1 (en) 2010-01-22 2011-07-28 古河電気工業株式会社 Surface-treated copper foil, method for producing same, and copper clad laminated board
US8852754B2 (en) 2010-01-22 2014-10-07 Furukawa Electric Co., Ltd. Surface-treated copper foil, method for producing same, and copper clad laminated board
WO2012046804A1 (en) 2010-10-06 2012-04-12 古河電気工業株式会社 Copper foil and manufacturing method therefor, copper foil with carrier and manufacturing method therefor, printed circuit board, and multilayer printed circuit board
US8808873B2 (en) 2010-10-21 2014-08-19 Industrial Technology Research Institute Carrier-attached copper foil and method for manufacturing the same
KR101822314B1 (en) * 2012-03-26 2018-01-25 제이엑스금속주식회사 Copper foil with carrier, method for manufacturing copper foil with carrier, copper foil with carrier for printed circuit board, and printed circuit board
KR20140130755A (en) * 2012-03-26 2014-11-11 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Copper foil with carrier, method for manufacturing copper foil with carrier, copper foil with carrier for printed circuit board, and printed circuit board
KR20150071715A (en) * 2012-03-26 2015-06-26 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Copper foil with carrier, method for manufacturing copper foil with carrier, copper foil with carrier for printed circuit board, and printed circuit board
KR20150071714A (en) * 2012-03-26 2015-06-26 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Copper foil with carrier, method for manufacturing copper foil with carrier, copper foil with carrier for printed circuit board, and printed circuit board
KR101632822B1 (en) 2012-03-26 2016-06-22 제이엑스금속주식회사 Copper foil with carrier, method for manufacturing copper foil with carrier, copper foil with carrier for printed circuit board, and printed circuit board
KR101672176B1 (en) 2012-03-26 2016-11-04 제이엑스금속주식회사 Copper foil with carrier, method for manufacturing copper foil with carrier, copper foil with carrier for printed circuit board, and printed circuit board
KR101672173B1 (en) 2012-03-26 2016-11-04 제이엑스금속주식회사 Copper foil with carrier, method for manufacturing copper foil with carrier, copper foil with carrier for printed circuit board, and printed circuit board
US9578741B2 (en) 2012-03-26 2017-02-21 Jx Nippon Mining & Metals Corporation Copper foil with carrier, method of producing same, copper foil with carrier for printed wiring board, and printed wiring board
US9788423B2 (en) 2012-03-26 2017-10-10 Jx Nippon Mining & Metals Corporation Copper foil with carrier
JP2014195871A (en) * 2013-03-05 2014-10-16 Jx日鉱日石金属株式会社 Copper foil with carrier, manufacturing method of copper foil with carrier, printed wiring board, printed circuit board, copper clad laminated sheet, and manufacturing method of printed wiring board
KR101803165B1 (en) * 2013-03-29 2017-11-29 제이엑스금속주식회사 Copper foil with carrier, printed circuit board, copper clad laminated sheet, electronic device, and printed circuit board fabrication method
JP2014208910A (en) * 2013-03-29 2014-11-06 Jx日鉱日石金属株式会社 Copper foil with a carrier, printed wiring board, copper-clad laminate, electronic apparatus and method for producing printed wiring board
WO2014157728A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石金属株式会社 Copper foil with carrier, printed circuit board, copper clad laminated sheet, electronic device, and printed circuit board fabrication method
CN105142897B (en) * 2013-03-29 2018-09-28 Jx日矿日石金属株式会社 The manufacturing method of Copper foil with carrier, printing distributing board, copper-cover laminated plate, e-machine and printing distributing board
CN105142897A (en) * 2013-03-29 2015-12-09 Jx日矿日石金属株式会社 Copper foil with carrier, printed circuit board, copper clad laminated sheet, electronic device, and printed circuit board fabrication method
JP2015227060A (en) * 2014-05-09 2015-12-17 Jx日鉱日石金属株式会社 Copper foil with carrier, printed wiring board, copper-clad laminate, electronic apparatus, manufacturing method of copper foil with carrier, and manufacturing method of printed wiring board
US10187983B2 (en) 2015-01-16 2019-01-22 Jx Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, electronic device, and method for fabricating printed wiring board
EP3046400A3 (en) * 2015-01-16 2017-12-13 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, electronic device, and method for fabricating printed wiring board
US9839124B2 (en) 2015-02-06 2017-12-05 Jx Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, electronic device and method for fabricating printed wiring board
EP3054751A3 (en) * 2015-02-06 2017-04-12 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, electronic device and method for fabricating printed wiring board
JP2017088961A (en) * 2015-11-10 2017-05-25 Jx金属株式会社 Copper foil with carrier, printed wiring board, laminate, electronic device, manufacturing method of copper foil with carrier and manufacturing method of printed wiring board
CN110832120A (en) * 2017-03-30 2020-02-21 古河电气工业株式会社 Surface-treated copper foil, and copper-clad plate and printed circuit board using the same
CN110832120B (en) * 2017-03-30 2022-01-11 古河电气工业株式会社 Surface-treated copper foil, and copper-clad plate and printed circuit board using the same
KR20210090257A (en) * 2018-12-10 2021-07-19 광저우 팡 방 일렉트로닉 컴퍼니, 리미티드 Metal foil provided with carrier and method for manufacturing the same
KR102544723B1 (en) * 2018-12-10 2023-06-15 광저우 팡 방 일렉트로닉 컴퍼니, 리미티드 Metal foil provided with a carrier and its manufacturing method
CN115087198A (en) * 2022-08-11 2022-09-20 广州方邦电子股份有限公司 Support for metal foil, metal foil and use thereof
CN116939998A (en) * 2023-09-07 2023-10-24 江苏普诺威电子股份有限公司 Circuit substrate with high peeling strength, manufacturing method thereof and voice coil motor
CN116939998B (en) * 2023-09-07 2023-11-28 江苏普诺威电子股份有限公司 Circuit substrate with high peeling strength, manufacturing method thereof and voice coil motor

Similar Documents

Publication Publication Date Title
JP2000269637A (en) Copper foil for high-density ultrafine wiring board
US9788423B2 (en) Copper foil with carrier
JP4728723B2 (en) Ultra-thin copper foil with carrier
JP3977790B2 (en) Manufacturing method of ultra-thin copper foil with carrier, ultra-thin copper foil manufactured by the manufacturing method, printed wiring board using the ultra-thin copper foil, multilayer printed wiring board, chip-on-film wiring board
JP2849059B2 (en) Processing method of copper foil for printed circuit
JP2762386B2 (en) Copper-clad laminates and printed wiring boards
JP4087369B2 (en) Ultra-thin copper foil with carrier and printed wiring board
JP4383863B2 (en) Copper foil with low profile bond enhancement
JP4329953B2 (en) Copper foil for high-density ultra-fine wiring boards
JP2010100942A (en) Ultra-thin copper foil with carrier, method of manufacturing the same and printed circuit board
JP2007186797A (en) Method for producing ultrathin copper foil with carrier, ultrathin copper foil produced by the production method, and printed circuit board, multilayer printed circuit board and wiring board for chip on film using the ultrathin copper foil
JP2004169181A (en) Ultrathin copper foil with carrier and method for manufacturing the same, and printed wiring board using ultrathin copper foil with carrier
WO2020105289A1 (en) Surface-treated copper foil, carrier-attached copper foil, copper-clad laminate, and printed wiring board
JP2005260058A (en) Carrier-attached very thin copper foil, manufacturing method of carrier-attached very thin copper foil, and wiring board
JP4226927B2 (en) Method for manufacturing double-sided copper-clad laminate for capacitor layer formation
JP4429539B2 (en) Electrolytic copper foil for fine pattern
JPH11340595A (en) Copper foil for printed circuit board and copper foil attached with resin
JP3735485B2 (en) Copper foil with resin film, and copper foil with resin using the same
JPH10341066A (en) Copper foil for printed circuit and copper foil with resin adhesive for printed circuit and copper-clad lamination board for printed circuit using it
JP2007146258A (en) Electrolytic copper foil, printed wiring board and multilayer printed wiring board
JPH11340596A (en) Copper foil for printed circuit board and copper foil attached with resin
JP3933128B2 (en) Resin film with metal foil, resin sheet with metal foil, metal-clad laminate
JPH11135952A (en) Copper foil with resin for printed circuit board and printed circuit board using the same
JP4748519B2 (en) Ultra thin copper foil with carrier, manufacturing method thereof, printed wiring board using ultra thin copper foil with carrier
JPH02113591A (en) Manufacture of printed-wiring board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061030

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061206

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080930