WO2020105289A1 - Surface-treated copper foil, carrier-attached copper foil, copper-clad laminate, and printed wiring board - Google Patents

Surface-treated copper foil, carrier-attached copper foil, copper-clad laminate, and printed wiring board

Info

Publication number
WO2020105289A1
WO2020105289A1 PCT/JP2019/038866 JP2019038866W WO2020105289A1 WO 2020105289 A1 WO2020105289 A1 WO 2020105289A1 JP 2019038866 W JP2019038866 W JP 2019038866W WO 2020105289 A1 WO2020105289 A1 WO 2020105289A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
treated
resin
carrier
treated copper
Prior art date
Application number
PCT/JP2019/038866
Other languages
French (fr)
Japanese (ja)
Inventor
翼 加藤
光由 松田
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2020558136A priority Critical patent/JP7453154B2/en
Priority to KR1020217008111A priority patent/KR20210090608A/en
Priority to CN201980073918.XA priority patent/CN112969824A/en
Publication of WO2020105289A1 publication Critical patent/WO2020105289A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/108Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by semi-additive methods; masks therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/16Electroplating with layers of varying thickness
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • H05K3/025Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates by transfer of thin metal foil formed on a temporary carrier, e.g. peel-apart copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Definitions

  • the present invention relates to a surface-treated copper foil, a copper foil with a carrier, a copper-clad laminate, and a printed wiring board.
  • the SAP method is a method suitable for forming an extremely fine circuit, and one example thereof is a roughened copper foil with a carrier.
  • a carrier for example, as shown in FIGS. 1 and 2, an ultrathin copper foil 10 having a roughened surface is used, and a prepreg 12 and a primer layer 13 are used on an insulating resin substrate 11 having a lower layer circuit 11b on a base substrate 11a.
  • the carrier After pressing to bring them into close contact (step (a)), the carrier (not shown) is peeled off, and then via holes 14 are formed by laser drilling if necessary (step (b)).
  • the ultra-thin copper foil is removed by etching to expose the primer layer 13 provided with the roughened surface profile (step (c)).
  • electroless copper plating 15 is applied to this roughened surface (step (d))
  • it is masked with a predetermined pattern by exposure and development using a dry film 16 (step (e)), and electrolytic copper plating 17 is applied.
  • Step (f) After the dry film 16 is removed to form the wiring portion 17a (step (g)), the unnecessary electroless copper plating 15 between the adjacent wiring portions 17a, 17a is removed by etching (step (h)).
  • the wiring 18 formed in a predetermined pattern is obtained.
  • the roughened copper foil itself is removed by etching after laser perforation (step (c)). Then, since the uneven shape of the roughened surface of the roughened copper foil is transferred to the surface of the laminate from which the roughened copper foil has been removed, the insulating layer (for example, the primer layer 13 or the If not present, the adhesion between the prepreg 12) and the plating circuit (for example, the wiring 18) can be secured.
  • a modified semi-additive method which does not include the copper foil removing step corresponding to the step (c), is also widely used, but a copper foil is used in the etching step after removing the dry film (corresponding to the step (h)).
  • the MSAP method is somewhat inferior to the SAP method in the fine circuit formability because it is necessary to make the circuit space somewhat narrower in consideration of a larger etching amount. That is, the SAP method is more advantageous for the purpose of forming a finer circuit.
  • the interface between the circuit (for example, the wiring 18) and the insulating layer is etched, and as a result, the root of the circuit is eroded so as to be dug. A phenomenon called "plugging" may occur. When this insertion occurs, the adhesive force between the circuit and the insulating layer is reduced, causing the circuit to peel off.
  • a roughened copper foil in which the shape of roughened particles is controlled is known.
  • Patent Document 1 Japanese Patent No. 6293365
  • the average height of the substantially spherical protrusions is 2.60 ⁇ m or less
  • the ratio b ave / a ave of the average maximum diameter b ave of the substantially spherical protrusions is set to 1.2 or more, an excellent plating circuit is obtained when used in the SAP method. It is said that the laminate can be provided with a surface profile that is excellent not only in adhesiveness but also in etching properties for electroless copper plating.
  • the adoption of the SAP method which is advantageous for forming fine circuits, is expanding.
  • the allowable insertion width is relatively reduced as the circuit pattern width is narrowed.
  • an etching solution capable of selectively removing electroless copper instead of electrolytic copper can be used. ..
  • the SAP method is more advantageous than the MSAP method in terms of fine circuit formability.
  • the lowermost part of the circuit formed by the SAP method is made of electroless copper, when the above etching solution is used, insertion is more likely to occur.
  • the present inventors have recently provided a unique surface profile defined by the skewness Ssk measured according to ISO25178 on the surface of a resin base material, thereby performing an etching process of an electroless copper plating layer in the SAP method.
  • a surface-treated copper foil capable of imparting the above-mentioned specific surface profile to a resin substrate can be provided when used in the SAP method.
  • an object of the present invention is to provide a resin substrate with a surface profile capable of effectively suppressing the occurrence of insertion that may occur in a circuit in the step of etching an electroless copper plating layer when used in the SAP method.
  • a surface-treated copper foil To provide a surface-treated copper foil.
  • a surface-treated copper foil having a treated surface on at least one side Transfer the surface shape of the treated surface to the surface of the resin film by thermocompression bonding a resin film on the treated surface, and when the surface-treated copper foil is removed by etching, in the surface of the resin film left.
  • a surface-treated copper foil having a skewness Ssk of ⁇ 0.6 or less measured according to ISO25178 is provided.
  • the present invention comprising a carrier, a release layer provided on the carrier, and the surface-treated copper foil provided on the release layer with the treated surface outside. Copper foil with a carrier is provided.
  • a copper clad laminate provided with the surface-treated copper foil or the carrier-attached copper foil.
  • a printed wiring board obtained by using the surface-treated copper foil or the carrier-added copper foil.
  • a resin substrate in which at least one surface has a skewness Ssk measured according to ISO25178 of ⁇ 0.6 or less.
  • FIG. 9B is a diagram showing that the protrusion of the resin replica in the laminate of FIG. 9A is extracted and then the height of the protrusion is corrected. It is a figure which shows extracting the convex part of the resin replica in the laminated body of FIG. 9B, and performing height correction of a convex part. It is a figure for demonstrating the measuring method of the insertion amount.
  • the “skewness Ssk” is a parameter representing the symmetry of the height distribution measured according to ISO25178. When this value is 0, it means that the height distribution is vertically symmetrical. Further, as shown in FIG. 3A, when this value is smaller than 0, it indicates that the surface has many fine valleys. On the other hand, as shown in FIG. 3B, when the value is larger than 0, it means that the surface has many fine peaks.
  • the skewness Ssk can be calculated by measuring the surface profile of a predetermined measurement area (for example, a two-dimensional area of 57074.677 ⁇ m 2 ) on the treated surface with a commercially available laser microscope.
  • the "arithmetic mean curve Spc of mountain peak” is a parameter representing the arithmetic mean of the principal curvatures of the mountain peaks of the surface, measured according to ISO25178. If this value is small, it means that the point of contact with another object is rounded. On the other hand, if this value is large, it means that the point of contact with another object is sharp.
  • the arithmetic mean curve Spc at the peak is a parameter that can be measured by a laser microscope and that represents the roundness of the bump.
  • the arithmetic mean curve Spc at the peak can be calculated by measuring the surface profile of a predetermined measurement area (for example, a two-dimensional area of 57074.677 ⁇ m 2 ) on the treated surface with a commercially available laser microscope.
  • the "mountain peak density Spd” is a parameter representing the number of peaks per unit area, which is measured according to ISO25178. When this value is large, it suggests that there are many contact points with other objects.
  • the peak vertex density Spd can be calculated by measuring the surface profile of a predetermined measurement area (for example, a two-dimensional area of 57074.677 ⁇ m 2 ) on the treated surface with a commercially available laser microscope.
  • the “surface load curve” (hereinafter, simply referred to as “load curve”) is a curve representing the height at which the load area ratio is 0% to 100%, which is measured according to ISO25178.
  • the load area ratio is a parameter indicating the area of a region having a certain height c or more, as shown in FIG.
  • the load area ratio at the height c corresponds to Smr (c) in FIG.
  • the secant of the load curve obtained by subtracting the difference of the load area rates from the load area rate of 0% along the load curve to 40% is moved from the load area rate of 0% to the secant line.
  • the position where the slope of the load becomes the gentlest is called the central part of the load curve.
  • a straight line that minimizes the sum of squared deviations in the vertical axis with respect to the central portion is called an equivalent straight line.
  • the portion included in the range of the load area ratio of the equivalent straight line from 0% to 100% is called the core portion.
  • a portion higher than the core portion is called a protruding peak portion, and a portion lower than the core portion is called a protruding valley portion.
  • the core portion represents the height of the area in contact with another object after the initial wear is finished.
  • the “pole height Sxp” is a parameter representing the difference between the heights of the load area ratio p% and the load area ratio q%, which is measured according to ISO25178, as shown in FIG. is there.
  • Sxp represents the difference between the average surface of the surface and the height of the surface after removing particularly high peaks in the surface.
  • Sxp represents the difference in height between the load area ratio of 2.5% and the load area ratio of 50%.
  • the pole height Sxp can be calculated by measuring the surface profile of a predetermined measurement area (for example, a two-dimensional area of 57074.677 ⁇ m 2 ) on the treated surface with a commercially available laser microscope.
  • the "load area ratio Smr1 for separating the protruding peak portion and the core portion” means the intersection of the height of the upper portion of the core portion and the load curve measured according to ISO25178, as shown in FIG. Is a parameter indicating the load area ratio (that is, the load area ratio separating the core portion and the protruding mountain portion). The larger this value is, the larger the proportion occupied by the protruding mountain portion is.
  • the “load area ratio Smr2 for separating the protruding valley portion and the core portion” is, as shown in FIG. 5, the height of the lower portion of the core portion and the load curve measured according to ISO25178.
  • the “substantial volume Vmc of the core portion” is a parameter representing the volume of the core portion, which is measured according to ISO25178. As shown in FIG. 7, Vmc is the difference between the actual volume at the load area ratio Smr2 that separates the protruding valley portion and the core portion from the actual volume at the load area ratio Smr1 that separates the protruding mountain portion and the core portion. Represents.
  • the actual volume Vmc of the core portion can be calculated by measuring the surface profile of a predetermined measurement area (for example, a two-dimensional area of 57074.677 ⁇ m 2 ) on the treated surface with a commercially available laser microscope.
  • the load area ratio Smr1 for separating the protruding peak portion and the core portion is designated as 10%
  • the load area ratio Smr2 for separating the protruding valley portion and the core portion is designated as 80%, respectively
  • the actual volume Vmc of the core portion is specified. Shall be calculated.
  • the “electrode surface” of the electrolytic copper foil refers to the surface that is in contact with the cathode when the electrolytic copper foil is manufactured.
  • the “deposited surface” of the electrolytic copper foil refers to the surface on which electrolytic copper is deposited during production of the electrolytic copper foil, that is, the surface not in contact with the cathode.
  • the copper foil according to the present invention is a surface-treated copper foil.
  • This surface-treated copper foil is a resin film that remains when the surface shape of the treated surface is transferred to the surface of the resin film by thermocompression bonding the resin film to the treated surface and the surface-treated copper foil is removed by etching (hereinafter , And also referred to as a resin replica) (hereinafter, also referred to as a transfer surface) has a skewness Ssk measured according to ISO 25178 of ⁇ 0.6 or less.
  • the adoption of the SAP method which is advantageous for forming fine circuits, is expanding with the demand for further miniaturization of circuits.
  • the allowable insertion width is relatively reduced as the circuit pattern width is narrowed. That is, the insertion width, which has been allowed in the conventional pattern width (for example, 30 ⁇ m), may deviate from the standard due to an increased risk of circuit collapse in a finer circuit pattern width (for example, 10 ⁇ m).
  • the SAP method is advantageous in terms of circuit miniaturization compared to other construction methods such as the MSAP method, it may be disadvantageous in terms of suppressing insertion.
  • a laminate in which a rust preventive layer 114 derived from a copper foil with a carrier and an electrolytic copper layer 116 are sequentially laminated on a resin substrate 112. 110 is prepared (step (i)), and electroless copper plating 118 is formed while the electrolytic copper layer 116 remains.
  • a dry film is used for masking in a predetermined pattern, and then electrolytic copper plating is performed to form the wiring portion 120 (step (ii)).
  • the electrolytic copper layer 116 remains on the resin base material 112
  • the electrolytic copper layer 116 and the electroless copper layer are removed in the step of etching and removing the unnecessary portion between the adjacent wiring portions 120 and 120.
  • the two layers of plating 118 must be etched away. Therefore, as shown in step (iii) of FIG. 8A, the obtained wiring 122 is likely to have a circuit thinning.
  • the electrolytic copper layer 116 is not completely removed as described above, the rust preventive layer 114 exists between the resin base material 112 and the wiring 122, and the rust preventive layer 114 is inserted.
  • step (i ) preparation of the laminated body 110 in which the rust preventive layer 114 and the electrolytic copper layer 116 are sequentially formed on the resin substrate 112 (step (i )), Complete removal of the electrolytic copper layer 116 (step (ii)), formation of the electroless copper plating 118, masking with a dry film, and formation of the wiring portion 120 by electrolytic copper plating (step (iii)).
  • the electrolytic copper layer 116 does not remain on the resin base material 112. Therefore, in the etching process of the unnecessary portion between the adjacent wiring portions 120, 120, only the electroless copper plating 118 is removed by etching.
  • the SAP method since it is possible to use an etching solution that can selectively remove electroless copper instead of electrolytic copper, it is even more effective to reduce the thickness of the wiring 122 that is mostly composed of electrolytic copper. Can be suppressed to. Therefore, it can be said that the SAP method is more advantageous than other construction methods such as the MSAP method for miniaturization of the circuit.
  • the etching capable of selectively removing the electroless copper is performed.
  • the insertion 124 is likely to occur at the interface between the wiring 122 and the resin base material 112.
  • the electrolytic copper layer 116 is completely removed by etching in the SAP method.
  • the rust preventive metal is also etched during the etching (see step (ii) in FIG. 8B). 8A and 8B, the thickness of the anticorrosion layer 114 is shown large for emphasis, and does not necessarily reflect the actual thickness ratio of the laminate. As described above, in the SAP method, it is not easy to suppress the insertion that may occur in the circuit.
  • the surface-treated copper foil of the present invention for the SAP method, it is possible to impart a unique surface profile with a skewness Ssk measured according to ISO25178 of ⁇ 0.6 or less on the surface of the resin substrate. it can. By doing so, it is possible to effectively suppress the occurrence of insertion that may occur in the circuit in the step of etching the electroless copper plating layer.
  • the mechanism by which the resin base material surface has the above-mentioned surface profile to suppress the insertion that occurs in the circuit is not always clear, but one of the factors is as follows.
  • the convex portion of the surface of the resin base material on which the circuit is formed functions as a protective wall for preventing the intrusion of the etching solution in the etching step of the electroless copper plating in the SAP method. Therefore, it can be said that the thicker this protective wall, the less likely it is that insertion will occur.
  • the resin replica 20 having the small skewness Ssk is the resin replica 20 having the large skewness Ssk (see FIG. 9B).
  • the wall thickness of the convex portion 20a is thicker than that of the convex portion 20a (see the circled portions in the drawing). Therefore, it is considered that by making the skewness Ssk of the resin replica as small as ⁇ 0.6 or less, it is possible to thicken the protective wall, and thus to effectively suppress the insertion in the circuit 22. ..
  • the surface-treated copper foil of the present invention is preferably used for producing a printed wiring board by the SAP method.
  • the surface-treated copper foil of the present invention is preferably used for transferring the uneven shape to the insulating resin layer for the printed wiring board.
  • the surface-treated copper foil of the present invention has a treated surface on at least one side.
  • the treated surface is a surface that has been subjected to some kind of surface treatment, and is typically a roughened surface.
  • the treated surface typically comprises a plurality of bumps (eg, roughened particles).
  • the surface-treated copper foil may have a treated surface (for example, a roughened surface) on both sides, or may have a treated surface on only one side.
  • the surface on the laser irradiation side (the surface on the opposite side to the surface to be brought into close contact with the insulating resin) is also surface-treated when used in the SAP method, so that the laser absorptivity is enhanced. As a result, the laser piercing property can also be improved.
  • the surface-treated copper foil of the present invention is a resin film left when the surface shape of the treated surface is transferred to the surface of the resin film by thermocompression bonding the resin film to the treated surface and the surface-treated copper foil is removed by etching.
  • the bumps on the treated surface of the surface-treated copper foil can be controlled to an appropriate shape that is not too elongated, while further suppressing the occurrence of insertion in the etching step of the SAP method, and thereby the surface can be controlled. It is possible to effectively suppress the occurrence of powder falling due to breakage or falling of the bumps in the treated copper foil.
  • the resin film is preferably a thermosetting resin film, and may be in the form of prepreg. Examples of the thermosetting resin include epoxy resin, cyanate resin, bismaleimide triazine resin (BT resin), polyphenylene ether resin, phenol resin, polyimide resin and the like.
  • thermocompression bonding is not particularly limited as long as the uneven shape of the treated surface of the surface-treated copper foil can be transferred to the resin film.
  • the surface of the resin film left after the etching is the arithmetic mean songs Spc summit point not more than 5000 mm -1 or higher 13000Mm -1 preferably , more preferably 7000 mm -1 or more 13000Mm -1 or less, more preferably 9000 mm -1 or more 13000Mm -1 or less, particularly preferably not more than 10000 mm -1 or more 13000mm -1.
  • the cobb on the treated surface of the surface-treated copper foil is controlled to an appropriate shape that is not too long and slender, and the occurrence of powder falling due to breakage or falling off of the cobb in the surface-treated copper foil is effectively performed. While suppressing, it is possible to further suppress the occurrence of insertion in the etching process of the SAP method.
  • One of the factors that can suppress the occurrence of insertion is as follows. That is, based on the definition of the arithmetic mean curve Spc of the mountain peak described above, as shown in FIGS. 9A and 9B, the resin replica 20 (see FIG. 9A) having a small arithmetic mean curve Spc of the mountain peak is the arithmetic of the mountain peak.
  • the peaks of the convex portions 20a are flat. As a result, it is considered that the wall thickness of the convex portion 20a that functions as the insertion protection wall becomes thick.
  • the surface of the resin film left after the etching (that is, the transfer surface of the resin replica) has a peak apex density Spd of 1.13 ⁇ 10 6 mm ⁇ 2 or more and 1.50 ⁇ 10 5. It is preferably 6 mm ⁇ 2 or less, more preferably 1.13 ⁇ 10 6 mm ⁇ 2 or more and 1.40 ⁇ 10 6 mm ⁇ 2 or less, still more preferably 1.14 ⁇ 10 6 mm ⁇ 2 or more 1. It is 30 ⁇ 10 6 mm ⁇ 2 or less, particularly preferably 1.15 ⁇ 10 6 mm ⁇ 2 or more and 1.20 ⁇ 10 6 mm ⁇ 2 or less.
  • the surface of the resin film left after the etching (that is, the transfer surface of the resin replica) has a substantial volume Vmc (mL / m 2 ) of the core portion with respect to the pole height Sxp ( ⁇ m).
  • the ratio Vmc / Sxp is preferably 0.39 or more and 0.44 or less, more preferably 0.39 or more and 0.43 or less, still more preferably 0.39 or more and 0.42 or less, and particularly preferably 0. It is 39 or more and 0.41 or less, and most preferably 0.39 or more and 0.40 or less.
  • the cobb on the treated surface of the surface-treated copper foil is controlled to an appropriate shape that is not too long and slender, and the occurrence of powder falling due to breakage or falling off of the cobb in the surface-treated copper foil is effectively performed. While suppressing, the occurrence of insertion in the etching process of the SAP method can be further suppressed. In addition, it is possible to increase the adhesion between the substrate and the circuit. That is, as described above, the convex portion of the resin replica functions as a protective wall that blocks the intrusion of the etching solution. Based on the definition of the actual volume Vmc of the core portion, the larger the actual volume Vmc of the core portion is, the larger the resin replica becomes.
  • the convex part of is also enlarged and the insertion is further suppressed.
  • the physical volume Vmc of the core portion is equal to the height of the convex portion 20a of the resin replica 20. Since Vmc / Sxp divided by the pole height Sxp, which is a parameter related to the height of the convex portion 20a, is compared, the convex portion 20a is obtained as a converted value in which the heights of the convex portions 20a are uniformly arranged. The size of can be evaluated.
  • Vmc / Sxp for example, 0.39 or more
  • the area of the convex portion 20a of the resin replica 20 that bites into the circuit 22 also increases (that is, the amount of resin surrounded and held by the circuit 22 increases. Therefore, the improvement of the anchor effect also increases the adhesion between the substrate and the circuit.
  • the surface-treated copper foil according to the present invention is not limited to the method described below, the surface described above on the resin film surface. It may be manufactured by any method as long as it can be profiled.
  • the thickness of the copper foil is not particularly limited, but is preferably 0.1 ⁇ m or more and 18 ⁇ m or less, more preferably 0.5 ⁇ m or more and 10 ⁇ m or less, further preferably 0.5 ⁇ m or more and 7 ⁇ m or less, particularly preferably 0.5 ⁇ m or more and 5 ⁇ m or less, Most preferably, it is 0.5 ⁇ m or more and 3 ⁇ m or less.
  • the copper foil is prepared in the form of a carrier-attached copper foil
  • the copper foil is a wet film forming method such as an electroless copper plating method and an electrolytic copper plating method, a dry film forming method such as sputtering and chemical vapor deposition, or It may be formed by a combination thereof.
  • the copper concentration is 5 g / L or more and 20 g / L or less
  • the sulfuric acid concentration is 30 g / L or more and 200 g / L or less
  • the chlorine concentration is 20 mg / L or more and 100 mg / L or less
  • the 9-phenylacridine (9PA) concentration is Using a copper sulfate solution containing 20 mg / L or more and 80 mg / L or less, at a plating temperature of 20 ° C. or more and 40 ° C. or less, a current density of 5 A / dm 2 or more and 25 A / dm 2 or less, and a time of 2 seconds or more and 10 seconds or less. It is preferable to perform electrodeposition.
  • This first stage plating process may be performed twice in total using two tanks, but it is preferable to complete the plating process once in total.
  • a copper sulfate solution containing a copper concentration of 65 g / L or more and 80 g / L or less and a sulfuric acid concentration of 200 g / L or more and 280 g / L or less is used, and the liquid temperature is 45 ° C. or more and 55 ° C. or less and the current density is 1 A. It is preferable to perform electrodeposition under the plating conditions of / dm 2 or more and 10 A / dm 2 or less and time of 2 seconds or more and 25 seconds or less.
  • the copper concentration is 10 g / L or more and 20 g / L or less
  • the sulfuric acid concentration is 30 g / L or more and 130 g / L or less
  • the chlorine concentration is 20 mg / L or more and 100 mg / L or less
  • the 9PA concentration is 100 mg / L or more and 200 mg / L.
  • the first-stage plating process be performed using an additive such as 9PA, etc., and the total amount of electricity Q 1 in the first-stage plating process and the total amount of electricity Q 2 in the second-stage plating process It is preferable to set the amount (Q 1 + Q 2 ) to 100 C / dm 2 or less.
  • the distance between the positive electrode and the negative electrode in the first plating step is preferably 45 mm or more and 90 mm or less, and more preferably 50 mm or more and 80 mm or less.
  • the anticorrosion treatment preferably includes a plating treatment using zinc.
  • the plating treatment using zinc may be either a zinc plating treatment or a zinc alloy plating treatment, and the zinc alloy plating treatment is particularly preferably a zinc-nickel alloy treatment.
  • the zinc-nickel alloy treatment may be a plating treatment containing at least Ni and Zn, and may further contain other elements such as Sn, Cr and Co.
  • the Ni / Zn adhesion ratio in the zinc-nickel alloy plating is preferably 1.2 or more and 10 or less, more preferably 2 or more and 7 or less, still more preferably 2.7 or more and 4 or less in terms of mass ratio.
  • the anticorrosion treatment preferably further includes a chromate treatment, and this chromate treatment is more preferably performed on the surface of the zinc-containing plating after the zinc plating treatment.
  • a particularly preferred anticorrosion treatment is a combination of a zinc-nickel alloy plating treatment and a subsequent chromate treatment.
  • the copper foil may be treated with a silane coupling agent to form a silane coupling agent layer.
  • a silane coupling agent layer can be formed by appropriately diluting and applying the silane coupling agent and then drying.
  • silane coupling agents include epoxy-functional silane coupling agents such as 4-glycidylbutyltrimethoxysilane and 3-glycidoxypropyltrimethoxysilane, or 3-aminopropyltriethoxysilane, N-2 (amino).
  • Silane coupling agent mercapto-functional silane coupling agent such as 3-mercaptopropyltrimethoxysilane, or olefin-functional silane coupling agent such as vinyltrimethoxysilane, vinylphenyltrimethoxysilane, or 3-methacryloxypropyl
  • acrylic functional silane coupling agents such as trimethoxysilane
  • imidazole functional silane coupling agents such as imidazole silane
  • triazine functional silane coupling agents such as triazine silane.
  • the surface-treated copper foil of the present invention can be provided in the form of a copper foil with a carrier.
  • the carrier-attached copper foil comprises a carrier, a release layer provided on the carrier, and a treated surface (typically a roughened surface) provided on the release layer of the present invention.
  • a surface-treated copper foil typically a roughened surface
  • the carrier-added copper foil may have a known layer configuration except that the surface-treated copper foil of the present invention is used.
  • the carrier is a layer (typically a foil) for supporting the surface-treated copper foil and improving its handling property.
  • the carrier include an aluminum foil, a copper foil, a resin film whose surface is metal-coated with copper or the like, a glass plate, and the like, and a copper foil is preferable.
  • the copper foil may be either a rolled copper foil or an electrolytic copper foil.
  • the thickness of the carrier is typically 200 ⁇ m or less, preferably 12 ⁇ m or more and 35 ⁇ m or less.
  • the release layer side surface of the carrier preferably has a ten-point surface roughness Rz of 0.5 ⁇ m or more and 1.5 ⁇ m or less, more preferably 0.6 ⁇ m or more and 1.0 ⁇ m or less.
  • Rz can be determined according to JIS B 0601-1994.
  • the peeling layer is a layer having a function of weakening the peeling strength of the carrier, ensuring stability of the strength, and suppressing interdiffusion that may occur between the carrier and the copper foil during press molding at high temperature. ..
  • the release layer is generally formed on one surface of the carrier, but may be formed on both surfaces.
  • the release layer may be either an organic release layer or an inorganic release layer.
  • organic components used in the organic release layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, and carboxylic acids.
  • the nitrogen-containing organic compound include a triazole compound and an imidazole compound. Among them, the triazole compound is preferable because the peelability is easily stabilized.
  • Examples of the triazole compound include 1,2,3-benzotriazole, carboxybenzotriazole, N ′, N′-bis (benzotriazolylmethyl) urea, 1H-1,2,4-triazole and 3-amino- 1H-1,2,4-triazole and the like can be mentioned.
  • Examples of the sulfur-containing organic compound include mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazole thiol and the like.
  • Examples of the carboxylic acid include monocarboxylic acid and dicarboxylic acid.
  • examples of inorganic components used in the inorganic release layer include Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, and chromate-treated films.
  • the release layer may be formed by bringing a release layer component-containing solution into contact with at least one surface of the carrier and fixing the release layer component on the surface of the carrier.
  • the contact of the carrier with the release layer component-containing solution may be performed by immersing the carrier in the release layer component-containing solution, spraying the release layer component-containing solution, flowing down the release layer component-containing solution, and the like.
  • the release layer component may be fixed to the carrier surface by adsorption or drying of the release layer component-containing solution, electrodeposition of the release layer component in the release layer component-containing solution, or the like.
  • the thickness of the peeling layer is typically 1 nm or more and 1 ⁇ m or less, preferably 5 nm or more and 500 nm or less.
  • the above-mentioned surface-treated copper foil of the present invention is used as the surface-treated copper foil.
  • the roughening treatment of the present invention is a roughening treatment using copper particles.
  • a copper layer is formed as a copper foil on the surface of the release layer, and then at least roughening may be performed. ..
  • the details of roughening are as described above.
  • the copper foil is preferably formed in the form of an ultrathin copper foil in order to take advantage of the advantages of the copper foil with a carrier.
  • the thickness of the ultrathin copper foil is preferably 0.1 ⁇ m or more and 7 ⁇ m or less, more preferably 0.5 ⁇ m or more and 5 ⁇ m or less, and further preferably 0.5 ⁇ m or more and 3 ⁇ m or less.
  • Another functional layer may be provided between the peeling layer and the carrier and / or the copper foil.
  • Examples of such other functional layers include auxiliary metal layers.
  • the auxiliary metal layer preferably comprises nickel and / or cobalt.
  • the thickness of the auxiliary metal layer is preferably 0.001 ⁇ m or more and 3 ⁇ m or less.
  • Copper- clad laminate The surface-treated copper foil or copper foil with a carrier of the present invention is preferably used for producing a copper-clad laminate for a printed wiring board. That is, according to a preferred aspect of the present invention, there is provided a copper clad laminate provided with the surface-treated copper foil or the carrier-attached copper foil. By using the surface-treated copper foil or the copper foil with a carrier of the present invention, it is possible to provide a copper-clad laminate which is particularly suitable for the SAP method.
  • This copper clad laminate comprises the surface-treated copper foil of the present invention and a resin layer provided in close contact with the roughened surface of the surface-treated copper foil, or a copper foil with a carrier of the present invention And a resin layer provided in close contact with the roughening-treated surface of the surface-treated copper foil in the carrier-added copper foil.
  • the surface-treated copper foil or the carrier-added copper foil may be provided on one side or both sides of the resin layer.
  • the resin layer comprises a resin, preferably an insulating resin.
  • the resin layer is preferably a prepreg and / or a resin sheet.
  • the prepreg is a general term for composite materials obtained by impregnating a base material such as a synthetic resin plate, a glass plate, a glass woven cloth, a glass non-woven cloth, and paper with a synthetic resin.
  • a base material such as a synthetic resin plate, a glass plate, a glass woven cloth, a glass non-woven cloth, and paper
  • a synthetic resin such as a synthetic resin plate, a glass plate, a glass woven cloth, a glass non-woven cloth, and paper with a synthetic resin.
  • the insulating resin include epoxy resin, cyanate resin, bismaleimide triazine resin (BT resin), polyphenylene ether resin, and phenol resin.
  • examples of the insulating resin that constitutes the resin sheet include insulating resins such as epoxy resin, polyimide resin, and polyester resin.
  • the resin layer may contain filler particles made of various inorganic particles such as silica and alumina from the viewpoint of improving the insulating property.
  • the thickness of the resin layer is not particularly limited, but is preferably 1 ⁇ m or more and 1000 ⁇ m or less, more preferably 2 ⁇ m or more and 400 ⁇ m or less, and further preferably 3 ⁇ m or more and 200 ⁇ m or less.
  • the resin layer may be composed of a plurality of layers.
  • a resin layer such as a prepreg and / or a resin sheet may be provided on the surface-treated copper foil or the carrier-added copper foil via a primer resin layer which is applied to the roughened surface of the surface-treated copper foil in advance.
  • the surface-treated copper foil or copper foil with a carrier of the present invention is preferably used for producing a printed wiring board, and particularly preferably used for producing a printed wiring board by a semi-additive method (SAP). That is, according to a preferred embodiment of the present invention, a printed wiring board is manufactured by using the above-mentioned surface-treated copper foil or the above-mentioned carrier-attached copper foil, a method for manufacturing a printed wiring board, or the above-mentioned surface treatment. There is provided a printed wiring board obtained by using a copper foil or the above-mentioned copper foil with a carrier.
  • SAP semi-additive method
  • the printed wiring board according to this aspect includes a layer structure in which a resin layer and a copper layer are laminated.
  • the surface-treated copper foil of the present invention is removed in the step (c) of FIG. 1, the printed wiring board produced by the SAP method no longer contains the surface-treated copper foil of the present invention. Only the surface profile transferred from the roughened surface of the treated copper foil remains.
  • the resin layer is as described above for the copper clad laminate.
  • the printed wiring board may have a known layer structure.
  • Specific examples of the printed wiring board a single-sided or double-sided printed wiring board formed into a circuit on a laminate obtained by adhering the surface-treated copper foil or the copper foil with a carrier of the present invention to one side or both sides of the prepreg and curing it, and these.
  • Examples include a multilayer printed wiring board in which the above is multilayered.
  • other specific examples include a flexible printed wiring board, a COF, a TAB tape, etc. in which a surface-treated copper foil or a copper foil with a carrier of the present invention is formed on a resin film to form a circuit.
  • a resin-coated copper foil obtained by applying the resin layer to the surface-treated copper foil or the carrier-coated copper foil of the present invention is formed, and the resin layer is used as an insulating adhesive layer to form the above-mentioned print.
  • the surface-treated copper foil is used as the whole or a part of the wiring layer to remove the build-up wiring board on which the circuit is formed by the modified semi-additive (MSAP) method, the subtractive method, etc., and the surface-treated copper foil.
  • MSAP modified semi-additive
  • a build-up wiring board in which a circuit is formed by a semi-additive (SAP) method, a direct build-up-on-wafer in which a resin-coated copper foil is laminated and a circuit is alternately formed on a semiconductor integrated circuit are listed.
  • SAP semi-additive
  • an antenna element formed by laminating the above resin-coated copper foil on a base material to form a circuit an electronic material for a panel display or a window formed by laminating on a glass or resin film through an adhesive layer to form a pattern
  • Examples also include electronic materials for glass, electromagnetic wave shield films obtained by coating the surface-treated copper foil of the present invention with a conductive adhesive, and the like.
  • the surface-treated copper foil or the copper foil with a carrier of the present invention is suitable for the SAP method.
  • the configurations shown in FIGS. 1 and 2 can be adopted.
  • a resin base material in which at least one surface has a skewness Ssk of ⁇ 0.6 or less measured according to ISO25178.
  • This resin base material corresponds to a resin replica on which the surface shape of the surface-treated copper foil of the present invention is transferred. Therefore, a preferred embodiment of the resin replica in which the surface shape of the above-mentioned surface-treated copper foil is transferred (skewness Ssk, arithmetic mean curve Spc of peaks, density of peaks Spd of peaks, and substantial volume Vmc of core with respect to pole height Sxp).
  • the respective parameters of the ratio Vmc / Sxp) of (1) apply to the resin base material of this embodiment as they are.
  • the resin substrate comprises a resin, preferably an insulating resin.
  • the resin base material is preferably a prepreg and / or a resin sheet.
  • the prepreg is a general term for composite materials obtained by impregnating a base material such as a synthetic resin plate, a glass plate, a glass woven cloth, a glass non-woven cloth, and paper with a synthetic resin.
  • a base material such as a synthetic resin plate, a glass plate, a glass woven cloth, a glass non-woven cloth, and paper
  • the insulating resin include epoxy resin, cyanate resin, bismaleimide triazine resin (BT resin), polyphenylene ether resin, and phenol resin.
  • examples of the insulating resin that constitutes the resin base material include insulating resins such as epoxy resin, polyimide resin, and polyester resin.
  • the resin base material may contain filler particles made of various inorganic particles such as silica and alumina from the viewpoint of improving the insulating property.
  • the thickness of the resin substrate is not particularly limited, but is preferably 1 ⁇ m or more and 1000 ⁇ m or less, more preferably 2 ⁇ m or more and 400 ⁇ m or less, and further preferably 3 ⁇ m or more and 200 ⁇ m or less.
  • the resin substrate may be composed of a plurality of layers.
  • the resin base material of the present invention can be preferably used as a starting material or an intermediate product in the production of a printed wiring board by the SAP method.
  • Examples 1-6 The copper foil with a carrier and the resin replica were produced and evaluated as follows.
  • the electrode surface side of the pickled carrier was immersed in a CBTA aqueous solution having a CBTA (carboxybenzotriazole) concentration of 1 g / L, a sulfuric acid concentration of 150 g / L and a copper concentration of 10 g / L at a liquid temperature of 30 ° C. Was immersed for 30 seconds, and the CBTA component was adsorbed on the electrode surface of the carrier.
  • the CBTA layer was formed as an organic release layer on the surface of the electrode surface of the carrier.
  • the carrier having the organic release layer formed thereon is dipped in a solution of nickel sulfate having a nickel concentration of 20 g / L to obtain a liquid temperature of 45 ° C., a pH of 3, and a current density of 5 A / dm. Under the condition of 2, the amount of nickel corresponding to the thickness of 0.001 ⁇ m was deposited on the organic release layer. Thus, a nickel layer was formed as an auxiliary metal layer on the organic release layer.
  • the carrier on which the auxiliary metal layer is formed is immersed in a copper sulfate solution having a copper concentration of 60 g / L and a sulfuric acid concentration of 200 g / L to obtain a solution temperature of 50 ° C. and a current density of 5 A / dm 2 or more. Electrolysis was performed at 30 A / dm 2 or less to form an ultrathin copper foil having a thickness of 1.2 ⁇ m on the auxiliary metal layer.
  • Roughening treatment A roughening treatment was performed on the deposition surface of the ultrathin copper foil described above. In this roughening treatment, the plating in the first step was performed twice. In the plating process at each stage, a copper sulfate solution having a copper concentration, a sulfuric acid concentration, a chlorine concentration and a 9-phenylacridine (9PA) concentration shown in Table 1 was used, and at the liquid temperature shown in Table 1, the current density shown in Table 2 was used. And electrodeposition were carried out at different times. The distance between the positive electrode and the negative electrode in the plating treatment in the first step was 50 mm or more and 80 mm or less. Thus, six types of roughened copper foils of Examples 1 to 6 were produced.
  • Silane coupling agent treatment A silane coupling agent is prepared by adsorbing an aqueous solution containing 3-aminopropyltrimethoxysilane 3 g / L on the surface of the copper foil with carrier on the copper foil side and evaporating the water by an electric heater. Processed. At this time, the silane coupling agent treatment was not performed on the carrier side.
  • a copper clad laminate was prepared using a copper foil with a carrier.
  • an ultra-thin copper foil with a carrier was laminated on the surface of the inner layer substrate via a BT resin prepreg (Mitsubishi Gas Chemical Co., Inc., GHPL-830NS, thickness 0.1 mm) as a resin film, and pressure 4 After thermocompression bonding at 0.0 MPa and a temperature of 220 ° C. for 90 minutes, the carrier was peeled off to prepare a copper clad laminate.
  • BT resin prepreg Mitsubishi Gas Chemical Co., Inc., GHPL-830NS, thickness 0.1 mm
  • a circuit having a circuit width of 22 ⁇ m, a height of 22 ⁇ m, and a length of 150 ⁇ m is obtained by pasting a dry film on the surface of the SAP evaluation laminate, exposing it, removing the dry film, and electrolytic plating. The lower part is in a state of being electrically connected by an electroless copper plating layer).
  • the obtained circuit was treated with an etching solution (SAC-700W3C, manufactured by Ebara-Udylite Co., Ltd.) to dissolve and remove the electroless copper-plated layer remaining between the circuits to insulate each circuit.
  • the amount of etching at this time was performed under the condition of so-called over-etching, in which the etching rate of the copper foil was measured in advance and etching was performed by 4 ⁇ m more than so-called just etching.
  • the circuit was washed with water and dried.
  • the cross section of the circuit was observed using an optical microscope to determine the insertion amount. Specifically, as shown in FIG. 11, the upper width x ( ⁇ m) and the lower width y ( ⁇ m) of the circuit 22 formed on the resin replica 20 are measured, and the difference (xy) is calculated.
  • the measurement was carried out in two visual fields for each example, and the average value was used as the insertion amount of each example. The results are as shown in Table 3.
  • Example 5 Although the value of Vmc / Sxp is large, the peel strength does not increase so much. The reason for this is considered to be that "powder drop" is one factor. That is, when powder drop occurs, the anchor effect is no longer obtained and the peel strength tends to decrease, but powder drop occurs when Vmc / Sxp is too large. In Example 5, a slight powder drop occurred, so it is considered that the peel strength remains slightly low.

Abstract

Provided is a surface-treated copper foil that, in the case of use in the SAP method, can provide a resin substrate with a surface profile that can effectively prevent the generation of deposition that can be produced in a circuit in the step of etching an electroless copper plating layer. The surface-treated copper foil is a surface-treated copper foil that has a treated surface on at least one side thereof. When a resin film is hot-press bonded to the treated surface, the surface shape of the treated surface is transferred to the surface of the resin film, and the surface-treated copper film is then removed by etching, the skewness Ssk for the surface of the remaining resin film, as measured in accordance with ISO 25178, is less than or equal to -0.6.

Description

表面処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板Surface-treated copper foil, copper foil with carrier, copper-clad laminate and printed wiring board
 本発明は、表面処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板に関する。 The present invention relates to a surface-treated copper foil, a copper foil with a carrier, a copper-clad laminate, and a printed wiring board.
 近年、回路の微細化に適したプリント配線板の製造工法として、セミアディティブ法(SAP法)が広く採用されている。SAP法は、極めて微細な回路を形成するのに適した手法であり、その一例としてキャリア付粗化処理銅箔を用いて行われている。例えば、図1及び2に示されるように、粗化表面を備えた極薄銅箔10を、下地基材11aに下層回路11bを備えた絶縁樹脂基板11上にプリプレグ12とプライマー層13を用いてプレスして密着させ(工程(a))、キャリア(図示せず)を引き剥がした後、必要に応じてレーザー穿孔によりビアホール14を形成する(工程(b))。次いで、極薄銅箔をエッチングにより除去して、粗化表面プロファイルが付与されたプライマー層13を露出させる(工程(c))。この粗化表面に無電解銅めっき15を施した(工程(d))後に、ドライフィルム16を用いた露光及び現像により所定のパターンでマスキングし(工程(e))、電気銅めっき17を施す(工程(f))。ドライフィルム16を除去して配線部分17aを形成した(工程(g))後、隣り合う配線部分17a,17a間の不要な無電解銅めっき15をエッチングにより除去して(工程(h))、所定のパターンで形成された配線18を得る。 In recent years, the semi-additive method (SAP method) has been widely adopted as a manufacturing method for printed wiring boards suitable for circuit miniaturization. The SAP method is a method suitable for forming an extremely fine circuit, and one example thereof is a roughened copper foil with a carrier. For example, as shown in FIGS. 1 and 2, an ultrathin copper foil 10 having a roughened surface is used, and a prepreg 12 and a primer layer 13 are used on an insulating resin substrate 11 having a lower layer circuit 11b on a base substrate 11a. After pressing to bring them into close contact (step (a)), the carrier (not shown) is peeled off, and then via holes 14 are formed by laser drilling if necessary (step (b)). Then, the ultra-thin copper foil is removed by etching to expose the primer layer 13 provided with the roughened surface profile (step (c)). After electroless copper plating 15 is applied to this roughened surface (step (d)), it is masked with a predetermined pattern by exposure and development using a dry film 16 (step (e)), and electrolytic copper plating 17 is applied. (Step (f)). After the dry film 16 is removed to form the wiring portion 17a (step (g)), the unnecessary electroless copper plating 15 between the adjacent wiring portions 17a, 17a is removed by etching (step (h)). The wiring 18 formed in a predetermined pattern is obtained.
 このように粗化処理銅箔を用いたSAP法は、粗化処理銅箔自体はレーザー穿孔後にエッチングにより除去されることになる(工程(c))。そして、粗化処理銅箔が除去された積層体表面には粗化処理銅箔の粗化処理面の凹凸形状が転写されているので、その後の工程において絶縁層(例えばプライマー層13又はそれが無い場合にはプリプレグ12)とめっき回路(例えば配線18)との密着性を確保することができる。なお、工程(c)に相当する銅箔除去工程を行わないモディファイドセミアディティブ法(MSAP法)も広く採用されているが、ドライフィルム除去後のエッチング工程(工程(h)に相当)で銅箔層と無電解銅めっき層の2つの層をエッチングで除去しなければならないため、無電解銅めっき層1層のエッチング除去で済むSAP法よりもエッチングを深く行う必要がある。そのため、より多くのエッチング量を勘案して回路スペースを幾分狭くする必要が生じることから、MSAP法は微細回路形成性においてSAP法よりは幾分劣るといえる。すなわち、更なる微細な回路形成という目的においてはSAP法の方が有利である。 In this way, in the SAP method using the roughened copper foil, the roughened copper foil itself is removed by etching after laser perforation (step (c)). Then, since the uneven shape of the roughened surface of the roughened copper foil is transferred to the surface of the laminate from which the roughened copper foil has been removed, the insulating layer (for example, the primer layer 13 or the If not present, the adhesion between the prepreg 12) and the plating circuit (for example, the wiring 18) can be secured. A modified semi-additive method (MSAP method), which does not include the copper foil removing step corresponding to the step (c), is also widely used, but a copper foil is used in the etching step after removing the dry film (corresponding to the step (h)). Since the two layers, the layer and the electroless copper plating layer, must be removed by etching, it is necessary to perform the etching deeper than in the SAP method, which only requires removal of one electroless copper plating layer by etching. Therefore, the MSAP method is somewhat inferior to the SAP method in the fine circuit formability because it is necessary to make the circuit space somewhat narrower in consideration of a larger etching amount. That is, the SAP method is more advantageous for the purpose of forming a finer circuit.
 ところで、ドライフィルム除去後のエッチング工程(工程(h)に相当)において、回路(例えば配線18)と絶縁層との界面部分がエッチングされ、その結果、回路の根元がえぐられるように浸食される「差し込み」と呼ばれる現象が発生することがある。この差し込みが発生すると、回路と絶縁層との密着力が低下し、回路剥がれの原因となる。 By the way, in the etching process after removing the dry film (corresponding to the process (h)), the interface between the circuit (for example, the wiring 18) and the insulating layer is etched, and as a result, the root of the circuit is eroded so as to be dug. A phenomenon called "plugging" may occur. When this insertion occurs, the adhesive force between the circuit and the insulating layer is reduced, causing the circuit to peel off.
 一方、粗化粒子の形状を制御した粗化処理銅箔が知られている。例えば、特許文献1(特許第6293365号公報)には、複数の略球状突起を備えた粗化処理面を有する粗化処理銅箔において、略球状突起の平均高さを2.60μm以下とし、かつ、略球状突起の平均ネック径aaveに対する略球状突起の平均最大径baveの比bave/aaveを1.2以上とすることにより、SAP法に用いた場合に、優れためっき回路密着性のみならず、無電解銅めっきに対するエッチング性にも優れた表面プロファイルを積層体に付与可能とされている。 On the other hand, a roughened copper foil in which the shape of roughened particles is controlled is known. For example, in Patent Document 1 (Japanese Patent No. 6293365), in a roughened copper foil having a roughened surface provided with a plurality of substantially spherical protrusions, the average height of the substantially spherical protrusions is 2.60 μm or less, Further, by setting the ratio b ave / a ave of the average maximum diameter b ave of the substantially spherical protrusions to the average neck diameter a ave of the substantially spherical protrusions to 1.2 or more, an excellent plating circuit is obtained when used in the SAP method. It is said that the laminate can be provided with a surface profile that is excellent not only in adhesiveness but also in etching properties for electroless copper plating.
特許第6293365号公報Japanese Patent No. 6293365
 近年、回路の更なる微細化に伴い、微細回路形成に有利なSAP法の採用が拡大している。この点、回路パターン幅が狭くなるにつれて、許容される差し込み幅も相対的に縮小するといえる。また、SAP法では、ドライフィルム除去後のエッチング工程において、無電解銅めっき層のみをエッチング除去すれば足りるため、電解銅ではなく無電解銅を選択的に除去可能なエッチング液を用いることができる。こうすることで、大部分が電解銅で構成された回路の細りを抑えることができる。したがって、微細回路形成性という点で、SAP法はMSAP法と比べてより一層有利といえる。一方、SAP法により形成された回路は最下部が無電解銅で構成されるため、上記エッチング液を用いた場合、差し込みがより発生しやすくなる。 In recent years, with the further miniaturization of circuits, the adoption of the SAP method, which is advantageous for forming fine circuits, is expanding. In this respect, it can be said that the allowable insertion width is relatively reduced as the circuit pattern width is narrowed. Further, in the SAP method, since it is sufficient to remove only the electroless copper plating layer by etching in the etching step after removing the dry film, an etching solution capable of selectively removing electroless copper instead of electrolytic copper can be used. .. By doing so, it is possible to suppress the thinning of the circuit which is mostly made of electrolytic copper. Therefore, it can be said that the SAP method is more advantageous than the MSAP method in terms of fine circuit formability. On the other hand, since the lowermost part of the circuit formed by the SAP method is made of electroless copper, when the above etching solution is used, insertion is more likely to occur.
 本発明者らは、今般、樹脂基材の表面に、ISO25178に準拠して測定されるスキューネスSskで規定される特有の表面プロファイルを付与することにより、SAP法における無電解銅めっき層のエッチング工程において、回路に生じうる差し込みの発生を効果的に抑制できるとの知見を得た。また、SAP法に用いた場合に、上記特有の表面プロファイルを樹脂基材に付与可能な、表面処理銅箔を提供できるとの知見も得た。 The present inventors have recently provided a unique surface profile defined by the skewness Ssk measured according to ISO25178 on the surface of a resin base material, thereby performing an etching process of an electroless copper plating layer in the SAP method. In the above, it was found that it is possible to effectively suppress the occurrence of insertion that may occur in the circuit. Further, it was also found that a surface-treated copper foil capable of imparting the above-mentioned specific surface profile to a resin substrate can be provided when used in the SAP method.
 したがって、本発明の目的は、SAP法に用いた場合に、無電解銅めっき層のエッチング工程において、回路に生じうる差し込みの発生を効果的に抑制できる表面プロファイルを樹脂基材に付与可能な、表面処理銅箔を提供することにある。 Therefore, an object of the present invention is to provide a resin substrate with a surface profile capable of effectively suppressing the occurrence of insertion that may occur in a circuit in the step of etching an electroless copper plating layer when used in the SAP method. To provide a surface-treated copper foil.
 本発明の一態様によれば、少なくとも一方の側に処理表面を有する表面処理銅箔であって、
 前記処理表面に樹脂フィルムを熱圧着して前記処理表面の表面形状を前記樹脂フィルムの表面に転写し、エッチングにより前記表面処理銅箔を除去した場合に、残された前記樹脂フィルムの前記表面における、ISO25178に準拠して測定されるスキューネスSskが-0.6以下となる、表面処理銅箔が提供される。
According to one aspect of the present invention, a surface-treated copper foil having a treated surface on at least one side,
Transfer the surface shape of the treated surface to the surface of the resin film by thermocompression bonding a resin film on the treated surface, and when the surface-treated copper foil is removed by etching, in the surface of the resin film left. , A surface-treated copper foil having a skewness Ssk of −0.6 or less measured according to ISO25178 is provided.
 本発明の他の一態様によれば、キャリアと、該キャリア上に設けられた剥離層と、該剥離層上に前記処理表面を外側にして設けられた前記表面処理銅箔とを備えた、キャリア付銅箔が提供される。 According to another aspect of the present invention, comprising a carrier, a release layer provided on the carrier, and the surface-treated copper foil provided on the release layer with the treated surface outside. Copper foil with a carrier is provided.
 本発明の他の一態様によれば、前記表面処理銅箔又は前記キャリア付銅箔を備えた銅張積層板が提供される。 According to another aspect of the present invention, there is provided a copper clad laminate provided with the surface-treated copper foil or the carrier-attached copper foil.
 本発明の他の一態様によれば、前記表面処理銅箔又は前記キャリア付銅箔を用いて得られたプリント配線板が提供される。 According to another aspect of the present invention, there is provided a printed wiring board obtained by using the surface-treated copper foil or the carrier-added copper foil.
 本発明の他の一態様によれば、少なくとも一方の表面が、ISO25178に準拠して測定されるスキューネスSskが-0.6以下である、樹脂基材が提供される。 According to another aspect of the present invention, there is provided a resin substrate in which at least one surface has a skewness Ssk measured according to ISO25178 of −0.6 or less.
SAP法を説明するための工程流れ図であり、前半の工程(工程(a)から工程(d))を示す図である。It is a process flow chart for explaining the SAP method, and is a figure showing a first half process (process (a) to process (d)). SAP法を説明するための工程流れ図であり、後半の工程(工程(e)から工程(h))を示す図である。It is a process flow chart for explaining the SAP method, and is a figure showing a process (process (e) to process (h)) of the latter half. ISO25178に準拠して決定されるスキューネスSskを説明するための図であり、Ssk<0の場合の表面及びその高さ分布を示す図である。It is a figure for demonstrating the skewness Ssk determined based on ISO25178, and is a figure which shows the surface and its height distribution in case Ssk <0. ISO25178に準拠して決定されるスキューネスSskを説明するための図であり、Ssk>0の場合の表面及びその高さ分布を示す図である。It is a figure for demonstrating the skewness Ssk determined based on ISO25178, and is a figure which shows the surface and its height distribution in case Ssk> 0. ISO25178に準拠して決定される負荷曲線及び負荷面積率を説明するための図である。It is a figure for demonstrating the load curve and load area ratio determined based on ISO25178. ISO25178に準拠して決定される突出山部とコア部を分離する負荷面積率Smr1、及び突出谷部とコア部を分離する負荷面積率Smr2を説明するための図である。It is a figure for demonstrating the load area ratio Smr1 which isolate | separates a protrusion peak part and a core part, and the load area ratio Smr2 which isolates a protrusion valley part and a core part determined according to ISO25178. ISO25178に準拠して決定される極点高さSxpを説明するための図である。It is a figure for demonstrating the pole height Sxp determined based on ISO25178. ISO25178に準拠して決定されるコア部の実体体積Vmcを説明するための図である。It is a figure for demonstrating the physical volume Vmc of the core part determined according to ISO25178. MSAP法による回路形成の一例を示す工程流れ図であり、回路細りが生じることを説明するための図である。It is a process flow chart showing an example of circuit formation by the MSAP method, and is a figure for explaining that circuit thinning occurs. SAP法による回路形成の一例を示す工程流れ図であり、差し込みが生じることを説明するための図である。It is a process flow chart showing an example of circuit formation by the SAP method, and is a figure for explaining that insertion occurs. Ssk及びSpcが小さく、かつ、Spd及びVmc/Sxpが大きい樹脂レプリカ上に回路が形成された積層体における、差し込み発生前後の状態を示す断面模式図である。It is a cross-sectional schematic diagram which shows the state before and after insertion generation in the laminated body in which the circuit was formed on the resin replica with small Ssk and Spc, and large Spd and Vmc / Sxp. Ssk及びSpcが大きく、かつ、Spd及びVmc/Sxpが小さい樹脂レプリカ上に回路が形成された積層体における、差し込み発生前後の状態を示す断面模式図である。It is a cross-sectional schematic diagram which shows the state before and after insertion generation in the laminated body in which the circuit was formed on the resin replica with large Ssk and Spc, and small Spd and Vmc / Sxp. 図9Aの積層体における樹脂レプリカの凸部を抜き出した上で、凸部の高さ補正を行うことを示す図である。FIG. 9B is a diagram showing that the protrusion of the resin replica in the laminate of FIG. 9A is extracted and then the height of the protrusion is corrected. 図9Bの積層体における樹脂レプリカの凸部を抜き出した上で、凸部の高さ補正を行うことを示す図である。It is a figure which shows extracting the convex part of the resin replica in the laminated body of FIG. 9B, and performing height correction of a convex part. 差込量の測定方法を説明するための図である。It is a figure for demonstrating the measuring method of the insertion amount.
 定義
 本発明を特定するために用いられる用語ないしパラメータの定義を以下に示す。
Definitions Definitions of terms and parameters used to specify the present invention are shown below.
 本明細書において「スキューネスSsk」とは、ISO25178に準拠して測定される、高さ分布の対称性を表すパラメータである。この値が0の場合は、高さ分布が上下に対称であることを示す。また、図3Aに示されるように、この値が0より小さい場合は、細かい谷が多い表面であることを示す。一方、図3Bに示されるように、この値が0より大きい場合は、細かい山が多い表面であることを示す。スキューネスSskは、処理表面における所定の測定面積(例えば57074.677μmの二次元領域)の表面プロファイルを市販のレーザー顕微鏡で測定することにより算出することができる。 In the present specification, the “skewness Ssk” is a parameter representing the symmetry of the height distribution measured according to ISO25178. When this value is 0, it means that the height distribution is vertically symmetrical. Further, as shown in FIG. 3A, when this value is smaller than 0, it indicates that the surface has many fine valleys. On the other hand, as shown in FIG. 3B, when the value is larger than 0, it means that the surface has many fine peaks. The skewness Ssk can be calculated by measuring the surface profile of a predetermined measurement area (for example, a two-dimensional area of 57074.677 μm 2 ) on the treated surface with a commercially available laser microscope.
 本明細書において「山頂点の算術平均曲Spc」とは、ISO25178に準拠して測定される、表面の山頂点の主曲率の算術平均を表すパラメータである。この値が小さいことは、他の物体と接触する点が丸みを帯びていることを示す。一方、この値が大きいことは、他の物体と接触する点が尖っていることを示す。端的に言えば、山頂点の算術平均曲Spcは、レーザー顕微鏡にて測定可能な、コブの丸みを表すパラメータであるといえる。山頂点の算術平均曲Spcは、処理表面における所定の測定面積(例えば57074.677μmの二次元領域)の表面プロファイルを市販のレーザー顕微鏡で測定することにより算出することができる。 In the present specification, the "arithmetic mean curve Spc of mountain peak" is a parameter representing the arithmetic mean of the principal curvatures of the mountain peaks of the surface, measured according to ISO25178. If this value is small, it means that the point of contact with another object is rounded. On the other hand, if this value is large, it means that the point of contact with another object is sharp. In short, it can be said that the arithmetic mean curve Spc at the peak is a parameter that can be measured by a laser microscope and that represents the roundness of the bump. The arithmetic mean curve Spc at the peak can be calculated by measuring the surface profile of a predetermined measurement area (for example, a two-dimensional area of 57074.677 μm 2 ) on the treated surface with a commercially available laser microscope.
 本明細書において「山の頂点密度Spd」とは、ISO25178に準拠して測定される、単位面積当たりの山頂点の数を表すパラメータである。この値が大きいと他の物体との接触点の数が多いことを示唆する。山の頂点密度Spdは、処理表面における所定の測定面積(例えば57074.677μmの二次元領域)の表面プロファイルを市販のレーザー顕微鏡で測定することにより算出することができる。 In the present specification, the "mountain peak density Spd" is a parameter representing the number of peaks per unit area, which is measured according to ISO25178. When this value is large, it suggests that there are many contact points with other objects. The peak vertex density Spd can be calculated by measuring the surface profile of a predetermined measurement area (for example, a two-dimensional area of 57074.677 μm 2 ) on the treated surface with a commercially available laser microscope.
 本明細書において「面の負荷曲線」(以下、単に「負荷曲線」という)とは、ISO25178に準拠して測定される、負荷面積率が0%から100%となる高さを表した曲線をいう。負荷面積率とは、図4に示されるように、ある高さc以上の領域の面積を表すパラメータである。高さcでの負荷面積率は図4におけるSmr(c)に相当する。図5に示されるように、負荷面積率が0%から負荷曲線に沿って負荷面積率の差を40%にして引いた負荷曲線の割線を、負荷面積率0%から移動させていき、割線の傾斜が最も緩くなる位置を負荷曲線の中央部分という。この中央部分に対して、縦軸方向の偏差の二乗和が最小になる直線を等価直線という。等価直線の負荷面積率0%から100%の高さの範囲に含まれる部分をコア部という。コア部より高い部分を突出山部といい、コア部より低い部分は突出谷部という。コア部は、初期磨耗が終わった後にほかの物体と接触する領域の高さを表す。 In the present specification, the “surface load curve” (hereinafter, simply referred to as “load curve”) is a curve representing the height at which the load area ratio is 0% to 100%, which is measured according to ISO25178. Say. The load area ratio is a parameter indicating the area of a region having a certain height c or more, as shown in FIG. The load area ratio at the height c corresponds to Smr (c) in FIG. As shown in FIG. 5, the secant of the load curve obtained by subtracting the difference of the load area rates from the load area rate of 0% along the load curve to 40% is moved from the load area rate of 0% to the secant line. The position where the slope of the load becomes the gentlest is called the central part of the load curve. A straight line that minimizes the sum of squared deviations in the vertical axis with respect to the central portion is called an equivalent straight line. The portion included in the range of the load area ratio of the equivalent straight line from 0% to 100% is called the core portion. A portion higher than the core portion is called a protruding peak portion, and a portion lower than the core portion is called a protruding valley portion. The core portion represents the height of the area in contact with another object after the initial wear is finished.
 本明細書において「極点高さSxp」とは、図6に示されるように、ISO25178に準拠して測定される、負荷面積率p%と負荷面積率q%の高さの差分を表すパラメータである。Sxpは、表面の中で特に高い山を取り除いた後の、表面の平均面と表面の高さの差分を表す。本明細書では、Sxpは、負荷面積率2.5%及び負荷面積率50%の高さの差分を表すものとする。極点高さSxpは、処理表面における所定の測定面積(例えば57074.677μmの二次元領域)の表面プロファイルを市販のレーザー顕微鏡で測定することにより算出することができる。 In the present specification, the “pole height Sxp” is a parameter representing the difference between the heights of the load area ratio p% and the load area ratio q%, which is measured according to ISO25178, as shown in FIG. is there. Sxp represents the difference between the average surface of the surface and the height of the surface after removing particularly high peaks in the surface. In this specification, Sxp represents the difference in height between the load area ratio of 2.5% and the load area ratio of 50%. The pole height Sxp can be calculated by measuring the surface profile of a predetermined measurement area (for example, a two-dimensional area of 57074.677 μm 2 ) on the treated surface with a commercially available laser microscope.
 本明細書において「突出山部とコア部を分離する負荷面積率Smr1」とは、図5に示されるように、ISO25178に準拠して測定される、コア部の上部の高さと負荷曲線の交点における負荷面積率(すなわちコア部と突出山部をわける負荷面積率)を表すパラメータである。この値が大きいほど、突出山部が占める割合が大きいことを意味する。また、本明細書において「突出谷部とコア部を分離する負荷面積率Smr2」とは、図5に示されるように、ISO25178に準拠して測定される、コア部の下部の高さと負荷曲線の交点における負荷面積率(すなわちコア部と突出谷部をわける負荷面積率)を表すパラメータである。この値が大きいほど突出谷部が占める割合が大きいことを意味する。 In the present specification, the "load area ratio Smr1 for separating the protruding peak portion and the core portion" means the intersection of the height of the upper portion of the core portion and the load curve measured according to ISO25178, as shown in FIG. Is a parameter indicating the load area ratio (that is, the load area ratio separating the core portion and the protruding mountain portion). The larger this value is, the larger the proportion occupied by the protruding mountain portion is. Further, in the present specification, the “load area ratio Smr2 for separating the protruding valley portion and the core portion” is, as shown in FIG. 5, the height of the lower portion of the core portion and the load curve measured according to ISO25178. Is a parameter representing the load area ratio (that is, the load area ratio that divides the core portion and the protruding valley portion) at the intersection point of. It means that the larger this value is, the larger the ratio occupied by the protruding valley portion is.
 本明細書において「コア部の実体体積Vmc」とは、ISO25178に準拠して測定される、コア部の体積を表すパラメータである。Vmcは、図7に示されるように、突出谷部とコア部を分離する負荷面積率Smr2における実体体積と、突出山部とコア部を分離する負荷面積率Smr1における実体体積との間の差を表す。コア部の実体体積Vmcは、処理表面における所定の測定面積(例えば57074.677μmの二次元領域)の表面プロファイルを市販のレーザー顕微鏡で測定することにより算出することができる。本明細書では、突出山部とコア部を分離する負荷面積率Smr1を10%、突出谷部とコア部を分離する負荷面積率Smr2を80%とそれぞれ指定して、コア部の実体体積Vmcを算出するものとする。 In the present specification, the “substantial volume Vmc of the core portion” is a parameter representing the volume of the core portion, which is measured according to ISO25178. As shown in FIG. 7, Vmc is the difference between the actual volume at the load area ratio Smr2 that separates the protruding valley portion and the core portion from the actual volume at the load area ratio Smr1 that separates the protruding mountain portion and the core portion. Represents. The actual volume Vmc of the core portion can be calculated by measuring the surface profile of a predetermined measurement area (for example, a two-dimensional area of 57074.677 μm 2 ) on the treated surface with a commercially available laser microscope. In this specification, the load area ratio Smr1 for separating the protruding peak portion and the core portion is designated as 10%, and the load area ratio Smr2 for separating the protruding valley portion and the core portion is designated as 80%, respectively, and the actual volume Vmc of the core portion is specified. Shall be calculated.
 本明細書において、電解銅箔の「電極面」とは電解銅箔作製時に陰極と接していた側の面を指す。 In this specification, the “electrode surface” of the electrolytic copper foil refers to the surface that is in contact with the cathode when the electrolytic copper foil is manufactured.
 本明細書において、電解銅箔の「析出面」とは電解銅箔作製時に電解銅が析出されていく側の面、すなわち陰極と接していない側の面を指す。 In this specification, the “deposited surface” of the electrolytic copper foil refers to the surface on which electrolytic copper is deposited during production of the electrolytic copper foil, that is, the surface not in contact with the cathode.
 表面処理銅箔
 本発明による銅箔は表面処理銅箔である。この表面処理銅箔は、処理表面に樹脂フィルムを熱圧着して処理表面の表面形状を樹脂フィルムの表面に転写し、エッチングにより表面処理銅箔を除去した場合に、残された樹脂フィルム(以下、樹脂レプリカともいう)の表面(以下、転写表面ともいう)における、ISO25178に準拠して測定されるスキューネスSskが-0.6以下となるものである。
Surface-treated copper foil The copper foil according to the present invention is a surface-treated copper foil. This surface-treated copper foil is a resin film that remains when the surface shape of the treated surface is transferred to the surface of the resin film by thermocompression bonding the resin film to the treated surface and the surface-treated copper foil is removed by etching (hereinafter , And also referred to as a resin replica) (hereinafter, also referred to as a transfer surface) has a skewness Ssk measured according to ISO 25178 of −0.6 or less.
 前述したとおり、回路の更なる微細化の要求に伴い、微細回路形成に有利なSAP法の採用が拡大している。この点、回路パターン幅が狭くなるにつれて、許容される差し込み幅も相対的に縮小するといえる。すなわち、従来のパターン幅(例えば30μm)では許容されていた差し込み幅が、より微細な回路パターン幅(例えば10μm)においては、回路倒れのリスクが高まる等の理由により規格から外れることが起こりうる。 As mentioned above, the adoption of the SAP method, which is advantageous for forming fine circuits, is expanding with the demand for further miniaturization of circuits. In this respect, it can be said that the allowable insertion width is relatively reduced as the circuit pattern width is narrowed. That is, the insertion width, which has been allowed in the conventional pattern width (for example, 30 μm), may deviate from the standard due to an increased risk of circuit collapse in a finer circuit pattern width (for example, 10 μm).
 また、SAP法は、MSAP法等の他の工法と比べて回路の微細化という点で有利であるものの、差し込み抑制という点に関しては不利になることがある。この点、例えばMSAP法による回路形成では、図8Aに例示されるように、樹脂基材112上に、キャリア付銅箔に由来する防錆層114及び電解銅層116が順に積層された積層体110を用意し(工程(i))、電解銅層116が残存したままの状態で、無電解銅めっき118を形成する。次いで、ドライフィルムにより所定のパターンでマスキングし、その後電気銅めっきを施して配線部分120を形成する(工程(ii))。このように、MSAP法では、樹脂基材112上に電解銅層116が残存しているため、隣り合う配線部分120,120間の不要部分のエッチング除去工程において、電解銅層116及び無電解銅めっき118の2つの層をエッチングで除去しなければならない。そのため、図8Aの工程(iii)に示されるように、得られた配線122には回路細りが生じやすい。その一方、MSAP法では、上述のとおり電解銅層116の完全除去を行わないことから、防錆層114が樹脂基材112及び配線122間に存在することになり、この防錆層114が差し込みの発生防止に寄与する。これに対して、SAP法による回路形成では、図8Bに例示されるように、樹脂基材112上に防錆層114及び電解銅層116が順に形成された積層体110の用意(工程(i))、電解銅層116の完全除去(工程(ii))、無電解銅めっき118の形成、ドライフィルムによるマスキング、及び電気銅めっきによる配線部分120の形成を順次行う(工程(iii))。このように、SAP法では、樹脂基材112上に電解銅層116が残存しないため、隣り合う配線部分120,120間の不要部分のエッチング工程において、無電解銅めっき118のみをエッチング除去すればよく、これにより得られた配線122の回路細りを抑えることができる。その上、SAP法では、電解銅ではなく無電解銅を選択的に除去可能なエッチング液を用いることが可能となるため、大部分が電解銅で構成された配線122の細りをより一層効果的に抑えることができる。そのため、回路の微細化に関して、SAP法はMSAP法等の他の工法と比較して有利であるといえる。しかしながら、図8Bの工程(iv)に示されるように、SAP法により形成された配線122は、最下部が無電解銅めっき118で構成されるため、無電解銅を選択的に除去可能なエッチング液を用いた場合、配線122と樹脂基材112との界面に差し込み124が発生しやすくなる。この点、電解銅層116上に防錆層114を設けた表面処理銅箔をSAP用銅箔として用いた場合でも、SAP法においては、電解銅層116をエッチングにより完全に除去するため、当該エッチングの際に防錆金属もエッチングされてしまう(図8Bの工程(ii)参照)。なお、図8A及び8Bにおいては、強調のために、防錆層114の厚さを大きく示しており、必ずしも実際の積層体における厚さの比を反映したものではない。このように、SAP法において、回路に生じうる差し込みを抑制することは容易なことではない。 Also, although the SAP method is advantageous in terms of circuit miniaturization compared to other construction methods such as the MSAP method, it may be disadvantageous in terms of suppressing insertion. In this respect, for example, in the circuit formation by the MSAP method, as illustrated in FIG. 8A, a laminate in which a rust preventive layer 114 derived from a copper foil with a carrier and an electrolytic copper layer 116 are sequentially laminated on a resin substrate 112. 110 is prepared (step (i)), and electroless copper plating 118 is formed while the electrolytic copper layer 116 remains. Next, a dry film is used for masking in a predetermined pattern, and then electrolytic copper plating is performed to form the wiring portion 120 (step (ii)). As described above, in the MSAP method, since the electrolytic copper layer 116 remains on the resin base material 112, the electrolytic copper layer 116 and the electroless copper layer are removed in the step of etching and removing the unnecessary portion between the adjacent wiring portions 120 and 120. The two layers of plating 118 must be etched away. Therefore, as shown in step (iii) of FIG. 8A, the obtained wiring 122 is likely to have a circuit thinning. On the other hand, in the MSAP method, since the electrolytic copper layer 116 is not completely removed as described above, the rust preventive layer 114 exists between the resin base material 112 and the wiring 122, and the rust preventive layer 114 is inserted. Contributes to the prevention of On the other hand, in the circuit formation by the SAP method, as illustrated in FIG. 8B, preparation of the laminated body 110 in which the rust preventive layer 114 and the electrolytic copper layer 116 are sequentially formed on the resin substrate 112 (step (i )), Complete removal of the electrolytic copper layer 116 (step (ii)), formation of the electroless copper plating 118, masking with a dry film, and formation of the wiring portion 120 by electrolytic copper plating (step (iii)). As described above, in the SAP method, the electrolytic copper layer 116 does not remain on the resin base material 112. Therefore, in the etching process of the unnecessary portion between the adjacent wiring portions 120, 120, only the electroless copper plating 118 is removed by etching. Well, it is possible to suppress the circuit thinning of the wiring 122 thus obtained. Moreover, in the SAP method, since it is possible to use an etching solution that can selectively remove electroless copper instead of electrolytic copper, it is even more effective to reduce the thickness of the wiring 122 that is mostly composed of electrolytic copper. Can be suppressed to. Therefore, it can be said that the SAP method is more advantageous than other construction methods such as the MSAP method for miniaturization of the circuit. However, as shown in step (iv) of FIG. 8B, since the wiring 122 formed by the SAP method has the lowermost portion formed of the electroless copper plating 118, the etching capable of selectively removing the electroless copper is performed. When the liquid is used, the insertion 124 is likely to occur at the interface between the wiring 122 and the resin base material 112. In this respect, even when the surface-treated copper foil provided with the rust preventive layer 114 on the electrolytic copper layer 116 is used as the copper foil for SAP, the electrolytic copper layer 116 is completely removed by etching in the SAP method. The rust preventive metal is also etched during the etching (see step (ii) in FIG. 8B). 8A and 8B, the thickness of the anticorrosion layer 114 is shown large for emphasis, and does not necessarily reflect the actual thickness ratio of the laminate. As described above, in the SAP method, it is not easy to suppress the insertion that may occur in the circuit.
 この点、本発明の表面処理銅箔をSAP法に用いることで、樹脂基材の表面にISO25178に準拠して測定されるスキューネスSskが-0.6以下という特有の表面プロファイルを付与することができる。こうすることにより、無電解銅めっき層のエッチング工程において、回路に生じうる差し込みの発生を効果的に抑制することが可能となる。樹脂基材表面が上記表面プロファイルを有することで回路に生じる差し込みを抑制できるメカニズムは必ずしも定かではないが、一つの要因として以下のようなものが挙げられる。すなわち、回路が形成される樹脂基材の表面(すなわち樹脂レプリカの転写表面)の凸部は、SAP法における無電解銅めっきのエッチング工程において、エッチング液の浸入を食い止める防護壁として機能する。そのため、この防護壁が厚いほど差し込みは生じにくくなるといえる。この点、前述したスキューネスSskの定義に基づけば、図9A及び9Bに示されるように、スキューネスSskが小さい樹脂レプリカ20(図9A参照)は、スキューネスSskが大きい樹脂レプリカ20(図9B参照)と比べて凸部20aの壁厚が厚くなるといえる(図中の丸印を付した箇所を参照)。したがって、樹脂レプリカのスキューネスSskを-0.6以下と十分小さくすることで、上記防護壁を厚くすることができ、それ故、回路22に生じる差し込みを効果的に抑制することができると考えられる。 In this respect, by using the surface-treated copper foil of the present invention for the SAP method, it is possible to impart a unique surface profile with a skewness Ssk measured according to ISO25178 of −0.6 or less on the surface of the resin substrate. it can. By doing so, it is possible to effectively suppress the occurrence of insertion that may occur in the circuit in the step of etching the electroless copper plating layer. The mechanism by which the resin base material surface has the above-mentioned surface profile to suppress the insertion that occurs in the circuit is not always clear, but one of the factors is as follows. That is, the convex portion of the surface of the resin base material on which the circuit is formed (that is, the transfer surface of the resin replica) functions as a protective wall for preventing the intrusion of the etching solution in the etching step of the electroless copper plating in the SAP method. Therefore, it can be said that the thicker this protective wall, the less likely it is that insertion will occur. In this respect, based on the definition of the skewness Ssk described above, as shown in FIGS. 9A and 9B, the resin replica 20 having the small skewness Ssk (see FIG. 9A) is the resin replica 20 having the large skewness Ssk (see FIG. 9B). It can be said that the wall thickness of the convex portion 20a is thicker than that of the convex portion 20a (see the circled portions in the drawing). Therefore, it is considered that by making the skewness Ssk of the resin replica as small as −0.6 or less, it is possible to thicken the protective wall, and thus to effectively suppress the insertion in the circuit 22. ..
 上記観点から、本発明の表面処理銅箔は、SAP法によるプリント配線板の作製に用いられるのが好ましい。別の表現をすれば、本発明の表面処理銅箔は、プリント配線板用の絶縁樹脂層に凹凸形状を転写するために用いるのが好ましいともいえる。 From the above viewpoint, the surface-treated copper foil of the present invention is preferably used for producing a printed wiring board by the SAP method. In other words, it can be said that the surface-treated copper foil of the present invention is preferably used for transferring the uneven shape to the insulating resin layer for the printed wiring board.
 本発明の表面処理銅箔は、少なくとも一方の側に処理表面を有する。処理表面は何らかの表面処理が施されている面であり、典型的には粗化処理面である。処理表面は、典型的には複数のコブ(例えば粗化粒子)を備えてなる。いずれにせよ、表面処理銅箔は両側に処理表面(例えば粗化処理面)を有するものであってもよいし、一方の側にのみ処理表面を有するものであってもよい。両側に処理表面を有する場合は、SAP法に用いた場合にレーザー照射側の面(絶縁樹脂に密着させる面と反対側の面)も表面処理されていることになるので、レーザー吸収性が高まる結果、レーザー穿孔性をも向上させることができる。 The surface-treated copper foil of the present invention has a treated surface on at least one side. The treated surface is a surface that has been subjected to some kind of surface treatment, and is typically a roughened surface. The treated surface typically comprises a plurality of bumps (eg, roughened particles). In any case, the surface-treated copper foil may have a treated surface (for example, a roughened surface) on both sides, or may have a treated surface on only one side. In the case of having a treated surface on both sides, the surface on the laser irradiation side (the surface on the opposite side to the surface to be brought into close contact with the insulating resin) is also surface-treated when used in the SAP method, so that the laser absorptivity is enhanced. As a result, the laser piercing property can also be improved.
 本発明の表面処理銅箔は、処理表面に樹脂フィルムを熱圧着して処理表面の表面形状を樹脂フィルムの表面に転写し、エッチングにより表面処理銅箔を除去した場合に、残された樹脂フィルムの表面(すなわち樹脂レプリカの転写表面)におけるスキューネスSskが-0.6以下であり、好ましくは-1.7以上-0.6以下、より好ましくは-1.6以上-0.7以下、さらに好ましくは-1.5以上-0.9以下、特に好ましくは-1.5以上-1.1以下である。上記好ましい範囲内であると、SAP法のエッチング工程における差し込みの発生をより一層抑制しながら、表面処理銅箔の処理表面のコブを細長すぎない適度な形状に制御することができ、それにより表面処理銅箔におけるコブの折れや脱落等による粉落ちの発生を効果的に抑制することができる。樹脂フィルムは熱硬化性樹脂フィルムが好ましく、プリプレグの形態であってもよい。熱硬化性樹脂の例としては、エポキシ樹脂、シアネート樹脂、ビスマレイミドトリアジン樹脂(BT樹脂)、ポリフェニレンエーテル樹脂、フェノール樹脂、ポリイミド樹脂等が挙げられる。熱圧着は、表面処理銅箔の処理表面の凹凸形状を樹脂フィルムに転写可能な条件で行えばよく特に限定されない。例えば、圧力3.0MPa以上5.0MPa以下、温度200℃以上240℃以下、60分間以上120分間以下の条件で熱圧着を行うのが好ましい。 The surface-treated copper foil of the present invention is a resin film left when the surface shape of the treated surface is transferred to the surface of the resin film by thermocompression bonding the resin film to the treated surface and the surface-treated copper foil is removed by etching. Has a skewness Ssk of -0.6 or less, preferably -1.7 or more and -0.6 or less, more preferably -1.6 or more and -0.7 or less, and It is preferably −1.5 or more and −0.9 or less, and particularly preferably −1.5 or more and −1.1 or less. Within the above preferred range, the bumps on the treated surface of the surface-treated copper foil can be controlled to an appropriate shape that is not too elongated, while further suppressing the occurrence of insertion in the etching step of the SAP method, and thereby the surface can be controlled. It is possible to effectively suppress the occurrence of powder falling due to breakage or falling of the bumps in the treated copper foil. The resin film is preferably a thermosetting resin film, and may be in the form of prepreg. Examples of the thermosetting resin include epoxy resin, cyanate resin, bismaleimide triazine resin (BT resin), polyphenylene ether resin, phenol resin, polyimide resin and the like. The thermocompression bonding is not particularly limited as long as the uneven shape of the treated surface of the surface-treated copper foil can be transferred to the resin film. For example, it is preferable to perform thermocompression bonding under the conditions of a pressure of 3.0 MPa or more and 5.0 MPa or less, a temperature of 200 ° C. or more and 240 ° C. or less, and 60 minutes or more and 120 minutes or less.
 本発明の表面処理銅箔は、上記エッチング後に残された樹脂フィルムの表面(すなわち樹脂レプリカの転写表面)が、山頂点の算術平均曲Spcが5000mm-1以上13000mm-1以下であるのが好ましく、より好ましくは7000mm-1以上13000mm-1以下、さらに好ましくは9000mm-1以上13000mm-1以下、特に好ましくは10000mm-1以上13000mm-1以下である。このような範囲内であると、表面処理銅箔の処理表面のコブを細長すぎない適度な形状に制御して、表面処理銅箔におけるコブの折れや脱落等による粉落ちの発生を効果的に抑制しつつ、SAP法のエッチング工程における差し込みの発生をより一層抑制することができる。差し込みの発生を抑制できる一つの要因としては、以下のようなものが挙げられる。すなわち、前述した山頂点の算術平均曲Spcの定義に基づけば、図9A及び9Bに示されるように、山頂点の算術平均曲Spcが小さい樹脂レプリカ20(図9A参照)は、山頂点の算術平均曲Spcが大きい樹脂レプリカ20(図9B参照)と比べて、凸部20aの頂点が平坦となる。その結果、差し込み防護壁として機能する凸部20aの壁厚が厚くなるためと考えられる。 Surface treatment copper foil of the present invention, the surface of the resin film left after the etching (i.e. transfer surface of the resin replica) is the arithmetic mean songs Spc summit point not more than 5000 mm -1 or higher 13000Mm -1 preferably , more preferably 7000 mm -1 or more 13000Mm -1 or less, more preferably 9000 mm -1 or more 13000Mm -1 or less, particularly preferably not more than 10000 mm -1 or more 13000mm -1. Being within such a range, the cobb on the treated surface of the surface-treated copper foil is controlled to an appropriate shape that is not too long and slender, and the occurrence of powder falling due to breakage or falling off of the cobb in the surface-treated copper foil is effectively performed. While suppressing, it is possible to further suppress the occurrence of insertion in the etching process of the SAP method. One of the factors that can suppress the occurrence of insertion is as follows. That is, based on the definition of the arithmetic mean curve Spc of the mountain peak described above, as shown in FIGS. 9A and 9B, the resin replica 20 (see FIG. 9A) having a small arithmetic mean curve Spc of the mountain peak is the arithmetic of the mountain peak. As compared with the resin replica 20 having a large average curve Spc (see FIG. 9B), the peaks of the convex portions 20a are flat. As a result, it is considered that the wall thickness of the convex portion 20a that functions as the insertion protection wall becomes thick.
 本発明の表面処理銅箔は、上記エッチング後に残された樹脂フィルムの表面(すなわち樹脂レプリカの転写表面)が、山の頂点密度Spdが1.13×10mm-2以上1.50×10mm-2以下であるのが好ましく、より好ましくは1.13×10mm-2以上1.40×10mm-2以下、さらに好ましくは1.14×10mm-2以上1.30×10mm-2以下、特に好ましくは1.15×10mm-2以上1.20×10mm-2以下である。このような範囲内であると、表面処理銅箔の処理表面のコブを適度な数に制御して粉落ちの発生を効果的に抑制しつつ、SAP法のエッチング工程における差し込みの発生をより一層抑制することができる。すなわち、前述のとおり、回路の差し込みは樹脂レプリカの凸部で食い止められるため、凸部が高頻度で存在する樹脂レプリカの方が、差し込みの進行を抑制できるといえる。この点、前述した山の頂点密度Spdの定義に基づけば、図9A及び9Bに示されるように、山の頂点密度Spdが大きい樹脂レプリカ20(図9A参照)は、山の頂点密度Spdが小さい樹脂レプリカ20(図9B参照)と比較して、凸部20aが高頻度で存在する。そのため、差し込みが発生した場合でも、その進行を早い段階で食い止めることができると考えられる。 In the surface-treated copper foil of the present invention, the surface of the resin film left after the etching (that is, the transfer surface of the resin replica) has a peak apex density Spd of 1.13 × 10 6 mm −2 or more and 1.50 × 10 5. It is preferably 6 mm −2 or less, more preferably 1.13 × 10 6 mm −2 or more and 1.40 × 10 6 mm −2 or less, still more preferably 1.14 × 10 6 mm −2 or more 1. It is 30 × 10 6 mm −2 or less, particularly preferably 1.15 × 10 6 mm −2 or more and 1.20 × 10 6 mm −2 or less. Within such a range, it is possible to control the number of bumps on the treated surface of the surface-treated copper foil to an appropriate number to effectively suppress the occurrence of powder falling, and to further prevent the occurrence of plugging in the etching step of the SAP method. Can be suppressed. That is, as described above, since the insertion of the circuit is stopped by the convex portion of the resin replica, it can be said that the resin replica in which the convex portion is present more frequently can suppress the progress of insertion. In this respect, based on the above-described definition of the mountain peak density Spd, as shown in FIGS. 9A and 9B, the resin replica 20 having a large mountain peak density Spd (see FIG. 9A) has a small mountain peak density Spd. As compared with the resin replica 20 (see FIG. 9B), the protrusions 20a are present more frequently. Therefore, even if the insertion occurs, it is considered that the progress can be stopped at an early stage.
 本発明の表面処理銅箔は、上記エッチング後に残された樹脂フィルムの表面(すなわち樹脂レプリカの転写表面)が、極点高さSxp(μm)に対するコア部の実体体積Vmc(mL/m)の比であるVmc/Sxpが0.39以上0.44以下であるのが好ましく、より好ましくは0.39以上0.43以下、さらに好ましくは0.39以上0.42以下、特に好ましくは0.39以上0.41以下、最も好ましくは0.39以上0.40以下である。このような範囲内であると、表面処理銅箔の処理表面のコブを細長すぎない適度な形状に制御して、表面処理銅箔におけるコブの折れや脱落等による粉落ちの発生を効果的に抑制しつつ、SAP法のエッチング工程における差し込みの発生をより一層抑制できる。その上、基材と回路との密着力を増大させることも可能となる。すなわち、前述のとおり、樹脂レプリカの凸部はエッチング液の浸入を食い止める防護壁として機能するところ、前述したコア部の実体体積Vmcの定義に基づけば、コア部の実体体積Vmcが大きいほど樹脂レプリカの凸部も大きくなり、差し込みがより一層抑制されるといえる。一方、前述したコア部の実体体積Vmc及び極点高さSxpの定義に基づけば、図10A及び10Bに示されるように、コア部の実体体積Vmcは、樹脂レプリカ20の凸部20aの高さにも依存するため、凸部20aの高さに関係するパラメータである極点高さSxpで除したVmc/Sxpを比較することにより、凸部20aの高さを一律に揃えた換算値として凸部20aの大きさを評価することができる。また、Vmc/Sxpを大きくする(例えば0.39以上)ことにより、回路22に食い込む樹脂レプリカ20の凸部20aの面積も大きくなる(すなわち回路22に囲まれて保持される樹脂量が多くなる)ため、アンカー効果の向上により、基材と回路との密着力も増大する。 In the surface-treated copper foil of the present invention, the surface of the resin film left after the etching (that is, the transfer surface of the resin replica) has a substantial volume Vmc (mL / m 2 ) of the core portion with respect to the pole height Sxp (μm). The ratio Vmc / Sxp is preferably 0.39 or more and 0.44 or less, more preferably 0.39 or more and 0.43 or less, still more preferably 0.39 or more and 0.42 or less, and particularly preferably 0. It is 39 or more and 0.41 or less, and most preferably 0.39 or more and 0.40 or less. Being within such a range, the cobb on the treated surface of the surface-treated copper foil is controlled to an appropriate shape that is not too long and slender, and the occurrence of powder falling due to breakage or falling off of the cobb in the surface-treated copper foil is effectively performed. While suppressing, the occurrence of insertion in the etching process of the SAP method can be further suppressed. In addition, it is possible to increase the adhesion between the substrate and the circuit. That is, as described above, the convex portion of the resin replica functions as a protective wall that blocks the intrusion of the etching solution. Based on the definition of the actual volume Vmc of the core portion, the larger the actual volume Vmc of the core portion is, the larger the resin replica becomes. It can be said that the convex part of is also enlarged and the insertion is further suppressed. On the other hand, based on the definitions of the physical volume Vmc of the core portion and the pole height Sxp described above, as shown in FIGS. 10A and 10B, the physical volume Vmc of the core portion is equal to the height of the convex portion 20a of the resin replica 20. Since Vmc / Sxp divided by the pole height Sxp, which is a parameter related to the height of the convex portion 20a, is compared, the convex portion 20a is obtained as a converted value in which the heights of the convex portions 20a are uniformly arranged. The size of can be evaluated. Further, by increasing Vmc / Sxp (for example, 0.39 or more), the area of the convex portion 20a of the resin replica 20 that bites into the circuit 22 also increases (that is, the amount of resin surrounded and held by the circuit 22 increases. Therefore, the improvement of the anchor effect also increases the adhesion between the substrate and the circuit.
 表面処理銅箔の製造方法
 本発明による表面処理銅箔の好ましい製造方法の一例を説明するが、本発明による表面処理銅箔は、以下に説明する方法に限らず、樹脂フィルム表面に上述した表面プロファイルを付与できるかぎり、あらゆる方法によって製造されたものであってよい。
Manufacturing method of surface-treated copper foil will be described an example of a preferred manufacturing method of the surface-treated copper foil according to the present invention, the surface-treated copper foil according to the present invention is not limited to the method described below, the surface described above on the resin film surface. It may be manufactured by any method as long as it can be profiled.
(1)銅箔の準備
 表面処理銅箔の製造に使用する銅箔として、電解銅箔及び圧延銅箔の双方の使用が可能である。銅箔の厚さは特に限定されないが、0.1μm以上18μm以下が好ましく、より好ましくは0.5μm以上10μm以下、さらに好ましくは0.5μm以上7μm以下、特に好ましくは0.5μm以上5μm以下、最も好ましくは0.5μm以上3μm以下である。銅箔がキャリア付銅箔の形態で準備される場合には、銅箔は、無電解銅めっき法及び電解銅めっき法等の湿式成膜法、スパッタリング及び化学蒸着等の乾式成膜法、又はそれらの組合せにより形成したものであってよい。
(1) Preparation of Copper Foil As the copper foil used for producing the surface-treated copper foil, both electrolytic copper foil and rolled copper foil can be used. The thickness of the copper foil is not particularly limited, but is preferably 0.1 μm or more and 18 μm or less, more preferably 0.5 μm or more and 10 μm or less, further preferably 0.5 μm or more and 7 μm or less, particularly preferably 0.5 μm or more and 5 μm or less, Most preferably, it is 0.5 μm or more and 3 μm or less. When the copper foil is prepared in the form of a carrier-attached copper foil, the copper foil is a wet film forming method such as an electroless copper plating method and an electrolytic copper plating method, a dry film forming method such as sputtering and chemical vapor deposition, or It may be formed by a combination thereof.
(2)表面処理(粗化処理)
 銅粒子を用いて銅箔の少なくとも一方の表面を粗化する。この粗化は、粗化処理用銅電解溶液を用いた電解により行われる。この電解は2段階又は3段階のめっき工程を経て行われるのが好ましく、より好ましくは3段階のめっき工程を経て行われる。1段階目のめっき工程では、銅濃度5g/L以上20g/L以下、硫酸濃度30g/L以上200g/L以下、塩素濃度20mg/L以上100mg/L以下、及び9-フェニルアクリジン(9PA)濃度20mg/L以上80mg/L以下を含む硫酸銅溶液を用いて、液温20℃以上40℃以下、電流密度5A/dm以上25A/dm以下、時間2秒以上10秒以下のめっき条件で電着を行うのが好ましい。この1段階目のめっき工程は、2つの槽を用いて合計2回行ってもよいが、合計1回で完了させるのが好ましい。2段階目のめっき工程では、銅濃度65g/L以上80g/L以下及び硫酸濃度200g/L以上280g/L以下を含む硫酸銅溶液を用いて、液温45℃以上55℃以下、電流密度1A/dm以上10A/dm以下、時間2秒以上25秒以下のめっき条件で電着を行うのが好ましい。3段階目のめっき工程では、銅濃度10g/L以上20g/L以下、硫酸濃度30g/L以上130g/L以下、塩素濃度20mg/L以上100mg/L以下、及び9PA濃度100mg/L以上200mg/L以下を含む硫酸銅溶液を用いて、液温20℃以上40℃以下、電流密度10A/dm以上40A/dm以下、時間0.3秒以上1.0秒以下のめっき条件で電着を行うのが好ましい。特に、1段階目のめっき工程が9PA等の添加剤等を用いて行われるのが好ましく、1段階目のめっき工程における電気量Qと2段階目のめっき工程における電気量Qの合計電気量(Q+Q)が100C/dm以下となるように設定するのが好ましい。また、処理の均一化及び作業性の点から、1段階目のめっき工程における正極及び負極間の距離が45mm以上90mm以下とするのが好ましく、より好ましくは50mm以上80mm以下である。
(2) Surface treatment (roughening treatment)
At least one surface of the copper foil is roughened using copper particles. This roughening is performed by electrolysis using a copper electrolytic solution for roughening treatment. This electrolysis is preferably carried out through a two-step or three-step plating process, more preferably a three-step plating process. In the first stage plating step, the copper concentration is 5 g / L or more and 20 g / L or less, the sulfuric acid concentration is 30 g / L or more and 200 g / L or less, the chlorine concentration is 20 mg / L or more and 100 mg / L or less, and the 9-phenylacridine (9PA) concentration is Using a copper sulfate solution containing 20 mg / L or more and 80 mg / L or less, at a plating temperature of 20 ° C. or more and 40 ° C. or less, a current density of 5 A / dm 2 or more and 25 A / dm 2 or less, and a time of 2 seconds or more and 10 seconds or less. It is preferable to perform electrodeposition. This first stage plating process may be performed twice in total using two tanks, but it is preferable to complete the plating process once in total. In the second-stage plating step, a copper sulfate solution containing a copper concentration of 65 g / L or more and 80 g / L or less and a sulfuric acid concentration of 200 g / L or more and 280 g / L or less is used, and the liquid temperature is 45 ° C. or more and 55 ° C. or less and the current density is 1 A. It is preferable to perform electrodeposition under the plating conditions of / dm 2 or more and 10 A / dm 2 or less and time of 2 seconds or more and 25 seconds or less. In the third stage plating step, the copper concentration is 10 g / L or more and 20 g / L or less, the sulfuric acid concentration is 30 g / L or more and 130 g / L or less, the chlorine concentration is 20 mg / L or more and 100 mg / L or less, and the 9PA concentration is 100 mg / L or more and 200 mg / L. Electrodeposition using a copper sulfate solution containing L or less under a plating condition of a liquid temperature of 20 ° C. or higher and 40 ° C. or lower, a current density of 10 A / dm 2 or higher and 40 A / dm 2 or lower, and a time of 0.3 second or longer and 1.0 second or shorter. Is preferably performed. In particular, it is preferable that the first-stage plating process be performed using an additive such as 9PA, etc., and the total amount of electricity Q 1 in the first-stage plating process and the total amount of electricity Q 2 in the second-stage plating process It is preferable to set the amount (Q 1 + Q 2 ) to 100 C / dm 2 or less. Further, from the viewpoint of uniform treatment and workability, the distance between the positive electrode and the negative electrode in the first plating step is preferably 45 mm or more and 90 mm or less, and more preferably 50 mm or more and 80 mm or less.
(3)防錆処理
 所望により、粗化処理後の銅箔に防錆処理を施してもよい。防錆処理は、亜鉛を用いためっき処理を含むのが好ましい。亜鉛を用いためっき処理は、亜鉛めっき処理及び亜鉛合金めっき処理のいずれであってもよく、亜鉛合金めっき処理は亜鉛-ニッケル合金処理が特に好ましい。亜鉛-ニッケル合金処理は少なくともNi及びZnを含むめっき処理であればよく、Sn、Cr、Co等の他の元素をさらに含んでいてもよい。亜鉛-ニッケル合金めっきにおけるNi/Zn付着比率は、質量比で、1.2以上10以下が好ましく、より好ましくは2以上7以下、さらに好ましくは2.7以上4以下である。また、防錆処理はクロメート処理をさらに含むのが好ましく、このクロメート処理は亜鉛を用いためっき処理の後に、亜鉛を含むめっきの表面に行われるのがより好ましい。こうすることで防錆性をさらに向上させることができる。特に好ましい防錆処理は、亜鉛-ニッケル合金めっき処理とその後のクロメート処理との組合せである。
(3) Anticorrosion Treatment If desired, the copper foil after the roughening treatment may be subjected to antirust treatment. The anticorrosion treatment preferably includes a plating treatment using zinc. The plating treatment using zinc may be either a zinc plating treatment or a zinc alloy plating treatment, and the zinc alloy plating treatment is particularly preferably a zinc-nickel alloy treatment. The zinc-nickel alloy treatment may be a plating treatment containing at least Ni and Zn, and may further contain other elements such as Sn, Cr and Co. The Ni / Zn adhesion ratio in the zinc-nickel alloy plating is preferably 1.2 or more and 10 or less, more preferably 2 or more and 7 or less, still more preferably 2.7 or more and 4 or less in terms of mass ratio. Further, the anticorrosion treatment preferably further includes a chromate treatment, and this chromate treatment is more preferably performed on the surface of the zinc-containing plating after the zinc plating treatment. By doing so, the rust preventive property can be further improved. A particularly preferred anticorrosion treatment is a combination of a zinc-nickel alloy plating treatment and a subsequent chromate treatment.
(4)シランカップリング剤処理
 所望により、銅箔にシランカップリング剤処理を施し、シランカップリング剤層を形成してもよい。これにより耐湿性、耐薬品性及び接着剤等との密着性等を向上することができる。シランカップリング剤層は、シランカップリング剤を適宜希釈して塗布し、乾燥させることにより形成することができる。シランカップリング剤の例としては、4-グリシジルブチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン等のエポキシ官能性シランカップリング剤、又は3-アミノプロピルトリエトキシシラン、N-2(アミノエチル)3-アミノプロピルトリメトキシシラン、N-3-(4-(3-アミノプロポキシ)ブトキシ)プロピル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノ官能性シランカップリング剤、又は3-メルカプトプロピルトリメトキシシラン等のメルカプト官能性シランカップリング剤又はビニルトリメトキシシラン、ビニルフェニルトリメトキシシラン等のオレフィン官能性シランカップリング剤、又は3-メタクリロキシプロピルトリメトキシシラン等のアクリル官能性シランカップリング剤、又はイミダゾールシラン等のイミダゾール官能性シランカップリング剤、又はトリアジンシラン等のトリアジン官能性シランカップリング剤等が挙げられる。
(4) Silane coupling agent treatment If desired, the copper foil may be treated with a silane coupling agent to form a silane coupling agent layer. This can improve moisture resistance, chemical resistance, adhesion to an adhesive, and the like. The silane coupling agent layer can be formed by appropriately diluting and applying the silane coupling agent and then drying. Examples of silane coupling agents include epoxy-functional silane coupling agents such as 4-glycidylbutyltrimethoxysilane and 3-glycidoxypropyltrimethoxysilane, or 3-aminopropyltriethoxysilane, N-2 (amino). Ethyl) 3-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) butoxy) propyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, etc. Silane coupling agent, mercapto-functional silane coupling agent such as 3-mercaptopropyltrimethoxysilane, or olefin-functional silane coupling agent such as vinyltrimethoxysilane, vinylphenyltrimethoxysilane, or 3-methacryloxypropyl Examples thereof include acrylic functional silane coupling agents such as trimethoxysilane, imidazole functional silane coupling agents such as imidazole silane, and triazine functional silane coupling agents such as triazine silane.
 キャリア付銅箔
 本発明の表面処理銅箔は、キャリア付銅箔の形態で提供することができる。この場合、キャリア付銅箔は、キャリアと、このキャリア上に設けられた剥離層と、この剥離層上に処理表面(典型的には粗化処理面)を外側にして設けられた本発明の表面処理銅箔とを備えてなる。もっとも、キャリア付銅箔は、本発明の表面処理銅箔を用いること以外は、公知の層構成が採用可能である。
Copper foil with carrier The surface-treated copper foil of the present invention can be provided in the form of a copper foil with a carrier. In this case, the carrier-attached copper foil comprises a carrier, a release layer provided on the carrier, and a treated surface (typically a roughened surface) provided on the release layer of the present invention. And a surface-treated copper foil. However, the carrier-added copper foil may have a known layer configuration except that the surface-treated copper foil of the present invention is used.
 キャリアは、表面処理銅箔を支持してそのハンドリング性を向上させるための層(典型的には箔)である。キャリアの例としては、アルミニウム箔、銅箔、表面を銅等でメタルコーティングした樹脂フィルムやガラス板等が挙げられ、好ましくは銅箔である。銅箔は圧延銅箔及び電解銅箔のいずれであってもよい。キャリアの厚さは典型的には200μm以下であり、好ましくは12μm以上35μm以下である。 The carrier is a layer (typically a foil) for supporting the surface-treated copper foil and improving its handling property. Examples of the carrier include an aluminum foil, a copper foil, a resin film whose surface is metal-coated with copper or the like, a glass plate, and the like, and a copper foil is preferable. The copper foil may be either a rolled copper foil or an electrolytic copper foil. The thickness of the carrier is typically 200 μm or less, preferably 12 μm or more and 35 μm or less.
 キャリアの剥離層側の面は、0.5μm以上1.5μm以下の十点表面粗さRzを有するのが好ましく、より好ましくは0.6μm以上1.0μm以下である。RzはJIS B 0601-1994に準拠して決定することができる。このような十点表面粗さRzをキャリアの剥離層側の面に付与しておくことで、その上に剥離層を介して作製される本発明の表面処理銅箔に望ましい表面プロファイルを付与しやすくすることができる。 The release layer side surface of the carrier preferably has a ten-point surface roughness Rz of 0.5 μm or more and 1.5 μm or less, more preferably 0.6 μm or more and 1.0 μm or less. Rz can be determined according to JIS B 0601-1994. By imparting such a ten-point surface roughness Rz to the release layer side surface of the carrier, a desired surface profile is imparted to the surface-treated copper foil of the present invention produced through the release layer. Can be made easier.
 剥離層は、キャリアの引き剥がし強度を弱くし、該強度の安定性を担保し、さらには高温でのプレス成形時にキャリアと銅箔の間で起こりうる相互拡散を抑制する機能を有する層である。剥離層は、キャリアの一方の面に形成されるのが一般的であるが、両面に形成されてもよい。剥離層は、有機剥離層及び無機剥離層のいずれであってもよい。有機剥離層に用いられる有機成分の例としては、窒素含有有機化合物、硫黄含有有機化合物、カルボン酸等が挙げられる。窒素含有有機化合物の例としては、トリアゾール化合物、イミダゾール化合物等が挙げられ、中でもトリアゾール化合物は剥離性が安定し易い点で好ましい。トリアゾール化合物の例としては、1,2,3-ベンゾトリアゾール、カルボキシベンゾトリアゾール、N’,N’-ビス(ベンゾトリアゾリルメチル)ユリア、1H-1,2,4-トリアゾール及び3-アミノ-1H-1,2,4-トリアゾール等が挙げられる。硫黄含有有機化合物の例としては、メルカプトベンゾチアゾール、チオシアヌル酸、2-ベンズイミダゾールチオール等が挙げられる。カルボン酸の例としては、モノカルボン酸、ジカルボン酸等が挙げられる。一方、無機剥離層に用いられる無機成分の例としては、Ni、Mo、Co、Cr、Fe、Ti、W、P、Zn、クロメート処理膜等が挙げられる。なお、剥離層の形成はキャリアの少なくとも一方の表面に剥離層成分含有溶液を接触させ、剥離層成分をキャリアの表面に固定されること等により行えばよい。キャリアの剥離層成分含有溶液への接触は、剥離層成分含有溶液への浸漬、剥離層成分含有溶液の噴霧、剥離層成分含有溶液の流下等により行えばよい。また、剥離層成分のキャリア表面への固定は、剥離層成分含有溶液の吸着や乾燥、剥離層成分含有溶液中の剥離層成分の電着等により行えばよい。剥離層の厚さは、典型的には1nm以上1μm以下であり、好ましくは5nm以上500nm以下である。 The peeling layer is a layer having a function of weakening the peeling strength of the carrier, ensuring stability of the strength, and suppressing interdiffusion that may occur between the carrier and the copper foil during press molding at high temperature. .. The release layer is generally formed on one surface of the carrier, but may be formed on both surfaces. The release layer may be either an organic release layer or an inorganic release layer. Examples of organic components used in the organic release layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, and carboxylic acids. Examples of the nitrogen-containing organic compound include a triazole compound and an imidazole compound. Among them, the triazole compound is preferable because the peelability is easily stabilized. Examples of the triazole compound include 1,2,3-benzotriazole, carboxybenzotriazole, N ′, N′-bis (benzotriazolylmethyl) urea, 1H-1,2,4-triazole and 3-amino- 1H-1,2,4-triazole and the like can be mentioned. Examples of the sulfur-containing organic compound include mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazole thiol and the like. Examples of the carboxylic acid include monocarboxylic acid and dicarboxylic acid. On the other hand, examples of inorganic components used in the inorganic release layer include Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, and chromate-treated films. The release layer may be formed by bringing a release layer component-containing solution into contact with at least one surface of the carrier and fixing the release layer component on the surface of the carrier. The contact of the carrier with the release layer component-containing solution may be performed by immersing the carrier in the release layer component-containing solution, spraying the release layer component-containing solution, flowing down the release layer component-containing solution, and the like. The release layer component may be fixed to the carrier surface by adsorption or drying of the release layer component-containing solution, electrodeposition of the release layer component in the release layer component-containing solution, or the like. The thickness of the peeling layer is typically 1 nm or more and 1 μm or less, preferably 5 nm or more and 500 nm or less.
 表面処理銅箔としては、上述した本発明の表面処理銅箔を用いる。本発明の粗化処理は銅粒子を用いた粗化が施されたものであるが、手順としては、先ず剥離層の表面に銅層を銅箔として形成し、その後少なくとも粗化を行えばよい。粗化の詳細については前述したとおりである。なお、銅箔はキャリア付銅箔としての利点を活かすべく、極薄銅箔の形態で構成されるのが好ましい。極薄銅箔としての好ましい厚さは0.1μm以上7μm以下であり、より好ましくは0.5μm以上5μm以下、さらに好ましくは0.5μm以上3μm以下である。 The above-mentioned surface-treated copper foil of the present invention is used as the surface-treated copper foil. The roughening treatment of the present invention is a roughening treatment using copper particles. As a procedure, first, a copper layer is formed as a copper foil on the surface of the release layer, and then at least roughening may be performed. .. The details of roughening are as described above. The copper foil is preferably formed in the form of an ultrathin copper foil in order to take advantage of the advantages of the copper foil with a carrier. The thickness of the ultrathin copper foil is preferably 0.1 μm or more and 7 μm or less, more preferably 0.5 μm or more and 5 μm or less, and further preferably 0.5 μm or more and 3 μm or less.
 剥離層とキャリア及び/又は銅箔との間に他の機能層を設けてもよい。そのような他の機能層の例としては補助金属層が挙げられる。補助金属層はニッケル及び/又はコバルトからなるのが好ましい。補助金属層の厚さは、0.001μm以上3μm以下とするのが好ましい。 Another functional layer may be provided between the peeling layer and the carrier and / or the copper foil. Examples of such other functional layers include auxiliary metal layers. The auxiliary metal layer preferably comprises nickel and / or cobalt. The thickness of the auxiliary metal layer is preferably 0.001 μm or more and 3 μm or less.
 銅張積層板
 本発明の表面処理銅箔ないしキャリア付銅箔はプリント配線板用銅張積層板の作製に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、上記表面処理銅箔又は上記キャリア付銅箔を備えた銅張積層板が提供される。本発明の表面処理銅箔ないしキャリア付銅箔を用いることで、SAP法に特に適した銅張積層板を提供することができる。この銅張積層板は、本発明の表面処理銅箔と、この表面処理銅箔の粗化処理面に密着して設けられる樹脂層とを備えてなるか、あるいは本発明のキャリア付銅箔と、このキャリア付銅箔における表面処理銅箔の粗化処理面に密着して設けられる樹脂層とを備えてなる。表面処理銅箔又はキャリア付銅箔は樹脂層の片面に設けられてもよいし、両面に設けられてもよい。樹脂層は、樹脂、好ましくは絶縁性樹脂を含んでなる。樹脂層はプリプレグ及び/又は樹脂シートであるのが好ましい。プリプレグとは、合成樹脂板、ガラス板、ガラス織布、ガラス不織布、紙等の基材に合成樹脂を含浸させた複合材料の総称である。絶縁性樹脂の好ましい例としては、エポキシ樹脂、シアネート樹脂、ビスマレイミドトリアジン樹脂(BT樹脂)、ポリフェニレンエーテル樹脂、フェノール樹脂等が挙げられる。また、樹脂シートを構成する絶縁性樹脂の例としては、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂等の絶縁樹脂が挙げられる。また、樹脂層には絶縁性を向上する等の観点からシリカ、アルミナ等の各種無機粒子からなるフィラー粒子等が含有されていてもよい。樹脂層の厚さは特に限定されないが、1μm以上1000μm以下が好ましく、より好ましくは2μm以上400μm以下であり、さらに好ましくは3μm以上200μm以下である。樹脂層は複数の層で構成されていてよい。プリプレグ及び/又は樹脂シート等の樹脂層は予め表面処理銅箔の粗化処理表面に塗布されるプライマー樹脂層を介して表面処理銅箔ないしキャリア付銅箔に設けられていてもよい。
Copper- clad laminate The surface-treated copper foil or copper foil with a carrier of the present invention is preferably used for producing a copper-clad laminate for a printed wiring board. That is, according to a preferred aspect of the present invention, there is provided a copper clad laminate provided with the surface-treated copper foil or the carrier-attached copper foil. By using the surface-treated copper foil or the copper foil with a carrier of the present invention, it is possible to provide a copper-clad laminate which is particularly suitable for the SAP method. This copper clad laminate comprises the surface-treated copper foil of the present invention and a resin layer provided in close contact with the roughened surface of the surface-treated copper foil, or a copper foil with a carrier of the present invention And a resin layer provided in close contact with the roughening-treated surface of the surface-treated copper foil in the carrier-added copper foil. The surface-treated copper foil or the carrier-added copper foil may be provided on one side or both sides of the resin layer. The resin layer comprises a resin, preferably an insulating resin. The resin layer is preferably a prepreg and / or a resin sheet. The prepreg is a general term for composite materials obtained by impregnating a base material such as a synthetic resin plate, a glass plate, a glass woven cloth, a glass non-woven cloth, and paper with a synthetic resin. Preferable examples of the insulating resin include epoxy resin, cyanate resin, bismaleimide triazine resin (BT resin), polyphenylene ether resin, and phenol resin. Further, examples of the insulating resin that constitutes the resin sheet include insulating resins such as epoxy resin, polyimide resin, and polyester resin. Further, the resin layer may contain filler particles made of various inorganic particles such as silica and alumina from the viewpoint of improving the insulating property. The thickness of the resin layer is not particularly limited, but is preferably 1 μm or more and 1000 μm or less, more preferably 2 μm or more and 400 μm or less, and further preferably 3 μm or more and 200 μm or less. The resin layer may be composed of a plurality of layers. A resin layer such as a prepreg and / or a resin sheet may be provided on the surface-treated copper foil or the carrier-added copper foil via a primer resin layer which is applied to the roughened surface of the surface-treated copper foil in advance.
 プリント配線板
 本発明の表面処理銅箔ないしキャリア付銅箔はプリント配線板の作製に用いられるのが好ましく、特に好ましくはセミアディティブ法(SAP)によるプリント配線板の作製に用いられる。すなわち、本発明の好ましい態様によれば、前述した表面処理銅箔又は上記キャリア付銅箔を用いてプリント配線板を製造することを特徴とする、プリント配線板の製造方法、あるいは前述した表面処理銅箔又は上記キャリア付銅箔を用いて得られたプリント配線板が提供される。本発明の表面処理銅箔ないしキャリア付銅箔を用いることで、上述の表面プロファイルを積層体に付与することができ、プリント配線板製造の一工程であるエッチング工程において、差し込みを効果的に抑制することが可能となる。本態様によるプリント配線板は、樹脂層と、銅層とが積層された層構成を含んでなる。SAP法の場合には本発明の表面処理銅箔は図1の工程(c)において除去されるため、SAP法により作製されたプリント配線板は本発明の表面処理銅箔をもはや含まず、表面処理銅箔の粗化処理面から転写された表面プロファイルが残存するのみである。また、樹脂層については銅張積層板に関して上述したとおりである。いずれにしても、プリント配線板は公知の層構成が採用可能である。プリント配線板に関する具体例としては、プリプレグの片面又は両面に本発明の表面処理銅箔ないしキャリア付銅箔を接着させ硬化した積層体とした上で回路形成した片面又は両面プリント配線板や、これらを多層化した多層プリント配線板等が挙げられる。また、他の具体例としては、樹脂フィルム上に本発明の表面処理銅箔ないしキャリア付銅箔を形成して回路を形成するフレキシブルプリント配線板、COF、TABテープ等も挙げられる。さらに他の具体例としては、本発明の表面処理銅箔ないしキャリア付銅箔に上述の樹脂層を塗布した樹脂付銅箔(RCC)を形成し、樹脂層を絶縁接着材層として上述のプリント基板に積層した後、表面処理銅箔を配線層の全部又は一部としてモディファイドセミアディティブ(MSAP)法、サブトラクティブ法等の手法で回路を形成したビルドアップ配線板や、表面処理銅箔を除去してセミアディティブ(SAP)法で回路を形成したビルドアップ配線板、半導体集積回路上へ樹脂付銅箔の積層と回路形成を交互に繰りかえすダイレクト・ビルドアップ・オン・ウェハー等が挙げられる。より発展的な具体例として、上記樹脂付銅箔を基材に積層し回路形成したアンテナ素子、接着剤層を介してガラスや樹脂フィルムに積層しパターンを形成したパネル・ディスプレイ用電子材料や窓ガラス用電子材料、本発明の表面処理銅箔に導電性接着剤を塗布した電磁波シールド・フィルム等も挙げられる。特に、本発明の表面処理銅箔ないしキャリア付銅箔はSAP法に適している。例えば、SAP法により回路形成した場合には図1及び2に示されるような構成が採用可能である。
Printed Wiring Board The surface-treated copper foil or copper foil with a carrier of the present invention is preferably used for producing a printed wiring board, and particularly preferably used for producing a printed wiring board by a semi-additive method (SAP). That is, according to a preferred embodiment of the present invention, a printed wiring board is manufactured by using the above-mentioned surface-treated copper foil or the above-mentioned carrier-attached copper foil, a method for manufacturing a printed wiring board, or the above-mentioned surface treatment. There is provided a printed wiring board obtained by using a copper foil or the above-mentioned copper foil with a carrier. By using the surface-treated copper foil or the carrier-added copper foil of the present invention, the above-mentioned surface profile can be imparted to the laminate, and insertion can be effectively suppressed in the etching step which is one step of manufacturing a printed wiring board. It becomes possible to do. The printed wiring board according to this aspect includes a layer structure in which a resin layer and a copper layer are laminated. In the case of the SAP method, since the surface-treated copper foil of the present invention is removed in the step (c) of FIG. 1, the printed wiring board produced by the SAP method no longer contains the surface-treated copper foil of the present invention. Only the surface profile transferred from the roughened surface of the treated copper foil remains. The resin layer is as described above for the copper clad laminate. In any case, the printed wiring board may have a known layer structure. Specific examples of the printed wiring board, a single-sided or double-sided printed wiring board formed into a circuit on a laminate obtained by adhering the surface-treated copper foil or the copper foil with a carrier of the present invention to one side or both sides of the prepreg and curing it, and these. Examples include a multilayer printed wiring board in which the above is multilayered. Further, other specific examples include a flexible printed wiring board, a COF, a TAB tape, etc. in which a surface-treated copper foil or a copper foil with a carrier of the present invention is formed on a resin film to form a circuit. As still another specific example, a resin-coated copper foil (RCC) obtained by applying the resin layer to the surface-treated copper foil or the carrier-coated copper foil of the present invention is formed, and the resin layer is used as an insulating adhesive layer to form the above-mentioned print. After stacking on the board, the surface-treated copper foil is used as the whole or a part of the wiring layer to remove the build-up wiring board on which the circuit is formed by the modified semi-additive (MSAP) method, the subtractive method, etc., and the surface-treated copper foil. Then, a build-up wiring board in which a circuit is formed by a semi-additive (SAP) method, a direct build-up-on-wafer in which a resin-coated copper foil is laminated and a circuit is alternately formed on a semiconductor integrated circuit are listed. As a more advanced specific example, an antenna element formed by laminating the above resin-coated copper foil on a base material to form a circuit, an electronic material for a panel display or a window formed by laminating on a glass or resin film through an adhesive layer to form a pattern Examples also include electronic materials for glass, electromagnetic wave shield films obtained by coating the surface-treated copper foil of the present invention with a conductive adhesive, and the like. In particular, the surface-treated copper foil or the copper foil with a carrier of the present invention is suitable for the SAP method. For example, when the circuit is formed by the SAP method, the configurations shown in FIGS. 1 and 2 can be adopted.
 樹脂基材
 本発明の好ましい態様によれば、少なくとも一方の表面が、ISO25178に準拠して測定されるスキューネスSskが-0.6以下である、樹脂基材が提供される。この樹脂基材は、本発明の表面処理銅箔の表面形状が転写された樹脂レプリカに相当するものである。したがって、上述した表面処理銅箔の表面形状が転写された樹脂レプリカの好ましい態様(スキューネスSsk、山頂点の算術平均曲Spc、山の頂点密度Spd、及び極点高さSxpに対するコア部の実体体積Vmcの比Vmc/Sxpの各パラメータ)は、本態様の樹脂基材にもそのまま当てはまる。樹脂基材は、樹脂、好ましくは絶縁性樹脂を含んでなる。樹脂基材はプリプレグ及び/又は樹脂シートであるのが好ましい。プリプレグとは、合成樹脂板、ガラス板、ガラス織布、ガラス不織布、紙等の基材に合成樹脂を含浸させた複合材料の総称である。絶縁性樹脂の好ましい例としては、エポキシ樹脂、シアネート樹脂、ビスマレイミドトリアジン樹脂(BT樹脂)、ポリフェニレンエーテル樹脂、フェノール樹脂等が挙げられる。また、樹脂基材を構成する絶縁性樹脂の例としては、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂等の絶縁樹脂が挙げられる。また、樹脂基材には絶縁性を向上する等の観点からシリカ、アルミナ等の各種無機粒子からなるフィラー粒子等が含有されていてもよい。樹脂基材の厚さは特に限定されないが、1μm以上1000μm以下が好ましく、より好ましくは2μm以上400μm以下であり、さらに好ましくは3μm以上200μm以下である。樹脂基材は複数の層で構成されていてよい。本発明の樹脂基材はSAP法によるプリント配線板の作製における出発材料ないし中間製品として好ましく用いることができる。
Resin Base Material According to a preferred embodiment of the present invention, a resin base material is provided in which at least one surface has a skewness Ssk of −0.6 or less measured according to ISO25178. This resin base material corresponds to a resin replica on which the surface shape of the surface-treated copper foil of the present invention is transferred. Therefore, a preferred embodiment of the resin replica in which the surface shape of the above-mentioned surface-treated copper foil is transferred (skewness Ssk, arithmetic mean curve Spc of peaks, density of peaks Spd of peaks, and substantial volume Vmc of core with respect to pole height Sxp). The respective parameters of the ratio Vmc / Sxp) of (1) apply to the resin base material of this embodiment as they are. The resin substrate comprises a resin, preferably an insulating resin. The resin base material is preferably a prepreg and / or a resin sheet. The prepreg is a general term for composite materials obtained by impregnating a base material such as a synthetic resin plate, a glass plate, a glass woven cloth, a glass non-woven cloth, and paper with a synthetic resin. Preferable examples of the insulating resin include epoxy resin, cyanate resin, bismaleimide triazine resin (BT resin), polyphenylene ether resin, and phenol resin. Further, examples of the insulating resin that constitutes the resin base material include insulating resins such as epoxy resin, polyimide resin, and polyester resin. Further, the resin base material may contain filler particles made of various inorganic particles such as silica and alumina from the viewpoint of improving the insulating property. The thickness of the resin substrate is not particularly limited, but is preferably 1 μm or more and 1000 μm or less, more preferably 2 μm or more and 400 μm or less, and further preferably 3 μm or more and 200 μm or less. The resin substrate may be composed of a plurality of layers. The resin base material of the present invention can be preferably used as a starting material or an intermediate product in the production of a printed wiring board by the SAP method.
 本発明を以下の例によってさらに具体的に説明する。 The present invention will be described more specifically by the following examples.
 例1~6
 キャリア付銅箔及び樹脂レプリカの作製及び評価を以下のようにして行った。
Examples 1-6
The copper foil with a carrier and the resin replica were produced and evaluated as follows.
(1)キャリアの作製
 陰極として表面を#2000のバフで研磨したチタン製の電極を用意した。また、陽極としてDSA(寸法安定性陽極)を用意した。これらの電極を用い、銅濃度80g/L、硫酸濃度260g/Lの硫酸銅溶液に浸漬して、溶液温度45℃、電流密度55A/dmで電解し、厚さ18μmの電解銅箔をキャリアとして得た。
(1) Production of Carrier As a cathode, a titanium electrode whose surface was polished with a # 2000 buff was prepared. Moreover, DSA (dimensional stability anode) was prepared as an anode. Using these electrodes, it is immersed in a copper sulfate solution having a copper concentration of 80 g / L and a sulfuric acid concentration of 260 g / L, electrolysis is performed at a solution temperature of 45 ° C. and a current density of 55 A / dm 2 , and an electrolytic copper foil having a thickness of 18 μm is used as a carrier. Got as.
(2)剥離層の形成
 酸洗処理されたキャリアの電極面側を、CBTA(カルボキシベンゾトリアゾール)濃度1g/L、硫酸濃度150g/L及び銅濃度10g/LのCBTA水溶液に、液温30℃で30秒間浸漬し、CBTA成分をキャリアの電極面に吸着させた。こうして、キャリアの電極面の表面にCBTA層を有機剥離層として形成した。
(2) Formation of release layer The electrode surface side of the pickled carrier was immersed in a CBTA aqueous solution having a CBTA (carboxybenzotriazole) concentration of 1 g / L, a sulfuric acid concentration of 150 g / L and a copper concentration of 10 g / L at a liquid temperature of 30 ° C. Was immersed for 30 seconds, and the CBTA component was adsorbed on the electrode surface of the carrier. Thus, the CBTA layer was formed as an organic release layer on the surface of the electrode surface of the carrier.
(3)補助金属層の形成
 有機剥離層が形成されたキャリアを、硫酸ニッケルを用いて作製されたニッケル濃度20g/Lの溶液に浸漬して、液温45℃、pH3、電流密度5A/dmの条件で、厚さ0.001μm相当の付着量のニッケルを有機剥離層上に付着させた。こうして有機剥離層上にニッケル層を補助金属層として形成した。
(3) Formation of Auxiliary Metal Layer The carrier having the organic release layer formed thereon is dipped in a solution of nickel sulfate having a nickel concentration of 20 g / L to obtain a liquid temperature of 45 ° C., a pH of 3, and a current density of 5 A / dm. Under the condition of 2, the amount of nickel corresponding to the thickness of 0.001 μm was deposited on the organic release layer. Thus, a nickel layer was formed as an auxiliary metal layer on the organic release layer.
(4)極薄銅箔形成
 補助金属層が形成されたキャリアを、銅濃度60g/L、硫酸濃度200g/Lの硫酸銅溶液に浸漬して、溶液温度50℃、電流密度5A/dm以上30A/dm以下で電解し、厚さ1.2μmの極薄銅箔を補助金属層上に形成した。
(4) Formation of ultra-thin copper foil The carrier on which the auxiliary metal layer is formed is immersed in a copper sulfate solution having a copper concentration of 60 g / L and a sulfuric acid concentration of 200 g / L to obtain a solution temperature of 50 ° C. and a current density of 5 A / dm 2 or more. Electrolysis was performed at 30 A / dm 2 or less to form an ultrathin copper foil having a thickness of 1.2 μm on the auxiliary metal layer.
(5)粗化処理
 上述の極薄銅箔の析出面に対して粗化処理を行った。この粗化処理は、1段階目のめっきは2回に分けて行った。各段階のめっき工程では、表1に示す銅濃度、硫酸濃度、塩素濃度及び9-フェニルアクリジン(9PA)濃度を有する硫酸銅溶液を用い、表1に示す液温で、表2に示す電流密度及び時間で電着を行った。1段階目のめっき処理における正極及び負極間の距離は50mm以上80mm以下とした。こうして例1から例6までの6種類の粗化処理銅箔を作製した。
(5) Roughening treatment A roughening treatment was performed on the deposition surface of the ultrathin copper foil described above. In this roughening treatment, the plating in the first step was performed twice. In the plating process at each stage, a copper sulfate solution having a copper concentration, a sulfuric acid concentration, a chlorine concentration and a 9-phenylacridine (9PA) concentration shown in Table 1 was used, and at the liquid temperature shown in Table 1, the current density shown in Table 2 was used. And electrodeposition were carried out at different times. The distance between the positive electrode and the negative electrode in the plating treatment in the first step was 50 mm or more and 80 mm or less. Thus, six types of roughened copper foils of Examples 1 to 6 were produced.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
(6)防錆処理
 得られたキャリア付銅箔の粗化処理層の表面に、亜鉛-ニッケル合金めっき処理及びクロメート処理からなる防錆処理を行った。まず、亜鉛濃度0.2g/L、ニッケル濃度2g/L及びピロリン酸カリウム濃度300g/Lの電解液を用い、液温40℃、電流密度0.5A/dmの条件で、粗化処理層及びキャリアの表面に亜鉛-ニッケル合金めっき処理を行った。次いで、クロム酸1g/L水溶液を用い、pH11、液温25℃、電流密度1A/dmの条件で、亜鉛-ニッケル合金めっき処理を行った表面にクロメート処理を行った。
(6) Anticorrosion treatment The surface of the roughened layer of the obtained copper foil with a carrier was subjected to antirust treatment consisting of zinc-nickel alloy plating treatment and chromate treatment. First, a roughening treatment layer was used under the conditions of a liquid temperature of 40 ° C. and a current density of 0.5 A / dm 2 using an electrolytic solution having a zinc concentration of 0.2 g / L, a nickel concentration of 2 g / L and a potassium pyrophosphate concentration of 300 g / L. The surface of the carrier was plated with zinc-nickel alloy. Then, using a 1 g / L aqueous solution of chromic acid, the surface of the zinc-nickel alloy plating treatment was subjected to chromate treatment under the conditions of pH 11, liquid temperature 25 ° C. and current density 1 A / dm 2 .
(7)シランカップリング剤処理
 3-アミノプロピルトリメトキシシラン3g/Lを含む水溶液をキャリア付銅箔の銅箔側の表面に吸着させ、電熱器により水分を蒸発させることにより、シランカップリング剤処理を行った。このとき、シランカップリング剤処理はキャリア側には行わなかった。
(7) Silane coupling agent treatment A silane coupling agent is prepared by adsorbing an aqueous solution containing 3-aminopropyltrimethoxysilane 3 g / L on the surface of the copper foil with carrier on the copper foil side and evaporating the water by an electric heater. Processed. At this time, the silane coupling agent treatment was not performed on the carrier side.
(8)銅張積層板の作製
 キャリア付銅箔を用いて銅張積層板を作製した。まず、内層基板の表面に、樹脂フィルムとしてBT樹脂プリプレグ(三菱瓦斯化学株式会社製、GHPL-830NS、厚さ0.1mm)を介してキャリア付銅箔の極薄銅箔を積層し、圧力4.0MPa、温度220℃で90分間熱圧着した後、キャリアを剥離し、銅張積層板を作製した。
(8) Preparation of copper clad laminate A copper clad laminate was prepared using a copper foil with a carrier. First, an ultra-thin copper foil with a carrier was laminated on the surface of the inner layer substrate via a BT resin prepreg (Mitsubishi Gas Chemical Co., Inc., GHPL-830NS, thickness 0.1 mm) as a resin film, and pressure 4 After thermocompression bonding at 0.0 MPa and a temperature of 220 ° C. for 90 minutes, the carrier was peeled off to prepare a copper clad laminate.
(9)樹脂レプリカの作製
 銅張積層板の表面の銅箔を硫酸・過酸化水素系エッチング液ですべて除去し、樹脂レプリカを得た。
(9) Preparation of Resin Replica All the copper foil on the surface of the copper-clad laminate was removed with a sulfuric acid / hydrogen peroxide-based etching solution to obtain a resin replica.
(10)樹脂レプリカの表面プロファイル測定
 レーザー顕微鏡(株式会社キーエンス製、VK-X100)を用いた表面粗さ解析により、樹脂レプリカの転写面(粗化処理面の表面プロファイルが転写された面)の測定をISO25178に準拠して行った。具体的には、樹脂レプリカの転写面における面積57074.677μmの領域の表面プロファイルを上記レーザー顕微鏡にて対物レンズ倍率50倍で測定した。得られた樹脂レプリカの転写面の表面プロファイルに対して面傾き補正(自動)を前処理として行った後、レーザー法により解析して、各パラメータ(スキューネスSsk、山頂点の算術平均曲Spc、山の頂点密度Spd、極点高さSxpに対するコア部の実体体積Vmcの比Vmc/Sxp)を算出した。このとき、Sフィルター及びLフィルターのいずれも使用せずに数値を計測した。以上の操作を各例につき3回行い、平均値を各例における各パラメータの値とした。結果は表3に示されるとおりであった。
(10) Measurement of Surface Profile of Resin Replica By surface roughness analysis using a laser microscope (VK-X100 manufactured by Keyence Corporation), the transfer surface of the resin replica (the surface to which the surface profile of the roughened surface was transferred) was measured. The measurement was performed according to ISO25178. Specifically, the surface profile of a region having an area of 57074.677 μm 2 on the transfer surface of the resin replica was measured with the above-mentioned laser microscope at an objective lens magnification of 50 times. After performing surface inclination correction (automatic) on the surface profile of the transfer surface of the obtained resin replica as a pretreatment, it is analyzed by a laser method, and each parameter (skewness Ssk, arithmetic mean curve Spc of peaks, peaks) is analyzed. The ratio Vmc / Sxp of the actual volume Vmc of the core portion to the vertex density Spd and the pole height Sxp of was calculated. At this time, the numerical values were measured without using either the S filter or the L filter. The above operation was repeated three times for each example, and the average value was used as the value of each parameter in each example. The results are as shown in Table 3.
(11)SAP評価用積層体の作製
 樹脂レプリカに対し、脱脂、Pd系触媒付与、及び活性化処理を行った。こうして活性化された表面に無電解銅めっき(厚さ:1μm)を行い、SAP法においてドライフィルムが張り合わせられる直前の積層体(以下、SAP評価用積層体という)を得た。これらの工程はSAP法の公知の条件に従って行った。
(11) Preparation of laminate for SAP evaluation The resin replica was subjected to degreasing, Pd-based catalyst application, and activation treatment. Electroless copper plating (thickness: 1 μm) was performed on the surface thus activated to obtain a laminate (hereinafter referred to as a SAP evaluation laminate) immediately before the dry film was laminated by the SAP method. These steps were performed according to the known conditions of the SAP method.
(12)SAP評価用積層体の評価
 上記得られたSAP評価用積層体について、各種特性の評価を以下のとおり行った。
(12) Evaluation of Laminated Body for SAP Evaluation Various characteristics of the obtained laminated body for SAP evaluation were evaluated as follows.
<差し込み評価>
 SAP評価用積層体の表面にドライフィルムを貼り付け、露光、ドライフィルム除去、及び電解めっき等を行うことで、回路幅22μm、高さ22μm、長さ150μmの回路(この段階では、各回路の下部は無電解銅めっき層により電気的に接続している状態である)を形成した。得られた回路をエッチング液(荏原ユージライト株式会社製、SAC-700W3C)で処理することにより、回路間に残存している無電解銅めっき層を溶解除去し、各回路間を絶縁した。このときのエッチング量は、予め銅箔のエッチング速度を測定しておき、いわゆるジャストエッチングよりもさらに4μm相当をエッチングする、いわゆるオーバーエッチングの条件で行った。エッチング処理の後、回路を水洗して乾燥させた。光学顕微鏡を用いて回路の断面を観察し、差込量を求めた。具体的には、図11に示されるように、樹脂レプリカ20上に形成された回路22の上部幅x(μm)及び下部幅y(μm)を測定し、その差(x-y)を差込量(μm)とした。各例について2視野で測定を行い、平均値を各例の差込量とした。結果は表3に示されるとおりであった。
<Insert evaluation>
A circuit having a circuit width of 22 μm, a height of 22 μm, and a length of 150 μm is obtained by pasting a dry film on the surface of the SAP evaluation laminate, exposing it, removing the dry film, and electrolytic plating. The lower part is in a state of being electrically connected by an electroless copper plating layer). The obtained circuit was treated with an etching solution (SAC-700W3C, manufactured by Ebara-Udylite Co., Ltd.) to dissolve and remove the electroless copper-plated layer remaining between the circuits to insulate each circuit. The amount of etching at this time was performed under the condition of so-called over-etching, in which the etching rate of the copper foil was measured in advance and etching was performed by 4 μm more than so-called just etching. After the etching process, the circuit was washed with water and dried. The cross section of the circuit was observed using an optical microscope to determine the insertion amount. Specifically, as shown in FIG. 11, the upper width x (μm) and the lower width y (μm) of the circuit 22 formed on the resin replica 20 are measured, and the difference (xy) is calculated. The amount included (μm). The measurement was carried out in two visual fields for each example, and the average value was used as the insertion amount of each example. The results are as shown in Table 3.
<めっき回路密着性(剥離強度)>
 SAP評価用積層体にドライフィルムを張り合わせ、露光及び現像を行った。現像されたドライフィルムでマスキングされた積層体にパターンめっきで銅層を析出させた後、ドライフィルムを剥離した。エッチング液(荏原ユージライト株式会社製、SAC-700W3C)で表出している無電解銅めっきを除去し、高さ20μm、幅10mmの剥離強度測定用サンプルを作成した。JIS C 6481(1996)に準拠して、評価用サンプルから銅層を剥離する際の、剥離強度を測定した。結果は表3に示されるとおりであった。
<Plating circuit adhesion (peel strength)>
A dry film was attached to the laminate for SAP evaluation, and exposed and developed. A copper layer was deposited on the laminated body masked with the developed dry film by pattern plating, and then the dry film was peeled off. The electroless copper plating exposed by an etching solution (SAC-700W3C manufactured by Ebara-Udylite Co., Ltd.) was removed to prepare a peel strength measurement sample having a height of 20 μm and a width of 10 mm. The peel strength when peeling the copper layer from the sample for evaluation was measured according to JIS C 6481 (1996). The results are as shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から分かるように、例5はVmc/Sxpの値が大きいにも関わらず、剥離強度はそれほど上昇していない。この理由は、「粉落ち」が一つの要因であると考えられる。すなわち、粉落ちが発生すると、もはやアンカー効果は得られず剥離強度は低下する傾向が見られるが、Vmc/Sxpが大きすぎるときに粉落ちが起こる。例5は軽微な粉落ちが発生したため、やや低い剥離強度に留まっていると考えられる。 As can be seen from Table 3, in Example 5, although the value of Vmc / Sxp is large, the peel strength does not increase so much. The reason for this is considered to be that "powder drop" is one factor. That is, when powder drop occurs, the anchor effect is no longer obtained and the peel strength tends to decrease, but powder drop occurs when Vmc / Sxp is too large. In Example 5, a slight powder drop occurred, so it is considered that the peel strength remains slightly low.

Claims (11)

  1.  少なくとも一方の側に処理表面を有する表面処理銅箔であって、
     前記処理表面に樹脂フィルムを熱圧着して前記処理表面の表面形状を前記樹脂フィルムの表面に転写し、エッチングにより前記表面処理銅箔を除去した場合に、残された前記樹脂フィルムの前記表面における、ISO25178に準拠して測定されるスキューネスSskが-0.6以下となる、表面処理銅箔。
    A surface-treated copper foil having a treated surface on at least one side,
    Transfer the surface shape of the treated surface to the surface of the resin film by thermocompression bonding a resin film on the treated surface, and when the surface-treated copper foil is removed by etching, in the surface of the resin film left. , A surface-treated copper foil having a skewness Ssk measured according to ISO 25178 of −0.6 or less.
  2.  前記スキューネスSskが-1.7以上-0.6以下である、請求項1に記載の表面処理銅箔。 The surface-treated copper foil according to claim 1, wherein the skewness Ssk is -1.7 or more and -0.6 or less.
  3.  前記エッチング後に残された前記樹脂フィルムの前記表面は、ISO25178に準拠して測定される山頂点の算術平均曲Spcが5000mm-1以上13000mm-1以下である、請求項1又は2に記載の表面処理銅箔。 Wherein the surface of the resin film left after the etching, the arithmetic mean songs Spc summit point which is measured in accordance with ISO25178 is less than 5000 mm -1 or higher 13000Mm -1, the surface according to claim 1 or 2 Treated copper foil.
  4.  前記エッチング後に残された前記樹脂フィルムの前記表面は、ISO25178に準拠して測定される山の頂点密度Spdが1.13×10mm-2以上1.50×10mm-2以下である、請求項1~3のいずれか一項に記載の表面処理銅箔。 The surface of the resin film left after the etching has a peak apex density Spd of 1.13 × 10 6 mm −2 or more and 1.50 × 10 6 mm −2 or less measured according to ISO25178. The surface-treated copper foil according to any one of claims 1 to 3.
  5.  前記エッチング後に残された前記樹脂フィルムの前記表面は、ISO25178に準拠して測定される極点高さSxpに対する、ISO25178に準拠して測定されるコア部の実体体積Vmcの比であるVmc/Sxpが0.39以上0.44以下である、請求項1~4のいずれか一項に記載の表面処理銅箔。 The surface of the resin film left after the etching has a ratio Vmc / Sxp, which is the ratio of the physical volume Vmc of the core part measured according to ISO25178 to the pole height Sxp measured according to ISO25178. The surface-treated copper foil according to any one of claims 1 to 4, which is 0.39 or more and 0.44 or less.
  6.  プリント配線板用の絶縁樹脂層に凹凸形状を転写するために用いられる、請求項1~5のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 5, which is used for transferring an uneven shape to an insulating resin layer for a printed wiring board.
  7.  セミアディティブ法(SAP)によるプリント配線板の作製に用いられる、請求項1~6のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 6, which is used for producing a printed wiring board by a semi-additive method (SAP).
  8.  キャリアと、該キャリア上に設けられた剥離層と、該剥離層上に前記処理表面を外側にして設けられた請求項1~7のいずれか一項に記載の表面処理銅箔とを備えた、キャリア付銅箔。 A carrier, a release layer provided on the carrier, and the surface-treated copper foil according to any one of claims 1 to 7 provided on the release layer with the treated surface facing outward. , Copper foil with carrier.
  9.  請求項1~7のいずれか一項に記載の表面処理銅箔又は請求項8に記載のキャリア付銅箔を備えた銅張積層板。 A copper clad laminate comprising the surface-treated copper foil according to any one of claims 1 to 7 or the carrier-added copper foil according to claim 8.
  10.  請求項1~7のいずれか一項に記載の表面処理銅箔又は請求項8に記載のキャリア付銅箔を用いて得られたプリント配線板。 A printed wiring board obtained by using the surface-treated copper foil according to any one of claims 1 to 7 or the copper foil with a carrier according to claim 8.
  11.  請求項1~7のいずれか一項に記載の表面処理銅箔又は請求項8に記載のキャリア付銅箔を用いてプリント配線板を製造することを特徴とする、プリント配線板の製造方法。
     
    A method for manufacturing a printed wiring board, which comprises manufacturing the printed wiring board using the surface-treated copper foil according to claim 1 or the copper foil with a carrier according to claim 8.
PCT/JP2019/038866 2018-11-19 2019-10-02 Surface-treated copper foil, carrier-attached copper foil, copper-clad laminate, and printed wiring board WO2020105289A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020558136A JP7453154B2 (en) 2018-11-19 2019-10-02 Surface treated copper foil, copper foil with carrier, copper clad laminates and printed wiring boards
KR1020217008111A KR20210090608A (en) 2018-11-19 2019-10-02 Surface-treated copper foil, copper foil with carrier, copper clad laminate and printed wiring board
CN201980073918.XA CN112969824A (en) 2018-11-19 2019-10-02 Surface-treated copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-216720 2018-11-19
JP2018216720 2018-11-19

Publications (1)

Publication Number Publication Date
WO2020105289A1 true WO2020105289A1 (en) 2020-05-28

Family

ID=70773985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038866 WO2020105289A1 (en) 2018-11-19 2019-10-02 Surface-treated copper foil, carrier-attached copper foil, copper-clad laminate, and printed wiring board

Country Status (5)

Country Link
JP (1) JP7453154B2 (en)
KR (1) KR20210090608A (en)
CN (1) CN112969824A (en)
TW (1) TWI740231B (en)
WO (1) WO2020105289A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7174869B1 (en) 2021-07-19 2022-11-17 長春石油化學股▲分▼有限公司 Surface treated copper foil and copper clad laminate
WO2022255420A1 (en) * 2021-06-03 2022-12-08 三井金属鉱業株式会社 Roughened copper foil, copper-clad laminated board, and printed wiring board
JP7206364B1 (en) 2021-07-06 2023-01-17 長春石油化學股▲分▼有限公司 Surface treated copper foil and copper clad laminate
WO2023042614A1 (en) * 2021-09-14 2023-03-23 株式会社カネカ Solar cell
WO2024070248A1 (en) * 2022-09-28 2024-04-04 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate, and printed wiring board

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11540389B1 (en) 2021-07-06 2022-12-27 Chang Chun Petrochemical Co., Ltd. Surface-treated copper foil and copper clad laminate
CN113943954B (en) * 2021-12-01 2023-06-30 青海诺德新材料有限公司 Preparation method of 2-3 micron pinhole-free carrier electrolytic copper foil

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038716A1 (en) * 2012-09-10 2014-03-13 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminated board using same
WO2015033917A1 (en) * 2013-09-05 2015-03-12 三井金属鉱業株式会社 Surface-processed copper foil, copper clad laminate obtained using such surface-processed copper foil, and printed wiring board
WO2017006739A1 (en) * 2015-07-03 2017-01-12 三井金属鉱業株式会社 Roughened copper foil, copper-clad laminate and printed wiring board
WO2017179416A1 (en) * 2016-04-14 2017-10-19 三井金属鉱業株式会社 Treated surface copper foil, copper foil with carrier as well as methods for manufacturing copper-clad laminate and printed circuit board using same
JP6293365B2 (en) * 2015-03-31 2018-03-14 三井金属鉱業株式会社 Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4538375B2 (en) * 2005-05-31 2010-09-08 日鉱金属株式会社 Metal materials for printed wiring boards
JP6497881B2 (en) * 2013-10-04 2019-04-10 Jx金属株式会社 Rolled copper foil, copper-clad laminate using the same, printed wiring board, electronic equipment, circuit connecting member manufacturing method, and circuit connecting member
CN105814242B (en) * 2013-12-10 2018-08-10 Jx金属株式会社 The manufacturing method of surface treatment copper foil, copper-cover laminated plate, printing distributing board, e-machine and printing distributing board
CN108697006B (en) * 2017-03-31 2021-07-16 Jx金属株式会社 Surface-treated copper foil, copper foil with carrier, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038716A1 (en) * 2012-09-10 2014-03-13 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminated board using same
WO2015033917A1 (en) * 2013-09-05 2015-03-12 三井金属鉱業株式会社 Surface-processed copper foil, copper clad laminate obtained using such surface-processed copper foil, and printed wiring board
JP6293365B2 (en) * 2015-03-31 2018-03-14 三井金属鉱業株式会社 Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
WO2017006739A1 (en) * 2015-07-03 2017-01-12 三井金属鉱業株式会社 Roughened copper foil, copper-clad laminate and printed wiring board
WO2017179416A1 (en) * 2016-04-14 2017-10-19 三井金属鉱業株式会社 Treated surface copper foil, copper foil with carrier as well as methods for manufacturing copper-clad laminate and printed circuit board using same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255420A1 (en) * 2021-06-03 2022-12-08 三井金属鉱業株式会社 Roughened copper foil, copper-clad laminated board, and printed wiring board
JP7206364B1 (en) 2021-07-06 2023-01-17 長春石油化學股▲分▼有限公司 Surface treated copper foil and copper clad laminate
JP2023012409A (en) * 2021-07-06 2023-01-25 長春石油化學股▲分▼有限公司 Surface-treated copper foil and copper clad laminate
JP7174869B1 (en) 2021-07-19 2022-11-17 長春石油化學股▲分▼有限公司 Surface treated copper foil and copper clad laminate
US11519092B1 (en) * 2021-07-19 2022-12-06 Chang Chun Petrochemical Co., Ltd. Surface-treated copper foil and copper clad laminate
JP2023014971A (en) * 2021-07-19 2023-01-31 長春石油化學股▲分▼有限公司 Surface treated copper foil, and copper clad laminate
WO2023042614A1 (en) * 2021-09-14 2023-03-23 株式会社カネカ Solar cell
WO2024070248A1 (en) * 2022-09-28 2024-04-04 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate, and printed wiring board

Also Published As

Publication number Publication date
JPWO2020105289A1 (en) 2021-09-30
KR20210090608A (en) 2021-07-20
CN112969824A (en) 2021-06-15
JP7453154B2 (en) 2024-03-19
TWI740231B (en) 2021-09-21
TW202020233A (en) 2020-06-01

Similar Documents

Publication Publication Date Title
JP6945523B2 (en) Surface-treated copper foil, copper foil with carrier, and methods for manufacturing copper-clad laminates and printed wiring boards using them.
WO2020105289A1 (en) Surface-treated copper foil, carrier-attached copper foil, copper-clad laminate, and printed wiring board
JP6905157B2 (en) Roughened copper foil, copper foil with carrier, copper-clad laminate and printed wiring board
KR102273442B1 (en) Roughened copper foil, copper foil provided with carrier, copper-clad laminated sheet, and printed wiring board
KR102031065B1 (en) Ultrathin copper foil with carrier and method for manufacturing same, copper-clad laminate, and method for manufacturing printed-wiring board
JP6430092B1 (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
JP7166335B2 (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
JP7259093B2 (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
KR102531073B1 (en) Ultra-thin copper foil with carrier, manufacturing method therefor, copper-clad laminate, and printed wiring board
WO2020195748A1 (en) Metal foil for printed wiring board, metal foil with carrier, and metal-clad laminate, and method for manufacturing printed wiring board using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887278

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558136

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19887278

Country of ref document: EP

Kind code of ref document: A1