JP4329953B2 - Copper foil for high-density ultra-fine wiring boards - Google Patents

Copper foil for high-density ultra-fine wiring boards Download PDF

Info

Publication number
JP4329953B2
JP4329953B2 JP13798399A JP13798399A JP4329953B2 JP 4329953 B2 JP4329953 B2 JP 4329953B2 JP 13798399 A JP13798399 A JP 13798399A JP 13798399 A JP13798399 A JP 13798399A JP 4329953 B2 JP4329953 B2 JP 4329953B2
Authority
JP
Japan
Prior art keywords
copper foil
carrier
layer
copper
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13798399A
Other languages
Japanese (ja)
Other versions
JP2000331537A (en
Inventor
昭利 鈴木
進 福田
福田  伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP13798399A priority Critical patent/JP4329953B2/en
Publication of JP2000331537A publication Critical patent/JP2000331537A/en
Application granted granted Critical
Publication of JP4329953B2 publication Critical patent/JP4329953B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はプリント配線基板の製造時に用いるキャリヤー付き銅箔に関し、特に高密度超微細配線の多層プリント配線基板の製造に用いて好適なキャリヤー付き銅箔に関する。
【0002】
【従来の技術】
プリント配線基板は、次のようにして製造されている。
まず、ガラス・エポキシ樹脂やポリイミド樹脂などから成る電気絶縁性の基板の表面に、表面回路形成用の薄い銅箔を置いたのち、加熱・加圧して銅張り積層板を製造する。
【0003】
ついで、その銅張積層板に、スルーホールの穿設、スルーホールめっきを順次行ったのち、該銅張積層板の表面にある銅箔にエッチング処理を行って所望する線幅と所望する線間ピッチを備えた配線パターンを形成し、最後に、ソルダーレジストの形成やその他の仕上げ処理が行われる。
【0004】
このとき用いる銅箔に対しては、基板に熱圧着される側の表面を粗化面とし、この粗化面で該基板に対するアンカー効果を発揮させ、もって該基板と銅箔との接合強度を高めてプリント配線基板としての信頼性を確保することがなされている。
【0005】
更に最近では、銅箔の粗化面を予めエポキシ樹脂のような接着用樹脂で被覆し、該接着用樹脂を半硬化状態(Bステージ)の絶縁樹脂層にした樹脂付き銅箔を表面回路形成用の銅箔として用い、その絶縁樹脂層の側を基板に熱圧着してプリント配線基板、とりわけ多層プリント配線基板を製造することが行われている。
【0006】
ところで、最近の各種電子部品は高度に集積化され、小型でかつ高密度のプリント配線を内蔵するICやLSIなどが使用されている。これに対応して、プリント配線基板における配線パターンも高密度化が要求され、微細な線幅や線間ピッチの配線から成る配線パターン、いわゆるファインパターンのプリント配線基板が要求されるようになった。例えば半導体パッケージに使用されるプリント配線基板の場合には、線幅や線間ピッチがそれぞれ30μm前後という高密度極微細配線を有するプリント配線基板が要求されている。
【0007】
このようなプリント配線形成用の銅箔として厚い銅箔を用いると、基板の表面までエッチングするために必要な時間が長くなり、その結果、形成される配線パターンにおける側壁の垂直性が崩れて、次式:
Ef=2H/(B−T)
(ここで、Hは銅箔の厚み、Bは形成された配線パターンのボトム幅、Tは形成された配線パターンのトップ幅である)で示されるエッチングファクタ(Ef)が小さくなる。
このような問題は、形成する配線パターンにおける配線の線幅が広い場合にはそれほど深刻な問題にならないが、線幅が狭い配線パターンの場合には断線に結びつくことも起こり得る。
【0008】
一方、薄い銅箔の場合は、確かにEf値を大きくすることができる。しかしながら、基板との接合強度を確保するためにこの銅箔の基板側の表面は粗化面になっており、この粗化面の突起部が基板に喰い込むため、この喰い込んだ突起部を完全にエッチング除去するためには長時間エッチング処理が必要とされる。該喰い込んだ突起部を完全に除去しないと、それが残銅となり、配線パターンの線間ピッチが狭い場合には絶縁不良を引き起こすからである。
【0009】
したがって、該喰い込んだ突起部をエッチング除去する過程で、既に形成されている配線パターンの側壁のエッチングも進行してしまい、結局はEf値が小さくなってしまう。
【0010】
薄い銅箔を用いる場合、その表面粗度を小さくすればこのような問題を解消できることは事実であるが、その場合には銅箔と基板との接合強度は小さくなるため信頼性に富むファインな配線パターンのプリント配線基板を製造することは困難である。
【0011】
また、薄い銅箔の場合は、その機械的強度が低いので、プリント配線基板の製造時に皺や折れ目が発生しやすく、更には銅箔切れを起こすこともあり、取り扱いに細心の注意を払わなければならないという問題もある。
【0012】
このように、Ef値が大きく、かつ基板との接合強度も高いファインな配線パターンが形成されているプリント配線基板を製造することは、実際問題として、かなり困難である。とくに、線間や線幅が30μm前後の高密度極微細配線の配線パターンを市販されている銅箔を用いて形成することは事実上不可能であり、それを可能にする銅箔の開発が強く望まれているのが実状である。
【0013】
こうしたファインパターン用途に使われる銅箔としては、厚さ9μm以下、特に5μm以下の銅箔が適している。
【0014】
このようなファインパターン用途に使われる極薄銅箔の製造方法としては、下記の方法が知られている。
【0015】
(1)回転するTi又はSUSドラム上に極薄銅箔を電着し該銅箔を剥離する方法。
【0016】
(2)アルミニウム箔上に陽極酸化処理により酸化アルミニウムを被覆し、この被膜上に極薄銅箔を電着し、基板と加熱・加圧して張り合わせた後、該アルミニウム箔を機械的に剥離・除去する方法。
【0017】
(3)アルミニウム箔又はアルミニウム合金箔の表面に亜鉛めっきを施し、更にその上に極薄銅箔を電着し、基板と加熱・加圧して張り合わせた後、該アルミニウム箔又はアルミニウム合金箔を化学的に溶解・除去する方法。
【0018】
(4)表面が鉄又は鉄合金よりなる箔状素材をキャリヤーとし、ピロリン酸銅電解浴を用いてその上に極薄銅箔を電着し、基板と極薄銅箔を接着剤により接着した後、キャリヤーである該鉄箔又は鉄合金箔を機械的に剥離・除去する方法。
【0019】
(5)キャリヤーとなる電解銅箔の光沢面上に剥離層を被覆し、更に該剥離層の表面に極薄銅箔を電着し、基板と加熱・加圧して張り合わせた後、キャリヤーである電解銅箔を機械的に剥離・除去する方法。
【0020】
しかし、これらの方法では、高品位の極薄銅箔を得ることができず、又、プリント配線板を製造する場合においても種々の不都合を生じる。
【0021】
(1)の方法にあっては、得られる極薄銅箔にピンホールやマイクロポロシティーが多く、また陰極ロールより剥離した極薄銅箔はシワ・破れ等を起こしやすくその取扱いが困難な為、実用化されていない。
【0022】
(2)の方法では、酸化アルミニウム上に銅をめっきするので、得られる極薄銅箔に多くのピンホールやマイクロポロシティーの欠陥がみられる。
【0023】
(3)の方法にあっては、得られる極薄銅箔のピンホールやマイクロポロシティーは(2)の方法で得られるものより少ないがまだかなりあり、更に、基板と張り合せた後でアルミニウム又はアルミニウム合金と亜鉛とを化学的に溶解・除去する工程を必要とし、その結果この工程より排出される排液の処理等に費用が掛る、という欠点を有する。
【0024】
(4)の方法によれば、極薄銅箔のピンホールやマイクロポロシティーは(2)の方法で得られるものよりはるかに少ない。しかし、鉄又は鉄合金上にピロリン酸銅電解浴を用いて極薄銅箔の電着を行うため、ピロリン酸銅電解浴の電流密度がせいぜい0.5〜5.0A/dm2と非常に小さいことから生産性が悪い。また、使用後、鉄又は鉄合金箔は鉄屑となるため不経済で、この方法は現在工業的には実用化されていない。
【0025】
(5)の方法が現在工業的に行われている方法である。この場合はピンホールやマイクロポロシティは(2)の方法で得られるものよりはるかに少ない。
【0026】
ただし、(5)の方法によるキャリヤー付き銅箔は、キャリヤー銅箔の片面に一定厚さの剥離層が均一に被覆されており、極薄銅箔層と基板とを熱圧着したのち、所定の剥離力を作用させて該キャリヤー銅箔を引き剥がすという製品形態をとっている。
【0027】
このキャリヤー銅箔を引き剥がす作業は、該キャリヤー銅箔の一端にカッターナイフ等で切り込みを入れ、その部分を局部的に引き剥がし、そこを起点にして全体を引き剥がすという方法をとっており、プリント配線基板の量産製造においてはかなり煩雑な作業である。
【0028】
この工程は自動化が難しいので手作業で行っているのが実状であり、従来のキャリヤー付き極薄銅箔を使用する際の一つの弱点であった。
【0029】
また、キャリヤー銅箔を引き剥がす作業を軽減するために剥離層厚さを厚くすれば、剥離は容易にはなる。しかし一方で、キャリヤー付き銅箔の取り扱い時、あるいは基板との積層作業時に極薄銅箔が該キャリヤー銅箔から剥離してしまうという不都合が生じるという問題点があった。
【0030】
【発明が解決しようとする課題】
本発明は、従来の極薄銅箔における上記の課題を解決せんとしてなされたものであり、線幅や線間ピッチが30μ前後のファインな配線パターンの場合であっても大きいEf値と、基板との高い接合強度を実現できるのは勿論のこと、取り扱いも容易で、積層工程の作業性に優れるキャリヤー付き銅箔を提供することを目的とする。
【0031】
【課題を解決するための手段】
本発明は、銅箔をキャリヤーとし、その表面に剥離層と電解銅めっき層をこの順序に積層してなるキャリヤー付き銅箔であって、該キャリヤー銅箔と該電解銅めっき層とがそれらの左右エッジ近傍部分がそれらの中央部に比較して強く結合せしめられていること、及び該電解銅めっき層の表面が粗化面とされていること、を特徴とする(以下、この銅箔を「第一の銅箔」という)。
【0032】
ここで、結合力の相対的差異は、キャリヤー銅箔の左右エッジ近傍部分の剥離層の厚みをその中央部のそれに比較して薄く薄く形成するか、又は該エッジ近傍部分に該剥離層を形成しないことによって創出することができる。
【0033】
また、キャリヤー銅箔の左右エッジ近傍部分の表面粗度をその中央部のそれに比較して大きくしておくことによっても創出することができる。
【0034】
前記の剥離層としては、クロムめっき、鉛めっき又はニッケルめっきの層であることが好ましい。
【0035】
尚、前記の電解銅めっき層の粗化面が、Bステージ状態の絶縁樹脂層で更に被覆されているもの(以下、この銅箔を「第二の銅箔」という)であっても良い。
【0036】
更に、前記のキャリヤー付き銅箔又は絶縁樹脂層被覆キャリヤー付き銅箔を基板に接着させた後、該キャリヤー銅箔及び電解銅めっき層の左右エッジ近傍部を除去して使用に供するようにしてもよい。
【0037】
また、前記の絶縁樹脂層被覆キャリヤー付き銅箔からキャリヤー銅箔を剥離層とともに剥離除去した後、表出する電解銅めっき層の表面に無機又は有機の防錆処理を施したものであってもよい。
【0038】
【発明の実施の形態】
本発明のキャリヤー付き銅箔の一例(以下、これを「第一の銅箔」という)を図1に示す。第一の銅箔:Aはキャリヤーとしての銅箔1(以下「キャリヤー銅箔」という)の片面に、剥離層2と電解銅めっき層3がこの順序で形成されたものであって、該電解銅めっき層の表面3aが粗化面とされている。
【0039】
キャリヤー銅箔1の左右エッジ近傍部分の剥離層2は、その中央部分に比較して厚みが薄くされているか、あるいは該剥離層そのものが形成されていない(図1は、後者の例である)。したがって、剥離層が厚く形成されている中央部分におけるキャリヤー銅箔1と電解銅めっき層3とは容易に引き剥がすことができる。これに対し、剥離層が薄く形成されている又は剥離層自体が形成されていない左右エッジ近傍部分はキャリヤー銅箔1と電解銅めっき層3とが強く結合しているためそれらの引き剥がし困難である。
【0040】
この第一の銅箔:Aは、その粗化面3aが基板4に対向するように重ね合わせたのち全体を熱圧着し、その出来上がった銅張積層板(図2参照)の左右エッジ近傍部分を切断し、キャリヤー銅箔1を被覆層2とともに剥離除去すると、基板の上に極薄の銅層を有する極薄銅張積層板となる。この極薄銅張積層板は、該極薄の銅層(正確には、電解銅めっき層3)に所定のパターンを形成するという態様で実際には使用される。
【0041】
キャリヤー銅箔1は、前記の極薄の銅層3を基板と接合するまでそれが破損や形態変化を受けないようバックアップする補強材(キャリヤー)として機能する。更に、剥離層2は、前記の電解銅めっき層3と該キャリヤー銅箔とを分離する際の剥離をよくするための層であり、この層の存在にて、該キャリヤー銅箔をきれいにかつ容易に該電解メッキ層から引き剥がすことが出来る(該剥離層は該キャリヤー銅箔を剥離除去する際に該キャリヤー銅箔と一体的に除去される)。
【0042】
本発明における剥離層2は、クロム、鉛又はニッケルのような金属のめっき層であることが好ましい。該剥離層の上に電析させて電解銅めっき層を形成するには、生産性の面で硫酸/硫酸銅浴を使用するのが最も適している。ただし、該剥離層の構成金属は耐酸性を有したものであることが必要である。また、基板と熱圧着後に極薄の銅箔(電解銅メッキ層3)からきれいにかつ容易に除去され得ることが必要である。
【0043】
クロムは銅の上に電着した場合には強固な結合力をもつが、クロムをめっきした上に更に銅をめっきした場合にはクロム層上に形成した銅はきれいに剥がれ、該剥がされた銅の側には全くクロムが残らず補助の剥離層を全く必要としないので、剥離層構成材料としては最も好ましいものである。これは、クロムめっき時に同時にその最外層にクロム酸塩の被膜が形成されているためと考えられる。一方、鉛めっきにて形成した剥離層の場合には、キャリヤー銅箔1を剥離・除去した電解銅めっき層3の該剥離層との接合側の表面上に薄く鉛の痕跡が残る傾向があるのでこの点に留意する必要がある。また、ニッケルめっきにて形成した剥離層の場合には、クロム酸塩のような補助剥離層を該剥離層上に更に形成する必要がある。
【0044】
ここで、キャリヤー銅箔1の上に形成する剥離層2の厚さによって、該キャリヤー銅箔と電解銅めっき層3との剥離性が影響を受ける。キャリヤ付き銅箔Aを基板と熱圧着したのち、該キャリヤー銅箔が該電解銅めっき層3から剥がれるようにするためには、0.03mg/dm2以上付着させればよい(該剥離層がクロムめっきの場合。以下、同様)。より簡単に機械的な力をかけずに剥がれるようにするためには0.3mg/dm2以上付着させればよい。クロムめっき量を多くするほど剥離性は高まるが、3mg/dm2を越えると余り変化しなくなってしまい、30mg/dm2を越えると効果は高まらないだけでなく、クロムめっきのめっき応力によりキャリヤー箔にカールがはいるようになり、まためっきに長時間要しコストがかさむことになるので余り意味がない。
【0045】
本発明の具体例としては、キャリヤー銅箔1の左右エッジ近傍部分には0.03mg/dm2未満のクロムめっきを施すか、あるいは全くクロムめっきを施さず、該エッジ近傍部分以外には0.3mg/dm2以上のクロムめっきを施すことが挙げられる。尚、キャリヤー付き銅箔を作製するには、該クロムめっきからなる層(剥離層2)の上は勿論のこと、該剥離層が形成されていない面、すなわちキャリヤー銅箔の面が露出している部分の面上に一体的に電解銅めっき層3を形成する。こうすることにより、該エッジ近傍部分は、電解銅めっき層3とキャリヤー銅箔1とが金属結合により強く接合しているのでキャリヤー付き銅箔の取り扱い時、あるいは銅張積層板の作製時に電解銅めっき層3がキャリヤー銅箔から剥離してしまう等の不都合は全く起きない。
【0046】
電解銅めっき層3とキャリヤー銅箔1との結合を部分的に強くすることは、該キャリヤー銅箔の左右エッジ近傍部分の表面に凹凸をつけることによっても可能である。
【0047】
本発明のキャリヤー付き銅箔は、樹脂基材と熱圧着した後、左右エッジ近傍部分であって電解銅めっき層3とキャリヤー銅箔1との結合の強い部分を切断等の手段により除去すれば、機械的な剥離手段を特に使わなくても、該キャリヤー銅箔は該電解銅めっき層から簡単に引き剥がすことができるので、積層作業の能率を大幅にアップすることが可能となる。尚、切断個所としては、該電解銅めっき層と該キャリヤー銅箔との結合の強い部分と弱い部分との境界が理想ではあるが、実際には安全を見て図2に示すように該境界部より幾分該電解銅めっき層と該キャリヤー銅箔との結合の弱い部分に入ったところで行なうのがよい。
【0048】
キャリヤー銅箔1の厚さは、10μmから200μm位が適当である。これより薄いとキャリヤーとしての用をなさなくなるし、一方、これより厚いとキャリヤーとしての機能上問題はないが、剥離層の形成及び電解銅めっき層の形成のために連続めっきを行なう場合、連続めっきライン内での該銅箔の張力を大きくする必要があり、大がかりな設備となり好ましくない。
【0049】
尚、本発明のキャリヤー付き銅箔は、樹脂基材との接合の前、電解銅めっき層3の形成後に、該電解銅メッキ層の表面3aを粗化面にしておく。具体的には、該電解銅めっき層の形成における最終段階で、浴組成や浴温、電流密度や電解時間などを変化させることにより、既に形成されている電解銅めっき層の表面に0.2〜2.0μm程度の銅粒子を突起物として析出させる(この処理を通常「粗化処理」と呼んでいる)。このような処理によって電解銅めっき層の表面を粗化面にするのは、この第1の銅箔Aと基板との接合強度を高めるためである。
【0050】
この第1の銅箔Aにおいては、粗化面3aの上に更にニッケル層、亜鉛層をこの順序で形成することが好ましい。
【0051】
この亜鉛層は、第1の銅箔Aと基板4とを熱圧着したときに、電解銅めっき層3と基板構成材料としての樹脂との反応による該樹脂の劣化や該電解銅めっき層の表面酸化を防止して基板との接合強度を高める働きをし、更には、該電解銅めっき層の粗化面3aの突起部が該基板に喰い込んでいる場合、該突起部と該基板との界面に存在している亜鉛の働きで該突起部の銅がエッチングされやすくなり、もってEf値を向上させる。またニッケル層は、該第1の銅箔Aの基板への熱圧着時に該亜鉛層の亜鉛が該電解銅めっき層側へ熱拡散することを防止し、もって該亜鉛層の前記機能を有効に発揮させる働きをする。
【0052】
なお、これらのニッケル層や亜鉛層は、公知の電解めっき法や無電解めっき法を適用して形成すればよい。また、該ニッケル層は純ニッケルで形成してもよいし、6重量%以下のリンを含有する含リンニッケルで形成してもよい。
【0053】
また、亜鉛層の表面に更にクロメート処理を行うと、該表面に酸化防止層が形成されるので好ましい。適用するクロメート処理としては、公知の方法に従えばよく、例えば、特開昭60−86894号公報に開示されている方法をあげることができる。クロム量に換算して0.01〜0.2mg/dm2程度のクロム酸化物とその水和物などを付着させることにより、銅箔に優れた防錆能を付与することができる。
【0054】
また、前記のクロメート処理を施した表面に対し更にシランカップリング剤を用いた表面処理を行うと、銅箔表面(基板との接合側の表面)には接着剤との親和力の強い官能基が付与されるので、該銅箔と基板との接合強度は一層向上し、銅箔の防錆性、耐熱性を更に向上するので好適である。
【0055】
用いるシランカップリング剤としては、例えばビニルトリス(2−メトキシエトキシ)シラン、3−グリシドキシプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシランなどをあげることができる。これらのシランカップリング剤は通常0.001〜5%の水溶液にし、これを銅箔の表面に塗布したのちそのまま加熱乾燥すればよい。なお、シランカップリング剤に代えて、チタネート系、ジルコネート系などのカップリング剤を用いても同様の効果を得ることができる。
【0056】
第1の銅箔Aは上記したような構成になっているので、基板との接合強度は大きく、またファインな配線パターンの形成も可能である。そして、回路形成用の銅箔は全体で9μm以下という極薄であっても、それは剛性に富んだキャリヤー銅箔により補強されているので、取り扱い時に皺や折れ目を生じたり、破れたりすることはない。
【0057】
次に、本発明の別の例としての第2の銅箔について説明する。この第2の銅箔Bは、図4に示すように、図1に示した第1の銅箔Aにおける粗化面3aを接着用樹脂で被覆し、該接着用樹脂の半硬化状態の絶縁樹脂層5が該銅箔に密着・接合した構造になっているものである(以下、「樹脂付き銅箔」という)。ここでいう半硬化状態とは、いわゆるBステージ状態であって、その表面に指で触れても粘着感はなく、該絶縁樹脂層を重ね合わせて保管することができ、更に加熱処理を受けると硬化反応が起こる状態のことをいう。
【0058】
この絶縁樹脂層5の形成には熱硬化性樹脂が用いられる。その種類は格別限定されるものではないが、例えば、エポキシ樹脂、ポリイミド樹脂、多官能性シアン酸エステル化合物などを好適なものとしてあげることができる。
【0059】
これらの樹脂を例えばメチルエチルケトン(MEK)、トルエンなどの溶剤に溶解して樹脂液とし、これを電解銅めっき層3の粗化面3aに例えばロールコータ法などによって塗布し、ついで必要に応じて加熱乾燥して溶剤を除去しBステージ状態にする。乾燥には例えば熱風乾燥炉を用いればよく、乾燥温度は100〜250℃、好ましくは130〜200℃であればよい。
【0060】
この樹脂付き銅箔Bは、その絶縁樹脂層5を基板(図示せず)に重ね合わせたのち全体を熱圧着して該絶縁樹脂層を熱硬化せしめ、ついで左右エッジ近傍部分を切断等の手段にて除去し、更にキャリヤー銅箔1を剥離除去して電解銅めっき層3を表出せしめ(当然に表出するのは該電解銅めっき層の剥離層2側の表面である)、そこに所定の配線パターンを形成するという態様で使用される。
【0061】
この樹脂付き銅箔Bを使用すると、多層プリント配線基板の製造時におけるプリプレグ材の使用枚数を減らすことができる。しかも、絶縁樹脂層5の厚みを層間絶縁が確保できるような厚みにしたり、プリプレグ材を全く使用していなくても銅張り積層板を製造することができる。またこのとき、基板の表面に絶縁樹脂をアンダーコートして表面の平滑性を更に改善することもできる。
【0062】
なお、プリプレグ材を使用しない場合には、プリプレグ材の材料コストが節約され、また積層工程も簡略になるので経済的に有利となり、しかも、プリプレグ材の厚み分だけ製造される多層プリント配線基板の厚みは薄くなり、1層の厚みが100μm以下である極薄の多層プリント配線基板を製造することができるという利点がある。
【0063】
この絶縁樹脂層5の厚みは20〜80μmであることが好ましい。
【0064】
絶縁樹脂層5の厚みが20μmより薄くなると、接着力が低下し、プリプレグ材を介在させることなくこの樹脂付き銅箔を内層材を備えた基板に積層したときに、内層材の回路との間の層間絶縁を確保することが困難になる。
【0065】
一方、絶縁樹脂層5の厚みを80μmより厚くすると、1回の塗布工程で目的厚みの絶縁樹脂層を形成することが困難となり、余分な材料費と工数がかかるため経済的に不利となる。更には、形成された絶縁樹脂層はその可撓性が劣るので、ハンドリング時にクラックなどが発生しやすくなり、また内層材との熱圧着時に過剰な樹脂流れが起こって円滑な積層が困難になる。
【0066】
更に、この樹脂付き銅箔Bのもう一つの製品形態としては、粗化面3aを絶縁樹脂層5で被覆し、半硬化状態とした後、ついで左右エッジ近傍部分を切断してキャリヤー銅箔1を剥離層2とともに剥離除去し、該キャリヤー銅箔1が存在しない樹脂付き銅箔の形で製造することも可能である。ただしこの場合には電解銅めっき層3の外気に触れる面はクロメート被膜、又は亜鉛めっき及びクロメート被膜のような無機の防錆処理、ベンゾトリアゾールのような有機の防錆処理が必要である。
【0067】
実施例1
幅500mm、厚み70μmの電解銅箔(キャリヤー銅箔1)のシャイニー面に、両端から内側にそれぞれ1cm進入した線までの範囲を除き下記の条件でクロムめっきを連続的に行って1.0mg/dm2の厚さのクロムめっき層(剥離層2)を形成した。
・浴組成:
三酸化クロム250g/L、硫酸2.5g/L
・浴温:20℃、
・対極:アンチモン6%含有鉛
・電流密度:10A/dm2
ついで、このクロムめっき層及びその表面が表出したキャリー銅箔の表面上に下記の条件で銅の電解めっきを行って厚み5μmの電解銅めっき層3を形成した。
・浴組成:
金属銅90g/L、硫酸100g/L、塩化物イオン30ppm(NaClとして)、ヒドロキシエチルセルロース5ppm。
・浴温:58℃、
・対極:DSE、
・電流密度:50A/dm2
【0068】
この電解銅めっき層3の表面に更に下記の操作を行って粗化面を形成した。
【0069】
まず、主成分が金属銅:20g/L、硫酸:100g/Lから成る組成の電析浴を建浴した(これを浴−1とする)。また、同様に主成分が金属銅:60g/L、硫酸:100g/Lから成る電析浴を建浴した(これを浴−2とする)。
【0070】
前記の電解銅めっき層3に対し、浴−1を用い、浴温35℃、電流密度40A/dm2の条件下で3.5秒間の粗化処理を行い、その表面に銅粒子を析出させた。ついで、浴−2を用い、浴温60℃、電流密度20A/dm2の条件下で7.0秒間のめっき処理を行い、該銅粒子を被覆する緻密な銅のカプセルめっき層を形成した。この後、更に浴−1を用いた処理と浴−2を用いた処理をもう一度繰り返し行って、図1に示したキャリヤー銅箔付き銅箔A1を得た。
【0071】
ついで、この粗化面3aの上に次のようにしてニッケル層、亜鉛めっき層をこの順に形成した。
【0072】
ここで、建浴したメッキ浴の組成は下記のとおりである。
・ニッケルめっき浴:
硫酸ニッケル六水塩240g/L、塩化ニッケル六水塩45g/L、ホウ酸30g/L、次亜リン酸ナトリウム5g/L。
・亜鉛めっき浴:
硫酸亜鉛七水塩24g/L、水酸化ナトリウム85g/L。
【0073】
前記のキャリヤー銅箔付き銅箔A1の粗化面に、ニッケルめっき浴の浴温を50℃とし、対極にステンレス鋼板を用い、電流密度0.5A/dm2で1秒間のニッケルめっきを行い、粗化面に厚みが約0.02mg/dm2の含リンニッケルめっき層を形成し、更にその上に、亜鉛めっき浴の浴温を25℃とし、対極にステンレス鋼板を用い、電流密度0.4A/dm2で2秒間の亜鉛めっきを行い、厚みが約0.20mg/dm2の亜鉛めっき層を形成してキャリヤー銅箔付き銅箔A2を得た。
【0074】
ついで、この銅箔を水洗したのち、三酸化クロム1g/L水溶液(液温:55℃)に5秒間浸漬してクロメート処理を行い、水洗乾燥してキャリヤー銅箔付き銅箔A3を得た。
【0075】
更に、キャリヤー銅箔付き銅箔A3を、ビニルトリス(2−メトキシエトキシ)シラン2g/Lの水溶液に5秒間浸漬したのち取り出し、温度100℃の温風で乾燥してシランカップリング剤処理を行いキャリヤー銅箔付き銅箔A4を得た。
【0076】
前記のキャリヤー銅箔付き銅箔A4を縦500mm、横500mmに切断したのちその粗化面3aの側の面がそれに対向するように、厚み1mmのガラス繊維エポキシプレプリグシート(FR−4)4の上に配置し、全体を2枚の平滑なステンレス鋼板で挟み、温度170℃、圧力50kg/cm2で60分間熱圧着した(この時点の状態は図2参照。但し、粗化面3a上に形成した前記の含リンニッケルめっき層、クロメート処理及びシランカップリング剤処理にて形成された層は明示されていない)。この後、キャリヤー銅箔1と電解銅めっき層3が強固に接合している部分を取り除くため、エッジ近傍部分を両端から内側にそれぞれ2cm進入した部分(線)にて切断除去した。この後、キャリヤー銅箔1は何の機械的な剥離作業も必要とせず、容易に取り除くことができた(この時点の状態を示したのが図3である)。
【0077】
実施例2
エピクロン1121−75M(商品名、大日本インキ化学工業(株)製のビスフェノールA型エポキシ樹脂)130重量部と、ジシアンジアミド2.1重量部と、2−エチル−4−メチルイミダゾール0.1重量部と、メチルセロソルブ20重量部とを混合して熱硬化性の樹脂ワニスを調製した。
シランカップリング剤処理が終了した実施例1のキャリヤー銅箔付き銅箔A4の表面に、該樹脂ワニスをロールコータで厚み6.0mg/dm2となるように塗布したのち、温度160℃で5分間熱処理してBステージの絶縁樹脂層5にし、図4に示した樹脂付き銅箔Bを製造した。
この樹脂付き銅箔Bを用いて実施例1の場合と同様にして片面銅張積層板を製造した後、キャリヤー銅箔1と電解銅めっき層3が強固に接合している部分を取り除くため、エッジ近傍部分を両端から内側にそれぞれ2cm進入した部分(線)にて切断除去した。この後、キャリヤー銅箔1は何の機械的な剥離作業も必要とせず。容易に取り除くことができた。
【0078】
実施例3
実施例2と同様の方法で樹脂付き銅箔Bを製造した。この樹脂付き銅箔Bのキャリヤー銅箔1と電解銅めっき層3が強固に接合している部分を取り除くため、エッジ近傍部分を両端から内側にそれぞれ2cm進入した部分(線)にて切断除去した。この後、キャリヤー銅箔1は何の機械的な剥離作業も必要とせず。容易に取り除くことができた。
この樹脂付き銅箔Bは5μm銅箔(正確には電解銅めっき層3)の強度を樹脂が支えているため、取り扱い時に銅箔に皺や折れ目が生じたり、破れたりすることなく、片面銅張積層板を製造することができた。
【0079】
実施例4
幅500mm、厚み70μmの電解銅箔(キャリヤー銅箔1)のシャイニー面(Rz=1.6μm)であって、両端から内側にそれぞれ1cmずつ進入した線までの範囲(以下、「左右エッジ近傍部分」という)のシャイニー面上に、下記の条件で粗化処理を行い凹凸を形成した。
まず、主成分が金属銅:20g/L、硫酸:100g/Lから成る組成の電析浴を建浴した(これを浴−1とする)。また、同様に主成分が金属銅:60g/L、硫酸:100g/Lから成る電析浴を建浴した(これを浴−2とする)。
【0080】
前記のキャリヤー銅箔1の左右エッジ近傍部分に対し、浴−1を用い、浴温35℃、電流密度40A/dm2の条件下で3.5秒間の粗化処理を行い、その表面に銅粒子を析出させた。ついで、浴−2を用い、浴温60℃、電流密度20A/dm2の条件下で7.0秒間のめっき処理を行い、該銅粒子を被覆する緻密な銅のカプセルめっき層を形成した。この後、更に浴−1を用いた処理と浴−2を用いた処理をもう一度繰り返し行って、左右エッジ近傍部分に凹凸を形成した(Rz=3.5μm)。
その後、下記の条件でクロムめっきを該シャイニー面の全面に連続的に行って0.5mg/dm2のクロムめっき層(剥離層2)を形成した。
・浴組成:
三酸化クロム250g/L、硫酸2.5g/L
・浴温:20℃、
・対極:アンチモン6%含有鉛
・電流密度:10A/dm2
ついで、このクロムめっき層の上に実施例1と同条件で銅の電解めっきを行って厚み5μmの電解銅めっき層3を形成した。
この電解銅めっき層3の表面に更に実施例1と同様にして粗化処理、ニッケルめっき、亜鉛めっき、クロメート処理、シランカップリング剤処理をこの順に施した。
このキャリヤー銅箔付き銅箔Aを用いて実施例1の場合と同様にして片面銅張積層板を製造した。この後、キャリヤー銅箔1と電解銅めっき層3が強固に接合している部分を取り除くため、左右エッジ近傍部分を両端から内側にそれぞれ2cm進入した部分(線)にて切断除去した。キャリヤー銅箔1は何の機械的な剥離作業も必要とせず。容易に取り除くことができた。
【0081】
比較例1
幅500mm、厚み70μmの電解銅箔(キャリヤー銅箔1)のシャイニー面の全面に、クロムめっきを連続的に行って0.2mg/dm2のクロムめっき層(剥離層2)を形成した。この後実施例1と同様な方法により、厚み5μmの電解めっき層3を形成した。
この電解銅めっき層3の表面に実施例1と同様にして、粗化処理、ニッケルめっき層、亜鉛めっき層、クロメート処理、シランカップリング剤層を被覆したキャリヤー銅箔付き銅箔を得た。
前記のキャリヤー銅箔付き銅箔を縦500mm、横500mmに切断したのち実施例1と同様にして樹脂基板と熱圧着した。
この片面銅張積層板からキャリー銅箔1(勿論剥離層2とともに)を除去するためには、該キャリヤー銅箔の一端にカッターナイフで切り込みを入れ、その部分を局部的に引き剥がした後、そこを起点にしないと全体を引き剥がすことが出来なかった。
【0082】
【発明の効果】
以上の説明で明らかなように、本発明のキャリヤー銅箔付き銅箔及び樹脂付き銅箔は、積層時の作業性に優れた高密度超微細配線板用銅箔である。
【図面の簡単な説明】
【図1】本発明のキャリヤー付き銅箔Aの構造を示す断面図である。
【図2】本発明のキャリヤー付き銅箔Aの使用例を示す断面図である。
【図3】極薄銅箔積層板の構造を示す断面図である。
【図4】本発明の樹脂付き銅箔Bの構造を示す断面図である。
【符号の説明】
1 キャリヤー銅箔
2 剥離層
3 電解銅めっき層
3a 粗化面
4 基板
5 Bステージの絶縁樹脂層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a copper foil with a carrier used in the production of a printed wiring board, and more particularly to a copper foil with a carrier suitable for use in the production of a multilayer printed wiring board having high density and ultrafine wiring.
[0002]
[Prior art]
The printed wiring board is manufactured as follows.
First, a thin copper foil for forming a surface circuit is placed on the surface of an electrically insulating substrate made of glass, epoxy resin, polyimide resin or the like, and then heated and pressed to produce a copper-clad laminate.
[0003]
Next, through holes are formed in the copper-clad laminate and through-hole plating is sequentially performed, and then the copper foil on the surface of the copper-clad laminate is etched to obtain a desired line width and a desired line spacing. A wiring pattern having a pitch is formed, and finally, a solder resist is formed and other finishing processes are performed.
[0004]
For the copper foil used at this time, the surface to be thermocompression bonded to the substrate is a roughened surface, and this roughened surface exerts an anchoring effect on the substrate, so that the bonding strength between the substrate and the copper foil is increased. The reliability as a printed wiring board is ensured by increasing it.
[0005]
More recently, the surface of the copper foil with resin is formed by coating the roughened surface of the copper foil in advance with an adhesive resin such as an epoxy resin, and forming the insulating resin layer in a semi-cured state (B stage). A printed wiring board, particularly a multilayer printed wiring board, is manufactured by thermocompression bonding the insulating resin layer side to a board.
[0006]
By the way, recent various electronic components are highly integrated, and ICs and LSIs having small and high density printed wirings are used. Correspondingly, the wiring pattern on the printed wiring board is required to have a high density, and a wiring pattern composed of wiring with a fine line width and a line pitch, that is, a so-called fine pattern printed wiring board has been required. . For example, in the case of a printed wiring board used for a semiconductor package, a printed wiring board having high-density ultrafine wiring having a line width and a line pitch of about 30 μm is required.
[0007]
When a thick copper foil is used as a copper foil for forming such a printed wiring, the time required for etching to the surface of the substrate becomes long, and as a result, the verticality of the side wall in the formed wiring pattern is broken, The following formula:
Ef = 2H / (BT)
Here, the etching factor (Ef) indicated by H is the thickness of the copper foil, B is the bottom width of the formed wiring pattern, and T is the top width of the formed wiring pattern.
Such a problem does not become a serious problem when the line width of the wiring in the wiring pattern to be formed is large. However, in the case of a wiring pattern with a narrow line width, it may be connected to the disconnection.
[0008]
On the other hand, in the case of a thin copper foil, the Ef value can certainly be increased. However, in order to secure the bonding strength with the substrate, the surface of the copper foil on the substrate side is a roughened surface, and the protrusions on the roughened surface bite into the substrate. A long etching process is required for complete etching removal. This is because if the engulfed protrusion is not completely removed, it becomes a residual copper, and if the pitch between lines of the wiring pattern is narrow, an insulation failure is caused.
[0009]
Therefore, in the process of removing the biting protrusion, etching of the side wall of the already formed wiring pattern also proceeds, and eventually the Ef value becomes small.
[0010]
When thin copper foil is used, it is true that such a problem can be solved by reducing the surface roughness. However, in this case, the bonding strength between the copper foil and the substrate is reduced, so that the fineness is high. It is difficult to manufacture a printed wiring board having a wiring pattern.
[0011]
In the case of thin copper foil, its mechanical strength is low, so wrinkles and creases are likely to occur during the manufacture of printed wiring boards, and copper foil may be cut off. There is also the problem of having to.
[0012]
Thus, as a practical matter, it is quite difficult to manufacture a printed wiring board on which a fine wiring pattern having a large Ef value and high bonding strength with the board is formed. In particular, it is practically impossible to form a wiring pattern of high-density ultrafine wiring with a line spacing or line width of around 30 μm using a commercially available copper foil. The real situation is strongly desired.
[0013]
As a copper foil used for such fine pattern applications, a copper foil having a thickness of 9 μm or less, particularly 5 μm or less is suitable.
[0014]
The following methods are known as a method for producing an ultrathin copper foil used for such fine pattern applications.
[0015]
(1) A method of electrodepositing an extremely thin copper foil on a rotating Ti or SUS drum and peeling the copper foil.
[0016]
(2) An aluminum oxide is coated on the aluminum foil by anodic oxidation, and an ultrathin copper foil is electrodeposited on the film, and the aluminum foil is mechanically peeled off after being bonded to the substrate by heating and pressing. How to remove.
[0017]
(3) Zinc plating is applied to the surface of the aluminum foil or aluminum alloy foil, and then an ultrathin copper foil is electrodeposited thereon, and the substrate is heated and pressurized and bonded together, and then the aluminum foil or aluminum alloy foil is chemically treated. Method to dissolve and remove.
[0018]
(4) Using a foil-like material whose surface is made of iron or an iron alloy as a carrier, an ultrathin copper foil was electrodeposited thereon using a copper pyrophosphate electrolytic bath, and the substrate and the ultrathin copper foil were bonded together with an adhesive. Then, a method of mechanically peeling and removing the iron foil or iron alloy foil as a carrier.
[0019]
(5) The carrier is a carrier after a release layer is coated on the glossy surface of the electrolytic copper foil to be a carrier, and an ultrathin copper foil is electrodeposited on the surface of the release layer and bonded to the substrate by heating and pressing. A method of mechanically peeling and removing electrolytic copper foil.
[0020]
However, these methods cannot provide a high-quality ultrathin copper foil, and cause various inconveniences even when a printed wiring board is manufactured.
[0021]
In the method (1), there are many pinholes and microporosity in the obtained ultrathin copper foil, and the ultrathin copper foil peeled off from the cathode roll is prone to wrinkles and tears and is difficult to handle. It has not been put into practical use.
[0022]
In the method (2), since copper is plated on aluminum oxide, many pinholes and microporosity defects are observed in the obtained ultrathin copper foil.
[0023]
In the method (3), the pinhole and microporosity of the ultrathin copper foil obtained are less than those obtained by the method (2), but are still quite large. Or it has the fault that the process which melt | dissolves and removes an aluminum alloy and zinc chemically is required, and as a result, the process etc. of the waste_water | drain discharged | emitted from this process cost.
[0024]
According to the method (4), pinholes and microporosity of the ultrathin copper foil are much less than those obtained by the method (2). However, since electrodeposition of ultrathin copper foil is performed on iron or an iron alloy using a copper pyrophosphate electrolytic bath, the current density of the copper pyrophosphate electrolytic bath is at most 0.5 to 5.0 A / dm.2Productivity is poor because it is very small. In addition, after use, iron or iron alloy foil becomes iron scrap, which is uneconomical, and this method is not currently in practical use industrially.
[0025]
The method (5) is a method that is currently industrially performed. In this case, pinholes and microporosity are much less than those obtained by the method (2).
[0026]
However, in the copper foil with a carrier by the method (5), a release layer having a constant thickness is uniformly coated on one side of the carrier copper foil, and after bonding the ultrathin copper foil layer to the substrate, a predetermined thickness is obtained. The product form is such that the carrier copper foil is peeled off by applying a peeling force.
[0027]
The carrier copper foil is peeled off by cutting the carrier copper foil at one end with a cutter knife or the like, locally peeling the part, and then taking the whole as a starting point. In mass production of printed wiring boards, this is a rather complicated operation.
[0028]
Since this process is difficult to automate, it is actually performed manually, which is one weak point when using a conventional ultrathin copper foil with a carrier.
[0029]
Further, if the thickness of the release layer is increased in order to reduce the work of peeling off the carrier copper foil, the release is facilitated. On the other hand, however, there is a problem in that the ultrathin copper foil is peeled off from the carrier copper foil when the copper foil with the carrier is handled or laminated with the substrate.
[0030]
[Problems to be solved by the invention]
The present invention has been made as a solution to the above-mentioned problems in the conventional ultra-thin copper foil, and has a large Ef value and substrate even in the case of a fine wiring pattern having a line width and a line pitch of around 30 μm. It is an object of the present invention to provide a copper foil with a carrier that is easy to handle and excellent in workability in the lamination process.
[0031]
[Means for Solving the Problems]
The present invention relates to a copper foil with a carrier in which a copper foil is used as a carrier and a release layer and an electrolytic copper plating layer are laminated on the surface thereof in this order, and the carrier copper foil and the electrolytic copper plating layer are those copper foils. The portions near the left and right edges are strongly bonded as compared to the central portion thereof, and the surface of the electrolytic copper plating layer is a roughened surface (hereinafter referred to as this copper foil). "First copper foil").
[0032]
Here, the relative difference in bonding strength is that the thickness of the release layer in the vicinity of the left and right edges of the carrier copper foil is made thinner and thinner than that in the center, or the release layer is formed in the vicinity of the edge. It can be created by not doing.
[0033]
It can also be created by increasing the surface roughness in the vicinity of the left and right edges of the carrier copper foil as compared with that in the center.
[0034]
The release layer is preferably a chromium plating, lead plating or nickel plating layer.
[0035]
The roughened surface of the electrolytic copper plating layer may be further coated with an insulating resin layer in a B-stage state (hereinafter, this copper foil is referred to as “second copper foil”).
[0036]
Further, after the copper foil with carrier or the copper foil with carrier coated with an insulating resin layer is adhered to the substrate, the portions near the left and right edges of the carrier copper foil and the electrolytic copper plating layer are removed for use. Good.
[0037]
Further, after removing the carrier copper foil from the copper foil with the insulating resin layer-coated carrier together with the release layer, the surface of the exposed electrolytic copper plating layer may be subjected to an inorganic or organic rust prevention treatment. Good.
[0038]
DETAILED DESCRIPTION OF THE INVENTION
An example of the copper foil with a carrier of the present invention (hereinafter referred to as “first copper foil”) is shown in FIG. A first copper foil: A is a copper foil 1 (hereinafter referred to as “carrier copper foil”) as a carrier, on one side of which a release layer 2 and an electrolytic copper plating layer 3 are formed in this order. The surface 3a of the copper plating layer is a roughened surface.
[0039]
The peeling layer 2 in the vicinity of the left and right edges of the carrier copper foil 1 is thinner than the central portion, or the peeling layer itself is not formed (FIG. 1 is an example of the latter). . Accordingly, the carrier copper foil 1 and the electrolytic copper plating layer 3 in the central portion where the release layer is formed thick can be easily peeled off. On the other hand, since the carrier copper foil 1 and the electrolytic copper plating layer 3 are strongly bonded to each other in the vicinity of the left and right edges where the peeling layer is formed thin or where the peeling layer itself is not formed, it is difficult to peel them off. is there.
[0040]
This first copper foil: A is a portion near the right and left edges of the copper-clad laminate (see FIG. 2) that has been laminated by thermocompression bonding after the roughened surface 3a is opposed to the substrate 4 When the carrier copper foil 1 is peeled and removed together with the coating layer 2, an ultrathin copper-clad laminate having an ultrathin copper layer on the substrate is obtained. This ultrathin copper-clad laminate is actually used in such a manner that a predetermined pattern is formed on the ultrathin copper layer (more precisely, the electrolytic copper plating layer 3).
[0041]
The carrier copper foil 1 functions as a reinforcing material (carrier) for backing up the ultrathin copper layer 3 until it is not damaged or changed in shape until it is bonded to the substrate. Further, the peeling layer 2 is a layer for improving peeling when the electrolytic copper plating layer 3 and the carrier copper foil are separated, and in the presence of this layer, the carrier copper foil is clean and easy. (The release layer is removed together with the carrier copper foil when the carrier copper foil is peeled off).
[0042]
The release layer 2 in the present invention is preferably a metal plating layer such as chromium, lead or nickel. In order to form an electrolytic copper plating layer by electrodeposition on the release layer, it is most suitable to use a sulfuric acid / copper sulfate bath in terms of productivity. However, the constituent metal of the release layer needs to have acid resistance. Moreover, it is necessary to be able to remove cleanly and easily from a very thin copper foil (electrolytic copper plating layer 3) after thermocompression bonding with the substrate.
[0043]
When chromium is electrodeposited on copper, it has a strong bonding force. However, when copper is further plated after chromium plating, the copper formed on the chromium layer peels cleanly, and the peeled copper Since no chromium remains on this side and no auxiliary release layer is required, it is the most preferable material for the release layer. This is probably because a chromate film is formed on the outermost layer at the same time as chromium plating. On the other hand, in the case of a release layer formed by lead plating, a thin trace of lead tends to remain on the surface of the electrolytic copper plating layer 3 from which the carrier copper foil 1 has been peeled and removed, on the bonding side with the release layer. Therefore, it is necessary to pay attention to this point. In the case of a release layer formed by nickel plating, it is necessary to further form an auxiliary release layer such as chromate on the release layer.
[0044]
Here, the peelability between the carrier copper foil and the electrolytic copper plating layer 3 is affected by the thickness of the release layer 2 formed on the carrier copper foil 1. In order to peel the carrier copper foil from the electrolytic copper plating layer 3 after thermocompression bonding of the copper foil A with a carrier to the substrate, 0.03 mg / dm2What is necessary is just to make it adhere above (when this peeling layer is chromium plating. The following is the same). 0.3mg / dm for easier removal without mechanical force2What is necessary is just to make it adhere. Peelability increases as the amount of chromium plating increases, but 3 mg / dm2When it exceeds, it will not change so much, 30mg / dm2If it exceeds, not only will the effect be enhanced, but the carrier foil will curl due to the plating stress of the chrome plating, and the plating will take a long time and increase the cost, which is not very meaningful.
[0045]
As a specific example of the present invention, 0.03 mg / dm is formed in the vicinity of the left and right edges of the carrier copper foil 1.2Less than chrome plating or no chrome plating at all, and 0.3 mg / dm except the edge vicinity2Applying the above chromium plating can be mentioned. In order to produce a copper foil with a carrier, not only the layer made of the chromium plating (peeling layer 2) but also the surface on which the peeling layer is not formed, that is, the surface of the carrier copper foil is exposed. The electrolytic copper plating layer 3 is integrally formed on the surface of the existing portion. By doing so, the electrolytic copper plating layer 3 and the carrier copper foil 1 are strongly bonded to each other in the vicinity of the edge by metal bonding. Therefore, when handling the copper foil with a carrier or when producing a copper clad laminate, There is no inconvenience such as peeling of the plating layer 3 from the carrier copper foil.
[0046]
It is possible to partially strengthen the bonding between the electrolytic copper plating layer 3 and the carrier copper foil 1 by making the surface of the carrier copper foil in the vicinity of the left and right edges.
[0047]
In the copper foil with a carrier of the present invention, after thermocompression bonding with a resin base material, the portion near the left and right edges and the strong bonding between the electrolytic copper plating layer 3 and the carrier copper foil 1 is removed by means such as cutting. Even if no mechanical peeling means is used, the carrier copper foil can be easily peeled off from the electrolytic copper plating layer, so that the efficiency of the laminating operation can be greatly improved. As the cutting point, the boundary between the strong part and the weak part of the bond between the electrolytic copper plating layer and the carrier copper foil is ideal, but the boundary is actually as shown in FIG. It is preferable that the process is performed in a portion where the bonding between the electrolytic copper plating layer and the carrier copper foil is slightly weaker than the portion.
[0048]
The thickness of the carrier copper foil 1 is suitably about 10 μm to 200 μm. If it is thinner than this, it will not be used as a carrier. On the other hand, if it is thicker than this, there will be no problem in functioning as a carrier, but if continuous plating is performed for forming a release layer and electrolytic copper plating layer, It is necessary to increase the tension of the copper foil in the plating line, which is not preferable because it requires a large facility.
[0049]
In addition, the copper foil with a carrier of this invention makes the surface 3a of this electrolytic copper plating layer the roughened surface before joining to a resin base material and after forming the electrolytic copper plating layer 3. Specifically, by changing the bath composition, bath temperature, current density, electrolysis time, etc. at the final stage in the formation of the electrolytic copper plating layer, 0.2% is applied to the surface of the already formed electrolytic copper plating layer. Copper particles of about ˜2.0 μm are deposited as protrusions (this treatment is usually called “roughening treatment”). The reason why the surface of the electrolytic copper plating layer is roughened by such treatment is to increase the bonding strength between the first copper foil A and the substrate.
[0050]
In the first copper foil A, it is preferable to further form a nickel layer and a zinc layer in this order on the roughened surface 3a.
[0051]
When the first copper foil A and the substrate 4 are thermocompression bonded, the zinc layer is deteriorated by the reaction between the electrolytic copper plating layer 3 and the resin as the substrate constituent material, or the surface of the electrolytic copper plating layer. It functions to prevent the oxidation and increase the bonding strength with the substrate. Furthermore, when the projection of the roughened surface 3a of the electrolytic copper plating layer bites into the substrate, the projection and the substrate The copper present at the interface is easily etched by the action of zinc present at the interface, thereby improving the Ef value. Further, the nickel layer prevents the zinc of the zinc layer from thermally diffusing to the electrolytic copper plating layer side at the time of thermocompression bonding to the substrate of the first copper foil A, thereby effectively making the function of the zinc layer. Work to demonstrate.
[0052]
The nickel layer and the zinc layer may be formed by applying a known electrolytic plating method or electroless plating method. The nickel layer may be formed of pure nickel or may be formed of phosphorus-containing nickel containing 6% by weight or less of phosphorus.
[0053]
Further, it is preferable to further perform chromate treatment on the surface of the zinc layer because an antioxidant layer is formed on the surface. As the chromate treatment to be applied, a known method may be used, and examples thereof include a method disclosed in JP-A-60-86894. 0.01-0.2mg / dm in terms of chromium2By attaching a certain amount of chromium oxide and its hydrate, it is possible to impart excellent antirust performance to the copper foil.
[0054]
Moreover, when a surface treatment using a silane coupling agent is further performed on the surface subjected to the chromate treatment, a functional group having a strong affinity for the adhesive is present on the copper foil surface (the surface on the bonding side with the substrate). Therefore, the bonding strength between the copper foil and the substrate is further improved, and the rust prevention and heat resistance of the copper foil are further improved.
[0055]
Examples of the silane coupling agent used include vinyltris (2-methoxyethoxy) silane, 3-glycidoxypropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, and 3-aminopropyltri Examples include ethoxysilane. These silane coupling agents are usually made into 0.001 to 5% aqueous solution, which is applied to the surface of the copper foil and then dried by heating as it is. In addition, it can replace with a silane coupling agent, and the same effect can be acquired even if it uses coupling agents, such as a titanate type | system | group and a zirconate type | system | group.
[0056]
Since the first copper foil A is configured as described above, the bonding strength with the substrate is high, and a fine wiring pattern can be formed. And even if the copper foil for forming the circuit is very thin of 9μm or less as a whole, it is reinforced by the carrier copper foil which is rich in rigidity. There is no.
[0057]
Next, the 2nd copper foil as another example of this invention is demonstrated. As shown in FIG. 4, the second copper foil B covers the roughened surface 3a of the first copper foil A shown in FIG. 1 with an adhesive resin, and the insulating resin in a semi-cured state of the adhesive resin. The resin layer 5 has a structure in which the resin layer 5 is adhered and bonded to the copper foil (hereinafter referred to as “resin-coated copper foil”). The semi-cured state here is a so-called B-stage state, and even if the surface is touched with a finger, there is no sticky feeling, the insulating resin layer can be stacked and stored, and further subjected to heat treatment A state in which a curing reaction occurs.
[0058]
A thermosetting resin is used to form the insulating resin layer 5. Although the kind is not specifically limited, For example, an epoxy resin, a polyimide resin, a polyfunctional cyanate ester compound etc. can be mentioned as a suitable thing.
[0059]
These resins are dissolved in a solvent such as methyl ethyl ketone (MEK) or toluene to form a resin solution, which is applied to the roughened surface 3a of the electrolytic copper plating layer 3 by, for example, a roll coater method, and then heated as necessary. Dry to remove solvent and bring to B stage. For example, a hot air drying furnace may be used for drying, and the drying temperature may be 100 to 250 ° C, preferably 130 to 200 ° C.
[0060]
The copper foil B with resin is formed by superposing the insulating resin layer 5 on a substrate (not shown) and then thermocompressing the whole to thermally cure the insulating resin layer, and then cutting the vicinity of the left and right edges. Then, the carrier copper foil 1 is peeled and removed to expose the electrolytic copper plating layer 3 (which naturally appears on the surface of the electrolytic copper plating layer on the peeling layer 2 side). It is used in the form of forming a predetermined wiring pattern.
[0061]
When this resin-coated copper foil B is used, the number of prepreg materials used in the production of the multilayer printed wiring board can be reduced. In addition, the copper-clad laminate can be manufactured even if the insulating resin layer 5 is made thick enough to ensure interlayer insulation or no prepreg material is used. At this time, the surface smoothness can be further improved by undercoating the surface of the substrate with an insulating resin.
[0062]
In addition, when the prepreg material is not used, the material cost of the prepreg material is saved and the laminating process is simplified, which is economically advantageous. Moreover, the multilayer printed wiring board manufactured by the thickness of the prepreg material is used. The thickness is reduced, and there is an advantage that an extremely thin multilayer printed wiring board in which the thickness of one layer is 100 μm or less can be manufactured.
[0063]
The thickness of the insulating resin layer 5 is preferably 20 to 80 μm.
[0064]
When the thickness of the insulating resin layer 5 is less than 20 μm, the adhesive force is reduced, and when this resin-coated copper foil is laminated on the substrate provided with the inner layer material without interposing the prepreg material, the gap between the inner layer material circuit It becomes difficult to ensure the interlayer insulation.
[0065]
On the other hand, if the thickness of the insulating resin layer 5 is greater than 80 μm, it becomes difficult to form an insulating resin layer having a desired thickness in a single coating process, which is economically disadvantageous because of extra material costs and man-hours. Furthermore, since the formed insulating resin layer is inferior in flexibility, cracks are likely to occur during handling, and excessive resin flow occurs during thermocompression bonding with the inner layer material, making smooth lamination difficult. .
[0066]
Further, as another product form of the resin-coated copper foil B, the roughened surface 3a is coated with the insulating resin layer 5 to be in a semi-cured state, and then the portions near the left and right edges are cut to form the carrier copper foil 1 Can be peeled off together with the release layer 2 to produce a copper foil with resin in which the carrier copper foil 1 does not exist. In this case, however, the surface of the electrolytic copper plating layer 3 that comes into contact with the outside air needs a chromate coating, an inorganic rust prevention treatment such as galvanization and chromate coating, and an organic rust prevention treatment such as benzotriazole.
[0067]
Example 1
Except for the range from the both ends of the shiny copper surface (carrier copper foil 1) of 500mm width and 70μm thickness to the line that entered 1cm inside, chromium plating was continuously performed under the following conditions to obtain 1.0mg / dm2A chromium plating layer (peeling layer 2) having a thickness of 5 mm was formed.
・ Bath composition:
Chromium trioxide 250g / L, sulfuric acid 2.5g / L
-Bath temperature: 20 ° C
・ Counter electrode: Lead containing 6% antimony
・ Current density: 10A / dm2
Subsequently, electrolytic plating of copper was performed on the chromium plating layer and the surface of the carry copper foil whose surface was exposed under the following conditions to form an electrolytic copper plating layer 3 having a thickness of 5 μm.
・ Bath composition:
Metallic copper 90 g / L, sulfuric acid 100 g / L, chloride ion 30 ppm (as NaCl), hydroxyethylcellulose 5 ppm.
・ Bath temperature: 58 ℃
・ Counter electrode: DSE,
・ Current density: 50A / dm2.
[0068]
The following operation was further performed on the surface of the electrolytic copper plating layer 3 to form a roughened surface.
[0069]
First, an electrodeposition bath having a composition composed mainly of metallic copper: 20 g / L and sulfuric acid: 100 g / L was constructed (this is referred to as bath-1). Similarly, an electrodeposition bath composed of metallic copper: 60 g / L and sulfuric acid: 100 g / L was constructed (this is referred to as bath-2).
[0070]
For the electrolytic copper plating layer 3, the bath-1 is used, the bath temperature is 35 ° C., and the current density is 40 A / dm.2The roughening process for 3.5 second was performed on these conditions, and the copper particle was deposited on the surface. Next, using bath-2, bath temperature 60 ° C., current density 20 A / dm2A plating treatment for 7.0 seconds was performed under the above conditions to form a dense copper capsule plating layer covering the copper particles. Thereafter, the treatment using the bath-1 and the treatment using the bath-2 were repeated once more to obtain the copper foil A1 with the carrier copper foil shown in FIG.
[0071]
Next, a nickel layer and a galvanized layer were formed in this order on the roughened surface 3a as follows.
[0072]
Here, the composition of the plating bath that has been erected is as follows.
・ Nickel plating bath:
Nickel sulfate hexahydrate 240 g / L, nickel chloride hexahydrate 45 g / L, boric acid 30 g / L, sodium hypophosphite 5 g / L.
・ Zinc plating bath:
Zinc sulfate heptahydrate 24g / L, sodium hydroxide 85g / L.
[0073]
On the roughened surface of the copper foil A1 with carrier copper foil, the bath temperature of the nickel plating bath is 50 ° C., a stainless steel plate is used as the counter electrode, and the current density is 0.5 A / dm.21 second nickel plating and the roughened surface has a thickness of about 0.02mg / dm2And a zinc plating bath temperature of 25 ° C., a stainless steel plate as the counter electrode, and a current density of 0.4 A / dm.2Galvanized for 2 seconds at a thickness of about 0.20 mg / dm2A copper foil A2 with a carrier copper foil was obtained by forming a galvanized layer.
[0074]
Next, this copper foil was washed with water, then immersed in a 1 g / L aqueous solution of chromium trioxide (liquid temperature: 55 ° C.) for 5 seconds, chromated, washed with water and dried to obtain a copper foil A3 with a carrier copper foil.
[0075]
Further, the copper foil A3 with a carrier copper foil is immersed in an aqueous solution of vinyltris (2-methoxyethoxy) silane 2 g / L for 5 seconds, taken out, dried with hot air at a temperature of 100 ° C., and treated with a silane coupling agent. Copper foil A4 with copper foil was obtained.
[0076]
After the copper foil A4 with carrier copper foil is cut into a length of 500 mm and a width of 500 mm, the glass fiber epoxy prepreg sheet (FR-4) 4 having a thickness of 1 mm is provided so that the surface on the roughened surface 3a side faces it. Placed on top of each other, sandwiched between two smooth stainless steel plates, temperature 170 ° C, pressure 50 kg / cm2(See Fig. 2 for the state at this time. However, the layer formed by the above-mentioned phosphorous nickel plating layer, chromate treatment and silane coupling agent treatment formed on the roughened surface 3a is clearly shown. It has not been). Thereafter, in order to remove the portion where the carrier copper foil 1 and the electrolytic copper plating layer 3 were firmly joined, the portion near the edge was cut and removed at a portion (line) that entered 2 cm from both ends to the inside. Thereafter, the carrier copper foil 1 did not require any mechanical peeling operation and could be easily removed (the state at this time is shown in FIG. 3).
[0077]
Example 2
130 parts by weight of Epicron 1121-75M (trade name, bisphenol A type epoxy resin manufactured by Dainippon Ink and Chemicals, Inc.), 2.1 parts by weight of dicyandiamide, and 0.1 parts by weight of 2-ethyl-4-methylimidazole And 20 parts by weight of methyl cellosolve were mixed to prepare a thermosetting resin varnish.
The resin varnish was applied to the surface of the copper foil A4 with a carrier copper foil of Example 1 having been treated with the silane coupling agent in a thickness of 6.0 mg / dm using a roll coater.2Then, it was heat-treated at a temperature of 160 ° C. for 5 minutes to form a B-stage insulating resin layer 5, and the resin-coated copper foil B shown in FIG. 4 was produced.
After producing a single-sided copper-clad laminate using this resin-coated copper foil B in the same manner as in Example 1, the portion where the carrier copper foil 1 and the electrolytic copper plating layer 3 are firmly bonded is removed. The part near the edge was cut and removed at the part (line) that entered 2 cm inside from both ends. After this, the carrier copper foil 1 does not require any mechanical peeling operation. It could be easily removed.
[0078]
Example 3
Resin-coated copper foil B was produced in the same manner as in Example 2. In order to remove the portion of the copper foil B with resin B where the carrier copper foil 1 and the electrolytic copper plating layer 3 are firmly bonded, the vicinity of the edge was cut and removed at a portion (line) that entered 2 cm inside from both ends. . After this, the carrier copper foil 1 does not require any mechanical peeling operation. It could be easily removed.
Since the resin-supported copper foil B supports the strength of the 5 μm copper foil (more precisely, the electrolytic copper plating layer 3), the copper foil does not have a wrinkle or a crease in the copper foil during handling or is not broken. A copper clad laminate could be manufactured.
[0079]
Example 4
Shiny surface (Rz = 1.6μm) of electrolytic copper foil (carrier copper foil 1) with a width of 500mm and a thickness of 70μm, and the range from the both ends to the line entering 1cm each inside The surface of the shiny surface was roughened under the following conditions to form irregularities.
First, an electrodeposition bath having a composition composed mainly of metallic copper: 20 g / L and sulfuric acid: 100 g / L was constructed (this is referred to as bath-1). Similarly, an electrodeposition bath composed of metallic copper: 60 g / L and sulfuric acid: 100 g / L was constructed (this is referred to as bath-2).
[0080]
For the vicinity of the left and right edges of the carrier copper foil 1, bath-1 was used, the bath temperature was 35 ° C., and the current density was 40 A / dm.2The roughening process for 3.5 second was performed on these conditions, and the copper particle was deposited on the surface. Next, using bath-2, bath temperature 60 ° C., current density 20 A / dm2A plating treatment for 7.0 seconds was performed under the above conditions to form a dense copper capsule plating layer covering the copper particles. Thereafter, the treatment using the bath-1 and the treatment using the bath-2 were repeated once more to form irregularities in the vicinity of the left and right edges (Rz = 3.5 μm).
Thereafter, chrome plating was continuously performed on the entire surface of the shiny surface under the following conditions to obtain 0.5 mg / dm.2A chromium plating layer (release layer 2) was formed.
・ Bath composition:
Chromium trioxide 250g / L, sulfuric acid 2.5g / L
-Bath temperature: 20 ° C
・ Counter electrode: Lead containing 6% antimony
・ Current density: 10A / dm2
Subsequently, electrolytic plating of copper was performed on the chromium plating layer under the same conditions as in Example 1 to form an electrolytic copper plating layer 3 having a thickness of 5 μm.
The surface of the electrolytic copper plating layer 3 was further subjected to roughening treatment, nickel plating, zinc plating, chromate treatment, and silane coupling agent treatment in this order in the same manner as in Example 1.
A single-sided copper-clad laminate was produced in the same manner as in Example 1 using the copper foil A with carrier copper foil. Thereafter, in order to remove the portion where the carrier copper foil 1 and the electrolytic copper plating layer 3 are firmly joined, the portion in the vicinity of the left and right edges was cut and removed at a portion (line) that entered 2 cm from both ends to the inside. The carrier copper foil 1 does not require any mechanical peeling operation. It could be easily removed.
[0081]
Comparative Example 1
The entire surface of the shiny surface of an electrolytic copper foil (carrier copper foil 1) having a width of 500 mm and a thickness of 70 μm is subjected to chrome plating to 0.2 mg / dm.2A chromium plating layer (release layer 2) was formed. Thereafter, an electrolytic plating layer 3 having a thickness of 5 μm was formed by the same method as in Example 1.
In the same manner as in Example 1, the surface of the electrolytic copper plating layer 3 was obtained as a copper foil with a carrier copper foil coated with a roughening treatment, a nickel plating layer, a zinc plating layer, a chromate treatment, and a silane coupling agent layer.
The copper foil with carrier copper foil was cut into a length of 500 mm and a width of 500 mm, and then thermocompression bonded to the resin substrate in the same manner as in Example 1.
In order to remove the carry copper foil 1 (of course, with the release layer 2) from this single-sided copper-clad laminate, after cutting with a cutter knife at one end of the carrier copper foil, the portion was peeled off locally, The whole could not be peeled off without starting from there.
[0082]
【The invention's effect】
As is clear from the above description, the copper foil with carrier copper foil and the copper foil with resin of the present invention are copper foils for high-density ultrafine wiring boards that are excellent in workability during lamination.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the structure of a copper foil A with a carrier of the present invention.
FIG. 2 is a sectional view showing an example of use of the copper foil A with a carrier of the present invention.
FIG. 3 is a cross-sectional view showing the structure of an ultrathin copper foil laminate.
FIG. 4 is a cross-sectional view showing the structure of a resin-coated copper foil B of the present invention.
[Explanation of symbols]
1 Carrier copper foil
2 Release layer
3 Electrolytic copper plating layer
3a Roughened surface
4 Substrate
5 B stage insulation resin layer

Claims (6)

銅箔をキャリヤーとし、その表面に剥離層と電解銅めっき層をこの順序に積層してなるキャリヤー付き銅箔であって、該キャリヤー銅箔と該電解銅めっき層とがそれらの左右エッジ近傍部分がそれらの中央部に比較して強く結合せしめられていること、及び該電解銅めっき層の表面が粗化面とされていること、を特徴とするキャリヤー付き銅箔。  A copper foil with a carrier in which a copper foil is used as a carrier and a release layer and an electrolytic copper plating layer are laminated in this order on the surface, and the carrier copper foil and the electrolytic copper plating layer are in the vicinity of their left and right edges. A copper foil with a carrier, characterized in that the copper foil is strongly bonded as compared with the central portion thereof, and the surface of the electrolytic copper plating layer is a roughened surface. 前記のキャリヤー銅箔の左右エッジ近傍部分の剥離層の厚みがその中央部に比較して薄く形成されている、又は該エッジ近傍部分に該剥離層が形成されていない、請求項1に記載のキャリヤー付き銅箔。  2. The thickness of the release layer in the vicinity of the left and right edges of the carrier copper foil is formed thinner than the central portion thereof, or the release layer is not formed in the vicinity of the edge. Copper foil with carrier. 前記のキャリヤー銅箔の左右エッジ近傍部分の剥離層の厚みが0.03mg/dm2未満であり、その中央部の剥離層の厚みが0.3〜30mg/dm2である請求項2に記載のキャリヤー付き銅箔。The thickness of the release layer in the vicinity of the left and right edges of the carrier copper foil is less than 0.03 mg / dm 2 , and the thickness of the release layer in the center is 0.3 to 30 mg / dm 2. Copper foil with carrier. 前記のキャリヤー銅箔の左右エッジ近傍部分の表面粗度がその中央部に比較して大きくせしめられている請求項1に記載のキャリヤー付き銅箔。  2. The copper foil with a carrier according to claim 1, wherein a surface roughness of a portion in the vicinity of the left and right edges of the carrier copper foil is increased as compared with a center portion thereof. 前記の剥離層がクロムめっき、鉛めっき又はニッケルめっきの層である請求項1乃至4のいずれか1に記載のキャリヤー付き銅箔。  The copper foil with a carrier according to any one of claims 1 to 4, wherein the release layer is a layer of chromium plating, lead plating or nickel plating. 前記のキャリヤー付き銅箔又は絶縁樹脂層被覆キャリヤー付き銅箔を基材に接着させた後、該キャリヤー銅箔及び電解銅めっき層の左右エッジ近傍部を除去して使用に供する請求項5に記載のキャリヤー付き銅箔。After bonding the carrier copper foil or an insulating resin layer coated carrier copper foil of the base material, according to claim 5, provided for use by removing the left and right edges near portion of the carrier foil and electrolytic copper plating layer Copper foil with carrier.
JP13798399A 1999-05-19 1999-05-19 Copper foil for high-density ultra-fine wiring boards Expired - Lifetime JP4329953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13798399A JP4329953B2 (en) 1999-05-19 1999-05-19 Copper foil for high-density ultra-fine wiring boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13798399A JP4329953B2 (en) 1999-05-19 1999-05-19 Copper foil for high-density ultra-fine wiring boards

Publications (2)

Publication Number Publication Date
JP2000331537A JP2000331537A (en) 2000-11-30
JP4329953B2 true JP4329953B2 (en) 2009-09-09

Family

ID=15211324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13798399A Expired - Lifetime JP4329953B2 (en) 1999-05-19 1999-05-19 Copper foil for high-density ultra-fine wiring boards

Country Status (1)

Country Link
JP (1) JP4329953B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101242800B (en) * 2005-06-28 2012-02-08 吴基范 Integrated infusion container

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7026059B2 (en) 2000-09-22 2006-04-11 Circuit Foil Japan Co., Ltd. Copper foil for high-density ultrafine printed wiring boad
JP2002292788A (en) * 2001-03-30 2002-10-09 Nippon Denkai Kk Composite copper foil and method for manufacturing the same
JP2004169181A (en) * 2002-10-31 2004-06-17 Furukawa Techno Research Kk Ultrathin copper foil with carrier and method for manufacturing the same, and printed wiring board using ultrathin copper foil with carrier
TW200420208A (en) * 2002-10-31 2004-10-01 Furukawa Circuit Foil Ultra-thin copper foil with carrier, method of production of the same, and printed circuit board using ultra-thin copper foil with carrier
JP2004273911A (en) * 2003-03-11 2004-09-30 Mitsubishi Gas Chem Co Inc Method for manufacturing superthin-wire circuit printed wiring board
US20050158574A1 (en) 2003-11-11 2005-07-21 Furukawa Circuit Foil Co., Ltd. Ultra-thin copper foil with carrier and printed wiring board using ultra-thin copper foil with carrier
CN101675484B (en) 2007-05-09 2012-07-04 日立化成工业株式会社 Conductor connection member, connection structure, and solar cell module
KR101248636B1 (en) 2007-05-09 2013-04-01 히타치가세이가부시끼가이샤 Method for connecting conductor, member for connecting conductor, connecting structure and solar cell module
JP4973519B2 (en) * 2008-01-18 2012-07-11 住友ベークライト株式会社 LAMINATED BOARD, LAMINATED MANUFACTURING METHOD, MULTILAYER PRINTED WIRING BOARD AND SEMICONDUCTOR DEVICE
CN102452197B (en) 2010-10-21 2014-08-20 财团法人工业技术研究院 Foil-attached copper foil and method for producing same
JP5156873B1 (en) * 2012-07-25 2013-03-06 Jx日鉱日石金属株式会社 Copper foil with carrier
JP5358740B1 (en) * 2012-10-26 2013-12-04 Jx日鉱日石金属株式会社 Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board, and printed wiring board manufacturing method
JP5380615B1 (en) * 2012-10-26 2014-01-08 Jx日鉱日石金属株式会社 Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board, and printed wiring board manufacturing method
JP5358739B1 (en) * 2012-10-26 2013-12-04 Jx日鉱日石金属株式会社 Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board, and printed wiring board manufacturing method
JP5352748B1 (en) * 2012-10-26 2013-11-27 Jx日鉱日石金属株式会社 Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board, and printed wiring board manufacturing method
JP6425401B2 (en) 2013-04-26 2018-11-21 Jx金属株式会社 Copper foil for high frequency circuit, copper clad laminate for high frequency circuit, printed wiring board for high frequency circuit, copper foil with carrier for high frequency circuit, electronic device, and method of manufacturing printed wiring board
KR102386554B1 (en) 2018-02-20 2022-04-14 미쓰이금속광업주식회사 Copper foil provided with a glass carrier and its manufacturing method
KR102380411B1 (en) 2018-03-29 2022-04-01 미쓰이금속광업주식회사 Copper foil provided with a glass carrier and its manufacturing method
JPWO2022124116A1 (en) 2020-12-08 2022-06-16
CN113658872A (en) * 2021-08-05 2021-11-16 江苏芯德半导体科技有限公司 Method for preparing metal layer on surface of glass wafer
CN114214623B (en) * 2021-12-16 2023-08-29 九江德福科技股份有限公司 Method for processing copper foil by RTF inversion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101242800B (en) * 2005-06-28 2012-02-08 吴基范 Integrated infusion container

Also Published As

Publication number Publication date
JP2000331537A (en) 2000-11-30

Similar Documents

Publication Publication Date Title
JP4329953B2 (en) Copper foil for high-density ultra-fine wiring boards
JP6488355B2 (en) Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
JP4728723B2 (en) Ultra-thin copper foil with carrier
JP2000269637A (en) Copper foil for high-density ultrafine wiring board
JP2762386B2 (en) Copper-clad laminates and printed wiring boards
TWI450817B (en) Metal foil laminated polyimide resin substrate
JP3180101B2 (en) Composite foil, copper-clad laminate, printed wiring board and multilayer printed wiring board, and method for producing composite foil
TWI638591B (en) Carrier copper foil, laminated body, manufacturing method of printed wiring board, and manufacturing method of electronic device
JP6339636B2 (en) Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
TWI617708B (en) Manufacturing method of copper foil with carrier, laminated body, printed wiring board, and manufacturing method of electronic equipment
JP4259024B2 (en) Multilayer wiring board manufacturing method and multilayer wiring board manufactured thereby
TW201504038A (en) Copper foil with carrier, copper-clad laminate, printed wiring board, electric appliance, resin layer, production method for copper foil with carrier, and production method for printed wiring board
EP1102524A1 (en) Double-sided printed wiring board and method for manufacturing multilayer printed wiring board having three or more layers
CN105007687B (en) The manufacturing method of Copper foil with carrier, printing distributing board, laminate, e-machine and printing distributing board
JP3735485B2 (en) Copper foil with resin film, and copper foil with resin using the same
JP3392066B2 (en) Composite copper foil, method for producing the same, copper-clad laminate and printed wiring board using the composite copper foil
JPH11340595A (en) Copper foil for printed circuit board and copper foil attached with resin
JPH11340596A (en) Copper foil for printed circuit board and copper foil attached with resin
JPH11135952A (en) Copper foil with resin for printed circuit board and printed circuit board using the same
JPH02113591A (en) Manufacture of printed-wiring board
JP3363155B2 (en) Copper foil for printed circuit manufacturing and its manufacturing method.
WO2020195748A1 (en) Metal foil for printed wiring board, metal foil with carrier, and metal-clad laminate, and method for manufacturing printed wiring board using same
TW507495B (en) Composite foil, process for producing the same and copper-clad laminate
JP2017088943A (en) Copper foil with carrier, laminate, manufacturing method of laminate, manufacturing method of printed wiring board and manufacturing method of electronic device
TWI631008B (en) Metal foil with carrier, method for producing printed wiring board, method for producing electronic device, and method for producing metal foil with carrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

AA91 Notification of revocation by ex officio

Free format text: JAPANESE INTERMEDIATE CODE: A971091

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

EXPY Cancellation because of completion of term