WO2014157728A1 - Copper foil with carrier, printed circuit board, copper clad laminated sheet, electronic device, and printed circuit board fabrication method - Google Patents

Copper foil with carrier, printed circuit board, copper clad laminated sheet, electronic device, and printed circuit board fabrication method Download PDF

Info

Publication number
WO2014157728A1
WO2014157728A1 PCT/JP2014/059570 JP2014059570W WO2014157728A1 WO 2014157728 A1 WO2014157728 A1 WO 2014157728A1 JP 2014059570 W JP2014059570 W JP 2014059570W WO 2014157728 A1 WO2014157728 A1 WO 2014157728A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
carrier
copper foil
copper
ultrathin
Prior art date
Application number
PCT/JP2014/059570
Other languages
French (fr)
Japanese (ja)
Inventor
倫也 古曳
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51624683&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014157728(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to CN201480019381.6A priority Critical patent/CN105142897B/en
Priority to KR1020157031096A priority patent/KR101803165B1/en
Publication of WO2014157728A1 publication Critical patent/WO2014157728A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/018Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of a noble metal or a noble metal alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/205Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using a pattern electroplated or electroformed on a metallic carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces

Definitions

  • the present invention relates to a copper foil with a carrier, a printed wiring board, a copper clad laminate, an electronic device, and a method for manufacturing a printed wiring board.
  • a printed wiring board is generally manufactured through a process of forming a copper-clad laminate by bonding an insulating substrate to copper foil and then forming a conductor pattern on the copper foil surface by etching.
  • higher density mounting of components and higher frequency of signals have progressed, and conductor patterns have become finer (fine pitch) and higher frequency than printed circuit boards. Response is required.
  • the peel strength between the ultrathin copper layer and the resin base material is mainly sufficient, and the peel strength Is required to be sufficiently retained after high-temperature heating, wet processing, soldering, chemical processing, and the like.
  • a method of increasing the peel strength between the ultrathin copper layer and the resin base material generally, a large amount of roughened particles are adhered on the ultrathin copper layer having a large surface profile (unevenness, roughness). The method is representative.
  • Patent Document 1 a copper foil with a carrier that is not subjected to a roughening treatment on the surface of an ultrathin copper layer is used as a copper foil with a carrier for use in a fine circuit including a semiconductor package substrate. It has been tried.
  • the adhesion (peeling strength) between the ultrathin copper layer not subjected to such roughening treatment and the resin is affected by the low profile (unevenness, roughness, roughness) of the general copper foil for printed wiring boards. There is a tendency to decrease when compared. Therefore, the further improvement is calculated
  • the surface of the ultrathin copper foil with carrier that contacts (adheres) the polyimide resin substrate is Ni. It is described that a layer or / and a Ni alloy layer are provided, a chromate layer is provided, a Cr layer or / and a Cr alloy layer are provided, a Ni layer and a chromate layer are provided, and a Ni layer and a Cr layer are provided. Has been.
  • the adhesion strength between the polyimide resin substrate and the ultra-thin copper foil with carrier is not roughened, or the desired adhesive strength is achieved while reducing the degree of the roughening treatment (miniaturization). It has gained. Further, it is described that the surface treatment is performed with a silane coupling agent or the rust prevention treatment is performed.
  • the fine circuit formation method that accompanies the narrowing of the pitch is a method in which a wiring circuit is formed on an ultrathin copper layer, and then the ultrathin copper layer is removed by etching with a sulfuric acid-hydrogen peroxide etchant (MSAP: Modified-Semi). -Additive-Process) is used, the laser holeability of the ultra-thin copper layer is an important item in fabricating high-density integrated circuit boards.
  • MSAP sulfuric acid-hydrogen peroxide etchant
  • Patent Document 4 describes a copper-clad laminate with good laser drillability, but according to the study of the present inventors, there is still room for improvement in terms of etching properties. is there.
  • an object of the present invention is to provide a copper foil with a carrier, which is excellent in laser holeability of an ultrathin copper layer and is suitable for manufacturing a high-density integrated circuit board.
  • the present inventor conducted extensive research and found that a laser microscope on the peeling side of the ultrathin copper layer when the ultrathin copper layer was peeled off from the copper foil with a carrier that had been subjected to a predetermined heat treatment. It was found that controlling the surface roughness measured by the method is extremely effective in improving the laser holeability of the ultrathin copper layer.
  • the present invention is a copper foil with a carrier provided with a carrier, an intermediate layer, and an ultrathin copper layer in this order. After heating the copper foil with a carrier at 220 ° C. for 2 hours, JIS C 6471 When the ultrathin copper layer is peeled off according to the above, the copper foil with a carrier whose surface roughness Sz on the intermediate layer side of the ultrathin copper layer measured with a laser microscope is 1.40 ⁇ m or more and 4.05 ⁇ m or less It is.
  • the copper foil with a carrier of the present invention is measured with a laser microscope when the ultra thin copper layer is peeled off according to JIS C 6471 after the copper foil with a carrier is heated at 220 ° C. for 2 hours.
  • the standard deviation of the surface roughness Sz on the intermediate layer side of the ultrathin copper layer is 1.30 ⁇ m or less.
  • the copper foil with a carrier in another embodiment, when the copper foil with a carrier is heated at 220 ° C. for 2 hours and then the ultrathin copper layer is peeled off in accordance with JIS C 6471, a laser microscope is used.
  • the standard deviation of the surface roughness Sz on the intermediate layer side of the ultrathin copper layer to be measured is 0.01 ⁇ m or more and 1.20 ⁇ m or less.
  • the copper foil with a carrier when the copper foil with a carrier is heated at 220 ° C. for 2 hours and then the ultrathin copper layer is peeled off according to JIS C 6471, a laser microscope
  • the surface roughness Sz of the ultrathin copper layer measured on the intermediate layer side is 1.60 ⁇ m or more and 3.70 ⁇ m or less.
  • Another aspect of the present invention is a copper foil with a carrier provided with a carrier, an intermediate layer, and an ultrathin copper layer in this order, and after heating the copper foil with a carrier at 220 ° C. for 2 hours, JIS
  • the surface roughness Ra on the intermediate layer side of the ultrathin copper layer measured with a laser microscope is 0.14 ⁇ m or more and 0.35 ⁇ m or less. Copper foil.
  • the copper foil with a carrier when the copper foil with a carrier is heated at 220 ° C. for 2 hours and then the ultrathin copper layer is peeled off in accordance with JIS C 6471, a laser microscope is used.
  • the standard deviation of the surface roughness Ra on the intermediate layer side of the ultrathin copper layer to be measured is 0.11 ⁇ m or less.
  • the copper foil with a carrier when the copper foil with a carrier is heated at 220 ° C. for 2 hours and then the ultrathin copper layer is peeled off in accordance with JIS C 6471, a laser microscope is used.
  • the standard deviation of the surface roughness Ra on the intermediate layer side of the ultrathin copper layer to be measured is 0.001 ⁇ m or more and 0.10 ⁇ m or less.
  • a carrier-attached copper foil comprising a carrier, an intermediate layer, and an ultrathin copper layer in this order, After heating the copper foil with a carrier at 220 ° C. for 2 hours and then peeling off the ultrathin copper layer in accordance with JIS C 6471, the surface on the intermediate layer side of the ultrathin copper layer measured with a laser microscope
  • This is a copper foil with a carrier having a roughness Rz of 0.62 ⁇ m or more and 1.59 ⁇ m or less and a standard deviation of the surface roughness Rz of 0.51 ⁇ m or less.
  • the copper foil with a carrier when the copper foil with a carrier is heated at 220 ° C. for 2 hours and then the ultrathin copper layer is peeled off in accordance with JIS C 6471, a laser microscope is used.
  • the standard deviation of the surface roughness Rz on the intermediate layer side of the ultrathin copper layer to be measured is 0.01 ⁇ m or more and 0.48 ⁇ m or less.
  • the copper foil with a carrier when the copper foil with a carrier is heated at 220 ° C. for 2 hours and then the ultrathin copper layer is peeled off in accordance with JIS C 6471, a laser microscope is used.
  • the sharpness Sku of the surface height distribution on the intermediate layer side of the ultrathin copper layer to be measured is 0.50 or more and 3.70 or less.
  • the copper foil with a carrier when the copper foil with a carrier is heated at 220 ° C. for 2 hours and then the ultrathin copper layer is peeled off in accordance with JIS C 6471, a laser microscope is used.
  • the sharpness Sku of the surface height distribution on the intermediate layer side of the ultrathin copper layer to be measured is 1.00 or more and 3.60 or less.
  • the thickness of the carrier is 5 to 70 ⁇ m.
  • the copper foil with a carrier of the present invention has a roughening treatment layer on the surface of the ultrathin copper layer in yet another aspect.
  • the roughening layer is selected from the group consisting of copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, iron, vanadium, cobalt, and zinc. It is a layer made of any simple substance or an alloy containing any one or more kinds.
  • the copper foil with a carrier of the present invention is one or more selected from the group consisting of a heat-resistant layer, a rust preventive layer, a chromate treatment layer, and a silane coupling treatment layer on the surface of the roughening treatment layer. It has a layer of.
  • a resin layer is provided on the ultrathin copper layer.
  • a resin layer is provided on the roughening treatment layer.
  • a resin layer is formed on one or more layers selected from the group consisting of the heat-resistant layer, the rust-proof layer, the chromate-treated layer, and the silane coupling-treated layer.
  • the present invention is a printed wiring board manufactured using the copper foil with a carrier of the present invention.
  • the present invention is a copper-clad laminate manufactured using the carrier-attached copper foil of the present invention.
  • the present invention is an electronic device manufactured using the printed wiring board of the present invention.
  • the step of preparing the copper foil with carrier and the insulating substrate of the present invention the step of laminating the copper foil with carrier and the insulating substrate, and the copper foil with carrier and the insulating substrate And then forming a copper-clad laminate through a step of peeling the carrier of the copper foil with carrier, and then by any one of the semi-additive method, subtractive method, partly additive method or modified semi-additive method A method of manufacturing a printed wiring board including a step of forming a circuit.
  • the step of forming a circuit on the ultrathin copper layer side surface of the copper foil with carrier of the present invention, the ultrathin copper layer of the copper foil with carrier so that the circuit is buried A step of forming a resin layer on a side surface, a step of forming a circuit on the resin layer, a step of peeling the carrier after forming a circuit on the resin layer, and after peeling the carrier, It is a manufacturing method of a printed wiring board including the process of exposing the circuit buried in the resin layer formed in the ultra-thin copper layer side surface by removing the ultra-thin copper layer.
  • a copper foil with a carrier that is excellent in laser holeability of an ultrathin copper layer and is suitable for manufacturing a high-density integrated circuit board.
  • FIGS. 8A to 8C are schematic views of a cross section of a wiring board in a process up to circuit plating and resist removal according to a specific example of a method of manufacturing a printed wiring board using the carrier-attached copper foil of the present invention.
  • D to F are schematic views of the cross section of the wiring board in the process from the lamination of the resin and the second-layer copper foil with a carrier to the laser drilling according to a specific example of the method for manufacturing a printed wiring board using the copper foil with a carrier of the present invention. It is.
  • GI are schematic views of the cross section of the wiring board in the steps from via fill formation to first layer carrier peeling, according to a specific example of the method for producing a printed wiring board using the copper foil with carrier of the present invention.
  • J to K are schematic views of a cross section of a wiring board in steps from flash etching to bump / copper pillar formation according to a specific example of a method of manufacturing a printed wiring board using the carrier-attached copper foil of the present invention.
  • the copper foil with a carrier of the present invention includes a carrier, an intermediate layer laminated on the carrier, and an ultrathin copper layer laminated on the intermediate layer.
  • the method of using the copper foil with carrier itself is well known to those skilled in the art.
  • the surface of the ultra-thin copper layer is made of paper base phenol resin, paper base epoxy resin, synthetic fiber cloth base epoxy resin, glass cloth / paper composite. Ultra-thin bonded to an insulating substrate, bonded to an insulating substrate such as a base epoxy resin, glass cloth / glass nonwoven fabric composite epoxy resin and glass cloth base epoxy resin, polyester film, polyimide film, etc.
  • the copper layer can be etched into the intended conductor pattern to finally produce a printed wiring board.
  • the copper foil with a carrier of the present invention is an electrode measured with a laser microscope when the ultra thin copper layer is peeled off in accordance with JIS C 6471 after heating the copper foil with a carrier at 220 ° C. for 2 hours.
  • the surface roughness Sz (10-point height on the surface) on the intermediate layer side of the thin copper layer is controlled to be 1.40 ⁇ m or more and 4.05 ⁇ m or less.
  • a carrier-attached copper foil is bonded to an insulating substrate, the carrier is peeled off after thermocompression bonding, and an ultrathin copper layer bonded to the insulating substrate is etched into a target conductor pattern to form a circuit. In this way, a printed wiring board is produced with a multi-layered substrate.
  • the laser holeability of the ultrathin copper layer is an important characteristic that greatly affects the design and productivity of the integrated circuit because it relates to various conditions such as hole diameter accuracy and laser output.
  • the laser piercing property of this ultra-thin copper layer is measured with a laser microscope when the copper foil with carrier is heated at 220 ° C.
  • the surface roughness Sz on the intermediate layer side of the ultrathin copper layer to be measured is improved by controlling it to 1.40 ⁇ m or more and 4.05 ⁇ m or less.
  • the surface roughness Sz on the intermediate layer side of the ultra-thin copper layer measured with the laser microscope is less than 1.40 ⁇ m, the surface roughness of the ultra-thin copper layer is insufficient, so Absorbability deteriorates, making it difficult to make a hole, and even if it is made a problem, it becomes a small hole.
  • the surface roughness Sz on the intermediate layer side of the ultrathin copper layer measured by the laser microscope is more preferably 1.60 ⁇ m or more and 3.70 ⁇ m or less, preferably 1.80 ⁇ m or more and 3.50 ⁇ m or less, and 2.40 ⁇ m or more and 3 or less. More preferably, it is 70 ⁇ m or less.
  • the “heating at 220 ° C. for 2 hours” indicates a typical heating condition in the case where a copper foil with a carrier is bonded to an insulating substrate and thermocompression bonded.
  • the copper foil with a carrier of the present invention is the ultrathin film measured by a laser microscope when the copper foil with a carrier is heated at 220 ° C. for 2 hours and then the ultrathin copper layer is peeled off according to JIS C 6471.
  • the standard deviation of the surface roughness Sz on the intermediate layer side of the copper layer is controlled to be 1.30 ⁇ m or less.
  • the variation of the laser hole diameter increases (that is, the standard deviation increases) or etching. There is a possibility that the problem that the variation of the factor becomes large (that is, the standard deviation becomes large) occurs.
  • the standard deviation of the surface roughness Sz on the intermediate layer side of the ultrathin copper layer measured with the laser microscope is more preferably 0.01 ⁇ m or more and 1.20 ⁇ m or less, and 0.05 ⁇ m or more and 1.10 ⁇ m or less. It is still more preferable that it is 0.10 ⁇ m or more and 1.00 ⁇ m or less.
  • the copper foil with a carrier of the present invention is measured with a laser microscope when the copper foil with a carrier is heated at 220 ° C. for 2 hours and then the ultrathin copper layer is peeled off in accordance with JIS C 6471.
  • the surface roughness Ra (arithmetic average roughness) on the intermediate layer side of the ultrathin copper layer is controlled to be 0.14 ⁇ m or more and 0.35 ⁇ m or less.
  • a carrier-attached copper foil is bonded to an insulating substrate, the carrier is peeled off after thermocompression bonding, and an ultrathin copper layer bonded to the insulating substrate is etched into a target conductor pattern to form a circuit. In this way, a printed wiring board is produced with a multi-layered substrate.
  • the surface roughness Ra on the intermediate layer side of the ultrathin copper layer to be measured is improved by controlling it to 0.14 ⁇ m or more and 0.35 ⁇ m or less. If the surface roughness Ra on the intermediate layer side of the ultra-thin copper layer measured with the laser microscope is less than 0.14 ⁇ m, the surface roughness of the ultra-thin copper layer is insufficient and Absorbability deteriorates, making it difficult to make a hole, and even if it is made a problem, it becomes a small hole.
  • the surface roughness Ra on the intermediate layer side of the ultrathin copper layer measured by the laser microscope is preferably 0.16 ⁇ m or more and 0.32 ⁇ m or less, more preferably 0.18 ⁇ m or more and 0.32 ⁇ m or less, and 0.20 ⁇ m or more and 0 or less. More preferably, it is not more than 32 ⁇ m.
  • the surface roughness Ra on the intermediate layer side of the ultrathin copper layer measured with the laser microscope is preferably 0.14 ⁇ m or more and 0.30 ⁇ m or less.
  • the “heating at 220 ° C. for 2 hours” indicates a typical heating condition in the case where a copper foil with a carrier is bonded to an insulating substrate and thermocompression bonded.
  • the copper foil with a carrier of the present invention is measured by a laser microscope when the ultra thin copper layer is peeled off in accordance with JIS C 6471 after heating the copper foil with a carrier at 220 ° C. for 2 hours. It is preferable that the standard deviation of the surface roughness Ra on the intermediate layer side of the ultrathin copper layer is controlled to be 0.11 ⁇ m or less. When the standard deviation of the surface roughness Ra on the intermediate layer side of the ultrathin copper layer measured by the laser microscope exceeds 0.11 ⁇ m, the variation in the laser hole diameter becomes large (that is, the standard deviation becomes large). There is a possibility that the problem that the variation of the etching factor becomes large (that is, the standard deviation becomes large) occurs.
  • the standard deviation of the surface roughness Ra on the intermediate layer side of the ultrathin copper layer measured with the laser microscope is preferably 0.001 ⁇ m or more and 0.10 ⁇ m or less, and 0.003 ⁇ m or more and 0.09 ⁇ m. Is more preferably 0.005 ⁇ m or more and 0.08 ⁇ m or less, and further preferably 0.005 ⁇ m or more and 0.06 ⁇ m or less.
  • the carrier-attached copper foil of the present invention in yet another aspect, measured with a laser microscope when the ultra-thin copper layer was peeled off in accordance with JIS C 6471 after the carrier-attached copper foil was heated at 220 ° C. for 2 hours.
  • the surface roughness Rz (ten-point average roughness) on the intermediate layer side of the ultrathin copper layer is controlled to be 0.62 ⁇ m or more and 1.59 ⁇ m or less.
  • a carrier-attached copper foil is bonded to an insulating substrate, the carrier is peeled off after thermocompression bonding, and an ultrathin copper layer bonded to the insulating substrate is etched into a target conductor pattern to form a circuit.
  • a printed wiring board is produced with a multi-layered substrate.
  • a laser hole is formed, and the inner layer and the outer layer are connected through the hole.
  • it is of course a problem that it is difficult to make a laser hole in an ultra-thin copper layer, and it is necessary to form the laser hole to an appropriate size to cause various problems even if it is too large or too small.
  • the laser holeability of the ultrathin copper layer is an important characteristic that greatly affects the design and productivity of the integrated circuit because it relates to various conditions such as hole diameter accuracy and laser output.
  • the laser piercing property of this ultra-thin copper layer is measured with a laser microscope when the copper foil with carrier is heated at 220 ° C. for 2 hours and then peeled off according to JIS C 6471. It has been found that the surface roughness Rz on the intermediate layer side of the ultrathin copper layer to be measured is improved by controlling it to 0.62 ⁇ m or more and 1.59 ⁇ m or less.
  • the surface roughness Rz on the intermediate layer side of the ultra-thin copper layer measured with the laser microscope is less than 0.62 ⁇ m, the surface roughness of the ultra-thin copper layer is insufficient and the laser in the drilling process Absorbability deteriorates, making it difficult to make a hole, and even if it is made a problem, it becomes a small hole.
  • the surface roughness Rz on the intermediate layer side of the ultrathin copper layer measured by the laser microscope exceeds 1.59 ⁇ m, the surface roughness of the ultrathin copper layer is too large, and the laser during the drilling process As a result, there is a problem that the absorbability of water becomes excessive and the hole becomes too large.
  • the surface roughness Rz of the ultrathin copper layer measured by the laser microscope is preferably 0.70 ⁇ m or more and 1.52 ⁇ m or less, more preferably 0.80 ⁇ m or more and 1.50 ⁇ m or less, and 0.90 ⁇ m or more and 1 More preferably, it is 40 ⁇ m or less.
  • the surface roughness Rz on the intermediate layer side of the ultrathin copper layer measured with the laser microscope is more preferably 1.10 ⁇ m or more and 1.50 ⁇ m or less.
  • the “heating at 220 ° C. for 2 hours” indicates a typical heating condition in the case where a copper foil with a carrier is bonded to an insulating substrate and thermocompression bonded.
  • the copper foil with a carrier of the present invention is the ultrathin film measured by a laser microscope when the copper foil with a carrier is heated at 220 ° C. for 2 hours and then the ultrathin copper layer is peeled off according to JIS C 6471.
  • the standard deviation of the surface roughness Rz on the intermediate layer side of the copper layer is controlled to be 0.51 ⁇ m or less.
  • the standard deviation of the surface roughness Rz on the intermediate layer side of the ultra-thin copper layer measured with the laser microscope exceeds 0.51 ⁇ m, the variation of the laser hole diameter becomes large (that is, the standard deviation becomes large) or etching. There arises a problem that the variation of the factor becomes large (that is, the standard deviation becomes large).
  • the standard deviation of the surface roughness Rz on the intermediate layer side of the ultrathin copper layer measured with the laser microscope is preferably 0.01 ⁇ m or more and 0.48 ⁇ m or less, and 0.04 ⁇ m or more and 0.40 ⁇ m or less. More preferably, it is 0.04 ⁇ m or more and 0.35 ⁇ m or less, and more preferably 0.05 ⁇ m or more and 0.20 ⁇ m or less.
  • the copper foil with a carrier of the present invention is an ultrathin copper measured by a laser microscope when the copper foil with a carrier is heated at 220 ° C. for 2 hours and then the ultrathin copper layer is peeled off according to JIS C 6471.
  • the degree of sharpness Sku (Cultosis) of the surface height distribution on the intermediate layer side of the layer is controlled to 0.50 or more and 3.70 or less. If the Sku is less than 0.50, the shape of the convex part on the surface of the ultra-thin copper layer will be flat, so that the laser absorbability during drilling will be poor and it will be difficult to drill holes. There is a possibility that the problem of becoming a small hole may occur.
  • the copper foil with a carrier of the present invention is an ultrathin copper layer measured with a laser microscope when the copper foil with a carrier is heated at 220 ° C. for 2 hours and then peeled off in accordance with JIS C 6471.
  • the sharpness Sku of the surface height distribution on the intermediate layer side is more preferably controlled to 1.00 or more and 3.60 or less, and even more preferably controlled to 1.50 or more and 3.30 or less, More preferably, it is controlled to 1.50 or more and 3.20 or less, more preferably 1.50 or more and 3.10 or less, and more preferably 1.50 or more and 3.00 or less. Even more preferably.
  • Carriers that can be used in the present invention are typically metal foils or resin films, such as copper foil, copper alloy foil, nickel foil, nickel alloy foil, iron foil, iron alloy foil, stainless steel foil, aluminum foil, aluminum. It is provided in the form of alloy foil, insulating resin film, polyimide film, LCD film. Carriers that can be used in the present invention are typically provided in the form of rolled copper foil or electrolytic copper foil. In general, the electrolytic copper foil is produced by electrolytic deposition of copper from a copper sulfate plating bath onto a drum of titanium or stainless steel, and the rolled copper foil is produced by repeating plastic working and heat treatment with a rolling roll.
  • copper foil materials include high-purity copper such as tough pitch copper (JIS H3100 alloy number C1100) and oxygen-free copper (JIS H3100 alloy number C1020 or JIS H3510 alloy number C1011), for example, Sn-containing copper, Ag-containing copper, Cr A copper alloy such as a copper alloy added with Zr or Mg, or a Corson copper alloy added with Ni, Si or the like can also be used.
  • high-purity copper such as tough pitch copper (JIS H3100 alloy number C1100) and oxygen-free copper (JIS H3100 alloy number C1020 or JIS H3510 alloy number C1011)
  • Sn-containing copper Ag-containing copper
  • Cr A copper alloy such as a copper alloy added with Zr or Mg, or a Corson copper alloy added with Ni, Si or the like can also be used.
  • copper foil is also included.
  • the thickness of the carrier that can be used in the present invention is not particularly limited, but may be appropriately adjusted to a thickness suitable for serving as a carrier, for example, 5 ⁇ m or more. However, if it is too thick, the production cost becomes high, so generally it is preferably 35 ⁇ m or less. Accordingly, the thickness of the carrier is typically 8 to 70 ⁇ m, more typically 12 to 70 ⁇ m, and more typically 18 to 35 ⁇ m. Moreover, it is preferable that the thickness of a carrier is small from a viewpoint of reducing raw material cost.
  • the thickness of the carrier is typically 5 ⁇ m or more and 35 ⁇ m or less, preferably 5 ⁇ m or more and 18 ⁇ m or less, preferably 5 ⁇ m or more and 12 ⁇ m or less, preferably 5 ⁇ m or more and 11 ⁇ m or less, preferably 5 ⁇ m or more and 10 ⁇ m or less. It is as follows.
  • the thickness of a carrier is small, it is easy to generate
  • R 1 and R 2 are selected from the group consisting of a hydroxyalkyl group, an ether group, an aryl group, an aromatic substituted alkyl group, an unsaturated hydrocarbon group, and an alkyl group.
  • the surface roughness Sz, Ra, Rz on the intermediate layer side of the ultrathin copper layer, their standard deviation, and Sku are controlled by adjusting the surface form of the carrier on the ultrathin copper layer side.
  • Examples of the adjustment of the surface form of the carrier on the ultrathin copper layer side include the following adjustment methods (1) to (3).
  • the form of the ultrathin copper layer side surface of the carrier is close to the form of the carrier side ultrathin copper layer surface. Therefore, by adjusting the form of the surface of the carrier on the side of the ultrathin copper layer, an ultrathin copper foil with a carrier having the form of the surface of the desired carrier side ultrathin copper layer can be obtained.
  • a soft etching process or a reverse electrolysis process is performed on a carrier having low roughness and high gloss.
  • the surface roughness Rz is 0.2 ⁇ m to 0.6 ⁇ m, or the surface roughness Ra is 0.2 ⁇ m to 0.6 ⁇ m, or the surface roughness Sz is 0.2 ⁇ m to 0.6 ⁇ m, and 60 degrees.
  • Soft etching treatment for example, an aqueous solution of 5-15 vol% sulfuric acid and 0.5-5.0 wt% hydrogen peroxide, 0.5-10% at 10-30 ° C for carriers having a specular gloss of 500% or more.
  • An etching process for 10 minutes) or a reverse electrolytic process (a process for forming irregularities by electropolishing the glossy surface).
  • the “reverse electropolishing” is electropolishing.
  • electropolishing since electropolishing is intended for smoothing, if electropolishing is applied to an electrolytic copper foil, the normal idea is that the surface opposite to the glossy surface (rough surface) is the target. However, since the uneven surface is formed by electropolishing on the glossy surface here, the electropolishing process is the opposite of the normal one, that is, the reverse electropolishing process.
  • the amount of copper dissolved by reverse electrolysis is 2 to 20 g / m 2 .
  • the current density in the reverse electropolishing process is 0.5 to 50 A / dm 2 .
  • the oil film equivalent is expressed by the following equation.
  • Oil film equivalent ⁇ (rolling oil viscosity [cSt]) ⁇ (sheet feeding speed [mpm] + roll peripheral speed [mpm]) ⁇ / ⁇ (roll biting angle [rad]) ⁇ (yield stress of material [kg / mm 2 ]) ⁇
  • the rolling oil viscosity [cSt] is a kinematic viscosity at 40 ° C.
  • a known method such as using highly viscous rolling oil or increasing the sheet passing speed may be used.
  • a carrier is manufactured under predetermined electrolytic conditions. Specifically, using a copper sulfate electrolyte (copper concentration: 80 to 120 g / L, sulfuric acid concentration 70 to 90 g / L), high concentration glue (Nika concentration: 3 to 10 ppm by mass) as an additive, An electrolytic copper foil carrier is produced under the conditions of a high current density (75 to 110 A / dm 2 ) and a high linear flow rate (3.7 to 5.0 m / sec).
  • a copper sulfate electrolyte copper concentration: 80 to 120 g / L, sulfuric acid concentration 70 to 90 g / L
  • high concentration glue Nika concentration: 3 to 10 ppm by mass
  • An intermediate layer is provided on one or both sides of the carrier. Another layer may be provided between the carrier and the intermediate layer.
  • the ultrathin copper layer is hardly peeled off from the carrier before the copper foil with the carrier is laminated on the insulating substrate, while the ultrathin copper layer is separated from the carrier after the lamination step on the insulating substrate.
  • the intermediate layer of the copper foil with a carrier of the present invention is Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, Zn, alloys thereof, hydrates thereof, oxides thereof, One or two or more selected from the group consisting of organic substances may be included.
  • the intermediate layer may be a plurality of layers. Further, for example, the intermediate layer is a single metal layer composed of one kind of element selected from the element group composed of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, Zn from the carrier side. Or forming an alloy layer composed of one or more elements selected from the group consisting of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, Zn, A layer made of a hydrate or oxide of one or more elements selected from the group consisting of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, and Zn. It can comprise by forming.
  • the intermediate layer When the intermediate layer is provided only on one side, it is preferable to provide a rust preventive layer such as a Ni plating layer on the opposite side of the carrier.
  • a rust preventive layer such as a Ni plating layer on the opposite side of the carrier.
  • the intermediate layer When the intermediate layer is provided by chromate treatment, zinc chromate treatment, or plating treatment, it is considered that some of the attached metal such as chromium and zinc may be hydrates or oxides.
  • the intermediate layer can be constituted by laminating nickel, a nickel-phosphorus alloy or a nickel-cobalt alloy, and chromium in this order on a carrier. Since the adhesive strength between nickel and copper is higher than the adhesive strength between chromium and copper, when the ultrathin copper layer is peeled off, it peels at the interface between the ultrathin copper layer and chromium.
  • the nickel of the intermediate layer is expected to have a barrier effect that prevents the copper component from diffusing from the carrier into the ultrathin copper layer.
  • Adhesion amount of nickel in the intermediate layer is preferably 100 [mu] g / dm 2 or more 40000 ⁇ g / dm 2 or less, more preferably 100 [mu] g / dm 2 or more 4000 ⁇ g / dm 2 or less, more preferably 100 [mu] g / dm 2 or more 2500 g / dm 2 or less, more Preferably, it is 100 ⁇ g / dm 2 or more and less than 1000 ⁇ g / dm 2 , and the amount of chromium deposited on the intermediate layer is preferably 5 ⁇ g / dm 2 or more and 100 ⁇ g / dm 2 or less.
  • a rust preventive layer such as a Ni plating layer on the opposite side of the carrier
  • An ultrathin copper layer is provided on the intermediate layer. Another layer may be provided between the intermediate layer and the ultrathin copper layer.
  • the ultra-thin copper layer can be formed by electroplating using an electrolytic bath such as copper sulfate, copper pyrophosphate, copper sulfamate, copper cyanide, etc., and is used in general electrolytic copper foil with high current density. Since a copper foil can be formed, a copper sulfate bath is preferable.
  • the thickness of the ultrathin copper layer is not particularly limited, but is generally thinner than the carrier, for example, 12 ⁇ m or less. Typically, it is 0.5 to 12 ⁇ m, more typically 1 to 5 ⁇ m, more typically 1.5 to 5 ⁇ m, and more typically 2 to 5 ⁇ m. In addition, you may provide an ultra-thin copper layer on both surfaces of a carrier.
  • a roughening treatment layer may be provided on the surface of the ultrathin copper layer by performing a roughening treatment, for example, in order to improve the adhesion to the insulating substrate.
  • the roughening treatment can be performed, for example, by forming roughened particles with copper or a copper alloy.
  • the roughening process may be fine.
  • the roughening treatment layer is a layer made of any single element selected from the group consisting of copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, iron, vanadium, cobalt, and zinc, or an alloy containing at least one of them. It may be.
  • a roughening treatment can be performed in which secondary particles or tertiary particles are further formed of nickel, cobalt, copper, zinc alone or an alloy.
  • a heat-resistant layer or a rust-preventing layer may be formed of nickel, cobalt, copper, zinc alone or an alloy, and the surface thereof may be further subjected to a treatment such as a chromate treatment or a silane coupling treatment.
  • a heat-resistant layer or a rust-preventing layer may be formed from nickel, cobalt, copper, zinc alone or an alloy without roughening, and the surface may be subjected to a treatment such as chromate treatment or silane coupling treatment. Good.
  • one or more layers selected from the group consisting of a heat-resistant layer, a rust-preventing layer, a chromate treatment layer, and a silane coupling treatment layer may be formed on the surface of the roughening treatment layer.
  • One or more layers selected from the group consisting of a heat-resistant layer, a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer may be formed on the surface.
  • the above-mentioned heat-resistant layer, rust prevention layer, chromate treatment layer, and silane coupling treatment layer may each be formed of a plurality of layers (for example, 2 layers or more, 3 layers or more, etc.).
  • copper as a roughening treatment - cobalt - nickel alloy plating by electrolytic plating, deposition amount in the 15 ⁇ 40 mg / dm cobalt -100 copper -100 ⁇ 3000 ⁇ g / dm 2 of 2 ⁇ 1500 ⁇ g / dm 2 of nickel
  • Such a ternary alloy layer can be formed. If the amount of deposited Co is less than 100 ⁇ g / dm 2 , the heat resistance may deteriorate and the etching property may deteriorate. When the amount of Co deposition exceeds 3000 ⁇ g / dm 2 , it is not preferable when the influence of magnetism must be taken into account, etching spots may occur, and acid resistance and chemical resistance may deteriorate.
  • the etching stain means that Co remains without being dissolved when etched with copper chloride
  • the etching residue means that Ni remains without being dissolved when alkaline etching is performed with ammonium chloride. It means that.
  • Plating bath composition Cu 10-20 g / L, Co 1-10 g / L, Ni 1-10 g / L pH: 1 to 4 Temperature: 30-50 ° C Current density D k : 20 to 30 A / dm 2 Plating time: 1-5 seconds
  • a carrier-attached copper foil including a carrier, an intermediate layer laminated on the carrier, and an ultrathin copper layer laminated on the intermediate layer is manufactured.
  • the method of using the copper foil with carrier itself is well known to those skilled in the art.
  • the surface of the ultra-thin copper layer is made of paper base phenol resin, paper base epoxy resin, synthetic fiber cloth base epoxy resin, glass cloth / paper composite.
  • the printed wiring board can be finally manufactured by etching the ultrathin copper layer adhered to the substrate into a desired conductor pattern.
  • the carrier-attached copper foil comprising a carrier and an ultra-thin copper layer laminated on the intermediate layer on the carrier comprises a roughening treatment layer on the ultra-thin copper layer.
  • a roughening treatment layer may be provided on the ultrathin copper layer
  • a heat resistant layer and a rust prevention layer may be provided on the roughening treatment layer
  • a chromate treatment is performed on the heat resistance layer and the rust prevention layer.
  • a layer may be provided, and a silane coupling treatment layer may be provided on the chromate treatment layer.
  • the carrier-attached copper foil includes a resin layer on the ultrathin copper layer, the roughened layer, the heat-resistant layer, the rust-proof layer, the chromate-treated layer, or the silane coupling-treated layer. May be.
  • the resin layer may be an insulating resin layer.
  • the resin layer may be an adhesive, or may be a semi-cured (B stage) insulating resin layer for bonding.
  • the semi-cured state (B stage state) is a state in which there is no sticky feeling even if the surface is touched with a finger, the insulating resin layer can be stacked and stored, and a curing reaction occurs when subjected to heat treatment. Including that.
  • the resin layer may contain a thermosetting resin or a thermoplastic resin.
  • the resin layer may include a thermoplastic resin.
  • the type is not particularly limited, for example, a resin including an epoxy resin, a polyimide resin, a polyfunctional cyanate ester compound, a maleimide compound, a polyvinyl acetal resin, a urethane resin, or the like can be given as a preferable one. .
  • the resin layer may be made of any known dielectric such as a known resin, resin curing agent, compound, curing accelerator, dielectric (dielectric including an inorganic compound and / or organic compound, dielectric including a metal oxide). May be included), a reaction catalyst, a crosslinking agent, a polymer, a prepreg, a skeleton material, and the like.
  • the resin layer may be, for example, International Publication No. WO2008 / 004399, International Publication No. WO2008 / 053878, International Publication No. WO2009 / 084533, JP-A-11-5828, JP-A-11-140281, Patent 3184485, International Publication. No. WO 97/02728, Japanese Patent No.
  • WO 2008/114858 International Publication Number WO 2009/008471, JP 2011-14727, International Publication Number WO 2009/001850, International Publication Number WO 2009/145179, International Publication Number Nos. WO2011 / 068157 and JP2013-19056 (resins, resin curing agents, compounds, curing accelerators, dielectrics, reaction catalysts, crosslinking agents, polymers, prepregs, skeletal materials, etc.) and / or You may form using the formation method and formation apparatus of a resin layer.
  • a solvent such as methyl ethyl ketone (MEK) or toluene to obtain a resin solution, which is used on the ultrathin copper layer, the heat-resistant layer, the rust-proof layer, the chromate film layer, or the silane cup.
  • MEK methyl ethyl ketone
  • On the ring agent layer for example, it is applied by a roll coater method or the like, and then heat-dried as necessary to remove the solvent to obtain a B-stage state.
  • a hot air drying furnace may be used for drying, and the drying temperature may be 100 to 250 ° C., preferably 130 to 200 ° C.
  • the copper foil with a carrier provided with the resin layer (copper foil with a carrier with resin) is superposed on the base material, and the whole is thermocompression bonded to thermally cure the resin layer, and then the carrier is peeled off.
  • the ultrathin copper layer is exposed (which is naturally the surface on the intermediate layer side of the ultrathin copper layer), and a predetermined wiring pattern is formed thereon.
  • this resin-attached copper foil with a carrier can reduce the number of prepreg materials used when manufacturing a multilayer printed wiring board.
  • the copper-clad laminate can be manufactured even if the resin layer is made thick enough to ensure interlayer insulation or no prepreg material is used. At this time, the surface smoothness can be further improved by undercoating the surface of the substrate with an insulating resin.
  • the material cost of the prepreg material is saved and the laminating process is simplified, which is economically advantageous.
  • the multilayer printed wiring board manufactured by the thickness of the prepreg material is used. The thickness is reduced, and there is an advantage that an extremely thin multilayer printed wiring board in which the thickness of one layer is 100 ⁇ m or less can be manufactured.
  • the thickness of this resin layer is preferably 0.1 to 80 ⁇ m.
  • the thickness of the resin layer is less than 0.1 ⁇ m, the adhesive strength is reduced, and when the copper foil with a carrier with the resin is laminated on the base material provided with the inner layer material without interposing the prepreg material, the circuit of the inner layer material It may be difficult to ensure interlayer insulation between the two.
  • the thickness of the resin layer is made thicker than 80 ⁇ m, it becomes difficult to form a resin layer having a desired thickness in a single coating process, which is economically disadvantageous because of extra material costs and man-hours. Furthermore, since the formed resin layer is inferior in flexibility, cracks are likely to occur during handling, and excessive resin flow occurs during thermocompression bonding with the inner layer material, making smooth lamination difficult. There is.
  • this copper foil with a carrier with a resin, on the ultra-thin copper layer, or on the heat-resistant layer, rust-preventing layer, chromate-treated layer, or silane coupling-treated layer
  • the carrier can then be peeled off and manufactured in the form of a copper foil with resin without the carrier.
  • a printed circuit board is completed by mounting electronic components on the printed wiring board.
  • the “printed wiring board” includes a printed wiring board, a printed circuit board, and a printed board on which electronic parts are mounted as described above.
  • an electronic device may be manufactured using the printed wiring board, an electronic device may be manufactured using a printed circuit board on which the electronic components are mounted, and a printed circuit on which the electronic components are mounted.
  • An electronic device may be manufactured using a substrate. Below, some examples of the manufacturing process of the printed wiring board using the copper foil with a carrier which concerns on this invention are shown.
  • a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention a step of laminating the copper foil with a carrier and an insulating substrate, and with the carrier
  • a copper-clad laminate is formed through a step of peeling the carrier of the copper foil with carrier, and then a semi-additive method, a modified semi-conductor
  • the semi-additive method refers to a method in which a thin electroless plating is performed on an insulating substrate or a copper foil seed layer, a pattern is formed, and then a conductive pattern is formed using electroplating and etching.
  • a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention Laminating the copper foil with carrier and an insulating substrate; A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate; Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid, Providing a through hole or / and a blind via in the resin exposed by removing the ultrathin copper layer by etching; Performing a desmear process on the region including the through hole or / and the blind via, Providing an electroless plating layer for the region including the resin and the through hole or / and the blind via; Providing a plating resist on the electroless plating layer; Exposing the plating resist, and then removing the plating resist in
  • a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention Laminating the copper foil with carrier and an insulating substrate; A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate; Providing a through hole or / and a blind via in the ultrathin copper layer exposed by peeling the carrier and the insulating resin substrate; Performing a desmear process on the region including the through hole or / and the blind via, Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid, Providing an electroless plating layer for the resin and the region including the through hole or / and the blind via exposed by removing the ultrathin copper layer by etching or the like; Providing a plating resist on the electroless plating layer; Expo
  • a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention Laminating the copper foil with carrier and an insulating substrate; A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate; Providing a through hole or / and a blind via in the ultrathin copper layer exposed by peeling the carrier and the insulating resin substrate; Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid, Performing a desmear process on the region including the through hole or / and the blind via, Providing an electroless plating layer for the resin and the region including the through hole or / and the blind via exposed by removing the ultrathin copper layer by etching or the like; Providing a plating resist on the electroless plating layer; Expo
  • a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention Laminating the copper foil with carrier and an insulating substrate; A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate; Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid, Providing an electroless plating layer on the surface of the resin exposed by removing the ultrathin copper layer by etching; Providing a plating resist on the electroless plating layer; Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed; Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed; Removing the plating resist; Removing the electroless plating layer and the
  • the modified semi-additive method is a method in which a metal foil is laminated on an insulating layer, a non-circuit forming portion is protected by a plating resist, and the copper is thickened in the circuit forming portion by electrolytic plating, and then the resist is removed. Then, a method of forming a circuit on the insulating layer by removing the metal foil other than the circuit forming portion by (flash) etching is indicated.
  • the step of preparing the copper foil with carrier and the insulating substrate according to the present invention Laminating the copper foil with carrier and an insulating substrate; A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate; Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier; Performing a desmear process on the region including the through hole or / and the blind via, Providing an electroless plating layer for the region including the through hole or / and the blind via; Providing a plating resist on the surface of the ultrathin copper layer exposed by peeling the carrier, Forming a circuit by electrolytic plating after providing the plating resist; Removing the plating resist; Removing the ultra-thin copper layer exposed by removing the plating resist by flash etching; including.
  • the step of preparing the carrier-attached copper foil and the insulating substrate according to the present invention Laminating the copper foil with carrier and an insulating substrate; A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate; Providing a plating resist on the exposed ultrathin copper layer by peeling off the carrier; Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed; Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed; Removing the plating resist; Removing the electroless plating layer and the ultrathin copper layer in a region other than the region where the circuit is formed by flash etching or the like; including.
  • the partial additive method means that a catalyst circuit is formed on a substrate provided with a conductor layer, and if necessary, a substrate provided with holes for through holes or via holes, and etched to form a conductor circuit. Then, after providing a solder resist or a plating resist as necessary, it refers to a method of manufacturing a printed wiring board by thickening through holes, via holes, etc. on the conductor circuit by electroless plating.
  • a step of preparing the copper foil with carrier and the insulating substrate according to the present invention Laminating the copper foil with carrier and an insulating substrate; A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate; Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier; Performing a desmear process on the region including the through hole or / and the blind via, Applying catalyst nuclei to the region containing the through-holes and / or blind vias; Providing an etching resist on the surface of the ultrathin copper layer exposed by peeling the carrier, Exposing the etching resist to form a circuit pattern; Removing the ultrathin copper layer and the catalyst nucleus by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit pattern; Removing the ultrathin copper layer and the catalyst nucleus by a method such as etch
  • the subtractive method refers to a method of selectively removing unnecessary portions of the copper foil on the copper clad laminate by etching or the like to form a conductor pattern.
  • a step of preparing the carrier-attached copper foil and the insulating substrate according to the present invention Laminating the copper foil with carrier and an insulating substrate; A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate; Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier; Performing a desmear process on the region including the through hole or / and the blind via, Providing an electroless plating layer for the region including the through hole or / and the blind via; Providing an electroplating layer on the surface of the electroless plating layer; A step of providing an etching resist on the surface of the electrolytic plating layer or / and the ultrathin copper layer; Exposing the etching resist to form a circuit pattern; Removing the ultrathin copper layer and the electroless plating
  • a step of preparing the carrier-attached copper foil and the insulating substrate according to the present invention Laminating the copper foil with carrier and an insulating substrate; A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate; Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier; Performing a desmear process on the region including the through hole or / and the blind via, Providing an electroless plating layer for the region including the through hole or / and the blind via; Forming a mask on the surface of the electroless plating layer; Providing an electroplating layer on the surface of the electroless plating layer on which no mask is formed; A step of providing an etching resist on the surface of the electrolytic plating layer or / and the ultrathin copper layer; Exposing the etching resist to form
  • ⁇ Through holes and / or blind vias and subsequent desmear steps may not be performed.
  • the specific example of the manufacturing method of the printed wiring board using the copper foil with a carrier of this invention is demonstrated in detail using drawing.
  • the carrier-attached copper foil having an ultrathin copper layer on which a roughened layer is formed will be described as an example.
  • the present invention is not limited thereto, and the carrier has an ultrathin copper layer on which a roughened layer is not formed.
  • the following method for producing a printed wiring board can be similarly performed using an attached copper foil.
  • a copper foil with a carrier (first layer) having an ultrathin copper layer having a roughened layer formed on the surface is prepared.
  • FIG. 2-A a copper foil with a carrier (first layer) having an ultrathin copper layer having a roughened layer formed on the surface is prepared.
  • a resist is applied on the roughened layer of the ultrathin copper layer, exposed and developed, and etched into a predetermined shape.
  • the resist is removed to form a circuit plating having a predetermined shape.
  • an embedded resin is provided on the ultrathin copper layer so as to cover the circuit plating (so that the circuit plating is buried), and then the resin layer is laminated, and then another carrier is attached.
  • a copper foil (second layer) is bonded from the ultrathin copper layer side.
  • the carrier is peeled off from the second layer copper foil with carrier.
  • the other carrier-attached copper foil may be the carrier-attached copper foil of the present invention, a conventional carrier-attached copper foil, or a normal copper foil.
  • one or more circuits may be formed on the second layer circuit shown in FIG. 4-H, and these circuits may be formed by a semi-additive method, a subtractive method, a partial additive method, or a modified semi-conductor method. You may carry out by any method of an additive method.
  • the circuit plating is embedded in the resin layer.
  • the circuit plating is protected by the resin layer, and the shape thereof is maintained, thereby facilitating the formation of a fine circuit.
  • the circuit plating is protected by the resin layer, the migration resistance is improved, and the continuity of the circuit wiring is satisfactorily suppressed. For this reason, formation of a fine circuit becomes easy.
  • FIGS. 5-J and 5-K when the ultrathin copper layer is removed by flash etching, the exposed surface of the circuit plating has a shape recessed from the resin layer, so that bumps are formed on the circuit plating. In addition, copper pillars can be easily formed thereon, and the production efficiency is improved.
  • a known resin or prepreg can be used as the embedding resin (resin).
  • a prepreg that is a glass cloth impregnated with BT (bismaleimide triazine) resin or BT resin, an ABF film or ABF manufactured by Ajinomoto Fine Techno Co., Ltd. can be used.
  • the resin layer and / or resin and / or prepreg as described in this specification can be used for the embedding resin (resin).
  • the carrier-attached copper foil used in the first layer may have a substrate or a resin layer on the surface of the carrier-attached copper foil.
  • substrate or resin layer By having the said board
  • any substrate or resin layer can be used as long as it has an effect of supporting the copper foil with carrier used in the first layer.
  • Examples 1 to 9, 11, 12 and Comparative Examples 1 to 5 In the electrolytic cell, a titanium rotating drum and electrodes were arranged around the drum with a distance between the electrodes. Next, electrolysis is performed in the electrolytic cell under the carrier foil production conditions shown in Table 1, copper is deposited on the surface of the rotating drum, the copper deposited on the surface of the rotating drum is peeled off, and electrolysis with a thickness of 18 ⁇ m is continuously performed. A copper foil was produced and used as a copper foil carrier. In Examples 1, 2, 6, 8, 9, and 12, the thickness of the copper foil carrier after the surface treatment was 12 ⁇ m, 5 ⁇ m, 70 ⁇ m, 12 ⁇ m, 35 ⁇ m, and 35 ⁇ m, respectively.
  • Comparative Example 3 was a copper foil carrier having a thickness of 12 ⁇ m.
  • the copper foil carrier was surface treated under the conditions described in Table 1.
  • the electrolysis time was 0.5 to 2 minutes, and the electrolyte temperature was 40 to 60 ° C.
  • the surface treatment of Examples 2 and 8 will be described.
  • a cathode is arranged on the deposition surface (also referred to as mat surface or M surface) side of the formed electrolytic copper foil, and the copper foil mat is subjected to electrolytic treatment by direct current using the copper foil as an anode.
  • the surface was subjected to reverse electropolishing to dissolve 3 to 8 g / m 2 of copper in Example 2 and 8 to 15 g / m 2 in Example 8.
  • the reverse current density electrolytic polishing Example 2 in 5 ⁇ 15A / dm 2 was in Examples 8 16 ⁇ 25A / dm 2.
  • the 60 ° specular gloss in the copper foil width direction was 13 to 40, and the 60 ° specular gloss in the copper foil length direction was 20 to 94.
  • the 60-degree specular gloss was measured at an incident angle of 60 degrees using a gloss meter PG-1 manufactured by Nippon Denshoku Industries Co., Ltd. in accordance with JIS Z8741.
  • An intermediate layer was formed under the following conditions.
  • An Ni layer having an adhesion amount of 4000 ⁇ g / dm 2 was formed by electroplating on a roll-to-roll continuous plating line under the following conditions.
  • Nickel sulfate 250-300 g / L Nickel chloride: 35 to 45 g / L Nickel acetate: 10-20g / L Trisodium citrate: 15-30 g / L Brightener: Saccharin, butynediol, etc.
  • Sodium dodecyl sulfate 30 to 100 ppm pH: 4-6 Bath temperature: 50-70 ° C Current density: 3 to 15 A / dm 2
  • Electrolytic chromate treatment Liquid composition: potassium dichromate 1-10 g / L, zinc 0-5 g / L pH: 3-4 Liquid temperature: 50-60 ° C Current density: 0.1 to 2.6 A / dm 2 Coulomb amount: 0.5-30 As / dm 2
  • an ultrathin copper layer having a thickness of 1 to 10 ⁇ m was formed on the intermediate layer by electroplating under the following conditions to obtain a copper foil with a carrier.
  • a roughening layer, a heat-resistant layer, a chromate layer, and a silane coupling layer were further provided on the ultrathin copper layer.
  • Example 10 A rolled copper foil (tough pitch copper, JIS H3100 C1100) was prepared, and cold rolling was performed on the rolled copper foil using a rolling roll whose surface was roughened by sandblasting. At this time, the rolling roll roughness Ra was set to 0.39 to 0.42 ⁇ m, and the oil film equivalent was set to 35000. This obtained the copper foil carrier. Then, the copper foil with a carrier was produced by forming an intermediate
  • ⁇ Thickness of ultrathin copper layer> The thickness of the ultrathin copper layer of the prepared copper foil with carrier was observed using FIB-SIM (magnification: 10000-30000 times). By observing the cross section of the ultrathin copper layer, five points were measured at intervals of 30 ⁇ m, and the average value was obtained.
  • Rz (laser) on the intermediate layer side of the ultrathin copper layer is measured according to Olympus laser microscope OLS4000 (LEXT) in accordance with JIS B0601-1994. (OLS 4000).
  • Rz (laser) was arbitrarily measured at 10 locations, and the average value at 10 locations of the Rz (laser) was defined as the value of Rz (laser).
  • the standard deviation of the value of 10 places was calculated about Rz (laser).
  • the surface roughness Ra (laser) on the intermediate layer side of the ultrathin copper layer was measured with an Olympus laser microscope OLS4000 in accordance with JIS B0601-1994.
  • Ra (laser) was arbitrarily measured at 10 locations, and the average value of the 10 locations of Ra (laser) was defined as the value of Ra (laser).
  • the standard deviation of the value of 10 places was calculated about Ra (laser).
  • the surface roughness Sz (laser) on the intermediate layer side of the ultrathin copper layer was measured with an Olympus laser microscope OLS4000 in accordance with ISO25178.
  • Sz (laser) was arbitrarily measured at 10 locations, and the average value at 10 locations of the Sz (laser) was taken as the value of Sz (laser). Moreover, the standard deviation of the value of 10 places was calculated about Sz (laser). Furthermore, in accordance with ISO25178, the Sku of the surface on the intermediate layer side of the ultrathin copper layer was measured with a laser microscope OLS4000 manufactured by Olympus.
  • Rz (laser) on the side on which the ultra-thin copper layer is formed in accordance with JIS B0601-1994, Olympus Corporation Measurement was performed with a laser microscope OLS4000 (LEXT OLS 4000).
  • Rz (laser) was arbitrarily measured at 10 locations, and the average value at 10 locations of the Rz (laser) was defined as the value of Rz (laser).
  • the standard deviation of the value of 10 places was calculated about Rz (laser).
  • the surface roughness Ra (laser) of the carrier on the side on which the ultrathin copper layer is formed was measured with an Olympus laser microscope OLS4000 in accordance with JIS B0601-1994.
  • Ra (laser) was arbitrarily measured at 10 locations, and the average value of the 10 locations of Ra (laser) was defined as the value of Ra (laser).
  • the standard deviation of 10 Ra (laser) values was calculated.
  • the surface roughness Sz (laser) of the carrier on the side on which the ultrathin copper layer was formed was measured with an Olympus laser microscope OLS4000 in accordance with ISO25178.
  • Sz (laser) was arbitrarily measured at 10 locations, and the average value at 10 locations of the Sz (laser) was taken as the value of Sz (laser). Moreover, the standard deviation of the value of 10 places was calculated about Sz (laser). Furthermore, in accordance with ISO25178, Sku on the surface of the carrier on the side on which the ultrathin copper layer was formed was measured with an Olympus laser microscope OLS4000.
  • the measurement environmental temperature of Sz, Rz, Ra and Sku on the surface with a laser microscope was set to 23 to 25 ° C.
  • Sz, Ra, Rz, and Sku of the copper foil carrier after surface treatment were measured.
  • the untreated surface of the ultrathin copper layer (the surface on the intermediate layer side of the ultrathin copper layer) is irradiated with one shot of laser under the following conditions, and the shape of the hole after irradiation is observed with a microscope and measured. did.
  • the table shows how many (X) holes were actually drilled by trying to drill holes at 12 points as “real numbers” (X / 12). "Percentage” (%) is shown.
  • the table also shows the average diameter of the holes generated at this time, the standard deviation of the diameter of the generated holes, and the average diameter / beam diameter. The diameter of the hole was the diameter of the smallest circle surrounding the hole.
  • Etching solution ferric chloride aqueous solution (Baume degree: 40 degrees)
  • Liquid temperature 60 ° C
  • Spray pressure 2.0 MPa Etching was continued, the time until the circuit top width reached 4 ⁇ m was measured, and the circuit bottom width (the length of the base X) and the etching factor at that time were evaluated.
  • the etching factor is the distance of the length of sagging from the intersection of the vertical line from the upper surface of the copper foil and the resin substrate, assuming that the circuit is etched vertically when sagging is etched (when sagging occurs) Is a ratio of a to the thickness b of the copper foil: b / a, and the larger the value, the larger the inclination angle, and the etching residue does not remain and the sagging is small. It means to become.
  • FIG. 1 shows a schematic diagram of a cross section in the width direction of a circuit pattern and an outline of a method for calculating an etching factor using the schematic diagram.
  • the etching factor is obtained by measuring 12 points in the circuit and taking an average value. Thereby, the quality of etching property can be determined easily. Also, by calculating the standard deviation of the 12 etching factors, it is possible to determine whether the linearity of the circuit formed by etching is good or bad.
  • an etching factor of 4 or more is etching property: ⁇ , 2.5 or more and less than 4 are etching property: ⁇ , less than 2.5 or calculation is impossible or circuit formation is impossible. It was evaluated as-.
  • the surface roughness Rz (laser) on the intermediate layer side of the ultrathin copper layer is 0.62 ⁇ m or more and 1.59 ⁇ m or less, and the standard for the surface roughness Rz (laser) Since the deviation was 0.51 ⁇ m or less, the laser drilling property and the etching property were good.
  • Comparative Examples 1 and 5 since the surface roughness Rz (laser) on the intermediate layer side of the ultrathin copper layer was less than 0.62 ⁇ m, the laser holeability was poor.

Abstract

Provided is a copper foil with a carrier, the ultrathin copper layer of which has good laser-hole-opening properties, and which is suitable for the fabrication of a high-density integrated circuit substrate. The copper foil with a carrier is provided with a carrier, an intermediate layer, and ultrathin copper layer, in that order. When the ultrathin copper layer is peeled off in accordance with JIS C 6471 after the copper foil with a carrier is heated at 200°C for two hours, the surface roughness (Sz) of the ultrathin copper layer on the intermediate layer side is 1.40μm to 4.05μm as measured by a laser microscope.

Description

キャリア付銅箔、プリント配線板、銅張積層板、電子機器及びプリント配線板の製造方法Copper foil with carrier, printed wiring board, copper-clad laminate, electronic device, and method for manufacturing printed wiring board
 本発明は、キャリア付銅箔、プリント配線板、銅張積層板、電子機器及びプリント配線板の製造方法に関する。 The present invention relates to a copper foil with a carrier, a printed wiring board, a copper clad laminate, an electronic device, and a method for manufacturing a printed wiring board.
 プリント配線板は銅箔に絶縁基板を接着させて銅張積層板とした後に、エッチングにより銅箔面に導体パターンを形成するという工程を経て製造されるのが一般的である。近年の電子機器の小型化、高性能化ニーズの増大に伴い搭載部品の高密度実装化や信号の高周波化が進展し、プリント配線板に対して導体パターンの微細化(ファインピッチ化)や高周波対応等が求められている。 A printed wiring board is generally manufactured through a process of forming a copper-clad laminate by bonding an insulating substrate to copper foil and then forming a conductor pattern on the copper foil surface by etching. In recent years, with the increasing needs for miniaturization and higher performance of electronic devices, higher density mounting of components and higher frequency of signals have progressed, and conductor patterns have become finer (fine pitch) and higher frequency than printed circuit boards. Response is required.
 ファインピッチ化に対応して、最近では厚さ9μm以下、更には厚さ5μm以下の銅箔が要求されているが、このような極薄の銅箔は機械的強度が低くプリント配線板の製造時に破れたり、皺が発生したりしやすいので、厚みのある金属箔をキャリアとして利用し、これに剥離層を介して極薄銅層を電着させたキャリア付銅箔が登場している。極薄銅層の表面を絶縁基板に貼り合わせて熱圧着後、キャリアは剥離層を介して剥離除去される。露出した極薄銅層上にレジストで回路パターンを形成した後に、所定の回路が形成される。 Recently, copper foils with a thickness of 9 μm or less and further with a thickness of 5 μm or less have been required in response to the fine pitch, but such ultra-thin copper foils have low mechanical strength and are used in the manufacture of printed wiring boards. Copper foil with a carrier has appeared, in which a thick metal foil is used as a carrier, and an ultrathin copper layer is electrodeposited through a release layer, since it is easily broken or wrinkled. After bonding the surface of the ultrathin copper layer to an insulating substrate and thermocompression bonding, the carrier is peeled and removed through the peeling layer. After a circuit pattern is formed with a resist on the exposed ultrathin copper layer, a predetermined circuit is formed.
 ここで、樹脂との接着面となるキャリア付き銅箔の極薄銅層の表面に対しては、主として、極薄銅層と樹脂基材との剥離強度が十分であること、そしてその剥離強度が高温加熱、湿式処理、半田付け、薬品処理等の後でも十分に保持されていることが要求される。極薄銅層と樹脂基材の間の剥離強度を高める方法としては、一般的に、表面のプロファイル(凹凸、粗さ)を大きくした極薄銅層の上に多量の粗化粒子を付着させる方法が代表的である。 Here, for the surface of the ultrathin copper layer of the copper foil with a carrier that becomes the adhesive surface with the resin, the peel strength between the ultrathin copper layer and the resin base material is mainly sufficient, and the peel strength Is required to be sufficiently retained after high-temperature heating, wet processing, soldering, chemical processing, and the like. As a method of increasing the peel strength between the ultrathin copper layer and the resin base material, generally, a large amount of roughened particles are adhered on the ultrathin copper layer having a large surface profile (unevenness, roughness). The method is representative.
 しかしながら、プリント配線板の中でも特に微細な回路パターンを形成する必要のある半導体パッケージ基板に、このようなプロファイル(凹凸、粗さ)の大きい極薄銅層を使用すると、回路エッチング時に不要な銅粒子が残ってしまい、回路パターン間の絶縁不良等の問題が発生する。 However, if a very thin copper layer with such a large profile (irregularity, roughness) is used on a semiconductor package substrate that needs to form a particularly fine circuit pattern among printed wiring boards, unnecessary copper particles during circuit etching Will remain, causing problems such as poor insulation between circuit patterns.
 このため、WO2004/005588号(特許文献1)では、半導体パッケージ基板をはじめとする微細回路用途のキャリア付銅箔として、極薄銅層の表面に粗化処理を施さないキャリア付銅箔を用いることが試みられている。このような粗化処理を施さない極薄銅層と樹脂との密着性(剥離強度)は、その低いプロファイル(凹凸、粗度、粗さ)の影響で一般的なプリント配線板用銅箔と比較すると低下する傾向がある。そのため、キャリア付銅箔について更なる改善が求められている。 For this reason, in WO2004 / 005588 (Patent Document 1), a copper foil with a carrier that is not subjected to a roughening treatment on the surface of an ultrathin copper layer is used as a copper foil with a carrier for use in a fine circuit including a semiconductor package substrate. It has been tried. The adhesion (peeling strength) between the ultrathin copper layer not subjected to such roughening treatment and the resin is affected by the low profile (unevenness, roughness, roughness) of the general copper foil for printed wiring boards. There is a tendency to decrease when compared. Therefore, the further improvement is calculated | required about copper foil with a carrier.
 そこで、特開2007-007937号公報(特許文献2)及び特開2010-006071号公報(特許文献3)では、キャリア付き極薄銅箔のポリイミド系樹脂基板と接触(接着)する面に、Ni層又は/及びNi合金層を設けること、クロメート層を設けること、Cr層又は/及びCr合金層を設けること、Ni層とクロメート層とを設けること、Ni層とCr層とを設けることが記載されている。これらの表面処理層を設けることにより、ポリイミド系樹脂基板とキャリア付き極薄銅箔との密着強度を粗化処理なし、または粗化処理の程度を低減(微細化)しながら所望の接着強度を得ている。更に、シランカップリング剤で表面処理したり、防錆処理を施したりすることも記載されている。 Therefore, in Japanese Patent Application Laid-Open No. 2007-007937 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2010-006071 (Patent Document 3), the surface of the ultrathin copper foil with carrier that contacts (adheres) the polyimide resin substrate is Ni. It is described that a layer or / and a Ni alloy layer are provided, a chromate layer is provided, a Cr layer or / and a Cr alloy layer are provided, a Ni layer and a chromate layer are provided, and a Ni layer and a Cr layer are provided. Has been. By providing these surface treatment layers, the adhesion strength between the polyimide resin substrate and the ultra-thin copper foil with carrier is not roughened, or the desired adhesive strength is achieved while reducing the degree of the roughening treatment (miniaturization). It has gained. Further, it is described that the surface treatment is performed with a silane coupling agent or the rust prevention treatment is performed.
WO2004/005588号WO2004 / 005588 特開2007-007937号公報JP 2007-007937 A 特開2010-006071号公報JP 2010-006071 A 特許第3261119号公報Japanese Patent No. 3261119
 キャリア付銅箔の開発においては、これまで極薄銅層と樹脂基材との剥離強度を確保することに重きが置かれていた。そのため、プリント配線板の高密度実装化に適するキャリア付銅箔に関しては未だ十分な検討がなされておらず、未だ改善の余地が残されている。 In the development of copper foil with a carrier, the emphasis has been on ensuring the peel strength between the ultrathin copper layer and the resin base material. For this reason, a copper foil with a carrier suitable for high-density mounting of a printed wiring board has not yet been sufficiently studied, and there is still room for improvement.
 プリント配線板の集積回路密度を上昇させるためには、レーザー穴を形成し、当該穴を通じて内層と外層とを接続させる方法が一般的である。また、狭ピッチ化に伴う微細回路形成方法は、配線回路を極薄銅層上に形成した後に、極薄銅層を硫酸-過酸化水素系のエッチャントでエッチング除去する手法(MSAP:Modified-Semi-Additive-Process)が用いられるため、極薄銅層のレーザー穴空け性は、高密度集積回路基板を作製する上で重要な項目である。極薄銅層のレーザー穴空け性は、穴径精度並びにレーザー出力等の諸条件に関わるため集積回路の設計及び生産性に大きく影響を及ぼす。特許第3261119号公報(特許文献4)には、レーザー穴空け性が良好な銅張積層板が記載されているが、本発明者の検討によれば、エッチング性の点で未だ改善の余地がある。 In order to increase the integrated circuit density of the printed wiring board, a method of forming a laser hole and connecting the inner layer and the outer layer through the hole is general. In addition, the fine circuit formation method that accompanies the narrowing of the pitch is a method in which a wiring circuit is formed on an ultrathin copper layer, and then the ultrathin copper layer is removed by etching with a sulfuric acid-hydrogen peroxide etchant (MSAP: Modified-Semi). -Additive-Process) is used, the laser holeability of the ultra-thin copper layer is an important item in fabricating high-density integrated circuit boards. The laser holeability of an ultra-thin copper layer greatly affects the design and productivity of integrated circuits because it relates to various conditions such as hole diameter accuracy and laser output. Japanese Patent No. 3261119 (Patent Document 4) describes a copper-clad laminate with good laser drillability, but according to the study of the present inventors, there is still room for improvement in terms of etching properties. is there.
 そこで、本発明は、極薄銅層のレーザー穴空け性が良好で、高密度集積回路基板の作製に好適なキャリア付銅箔を提供することを課題とする。 Therefore, an object of the present invention is to provide a copper foil with a carrier, which is excellent in laser holeability of an ultrathin copper layer and is suitable for manufacturing a high-density integrated circuit board.
 上記目的を達成するため、本発明者は鋭意研究を重ねたところ、所定の加熱処理がなされたキャリア付銅箔から極薄銅層を剥がしたときの、極薄銅層の剥離側のレーザー顕微鏡で測定される表面粗さを制御することが、極薄銅層のレーザー穴空け性の向上に極めて効果的であることを見出した。 In order to achieve the above object, the present inventor conducted extensive research and found that a laser microscope on the peeling side of the ultrathin copper layer when the ultrathin copper layer was peeled off from the copper foil with a carrier that had been subjected to a predetermined heat treatment. It was found that controlling the surface roughness measured by the method is extremely effective in improving the laser holeability of the ultrathin copper layer.
 本発明は一側面において、キャリアと、中間層と、極薄銅層とをこの順に備えたキャリア付銅箔であって、前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さSzが1.40μm以上4.05μm以下であるキャリア付銅箔である。 In one aspect, the present invention is a copper foil with a carrier provided with a carrier, an intermediate layer, and an ultrathin copper layer in this order. After heating the copper foil with a carrier at 220 ° C. for 2 hours, JIS C 6471 When the ultrathin copper layer is peeled off according to the above, the copper foil with a carrier whose surface roughness Sz on the intermediate layer side of the ultrathin copper layer measured with a laser microscope is 1.40 μm or more and 4.05 μm or less It is.
 本発明のキャリア付銅箔は一実施形態において、前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さSzの標準偏差が1.30μm以下である。 In one embodiment, the copper foil with a carrier of the present invention is measured with a laser microscope when the ultra thin copper layer is peeled off according to JIS C 6471 after the copper foil with a carrier is heated at 220 ° C. for 2 hours. The standard deviation of the surface roughness Sz on the intermediate layer side of the ultrathin copper layer is 1.30 μm or less.
 本発明のキャリア付銅箔は別の一実施形態において、前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さSzの標準偏差が0.01μm以上1.20μm以下である。 In another embodiment of the copper foil with a carrier according to the present invention, when the copper foil with a carrier is heated at 220 ° C. for 2 hours and then the ultrathin copper layer is peeled off in accordance with JIS C 6471, a laser microscope is used. The standard deviation of the surface roughness Sz on the intermediate layer side of the ultrathin copper layer to be measured is 0.01 μm or more and 1.20 μm or less.
 本発明のキャリア付銅箔は更に別の一実施形態において、前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さSzが1.60μm以上3.70μm以下である。 In still another embodiment of the copper foil with a carrier according to the present invention, when the copper foil with a carrier is heated at 220 ° C. for 2 hours and then the ultrathin copper layer is peeled off according to JIS C 6471, a laser microscope The surface roughness Sz of the ultrathin copper layer measured on the intermediate layer side is 1.60 μm or more and 3.70 μm or less.
 本発明は別の一側面において、キャリアと、中間層と、極薄銅層とをこの順に備えたキャリア付銅箔であって、前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さRaが0.14μm以上0.35μm以下であるキャリア付銅箔である。 Another aspect of the present invention is a copper foil with a carrier provided with a carrier, an intermediate layer, and an ultrathin copper layer in this order, and after heating the copper foil with a carrier at 220 ° C. for 2 hours, JIS When the ultrathin copper layer is peeled according to C 6471, the surface roughness Ra on the intermediate layer side of the ultrathin copper layer measured with a laser microscope is 0.14 μm or more and 0.35 μm or less. Copper foil.
 本発明のキャリア付銅箔は更に別の一側面において、前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さRaの標準偏差が0.11μm以下である。 In yet another aspect of the copper foil with a carrier according to the present invention, when the copper foil with a carrier is heated at 220 ° C. for 2 hours and then the ultrathin copper layer is peeled off in accordance with JIS C 6471, a laser microscope is used. The standard deviation of the surface roughness Ra on the intermediate layer side of the ultrathin copper layer to be measured is 0.11 μm or less.
 本発明のキャリア付銅箔は更に別の一側面において、前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さRaの標準偏差が0.001μm以上0.10μm以下である。 In yet another aspect of the copper foil with a carrier according to the present invention, when the copper foil with a carrier is heated at 220 ° C. for 2 hours and then the ultrathin copper layer is peeled off in accordance with JIS C 6471, a laser microscope is used. The standard deviation of the surface roughness Ra on the intermediate layer side of the ultrathin copper layer to be measured is 0.001 μm or more and 0.10 μm or less.
 本発明は更に別の一側面において、キャリアと、中間層と、極薄銅層とをこの順に備えたキャリア付銅箔であって、
 前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さRzが0.62μm以上1.59μm以下であり、且つ、表面粗さRzの標準偏差が0.51μm以下であるキャリア付銅箔である。
In yet another aspect of the present invention, a carrier-attached copper foil comprising a carrier, an intermediate layer, and an ultrathin copper layer in this order,
After heating the copper foil with a carrier at 220 ° C. for 2 hours and then peeling off the ultrathin copper layer in accordance with JIS C 6471, the surface on the intermediate layer side of the ultrathin copper layer measured with a laser microscope This is a copper foil with a carrier having a roughness Rz of 0.62 μm or more and 1.59 μm or less and a standard deviation of the surface roughness Rz of 0.51 μm or less.
 本発明のキャリア付銅箔は更に別の一側面において、前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さRzの標準偏差が0.01μm以上0.48μm以下である。 In yet another aspect of the copper foil with a carrier according to the present invention, when the copper foil with a carrier is heated at 220 ° C. for 2 hours and then the ultrathin copper layer is peeled off in accordance with JIS C 6471, a laser microscope is used. The standard deviation of the surface roughness Rz on the intermediate layer side of the ultrathin copper layer to be measured is 0.01 μm or more and 0.48 μm or less.
 本発明のキャリア付銅箔は更に別の一側面において、前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面高さ分布のとがり度Skuが0.50以上3.70以下である。 In yet another aspect of the copper foil with a carrier according to the present invention, when the copper foil with a carrier is heated at 220 ° C. for 2 hours and then the ultrathin copper layer is peeled off in accordance with JIS C 6471, a laser microscope is used. The sharpness Sku of the surface height distribution on the intermediate layer side of the ultrathin copper layer to be measured is 0.50 or more and 3.70 or less.
 本発明のキャリア付銅箔は更に別の一側面において、前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面高さ分布のとがり度Skuが1.00以上3.60以下である。 In yet another aspect of the copper foil with a carrier according to the present invention, when the copper foil with a carrier is heated at 220 ° C. for 2 hours and then the ultrathin copper layer is peeled off in accordance with JIS C 6471, a laser microscope is used. The sharpness Sku of the surface height distribution on the intermediate layer side of the ultrathin copper layer to be measured is 1.00 or more and 3.60 or less.
 本発明のキャリア付銅箔は更に別の一側面において、前記キャリアの厚みが5~70μmである。 In yet another aspect of the copper foil with a carrier of the present invention, the thickness of the carrier is 5 to 70 μm.
 本発明のキャリア付銅箔は更に別の一側面において、前記極薄銅層表面に粗化処理層を有する。 The copper foil with a carrier of the present invention has a roughening treatment layer on the surface of the ultrathin copper layer in yet another aspect.
 本発明のキャリア付銅箔は更に別の一側面において、前記粗化処理層が、銅、ニッケル、りん、タングステン、ヒ素、モリブデン、クロム、鉄、バナジウム、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層である。 In another aspect of the copper foil with a carrier of the present invention, the roughening layer is selected from the group consisting of copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, iron, vanadium, cobalt, and zinc. It is a layer made of any simple substance or an alloy containing any one or more kinds.
 本発明のキャリア付銅箔は更に別の一側面において、前記粗化処理層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する。 In still another aspect, the copper foil with a carrier of the present invention is one or more selected from the group consisting of a heat-resistant layer, a rust preventive layer, a chromate treatment layer, and a silane coupling treatment layer on the surface of the roughening treatment layer. It has a layer of.
 本発明のキャリア付銅箔は更に別の一側面において、前記極薄銅層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する。 In another aspect of the copper foil with a carrier according to the present invention, one or more selected from the group consisting of a heat-resistant layer, a rust preventive layer, a chromate treatment layer and a silane coupling treatment layer on the surface of the ultrathin copper layer. It has a layer of.
 本発明のキャリア付銅箔は更に別の一側面において、前記極薄銅層上に樹脂層を備える。 In yet another aspect of the copper foil with a carrier of the present invention, a resin layer is provided on the ultrathin copper layer.
 本発明のキャリア付銅箔は更に別の一側面において、前記粗化処理層上に樹脂層を備える。 In yet another aspect of the copper foil with a carrier of the present invention, a resin layer is provided on the roughening treatment layer.
 本発明のキャリア付銅箔は更に別の一側面において、前記耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層の上に樹脂層を備える。 In another aspect of the copper foil with a carrier of the present invention, a resin layer is formed on one or more layers selected from the group consisting of the heat-resistant layer, the rust-proof layer, the chromate-treated layer, and the silane coupling-treated layer. Prepare.
 本発明は更に別の一側面において、本発明のキャリア付銅箔を用いて製造したプリント配線板である。 In yet another aspect, the present invention is a printed wiring board manufactured using the copper foil with a carrier of the present invention.
 本発明は更に別の一側面において、本発明のキャリア付銅箔を用いて製造した銅張積層板である。 In yet another aspect, the present invention is a copper-clad laminate manufactured using the carrier-attached copper foil of the present invention.
 本発明は更に別の一側面において、本発明のプリント配線板を用いて製造した電子機器である。 In yet another aspect, the present invention is an electronic device manufactured using the printed wiring board of the present invention.
 本発明は更に別の一側面において、本発明のキャリア付銅箔と絶縁基板とを準備する工程、前記キャリア付銅箔と絶縁基板とを積層する工程、及び、前記キャリア付銅箔と絶縁基板とを積層した後に、前記キャリア付銅箔のキャリアを剥がす工程を経て銅張積層板を形成し、その後、セミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法のいずれかの方法によって、回路を形成する工程を含むプリント配線板の製造方法である。 In yet another aspect of the present invention, the step of preparing the copper foil with carrier and the insulating substrate of the present invention, the step of laminating the copper foil with carrier and the insulating substrate, and the copper foil with carrier and the insulating substrate And then forming a copper-clad laminate through a step of peeling the carrier of the copper foil with carrier, and then by any one of the semi-additive method, subtractive method, partly additive method or modified semi-additive method A method of manufacturing a printed wiring board including a step of forming a circuit.
 本発明は更に別の一側面において、本発明のキャリア付銅箔の前記極薄銅層側表面に回路を形成する工程、前記回路が埋没するように前記キャリア付銅箔の前記極薄銅層側表面に樹脂層を形成する工程、前記樹脂層上に回路を形成する工程、前記樹脂層上に回路を形成した後に、前記キャリアを剥離させる工程、及び、前記キャリアを剥離させた後に、前記極薄銅層を除去することで、前記極薄銅層側表面に形成した、前記樹脂層に埋没している回路を露出させる工程を含むプリント配線板の製造方法である。 In still another aspect of the present invention, the step of forming a circuit on the ultrathin copper layer side surface of the copper foil with carrier of the present invention, the ultrathin copper layer of the copper foil with carrier so that the circuit is buried. A step of forming a resin layer on a side surface, a step of forming a circuit on the resin layer, a step of peeling the carrier after forming a circuit on the resin layer, and after peeling the carrier, It is a manufacturing method of a printed wiring board including the process of exposing the circuit buried in the resin layer formed in the ultra-thin copper layer side surface by removing the ultra-thin copper layer.
 本発明によれば、極薄銅層のレーザー穴空け性が良好で、高密度集積回路基板の作製に好適なキャリア付銅箔を提供することができる。 According to the present invention, it is possible to provide a copper foil with a carrier that is excellent in laser holeability of an ultrathin copper layer and is suitable for manufacturing a high-density integrated circuit board.
実施例における回路パターンの幅方向の横断面の模式図、及び、該模式図を用いたエッチングファクター(EF)の計算方法の概略である。It is the schematic of the cross section of the width direction of the circuit pattern in an Example, and the outline of the calculation method of the etching factor (EF) using this schematic diagram. A~Cは、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例に係る、回路めっき・レジスト除去までの工程における配線板断面の模式図である。FIGS. 8A to 8C are schematic views of a cross section of a wiring board in a process up to circuit plating and resist removal according to a specific example of a method of manufacturing a printed wiring board using the carrier-attached copper foil of the present invention. D~Fは、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例に係る、樹脂及び2層目キャリア付銅箔積層からレーザー穴あけまでの工程における配線板断面の模式図である。D to F are schematic views of the cross section of the wiring board in the process from the lamination of the resin and the second-layer copper foil with a carrier to the laser drilling according to a specific example of the method for manufacturing a printed wiring board using the copper foil with a carrier of the present invention. It is. G~Iは、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例に係る、ビアフィル形成から1層目のキャリア剥離までの工程における配線板断面の模式図である。GI are schematic views of the cross section of the wiring board in the steps from via fill formation to first layer carrier peeling, according to a specific example of the method for producing a printed wiring board using the copper foil with carrier of the present invention. J~Kは、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例に係る、フラッシュエッチングからバンプ・銅ピラー形成までの工程における配線板断面の模式図である。J to K are schematic views of a cross section of a wiring board in steps from flash etching to bump / copper pillar formation according to a specific example of a method of manufacturing a printed wiring board using the carrier-attached copper foil of the present invention.
<キャリア付銅箔>
 本発明のキャリア付銅箔は、キャリアと、キャリア上に積層された中間層と、中間層の上に積層された極薄銅層とを備える。キャリア付銅箔自体の使用方法は当業者に周知であるが、例えば極薄銅層の表面を紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂、ポリエステルフィルム、ポリイミドフィルム等の絶縁基板に貼り合わせて熱圧着後にキャリアを剥がし、絶縁基板に接着した極薄銅層を目的とする導体パターンにエッチングし、最終的にプリント配線板を製造することができる。
<Copper foil with carrier>
The copper foil with a carrier of the present invention includes a carrier, an intermediate layer laminated on the carrier, and an ultrathin copper layer laminated on the intermediate layer. The method of using the copper foil with carrier itself is well known to those skilled in the art. For example, the surface of the ultra-thin copper layer is made of paper base phenol resin, paper base epoxy resin, synthetic fiber cloth base epoxy resin, glass cloth / paper composite. Ultra-thin bonded to an insulating substrate, bonded to an insulating substrate such as a base epoxy resin, glass cloth / glass nonwoven fabric composite epoxy resin and glass cloth base epoxy resin, polyester film, polyimide film, etc. The copper layer can be etched into the intended conductor pattern to finally produce a printed wiring board.
 本発明のキャリア付銅箔は、一側面において、キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して極薄銅層を剥がしたとき、レーザー顕微鏡で測定される極薄銅層の中間層側の表面粗さSz(表面の10点高さ)が1.40μm以上4.05μm以下となるように制御されている。キャリア付銅箔を絶縁基板に貼り合わせて熱圧着後にキャリアを剥がし、絶縁基板に接着した極薄銅層を目的とする導体パターンにエッチングして回路を形成する。このようにして基板を多層構造にしてプリント配線板を作製している。ここで、このようなプリント配線板の集積回路密度を上昇させるためには、レーザー穴を形成し、当該穴を通じて内層と外層とを接続させる。このとき、極薄銅層にレーザー穴を空けるのが困難であると当然に問題であるし、レーザー穴は大きすぎても小さすぎても種々の問題を引き起こすため適度な大きさに形成する必要がある。このように、極薄銅層のレーザー穴空け性は、穴径精度並びにレーザー出力等の諸条件に関わるため集積回路の設計及び生産性に大きく影響を及ぼす重要な特性である。本発明では、この極薄銅層のレーザー穴空け性は、キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さSzが1.40μm以上4.05μm以下に制御することで良好となることを見出した。当該レーザー顕微鏡で測定される極薄銅層の中間層側の表面粗さSzが1.40μm未満であると、極薄銅層の表面の粗さが不足して穴空け加工の際のレーザーの吸収性が悪くなり、穴が空け難くなり、空けたとしても小さな穴となってしまうという問題が生じる。また、当該レーザー顕微鏡で測定される極薄銅層の中間層側の表面粗さSzが4.05μmを超えると、極薄銅層の表面の粗さが大き過ぎて穴空け加工の際のレーザーの吸収性が過剰となり、穴が大きくなり過ぎてしまうという問題が生じる。当該レーザー顕微鏡で測定される極薄銅層の中間層側の表面粗さSzは、1.60μm以上3.70μm以下がより好ましく、1.80μm以上3.50μm以下が好ましく、2.40μm以上3.70μm以下が更により好ましい。なお、上記「220℃で2時間加熱」は、キャリア付銅箔を絶縁基板に貼り合わせて熱圧着する場合の典型的な加熱条件を示している。 In one aspect, the copper foil with a carrier of the present invention is an electrode measured with a laser microscope when the ultra thin copper layer is peeled off in accordance with JIS C 6471 after heating the copper foil with a carrier at 220 ° C. for 2 hours. The surface roughness Sz (10-point height on the surface) on the intermediate layer side of the thin copper layer is controlled to be 1.40 μm or more and 4.05 μm or less. A carrier-attached copper foil is bonded to an insulating substrate, the carrier is peeled off after thermocompression bonding, and an ultrathin copper layer bonded to the insulating substrate is etched into a target conductor pattern to form a circuit. In this way, a printed wiring board is produced with a multi-layered substrate. Here, in order to increase the integrated circuit density of such a printed wiring board, a laser hole is formed, and the inner layer and the outer layer are connected through the hole. At this time, it is of course a problem that it is difficult to make a laser hole in an ultra-thin copper layer, and it is necessary to form the laser hole to an appropriate size to cause various problems even if it is too large or too small. There is. As described above, the laser holeability of the ultrathin copper layer is an important characteristic that greatly affects the design and productivity of the integrated circuit because it relates to various conditions such as hole diameter accuracy and laser output. In the present invention, the laser piercing property of this ultra-thin copper layer is measured with a laser microscope when the copper foil with carrier is heated at 220 ° C. for 2 hours and then peeled off according to JIS C 6471. It has been found that the surface roughness Sz on the intermediate layer side of the ultrathin copper layer to be measured is improved by controlling it to 1.40 μm or more and 4.05 μm or less. When the surface roughness Sz on the intermediate layer side of the ultra-thin copper layer measured with the laser microscope is less than 1.40 μm, the surface roughness of the ultra-thin copper layer is insufficient, so Absorbability deteriorates, making it difficult to make a hole, and even if it is made a problem, it becomes a small hole. Further, if the surface roughness Sz on the intermediate layer side of the ultrathin copper layer measured by the laser microscope exceeds 4.05 μm, the surface roughness of the ultrathin copper layer is too large, and the laser during drilling processing As a result, there is a problem that the absorbability of water becomes excessive and the hole becomes too large. The surface roughness Sz on the intermediate layer side of the ultrathin copper layer measured with the laser microscope is more preferably 1.60 μm or more and 3.70 μm or less, preferably 1.80 μm or more and 3.50 μm or less, and 2.40 μm or more and 3 or less. More preferably, it is 70 μm or less. The “heating at 220 ° C. for 2 hours” indicates a typical heating condition in the case where a copper foil with a carrier is bonded to an insulating substrate and thermocompression bonded.
 また、本発明のキャリア付銅箔は、キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さSzの標準偏差が1.30μm以下となるように制御されているのが好ましい。当該レーザー顕微鏡で測定される極薄銅層の中間層側の表面粗さSzの標準偏差が1.30μmを超えると、レーザー穴径のばらつきが大きくなったり(すなわち標準偏差が大きくなる)、エッチングファクターのばらつきが大きくなる(すなわち標準偏差が大きくなる)という問題が生じるおそれがある。また、当該レーザー顕微鏡で測定される極薄銅層の中間層側の表面粗さSzの標準偏差は、0.01μm以上1.20μm以下であるのがより好ましく、0.05μm以上1.10μm以下であるのが更により好ましく、0.10μm以上1.00μm以下であるのがより好ましい。 Moreover, the copper foil with a carrier of the present invention is the ultrathin film measured by a laser microscope when the copper foil with a carrier is heated at 220 ° C. for 2 hours and then the ultrathin copper layer is peeled off according to JIS C 6471. It is preferable that the standard deviation of the surface roughness Sz on the intermediate layer side of the copper layer is controlled to be 1.30 μm or less. When the standard deviation of the surface roughness Sz on the intermediate layer side of the ultra-thin copper layer measured with the laser microscope exceeds 1.30 μm, the variation of the laser hole diameter increases (that is, the standard deviation increases) or etching. There is a possibility that the problem that the variation of the factor becomes large (that is, the standard deviation becomes large) occurs. Further, the standard deviation of the surface roughness Sz on the intermediate layer side of the ultrathin copper layer measured with the laser microscope is more preferably 0.01 μm or more and 1.20 μm or less, and 0.05 μm or more and 1.10 μm or less. It is still more preferable that it is 0.10 μm or more and 1.00 μm or less.
 本発明のキャリア付銅箔は、別の一側面において、キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して極薄銅層を剥がしたとき、レーザー顕微鏡で測定される極薄銅層の中間層側の表面粗さRa(算術平均粗さ)が0.14μm以上0.35μm以下となるように制御されている。キャリア付銅箔を絶縁基板に貼り合わせて熱圧着後にキャリアを剥がし、絶縁基板に接着した極薄銅層を目的とする導体パターンにエッチングして回路を形成する。このようにして基板を多層構造にしてプリント配線板を作製している。ここで、このようなプリント配線板の集積回路密度を上昇させるためには、レーザー穴を形成し、当該穴を通じて内層と外層とを接続させる。このとき、極薄銅層にレーザー穴を空けるのが困難であると当然に問題であるし、レーザー穴は大きすぎても小さすぎても種々の問題を引き起こすため適度な大きさに形成する必要がある。このように、極薄銅層のレーザー穴開け性は、穴径精度並びにレーザー出力等の諸条件に関わるため集積回路の設計及び生産性に大きく影響を及ぼす重要な特性である。本発明では、この極薄銅層のレーザー穴開け性は、キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さRaが0.14μm以上0.35μm以下に制御することで良好となることを見出した。当該レーザー顕微鏡で測定される極薄銅層の中間層側の表面粗さRaが0.14μm未満であると、極薄銅層の表面の粗さが不足して穴開け加工の際のレーザーの吸収性が悪くなり、穴が空け難くなり、空けたとしても小さな穴となってしまうという問題が生じる。また、当該レーザー顕微鏡で測定される極薄銅層の中間層側の表面粗さRaが0.35μmを超えると、極薄銅層の表面の粗さが大き過ぎて穴開け加工の際のレーザーの吸収性が過剰となり、穴が大きくなり過ぎてしまうという問題が生じる。当該レーザー顕微鏡で測定される極薄銅層の中間層側の表面粗さRaは、0.16μm以上0.32μm以下が好ましく、0.18μm以上0.32μm以下がより好ましく、0.20μm以上0.32μm以下が更により好ましい。また、当該レーザー顕微鏡で測定される極薄銅層の中間層側の表面粗さRaは、0.14μm以上0.30μm以下であるのが好ましい。なお、上記「220℃で2時間加熱」は、キャリア付銅箔を絶縁基板に貼り合わせて熱圧着する場合の典型的な加熱条件を示している。 The copper foil with a carrier of the present invention is measured with a laser microscope when the copper foil with a carrier is heated at 220 ° C. for 2 hours and then the ultrathin copper layer is peeled off in accordance with JIS C 6471. The surface roughness Ra (arithmetic average roughness) on the intermediate layer side of the ultrathin copper layer is controlled to be 0.14 μm or more and 0.35 μm or less. A carrier-attached copper foil is bonded to an insulating substrate, the carrier is peeled off after thermocompression bonding, and an ultrathin copper layer bonded to the insulating substrate is etched into a target conductor pattern to form a circuit. In this way, a printed wiring board is produced with a multi-layered substrate. Here, in order to increase the integrated circuit density of such a printed wiring board, a laser hole is formed, and the inner layer and the outer layer are connected through the hole. At this time, it is of course a problem that it is difficult to make a laser hole in an ultra-thin copper layer, and it is necessary to form the laser hole to an appropriate size to cause various problems even if it is too large or too small. There is. As described above, laser drillability of an ultrathin copper layer is an important characteristic that greatly affects the design and productivity of an integrated circuit because it relates to various conditions such as hole diameter accuracy and laser output. In the present invention, the laser piercing property of this ultrathin copper layer can be measured with a laser microscope when the copper foil with carrier is heated at 220 ° C. for 2 hours and then peeled off in accordance with JIS C 6471. It has been found that the surface roughness Ra on the intermediate layer side of the ultrathin copper layer to be measured is improved by controlling it to 0.14 μm or more and 0.35 μm or less. If the surface roughness Ra on the intermediate layer side of the ultra-thin copper layer measured with the laser microscope is less than 0.14 μm, the surface roughness of the ultra-thin copper layer is insufficient and Absorbability deteriorates, making it difficult to make a hole, and even if it is made a problem, it becomes a small hole. Further, when the surface roughness Ra on the intermediate layer side of the ultrathin copper layer measured by the laser microscope exceeds 0.35 μm, the surface roughness of the ultrathin copper layer is too large, and the laser during drilling processing As a result, there is a problem that the absorbability of water becomes excessive and the hole becomes too large. The surface roughness Ra on the intermediate layer side of the ultrathin copper layer measured with the laser microscope is preferably 0.16 μm or more and 0.32 μm or less, more preferably 0.18 μm or more and 0.32 μm or less, and 0.20 μm or more and 0 or less. More preferably, it is not more than 32 μm. The surface roughness Ra on the intermediate layer side of the ultrathin copper layer measured with the laser microscope is preferably 0.14 μm or more and 0.30 μm or less. The “heating at 220 ° C. for 2 hours” indicates a typical heating condition in the case where a copper foil with a carrier is bonded to an insulating substrate and thermocompression bonded.
 また、本発明のキャリア付銅箔は、前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さRaの標準偏差が0.11μm以下となるように制御されているのが好ましい。当該レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さRaの標準偏差が0.11μmを超えると、レーザー穴径のばらつきが大きくなったり(すなわち標準偏差が大きくなる)、エッチングファクターのばらつきが大きくなる(すなわち標準偏差が大きくなる)という問題が生じるおそれがある。また、当該レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さRaの標準偏差は、0.001μm以上0.10μm以下であるのが好ましく、0.003μm以上0.09μm以下であるのが更により好ましく、0.005μm以上0.08μm以下であるのがより好ましく、0.005μm以上0.06μm以下であるのが更により好ましい。 The copper foil with a carrier of the present invention is measured by a laser microscope when the ultra thin copper layer is peeled off in accordance with JIS C 6471 after heating the copper foil with a carrier at 220 ° C. for 2 hours. It is preferable that the standard deviation of the surface roughness Ra on the intermediate layer side of the ultrathin copper layer is controlled to be 0.11 μm or less. When the standard deviation of the surface roughness Ra on the intermediate layer side of the ultrathin copper layer measured by the laser microscope exceeds 0.11 μm, the variation in the laser hole diameter becomes large (that is, the standard deviation becomes large). There is a possibility that the problem that the variation of the etching factor becomes large (that is, the standard deviation becomes large) occurs. The standard deviation of the surface roughness Ra on the intermediate layer side of the ultrathin copper layer measured with the laser microscope is preferably 0.001 μm or more and 0.10 μm or less, and 0.003 μm or more and 0.09 μm. Is more preferably 0.005 μm or more and 0.08 μm or less, and further preferably 0.005 μm or more and 0.06 μm or less.
 本発明のキャリア付銅箔は、更に別の一側面において、キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して極薄銅層を剥がしたとき、レーザー顕微鏡で測定される極薄銅層の中間層側の表面粗さRz(十点平均粗さ)が0.62μm以上1.59μm以下となるように制御されている。キャリア付銅箔を絶縁基板に貼り合わせて熱圧着後にキャリアを剥がし、絶縁基板に接着した極薄銅層を目的とする導体パターンにエッチングして回路を形成する。このようにして基板を多層構造にしてプリント配線板を作製している。ここで、このようなプリント配線板の集積回路密度を上昇させるためには、レーザー穴を形成し、当該穴を通じて内層と外層とを接続させる。このとき、極薄銅層にレーザー穴を空けるのが困難であると当然に問題であるし、レーザー穴は大きすぎても小さすぎても種々の問題を引き起こすため適度な大きさに形成する必要がある。このように、極薄銅層のレーザー穴空け性は、穴径精度並びにレーザー出力等の諸条件に関わるため集積回路の設計及び生産性に大きく影響を及ぼす重要な特性である。本発明では、この極薄銅層のレーザー穴空け性は、キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さRzが0.62μm以上1.59μm以下に制御することで良好となることを見出した。当該レーザー顕微鏡で測定される極薄銅層の中間層側の表面粗さRzが0.62μm未満であると、極薄銅層の表面の粗さが不足して穴空け加工の際のレーザーの吸収性が悪くなり、穴が空け難くなり、空けたとしても小さな穴となってしまうという問題が生じる。また、当該レーザー顕微鏡で測定される極薄銅層の中間層側の表面粗さRzが1.59μmを超えると、極薄銅層の表面の粗さが大き過ぎて穴空け加工の際のレーザーの吸収性が過剰となり、穴が大きくなり過ぎてしまうという問題が生じる。当該レーザー顕微鏡で測定される極薄銅層の中間層側の表面粗さRzは、0.70μm以上1.52μm以下が好ましく、0.80μm以上1.50μm以下がより好ましく、0.90μm以上1.40μm以下が更により好ましい。また、当該レーザー顕微鏡で測定される極薄銅層の中間層側の表面粗さRzは、1.10μm以上1.50μm以下がより好ましい。なお、上記「220℃で2時間加熱」は、キャリア付銅箔を絶縁基板に貼り合わせて熱圧着する場合の典型的な加熱条件を示している。 The carrier-attached copper foil of the present invention, in yet another aspect, measured with a laser microscope when the ultra-thin copper layer was peeled off in accordance with JIS C 6471 after the carrier-attached copper foil was heated at 220 ° C. for 2 hours. The surface roughness Rz (ten-point average roughness) on the intermediate layer side of the ultrathin copper layer is controlled to be 0.62 μm or more and 1.59 μm or less. A carrier-attached copper foil is bonded to an insulating substrate, the carrier is peeled off after thermocompression bonding, and an ultrathin copper layer bonded to the insulating substrate is etched into a target conductor pattern to form a circuit. In this way, a printed wiring board is produced with a multi-layered substrate. Here, in order to increase the integrated circuit density of such a printed wiring board, a laser hole is formed, and the inner layer and the outer layer are connected through the hole. At this time, it is of course a problem that it is difficult to make a laser hole in an ultra-thin copper layer, and it is necessary to form the laser hole to an appropriate size to cause various problems even if it is too large or too small. There is. As described above, the laser holeability of the ultrathin copper layer is an important characteristic that greatly affects the design and productivity of the integrated circuit because it relates to various conditions such as hole diameter accuracy and laser output. In the present invention, the laser piercing property of this ultra-thin copper layer is measured with a laser microscope when the copper foil with carrier is heated at 220 ° C. for 2 hours and then peeled off according to JIS C 6471. It has been found that the surface roughness Rz on the intermediate layer side of the ultrathin copper layer to be measured is improved by controlling it to 0.62 μm or more and 1.59 μm or less. If the surface roughness Rz on the intermediate layer side of the ultra-thin copper layer measured with the laser microscope is less than 0.62 μm, the surface roughness of the ultra-thin copper layer is insufficient and the laser in the drilling process Absorbability deteriorates, making it difficult to make a hole, and even if it is made a problem, it becomes a small hole. Moreover, when the surface roughness Rz on the intermediate layer side of the ultrathin copper layer measured by the laser microscope exceeds 1.59 μm, the surface roughness of the ultrathin copper layer is too large, and the laser during the drilling process As a result, there is a problem that the absorbability of water becomes excessive and the hole becomes too large. The surface roughness Rz of the ultrathin copper layer measured by the laser microscope is preferably 0.70 μm or more and 1.52 μm or less, more preferably 0.80 μm or more and 1.50 μm or less, and 0.90 μm or more and 1 More preferably, it is 40 μm or less. The surface roughness Rz on the intermediate layer side of the ultrathin copper layer measured with the laser microscope is more preferably 1.10 μm or more and 1.50 μm or less. The “heating at 220 ° C. for 2 hours” indicates a typical heating condition in the case where a copper foil with a carrier is bonded to an insulating substrate and thermocompression bonded.
 また、本発明のキャリア付銅箔は、キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さRzの標準偏差が0.51μm以下となるように制御されている。当該レーザー顕微鏡で測定される極薄銅層の中間層側の表面粗さRzの標準偏差が0.51μmを超えると、レーザー穴径のばらつきが大きくなったり(すなわち標準偏差が大きくなる)、エッチングファクターのばらつきが大きくなる(すなわち標準偏差が大きくなる)という問題が生じる。また、当該レーザー顕微鏡で測定される極薄銅層の中間層側の表面粗さRzの標準偏差は、0.01μm以上0.48μm以下であるのが好ましく、0.04μm以上0.40μm以下であるのが更により好ましく、0.04μm以上0.35μm以下であるのがより好ましく、0.05μm以上0.20μm以下であるのがより好ましい。 Moreover, the copper foil with a carrier of the present invention is the ultrathin film measured by a laser microscope when the copper foil with a carrier is heated at 220 ° C. for 2 hours and then the ultrathin copper layer is peeled off according to JIS C 6471. The standard deviation of the surface roughness Rz on the intermediate layer side of the copper layer is controlled to be 0.51 μm or less. When the standard deviation of the surface roughness Rz on the intermediate layer side of the ultra-thin copper layer measured with the laser microscope exceeds 0.51 μm, the variation of the laser hole diameter becomes large (that is, the standard deviation becomes large) or etching. There arises a problem that the variation of the factor becomes large (that is, the standard deviation becomes large). Further, the standard deviation of the surface roughness Rz on the intermediate layer side of the ultrathin copper layer measured with the laser microscope is preferably 0.01 μm or more and 0.48 μm or less, and 0.04 μm or more and 0.40 μm or less. More preferably, it is 0.04 μm or more and 0.35 μm or less, and more preferably 0.05 μm or more and 0.20 μm or less.
 また、本発明のキャリア付銅箔は、キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して極薄銅層を剥がしたとき、レーザー顕微鏡で測定される極薄銅層の中間層側の表面高さ分布のとがり度Sku(クルトシス)が0.50以上3.70以下に制御されているのが好ましい。Skuが0.50未満であると、極薄銅層の表面の凸部の形状が平らになるため、穴空け加工の際のレーザーの吸収性が悪くなり、穴が空け難くなり、空けたとしても小さな穴となってしまうという問題が生じるおそれがある。また、3.70より大きい場合、極薄銅層の表面の凹凸の凸部が鋭い形状となり、レーザーのエネルギーが局所的に吸収され、レーザーの照射径に対して、実際の穴の大きさが大きくなるという問題が生じるおそれがある。本発明のキャリア付銅箔は、キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して極薄銅層を剥がしたとき、レーザー顕微鏡で測定される極薄銅層の中間層側の表面高さ分布のとがり度Skuが1.00以上3.60以下に制御されているのがより好ましく、1.50以上3.30以下に制御されているのが更により好ましく、1.50以上3.20以下に制御されているのが更により好ましく、1.50以上3.10以下に制御されているのが更により好ましく、1.50以上3.00以下に制御されているのが更により好ましい。 Moreover, the copper foil with a carrier of the present invention is an ultrathin copper measured by a laser microscope when the copper foil with a carrier is heated at 220 ° C. for 2 hours and then the ultrathin copper layer is peeled off according to JIS C 6471. It is preferable that the degree of sharpness Sku (Cultosis) of the surface height distribution on the intermediate layer side of the layer is controlled to 0.50 or more and 3.70 or less. If the Sku is less than 0.50, the shape of the convex part on the surface of the ultra-thin copper layer will be flat, so that the laser absorbability during drilling will be poor and it will be difficult to drill holes. There is a possibility that the problem of becoming a small hole may occur. On the other hand, when it is larger than 3.70, the unevenness on the surface of the ultrathin copper layer has a sharp shape, the laser energy is absorbed locally, and the actual hole size is smaller than the laser irradiation diameter. There is a possibility that the problem of increasing will occur. The copper foil with a carrier of the present invention is an ultrathin copper layer measured with a laser microscope when the copper foil with a carrier is heated at 220 ° C. for 2 hours and then peeled off in accordance with JIS C 6471. The sharpness Sku of the surface height distribution on the intermediate layer side is more preferably controlled to 1.00 or more and 3.60 or less, and even more preferably controlled to 1.50 or more and 3.30 or less, More preferably, it is controlled to 1.50 or more and 3.20 or less, more preferably 1.50 or more and 3.10 or less, and more preferably 1.50 or more and 3.00 or less. Even more preferably.
<キャリア>
 本発明に用いることのできるキャリアは典型的には金属箔または樹脂フィルムであり、例えば銅箔、銅合金箔、ニッケル箔、ニッケル合金箔、鉄箔、鉄合金箔、ステンレス箔、アルミニウム箔、アルミニウム合金箔、絶縁樹脂フィルム、ポリイミドフィルム、LCDフィルムの形態で提供される。
 本発明に用いることのできるキャリアは典型的には圧延銅箔や電解銅箔の形態で提供される。一般的には、電解銅箔は硫酸銅めっき浴からチタンやステンレスのドラム上に銅を電解析出して製造され、圧延銅箔は圧延ロールによる塑性加工と熱処理を繰り返して製造される。銅箔の材料としてはタフピッチ銅(JIS H3100 合金番号C1100)や無酸素銅(JIS H3100 合金番号C1020またはJIS H3510 合金番号C1011)といった高純度の銅の他、例えばSn入り銅、Ag入り銅、Cr、Zr又はMg等を添加した銅合金、Ni及びSi等を添加したコルソン系銅合金のような銅合金も使用可能である。なお、本明細書において用語「銅箔」を単独で用いたときには銅合金箔も含むものとする。
<Career>
Carriers that can be used in the present invention are typically metal foils or resin films, such as copper foil, copper alloy foil, nickel foil, nickel alloy foil, iron foil, iron alloy foil, stainless steel foil, aluminum foil, aluminum. It is provided in the form of alloy foil, insulating resin film, polyimide film, LCD film.
Carriers that can be used in the present invention are typically provided in the form of rolled copper foil or electrolytic copper foil. In general, the electrolytic copper foil is produced by electrolytic deposition of copper from a copper sulfate plating bath onto a drum of titanium or stainless steel, and the rolled copper foil is produced by repeating plastic working and heat treatment with a rolling roll. Examples of copper foil materials include high-purity copper such as tough pitch copper (JIS H3100 alloy number C1100) and oxygen-free copper (JIS H3100 alloy number C1020 or JIS H3510 alloy number C1011), for example, Sn-containing copper, Ag-containing copper, Cr A copper alloy such as a copper alloy added with Zr or Mg, or a Corson copper alloy added with Ni, Si or the like can also be used. In addition, when the term “copper foil” is used alone in this specification, a copper alloy foil is also included.
 本発明に用いることのできるキャリアの厚さについても特に制限はないが、キャリアとしての役目を果たす上で適した厚さに適宜調節すればよく、例えば5μm以上とすることができる。但し、厚すぎると生産コストが高くなるので一般には35μm以下とするのが好ましい。従って、キャリアの厚みは典型的には8~70μmであり、より典型的には12~70μmであり、より典型的には18~35μmである。また、原料コストを低減する観点からはキャリアの厚みは小さいことが好ましい。そのため、キャリアの厚みは、典型的には5μm以上35μm以下であり、好ましくは5μm以上18μm以下であり、好ましくは5μm以上12μm以下であり、好ましくは5μm以上11μm以下であり、好ましくは5μm以上10μm以下である。なお、キャリアの厚みが小さい場合には、キャリアの通箔の際に折れシワが発生しやすい。折れシワの発生を防止するため、例えばキャリア付銅箔製造装置の搬送ロールを平滑にすることや、搬送ロールと、その次の搬送ロールとの距離を短くすることが有効である。 The thickness of the carrier that can be used in the present invention is not particularly limited, but may be appropriately adjusted to a thickness suitable for serving as a carrier, for example, 5 μm or more. However, if it is too thick, the production cost becomes high, so generally it is preferably 35 μm or less. Accordingly, the thickness of the carrier is typically 8 to 70 μm, more typically 12 to 70 μm, and more typically 18 to 35 μm. Moreover, it is preferable that the thickness of a carrier is small from a viewpoint of reducing raw material cost. Therefore, the thickness of the carrier is typically 5 μm or more and 35 μm or less, preferably 5 μm or more and 18 μm or less, preferably 5 μm or more and 12 μm or less, preferably 5 μm or more and 11 μm or less, preferably 5 μm or more and 10 μm or less. It is as follows. In addition, when the thickness of a carrier is small, it is easy to generate | occur | produce a wrinkle in the case of a carrier foil. In order to prevent the generation of folding wrinkles, for example, it is effective to smooth the transport roll of the copper foil manufacturing apparatus with a carrier and to shorten the distance between the transport roll and the next transport roll.
 本発明の上述のレーザー顕微鏡で測定される極薄銅層の中間層側の表面粗さSz、Ra、Rz及びそれらの標準偏差、及び、Skuは、キャリアの極薄銅層側表面形態を調整することで制御することができる。以下に、本発明のキャリアの作製方法について説明する。 The surface roughness Sz, Ra, Rz and their standard deviations on the intermediate layer side of the ultrathin copper layer measured by the above-mentioned laser microscope of the present invention, and Sku adjust the surface form of the ultrathin copper layer side of the carrier. It can be controlled by doing. Below, the manufacturing method of the carrier of this invention is demonstrated.
 キャリアとして電解銅箔を使用する場合の製造条件の一例は、以下に示される。
 <電解液組成>
 銅:90~110g/L
 硫酸:90~110g/L
 塩素:50~100ppm
 レべリング剤1(ビス(3スルホプロピル)ジスルフィド):10~30ppm
 レべリング剤2(アミン化合物):10~30ppm
 上記のアミン化合物には以下の化学式のアミン化合物を用いることができる。
An example of manufacturing conditions when using electrolytic copper foil as a carrier is shown below.
<Electrolyte composition>
Copper: 90-110g / L
Sulfuric acid: 90-110 g / L
Chlorine: 50-100ppm
Leveling agent 1 (bis (3-sulfopropyl) disulfide): 10 to 30 ppm
Leveling agent 2 (amine compound): 10 to 30 ppm
As the amine compound, an amine compound having the following chemical formula can be used.
Figure JPOXMLDOC01-appb-C000001
(上記化学式中、R1及びR2はヒドロキシアルキル基、エーテル基、アリール基、芳香族置換アルキル基、不飽和炭化水素基、アルキル基からなる一群から選ばれるものである。)
Figure JPOXMLDOC01-appb-C000001
(In the above chemical formula, R 1 and R 2 are selected from the group consisting of a hydroxyalkyl group, an ether group, an aryl group, an aromatic substituted alkyl group, an unsaturated hydrocarbon group, and an alkyl group.)
 <製造条件>
 電流密度:70~100A/dm2
 電解液温度:50~60℃
 電解液線速:3~5m/sec
 電解時間:0.5~10分間
<Production conditions>
Current density: 70-100 A / dm 2
Electrolyte temperature: 50-60 ° C
Electrolyte linear velocity: 3-5m / sec
Electrolysis time: 0.5 to 10 minutes
 極薄銅層の中間層側の表面粗さSz、Ra、Rz及びそれらの標準偏差、及び、Skuは、キャリアの極薄銅層側表面形態を調整することで制御する。当該キャリアの極薄銅層側表面形態の調整としては、以下の(1)~(3)の調整法が挙げられる。なお、表2のように、キャリアの極薄銅層側表面の形態と、キャリア側極薄銅層表面の形態とは近い形態となる。そのため、キャリアの極薄銅層側表面の形態を調整することで、所望のキャリア側極薄銅層表面の形態を有するキャリア付極薄銅箔を得ることができる。 The surface roughness Sz, Ra, Rz on the intermediate layer side of the ultrathin copper layer, their standard deviation, and Sku are controlled by adjusting the surface form of the carrier on the ultrathin copper layer side. Examples of the adjustment of the surface form of the carrier on the ultrathin copper layer side include the following adjustment methods (1) to (3). In addition, as shown in Table 2, the form of the ultrathin copper layer side surface of the carrier is close to the form of the carrier side ultrathin copper layer surface. Therefore, by adjusting the form of the surface of the carrier on the side of the ultrathin copper layer, an ultrathin copper foil with a carrier having the form of the surface of the desired carrier side ultrathin copper layer can be obtained.
 (1)低粗度及び高光沢のキャリアに対して、ソフトエッチング処理または逆電解処理を行う。
 具体的には、表面粗さRzが0.2μm~0.6μm、又は、表面粗さRaが0.2μm~0.6μm、又は、表面粗さSzが0.2μm~0.6μmで60度鏡面光沢度が500%以上のキャリアに対して、ソフトエッチング処理(例えば、硫酸5~15vol%、過酸化水素0.5~5.0wt%の水溶液で、10~30℃にて0.5~10分間のエッチング処理)、或いは、逆電解処理(光沢面に電解研磨して凹凸を形成する処理)を行う。
 なお、上記「逆電解研磨」は電解研磨である。一般に、電解研磨は平滑化を目的とするので、電解銅箔に電解研磨を施すとすれば、光沢面とは逆側の表面(粗面)が対象となるのが通常の考え方である。しかしながら、ここでは光沢面に電解研磨して凹凸を形成するので、通常とは逆の考え方の電解研磨処理、すなわち逆電解研磨処理となる。なお、逆電解処理による銅の溶解量は2~20g/m2とする。また、逆電解研磨処理の電流密度は0.5~50A/dm2とする。
(1) A soft etching process or a reverse electrolysis process is performed on a carrier having low roughness and high gloss.
Specifically, the surface roughness Rz is 0.2 μm to 0.6 μm, or the surface roughness Ra is 0.2 μm to 0.6 μm, or the surface roughness Sz is 0.2 μm to 0.6 μm, and 60 degrees. Soft etching treatment (for example, an aqueous solution of 5-15 vol% sulfuric acid and 0.5-5.0 wt% hydrogen peroxide, 0.5-10% at 10-30 ° C for carriers having a specular gloss of 500% or more. An etching process for 10 minutes) or a reverse electrolytic process (a process for forming irregularities by electropolishing the glossy surface).
The “reverse electropolishing” is electropolishing. In general, since electropolishing is intended for smoothing, if electropolishing is applied to an electrolytic copper foil, the normal idea is that the surface opposite to the glossy surface (rough surface) is the target. However, since the uneven surface is formed by electropolishing on the glossy surface here, the electropolishing process is the opposite of the normal one, that is, the reverse electropolishing process. The amount of copper dissolved by reverse electrolysis is 2 to 20 g / m 2 . The current density in the reverse electropolishing process is 0.5 to 50 A / dm 2 .
 (2)サンドブラストで処理した圧延ロールでの圧延によりキャリアを製造する。
 具体的には、キャリアとして圧延銅箔を用意し、当該圧延銅箔に対し、サンドブラストにより表面を粗化した圧延ロールを用いて仕上げの冷間圧延を行う。このとき、圧延ロール粗さRa=0.39~0.42μm、油膜当量29000~40000とすることができる。
 ここで油膜当量は以下の式で表される。
 油膜当量={(圧延油粘度[cSt])×(通板速度[mpm]+ロール周速度[mpm])}/{(ロールの噛み込み角[rad])×(材料の降伏応力[kg/mm2])}
 圧延油粘度[cSt]は40℃での動粘度である。
 油膜当量を29000~40000とするためには、高粘度の圧延油を用いたり、通板速度を速くしたりする等、公知の方法を用いればよい。
(2) A carrier is manufactured by rolling with a rolling roll treated with sandblasting.
Specifically, a rolled copper foil is prepared as a carrier, and finish cold rolling is performed on the rolled copper foil using a rolling roll whose surface is roughened by sandblasting. At this time, the rolling roll roughness Ra = 0.39 to 0.42 μm and the oil film equivalent 29000 to 40000 can be obtained.
Here, the oil film equivalent is expressed by the following equation.
Oil film equivalent = {(rolling oil viscosity [cSt]) × (sheet feeding speed [mpm] + roll peripheral speed [mpm])} / {(roll biting angle [rad]) × (yield stress of material [kg / mm 2 ])}
The rolling oil viscosity [cSt] is a kinematic viscosity at 40 ° C.
In order to set the oil film equivalent to 29,000 to 40,000, a known method such as using highly viscous rolling oil or increasing the sheet passing speed may be used.
 (3)所定の電解条件によりキャリアを製造する。
 具体的には、硫酸銅電解液(銅濃度:80~120g/L、硫酸濃度70~90g/L)を用いて、添加剤として高濃度ニカワ(ニカワ濃度:3~10質量ppm)を用い、高電流密度(75~110A/dm2)且つ高線流速(3.7~5.0m/sec)条件にて電解銅箔のキャリアを作製する。
(3) A carrier is manufactured under predetermined electrolytic conditions.
Specifically, using a copper sulfate electrolyte (copper concentration: 80 to 120 g / L, sulfuric acid concentration 70 to 90 g / L), high concentration glue (Nika concentration: 3 to 10 ppm by mass) as an additive, An electrolytic copper foil carrier is produced under the conditions of a high current density (75 to 110 A / dm 2 ) and a high linear flow rate (3.7 to 5.0 m / sec).
<中間層>
 キャリアの片面又は両面上には中間層を設ける。キャリアと中間層との間には他の層を設けてもよい。本発明で用いる中間層は、キャリア付銅箔が絶縁基板への積層工程前にはキャリアから極薄銅層が剥離し難い一方で、絶縁基板への積層工程後にはキャリアから極薄銅層が剥離可能となるような構成であれば特に限定されない。例えば、本発明のキャリア付銅箔の中間層はCr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Zn、これらの合金、これらの水和物、これらの酸化物、有機物からなる群から選択される一種又は二種以上を含んでも良い。また、中間層は複数の層であっても良い。
 また、例えば、中間層はキャリア側からCr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Znで構成された元素群から選択された一種の元素からなる単一金属層、或いは、Cr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Znで構成された元素群から選択された一種又は二種以上の元素からなる合金層を形成し、その上にCr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Znで構成された元素群から選択された一種又は二種以上の元素の水和物または酸化物からなる層を形成することで構成することができる。
 中間層を片面にのみ設ける場合、キャリアの反対面にはNiめっき層などの防錆層を設けることが好ましい。なお、中間層をクロメート処理や亜鉛クロメート処理やめっき処理で設けた場合には、クロムや亜鉛など、付着した金属の一部は水和物や酸化物となっている場合があると考えられる。
 また、例えば、中間層は、キャリア上に、ニッケル、ニッケル-リン合金又はニッケル-コバルト合金と、クロムとがこの順で積層されて構成することができる。ニッケルと銅との接着力はクロムと銅の接着力よりも高いので、極薄銅層を剥離する際に、極薄銅層とクロムとの界面で剥離するようになる。また、中間層のニッケルにはキャリアから銅成分が極薄銅層へと拡散していくのを防ぐバリア効果が期待される。中間層におけるニッケルの付着量は好ましくは100μg/dm2以上40000μg/dm2以下、より好ましくは100μg/dm2以上4000μg/dm2以下、より好ましくは100μg/dm2以上2500μg/dm2以下、より好ましくは100μg/dm2以上1000μg/dm2未満であり、中間層におけるクロムの付着量は5μg/dm2以上100μg/dm2以下であることが好ましい。中間層を片面にのみ設ける場合、キャリアの反対面にはNiめっき層などの防錆層を設けることが好ましい。
<Intermediate layer>
An intermediate layer is provided on one or both sides of the carrier. Another layer may be provided between the carrier and the intermediate layer. In the intermediate layer used in the present invention, the ultrathin copper layer is hardly peeled off from the carrier before the copper foil with the carrier is laminated on the insulating substrate, while the ultrathin copper layer is separated from the carrier after the lamination step on the insulating substrate. There is no particular limitation as long as it can be peeled off. For example, the intermediate layer of the copper foil with a carrier of the present invention is Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, Zn, alloys thereof, hydrates thereof, oxides thereof, One or two or more selected from the group consisting of organic substances may be included. The intermediate layer may be a plurality of layers.
Further, for example, the intermediate layer is a single metal layer composed of one kind of element selected from the element group composed of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, Zn from the carrier side. Or forming an alloy layer composed of one or more elements selected from the group consisting of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, Zn, A layer made of a hydrate or oxide of one or more elements selected from the group consisting of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, and Zn. It can comprise by forming.
When the intermediate layer is provided only on one side, it is preferable to provide a rust preventive layer such as a Ni plating layer on the opposite side of the carrier. When the intermediate layer is provided by chromate treatment, zinc chromate treatment, or plating treatment, it is considered that some of the attached metal such as chromium and zinc may be hydrates or oxides.
Further, for example, the intermediate layer can be constituted by laminating nickel, a nickel-phosphorus alloy or a nickel-cobalt alloy, and chromium in this order on a carrier. Since the adhesive strength between nickel and copper is higher than the adhesive strength between chromium and copper, when the ultrathin copper layer is peeled off, it peels at the interface between the ultrathin copper layer and chromium. Further, the nickel of the intermediate layer is expected to have a barrier effect that prevents the copper component from diffusing from the carrier into the ultrathin copper layer. Adhesion amount of nickel in the intermediate layer is preferably 100 [mu] g / dm 2 or more 40000μg / dm 2 or less, more preferably 100 [mu] g / dm 2 or more 4000μg / dm 2 or less, more preferably 100 [mu] g / dm 2 or more 2500 g / dm 2 or less, more Preferably, it is 100 μg / dm 2 or more and less than 1000 μg / dm 2 , and the amount of chromium deposited on the intermediate layer is preferably 5 μg / dm 2 or more and 100 μg / dm 2 or less. When the intermediate layer is provided only on one side, it is preferable to provide a rust preventive layer such as a Ni plating layer on the opposite side of the carrier.
<極薄銅層>
 中間層の上には極薄銅層を設ける。中間層と極薄銅層との間には他の層を設けてもよい。極薄銅層は、硫酸銅、ピロリン酸銅、スルファミン酸銅、シアン化銅等の電解浴を利用した電気めっきにより形成することができ、一般的な電解銅箔で使用され、高電流密度での銅箔形成が可能であることから硫酸銅浴が好ましい。極薄銅層の厚みは特に制限はないが、一般的にはキャリアよりも薄く、例えば12μm以下である。典型的には0.5~12μmであり、より典型的には1~5μm、更に典型的には1.5~5μm、更に典型的には2~5μmである。なお、キャリアの両面に極薄銅層を設けてもよい。
<Ultra thin copper layer>
An ultrathin copper layer is provided on the intermediate layer. Another layer may be provided between the intermediate layer and the ultrathin copper layer. The ultra-thin copper layer can be formed by electroplating using an electrolytic bath such as copper sulfate, copper pyrophosphate, copper sulfamate, copper cyanide, etc., and is used in general electrolytic copper foil with high current density. Since a copper foil can be formed, a copper sulfate bath is preferable. The thickness of the ultrathin copper layer is not particularly limited, but is generally thinner than the carrier, for example, 12 μm or less. Typically, it is 0.5 to 12 μm, more typically 1 to 5 μm, more typically 1.5 to 5 μm, and more typically 2 to 5 μm. In addition, you may provide an ultra-thin copper layer on both surfaces of a carrier.
<粗化処理およびその他の表面処理>
 極薄銅層の表面には、例えば絶縁基板との密着性を良好にすること等のために粗化処理を施すことで粗化処理層を設けてもよい。粗化処理は、例えば、銅又は銅合金で粗化粒子を形成することにより行うことができる。粗化処理は微細なものであっても良い。粗化処理層は、銅、ニッケル、りん、タングステン、ヒ素、モリブデン、クロム、鉄、バナジウム、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層などであってもよい。また、銅又は銅合金で粗化粒子を形成した後、更にニッケル、コバルト、銅、亜鉛の単体または合金等で二次粒子や三次粒子を設ける粗化処理を行うこともできる。その後に、ニッケル、コバルト、銅、亜鉛の単体または合金等で耐熱層または防錆層を形成しても良く、更にその表面にクロメート処理、シランカップリング処理などの処理を施してもよい。または粗化処理を行わずに、ニッケル、コバルト、銅、亜鉛の単体または合金等で耐熱層又は防錆層を形成し、さらにその表面にクロメート処理、シランカップリング処理などの処理を施してもよい。すなわち、粗化処理層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよく、極薄銅層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよい。なお、上述の耐熱層、防錆層、クロメート処理層、シランカップリング処理層はそれぞれ複数の層で形成されてもよい(例えば2層以上、3層以上など)。
<Roughening treatment and other surface treatment>
A roughening treatment layer may be provided on the surface of the ultrathin copper layer by performing a roughening treatment, for example, in order to improve the adhesion to the insulating substrate. The roughening treatment can be performed, for example, by forming roughened particles with copper or a copper alloy. The roughening process may be fine. The roughening treatment layer is a layer made of any single element selected from the group consisting of copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, iron, vanadium, cobalt, and zinc, or an alloy containing at least one of them. It may be. Moreover, after forming the roughened particles with copper or a copper alloy, a roughening treatment can be performed in which secondary particles or tertiary particles are further formed of nickel, cobalt, copper, zinc alone or an alloy. Thereafter, a heat-resistant layer or a rust-preventing layer may be formed of nickel, cobalt, copper, zinc alone or an alloy, and the surface thereof may be further subjected to a treatment such as a chromate treatment or a silane coupling treatment. Alternatively, a heat-resistant layer or a rust-preventing layer may be formed from nickel, cobalt, copper, zinc alone or an alloy without roughening, and the surface may be subjected to a treatment such as chromate treatment or silane coupling treatment. Good. That is, one or more layers selected from the group consisting of a heat-resistant layer, a rust-preventing layer, a chromate treatment layer, and a silane coupling treatment layer may be formed on the surface of the roughening treatment layer. One or more layers selected from the group consisting of a heat-resistant layer, a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer may be formed on the surface. In addition, the above-mentioned heat-resistant layer, rust prevention layer, chromate treatment layer, and silane coupling treatment layer may each be formed of a plurality of layers (for example, 2 layers or more, 3 layers or more, etc.).
 例えば、粗化処理としての銅-コバルト-ニッケル合金めっきは、電解めっきにより、付着量が15~40mg/dm2の銅-100~3000μg/dm2のコバルト-100~1500μg/dm2のニッケルであるような3元系合金層を形成するように実施することができる。Co付着量が100μg/dm2未満では、耐熱性が悪化し、エッチング性が悪くなることがある。Co付着量が3000μg/dm2 を超えると、磁性の影響を考慮せねばならない場合には好ましくなく、エッチングシミが生じ、また、耐酸性及び耐薬品性の悪化がすることがある。Ni付着量が100μg/dm2未満であると、耐熱性が悪くなることがある。他方、Ni付着量が1500μg/dm2を超えると、エッチング残が多くなることがある。好ましいCo付着量は1000~2500μg/dm2であり、好ましいニッケル付着量は500~1200μg/dm2である。ここで、エッチングシミとは、塩化銅でエッチングした場合、Coが溶解せずに残ってしまうことを意味しそしてエッチング残とは塩化アンモニウムでアルカリエッチングした場合、Niが溶解せずに残ってしまうことを意味するものである。 For example, copper as a roughening treatment - cobalt - nickel alloy plating, by electrolytic plating, deposition amount in the 15 ~ 40 mg / dm cobalt -100 copper -100 ~ 3000μg / dm 2 of 2 ~ 1500μg / dm 2 of nickel Such a ternary alloy layer can be formed. If the amount of deposited Co is less than 100 μg / dm 2 , the heat resistance may deteriorate and the etching property may deteriorate. When the amount of Co deposition exceeds 3000 μg / dm 2 , it is not preferable when the influence of magnetism must be taken into account, etching spots may occur, and acid resistance and chemical resistance may deteriorate. If the Ni adhesion amount is less than 100 μg / dm 2 , the heat resistance may deteriorate. On the other hand, when the Ni adhesion amount exceeds 1500 μg / dm 2 , the etching residue may increase. A preferable Co adhesion amount is 1000 to 2500 μg / dm 2 , and a preferable nickel adhesion amount is 500 to 1200 μg / dm 2 . Here, the etching stain means that Co remains without being dissolved when etched with copper chloride, and the etching residue means that Ni remains without being dissolved when alkaline etching is performed with ammonium chloride. It means that.
 このような3元系銅-コバルト-ニッケル合金めっきを形成するための一般的浴及びめっき条件の一例は次の通りである:
 めっき浴組成:Cu10~20g/L、Co1~10g/L、Ni1~10g/L
 pH:1~4
 温度:30~50℃
 電流密度Dk:20~30A/dm2
 めっき時間:1~5秒
An example of a general bath and plating conditions for forming such ternary copper-cobalt-nickel alloy plating is as follows:
Plating bath composition: Cu 10-20 g / L, Co 1-10 g / L, Ni 1-10 g / L
pH: 1 to 4
Temperature: 30-50 ° C
Current density D k : 20 to 30 A / dm 2
Plating time: 1-5 seconds
 このようにして、キャリアと、キャリア上に積層された中間層と、中間層の上に積層された極薄銅層とを備えたキャリア付銅箔が製造される。キャリア付銅箔自体の使用方法は当業者に周知であるが、例えば極薄銅層の表面を紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂、ポリエステルフィルム、ポリイミドフィルム等の絶縁基板に貼り合わせて熱圧着後にキャリアを剥がして銅張積層板とし、絶縁基板に接着した極薄銅層を目的とする導体パターンにエッチングし、最終的にプリント配線板を製造することができる。 Thus, a carrier-attached copper foil including a carrier, an intermediate layer laminated on the carrier, and an ultrathin copper layer laminated on the intermediate layer is manufactured. The method of using the copper foil with carrier itself is well known to those skilled in the art. For example, the surface of the ultra-thin copper layer is made of paper base phenol resin, paper base epoxy resin, synthetic fiber cloth base epoxy resin, glass cloth / paper composite. Base epoxy resin, glass cloth / glass nonwoven fabric composite base epoxy resin and glass cloth base epoxy resin, polyester film, polyimide film, etc. The printed wiring board can be finally manufactured by etching the ultrathin copper layer adhered to the substrate into a desired conductor pattern.
 また、キャリアと、キャリア上に中間層が積層され、中間層の上に積層された極薄銅層とを備えたキャリア付銅箔は、前記極薄銅層上に粗化処理層を備えても良く、前記粗化処理層上に、耐熱層、防錆層、クロメート処理層およびシランカップリング処理層からなる群のから選択された層を一つ以上備えても良い。
 また、前記極薄銅層上に粗化処理層を備えても良く、前記粗化処理層上に、耐熱層、防錆層を備えてもよく、前記耐熱層、防錆層上にクロメート処理層を備えてもよく、前記クロメート処理層上にシランカップリング処理層を備えても良い。
 また、前記キャリア付銅箔は前記極薄銅層上、あるいは前記粗化処理層上、あるいは前記耐熱層、防錆層、あるいはクロメート処理層、あるいはシランカップリング処理層の上に樹脂層を備えても良い。前記樹脂層は絶縁樹脂層であってもよい。
Further, the carrier-attached copper foil comprising a carrier and an ultra-thin copper layer laminated on the intermediate layer on the carrier comprises a roughening treatment layer on the ultra-thin copper layer. Alternatively, one or more layers selected from the group consisting of a heat-resistant layer, a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer may be provided on the roughening treatment layer.
Further, a roughening treatment layer may be provided on the ultrathin copper layer, a heat resistant layer and a rust prevention layer may be provided on the roughening treatment layer, and a chromate treatment is performed on the heat resistance layer and the rust prevention layer. A layer may be provided, and a silane coupling treatment layer may be provided on the chromate treatment layer.
The carrier-attached copper foil includes a resin layer on the ultrathin copper layer, the roughened layer, the heat-resistant layer, the rust-proof layer, the chromate-treated layer, or the silane coupling-treated layer. May be. The resin layer may be an insulating resin layer.
 前記樹脂層は接着剤であってもよく、接着用の半硬化状態(Bステージ)の絶縁樹脂層であってもよい。半硬化状態(Bステージ状態)とは、その表面に指で触れても粘着感はなく、該絶縁樹脂層を重ね合わせて保管することができ、更に加熱処理を受けると硬化反応が起こる状態のことを含む。 The resin layer may be an adhesive, or may be a semi-cured (B stage) insulating resin layer for bonding. The semi-cured state (B stage state) is a state in which there is no sticky feeling even if the surface is touched with a finger, the insulating resin layer can be stacked and stored, and a curing reaction occurs when subjected to heat treatment. Including that.
 また前記樹脂層は熱硬化性樹脂を含んでもよく、熱可塑性樹脂であってもよい。また、前記樹脂層は熱可塑性樹脂を含んでもよい。その種類は格別限定されるものではないが、例えば、エポキシ樹脂、ポリイミド樹脂、多官能性シアン酸エステル化合物、マレイミド化合物、ポリビニルアセタール樹脂、ウレタン樹脂などを含む樹脂を好適なものとしてあげることができる。 The resin layer may contain a thermosetting resin or a thermoplastic resin. The resin layer may include a thermoplastic resin. Although the type is not particularly limited, for example, a resin including an epoxy resin, a polyimide resin, a polyfunctional cyanate ester compound, a maleimide compound, a polyvinyl acetal resin, a urethane resin, or the like can be given as a preferable one. .
 前記樹脂層は公知の樹脂、樹脂硬化剤、化合物、硬化促進剤、誘電体(無機化合物及び/または有機化合物を含む誘電体、金属酸化物を含む誘電体等どのような誘電体を用いてもよい)、反応触媒、架橋剤、ポリマー、プリプレグ、骨格材等を含んでよい。また、前記樹脂層は例えば国際公開番号WO2008/004399号、国際公開番号WO2008/053878、国際公開番号WO2009/084533、特開平11-5828号、特開平11-140281号、特許第3184485号、国際公開番号WO97/02728、特許第3676375号、特開2000-43188号、特許第3612594号、特開2002-179772号、特開2002-359444号、特開2003-304068号、特許第3992225、特開2003-249739号、特許第4136509号、特開2004-82687号、特許第4025177号、特開2004-349654号、特許第4286060号、特開2005-262506号、特許第4570070号、特開2005-53218号、特許第3949676号、特許第4178415号、国際公開番号WO2004/005588、特開2006-257153号、特開2007-326923号、特開2008-111169号、特許第5024930号、国際公開番号WO2006/028207、特許第4828427号、特開2009-67029号、国際公開番号WO2006/134868、特許第5046927号、特開2009-173017号、国際公開番号WO2007/105635、特許第5180815号、国際公開番号WO2008/114858、国際公開番号WO2009/008471、特開2011-14727号、国際公開番号WO2009/001850、国際公開番号WO2009/145179、国際公開番号WO2011/068157、特開2013-19056号に記載されている物質(樹脂、樹脂硬化剤、化合物、硬化促進剤、誘電体、反応触媒、架橋剤、ポリマー、プリプレグ、骨格材等)および/または樹脂層の形成方法、形成装置を用いて形成してもよい。 The resin layer may be made of any known dielectric such as a known resin, resin curing agent, compound, curing accelerator, dielectric (dielectric including an inorganic compound and / or organic compound, dielectric including a metal oxide). May be included), a reaction catalyst, a crosslinking agent, a polymer, a prepreg, a skeleton material, and the like. The resin layer may be, for example, International Publication No. WO2008 / 004399, International Publication No. WO2008 / 053878, International Publication No. WO2009 / 084533, JP-A-11-5828, JP-A-11-140281, Patent 3184485, International Publication. No. WO 97/02728, Japanese Patent No. 3676375, Japanese Patent Application Laid-Open No. 2000-43188, Japanese Patent No. 3612594, Japanese Patent Application Laid-Open No. 2002-179721, Japanese Patent Application Laid-Open No. 2002-309444, Japanese Patent Application Laid-Open No. 2003-302068, Japanese Patent No. 3992225, Japanese Patent Application Laid-Open No. -249739, Japanese Patent No. 4136509, Japanese Patent Application Laid-Open No. 2004-82687, Japanese Patent No. 4025177, Japanese Patent Application Laid-Open No. 2004-349654, Japanese Patent No. 4286060, Japanese Patent Application Laid-Open No. 2005-262506, Japanese Patent No. 4570070, and Japanese Patent Application Laid-Open No. 4570070. No. 5-53218, Japanese Patent No. 3949676, Japanese Patent No. 4178415, International Publication No. WO2004 / 005588, Japanese Patent Application Laid-Open No. 2006-257153, Japanese Patent Application Laid-Open No. 2007-326923, Japanese Patent Application Laid-Open No. 2008-11169, and Japanese Patent No. 5024930. No. WO2006 / 028207, Japanese Patent No. 4828427, JP 2009-67029, International Publication No. WO 2006/134868, Japanese Patent No. 5046927, JP 2009-173017, International Publication No. WO 2007/105635, Patent No. 5180815, International Publication No. WO 2008/114858, International Publication Number WO 2009/008471, JP 2011-14727, International Publication Number WO 2009/001850, International Publication Number WO 2009/145179, International Publication Number Nos. WO2011 / 068157 and JP2013-19056 (resins, resin curing agents, compounds, curing accelerators, dielectrics, reaction catalysts, crosslinking agents, polymers, prepregs, skeletal materials, etc.) and / or You may form using the formation method and formation apparatus of a resin layer.
 これらの樹脂を例えばメチルエチルケトン(MEK)、トルエンなどの溶剤に溶解して樹脂液とし、これを前記極薄銅層上、あるいは前記耐熱層、防錆層、あるいは前記クロメート皮膜層、あるいは前記シランカップリング剤層の上に、例えばロールコータ法などによって塗布し、ついで必要に応じて加熱乾燥して溶剤を除去しBステージ状態にする。乾燥には例えば熱風乾燥炉を用いればよく、乾燥温度は100~250℃、好ましくは130~200℃であればよい。 These resins are dissolved in a solvent such as methyl ethyl ketone (MEK) or toluene to obtain a resin solution, which is used on the ultrathin copper layer, the heat-resistant layer, the rust-proof layer, the chromate film layer, or the silane cup. On the ring agent layer, for example, it is applied by a roll coater method or the like, and then heat-dried as necessary to remove the solvent to obtain a B-stage state. For example, a hot air drying furnace may be used for drying, and the drying temperature may be 100 to 250 ° C., preferably 130 to 200 ° C.
 前記樹脂層を備えたキャリア付銅箔(樹脂付きキャリア付銅箔)は、その樹脂層を基材に重ね合わせたのち全体を熱圧着して該樹脂層を熱硬化せしめ、ついでキャリアを剥離して極薄銅層を表出せしめ(当然に表出するのは該極薄銅層の中間層側の表面である)、そこに所定の配線パターンを形成するという態様で使用される。 The copper foil with a carrier provided with the resin layer (copper foil with a carrier with resin) is superposed on the base material, and the whole is thermocompression bonded to thermally cure the resin layer, and then the carrier is peeled off. Thus, the ultrathin copper layer is exposed (which is naturally the surface on the intermediate layer side of the ultrathin copper layer), and a predetermined wiring pattern is formed thereon.
 この樹脂付きキャリア付銅箔を使用すると、多層プリント配線基板の製造時におけるプリプレグ材の使用枚数を減らすことができる。しかも、樹脂層の厚みを層間絶縁が確保できるような厚みにしたり、プリプレグ材を全く使用していなくても銅張り積層板を製造することができる。またこのとき、基材の表面に絶縁樹脂をアンダーコートして表面の平滑性を更に改善することもできる。 Using this resin-attached copper foil with a carrier can reduce the number of prepreg materials used when manufacturing a multilayer printed wiring board. In addition, the copper-clad laminate can be manufactured even if the resin layer is made thick enough to ensure interlayer insulation or no prepreg material is used. At this time, the surface smoothness can be further improved by undercoating the surface of the substrate with an insulating resin.
 なお、プリプレグ材を使用しない場合には、プリプレグ材の材料コストが節約され、また積層工程も簡略になるので経済的に有利となり、しかも、プリプレグ材の厚み分だけ製造される多層プリント配線基板の厚みは薄くなり、1層の厚みが100μm以下である極薄の多層プリント配線基板を製造することができるという利点がある。 In addition, when the prepreg material is not used, the material cost of the prepreg material is saved and the laminating process is simplified, which is economically advantageous. Moreover, the multilayer printed wiring board manufactured by the thickness of the prepreg material is used. The thickness is reduced, and there is an advantage that an extremely thin multilayer printed wiring board in which the thickness of one layer is 100 μm or less can be manufactured.
 この樹脂層の厚みは0.1~80μmであることが好ましい。 The thickness of this resin layer is preferably 0.1 to 80 μm.
 樹脂層の厚みが0.1μmより薄くなると、接着力が低下し、プリプレグ材を介在させることなくこの樹脂付きキャリア付銅箔を内層材を備えた基材に積層したときに、内層材の回路との間の層間絶縁を確保することが困難になる場合がある。 When the thickness of the resin layer is less than 0.1 μm, the adhesive strength is reduced, and when the copper foil with a carrier with the resin is laminated on the base material provided with the inner layer material without interposing the prepreg material, the circuit of the inner layer material It may be difficult to ensure interlayer insulation between the two.
 一方、樹脂層の厚みを80μmより厚くすると、1回の塗布工程で目的厚みの樹脂層を形成することが困難となり、余分な材料費と工数がかかるため経済的に不利となる。更には、形成された樹脂層はその可撓性が劣るので、ハンドリング時にクラックなどが発生しやすくなり、また内層材との熱圧着時に過剰な樹脂流れが起こって円滑な積層が困難になる場合がある。 On the other hand, if the thickness of the resin layer is made thicker than 80 μm, it becomes difficult to form a resin layer having a desired thickness in a single coating process, which is economically disadvantageous because of extra material costs and man-hours. Furthermore, since the formed resin layer is inferior in flexibility, cracks are likely to occur during handling, and excessive resin flow occurs during thermocompression bonding with the inner layer material, making smooth lamination difficult. There is.
 更に、この樹脂付きキャリア付銅箔のもう一つの製品形態としては、前記極薄銅層上、あるいは前記耐熱層、防錆層、あるいは前記クロメート処理層、あるいは前記シランカップリング処理層の上に樹脂層で被覆し、半硬化状態とした後、ついでキャリアを剥離して、キャリアが存在しない樹脂付き銅箔の形で製造することも可能である。 Furthermore, as another product form of this copper foil with a carrier with a resin, on the ultra-thin copper layer, or on the heat-resistant layer, rust-preventing layer, chromate-treated layer, or silane coupling-treated layer After coating with a resin layer and making it into a semi-cured state, the carrier can then be peeled off and manufactured in the form of a copper foil with resin without the carrier.
 更に、プリント配線板に電子部品類を搭載することで、プリント回路板が完成する。本発明において、「プリント配線板」にはこのように電子部品類が搭載されたプリント配線板およびプリント回路板およびプリント基板も含まれることとする。
 また、当該プリント配線板を用いて電子機器を作製してもよく、当該電子部品類が搭載されたプリント回路板を用いて電子機器を作製してもよく、当該電子部品類が搭載されたプリント基板を用いて電子機器を作製してもよい。以下に、本発明に係るキャリア付銅箔を用いたプリント配線板の製造工程の例を幾つか示す。
Furthermore, a printed circuit board is completed by mounting electronic components on the printed wiring board. In the present invention, the “printed wiring board” includes a printed wiring board, a printed circuit board, and a printed board on which electronic parts are mounted as described above.
Moreover, an electronic device may be manufactured using the printed wiring board, an electronic device may be manufactured using a printed circuit board on which the electronic components are mounted, and a printed circuit on which the electronic components are mounted. An electronic device may be manufactured using a substrate. Below, some examples of the manufacturing process of the printed wiring board using the copper foil with a carrier which concerns on this invention are shown.
 本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、前記キャリア付銅箔と絶縁基板を積層する工程、前記キャリア付銅箔と絶縁基板を極薄銅層側が絶縁基板と対向するように積層した後に、前記キャリア付銅箔のキャリアを剥がす工程を経て銅張積層板を形成し、その後、セミアディティブ法、モディファイドセミアディティブ法、パートリーアディティブ法及びサブトラクティブ法の何れかの方法によって、回路を形成する工程を含む。絶縁基板は内層回路入りのものとすることも可能である。 In one embodiment of a method for producing a printed wiring board according to the present invention, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention, a step of laminating the copper foil with a carrier and an insulating substrate, and with the carrier After laminating the copper foil and the insulating substrate so that the ultrathin copper layer side faces the insulating substrate, a copper-clad laminate is formed through a step of peeling the carrier of the copper foil with carrier, and then a semi-additive method, a modified semi-conductor A step of forming a circuit by any one of an additive method, a partial additive method, and a subtractive method. It is also possible for the insulating substrate to contain an inner layer circuit.
 本発明において、セミアディティブ法とは、絶縁基板又は銅箔シード層上に薄い無電解めっきを行い、パターンを形成後、電気めっき及びエッチングを用いて導体パターンを形成する方法を指す。 In the present invention, the semi-additive method refers to a method in which a thin electroless plating is performed on an insulating substrate or a copper foil seed layer, a pattern is formed, and then a conductive pattern is formed using electroplating and etching.
 従って、セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法によりすべて除去する工程、
前記極薄銅層をエッチングにより除去することにより露出した前記樹脂にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記樹脂および前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層をフラッシュエッチングなどにより除去する工程、
を含む。
Therefore, in one embodiment of a method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid,
Providing a through hole or / and a blind via in the resin exposed by removing the ultrathin copper layer by etching;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the resin and the through hole or / and the blind via;
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer in a region other than the region where the circuit is formed by flash etching or the like;
including.
 セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と、前記絶縁樹脂基板とにスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記キャリアを剥がして露出した極薄銅層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法によりすべて除去する工程、
前記極薄銅層をエッチング等により除去することにより露出した前記樹脂および前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層をフラッシュエッチングなどにより除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via in the ultrathin copper layer exposed by peeling the carrier and the insulating resin substrate;
Performing a desmear process on the region including the through hole or / and the blind via,
Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid,
Providing an electroless plating layer for the resin and the region including the through hole or / and the blind via exposed by removing the ultrathin copper layer by etching or the like;
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer in a region other than the region where the circuit is formed by flash etching or the like;
including.
 セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と、前記絶縁樹脂基板とにスルーホールまたは/およびブラインドビアを設ける工程、
前記キャリアを剥がして露出した極薄銅層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法によりすべて除去する工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記極薄銅層をエッチング等により除去することにより露出した前記樹脂および前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層をフラッシュエッチングなどにより除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via in the ultrathin copper layer exposed by peeling the carrier and the insulating resin substrate;
Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid,
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the resin and the region including the through hole or / and the blind via exposed by removing the ultrathin copper layer by etching or the like;
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer in a region other than the region where the circuit is formed by flash etching or the like;
including.
 セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法によりすべて除去する工程、
前記極薄銅層をエッチングにより除去することにより露出した前記樹脂の表面について無電解めっき層を設ける工程、
前記無電解めっき層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層及び極薄銅層をフラッシュエッチングなどにより除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid,
Providing an electroless plating layer on the surface of the resin exposed by removing the ultrathin copper layer by etching;
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer and the ultrathin copper layer in a region other than the region where the circuit is formed by flash etching or the like;
including.
 本発明において、モディファイドセミアディティブ法とは、絶縁層上に金属箔を積層し、めっきレジストにより非回路形成部を保護し、電解めっきにより回路形成部の銅厚付けを行った後、レジストを除去し、前記回路形成部以外の金属箔を(フラッシュ)エッチングで除去することにより、絶縁層上に回路を形成する方法を指す。 In the present invention, the modified semi-additive method is a method in which a metal foil is laminated on an insulating layer, a non-circuit forming portion is protected by a plating resist, and the copper is thickened in the circuit forming portion by electrolytic plating, and then the resist is removed. Then, a method of forming a circuit on the insulating layer by removing the metal foil other than the circuit forming portion by (flash) etching is indicated.
 従って、モディファイドセミアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
 前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記キャリアを剥がして露出した極薄銅層表面にめっきレジストを設ける工程、
前記めっきレジストを設けた後に、電解めっきにより回路を形成する工程、
前記めっきレジストを除去する工程、
前記めっきレジストを除去することにより露出した極薄銅層をフラッシュエッチングにより除去する工程、
を含む。
Therefore, in one embodiment of the method for producing a printed wiring board according to the present invention using the modified semi-additive method, the step of preparing the copper foil with carrier and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the through hole or / and the blind via;
Providing a plating resist on the surface of the ultrathin copper layer exposed by peeling the carrier,
Forming a circuit by electrolytic plating after providing the plating resist;
Removing the plating resist;
Removing the ultra-thin copper layer exposed by removing the plating resist by flash etching;
including.
 モディファイドセミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層及び極薄銅層をフラッシュエッチングなどにより除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using the modified semi-additive method, the step of preparing the carrier-attached copper foil and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a plating resist on the exposed ultrathin copper layer by peeling off the carrier;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer and the ultrathin copper layer in a region other than the region where the circuit is formed by flash etching or the like;
including.
 本発明において、パートリーアディティブ法とは、導体層を設けてなる基板、必要に応じてスルーホールやバイアホール用の孔を穿けてなる基板上に触媒核を付与し、エッチングして導体回路を形成し、必要に応じてソルダレジストまたはメッキレジストを設けた後に、前記導体回路上、スルーホールやバイアホールなどに無電解めっき処理によって厚付けを行うことにより、プリント配線板を製造する方法を指す。 In the present invention, the partial additive method means that a catalyst circuit is formed on a substrate provided with a conductor layer, and if necessary, a substrate provided with holes for through holes or via holes, and etched to form a conductor circuit. Then, after providing a solder resist or a plating resist as necessary, it refers to a method of manufacturing a printed wiring board by thickening through holes, via holes, etc. on the conductor circuit by electroless plating.
 従って、パートリーアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について触媒核を付与する工程、
前記キャリアを剥がして露出した極薄銅層表面にエッチングレジストを設ける工程、
前記エッチングレジストに対して露光し、回路パターンを形成する工程、
前記極薄銅層および前記触媒核を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して、回路を形成する工程、
前記エッチングレジストを除去する工程、
前記極薄銅層および前記触媒核を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して露出した前記絶縁基板表面に、ソルダレジストまたはメッキレジストを設ける工程、
前記ソルダレジストまたはメッキレジストが設けられていない領域に無電解めっき層を設ける工程、
を含む。
Therefore, in one embodiment of the method for producing a printed wiring board according to the present invention using a partly additive method, a step of preparing the copper foil with carrier and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Applying catalyst nuclei to the region containing the through-holes and / or blind vias;
Providing an etching resist on the surface of the ultrathin copper layer exposed by peeling the carrier,
Exposing the etching resist to form a circuit pattern;
Removing the ultrathin copper layer and the catalyst nucleus by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit;
Removing the etching resist;
A step of providing a solder resist or a plating resist on the surface of the insulating substrate exposed by removing the ultrathin copper layer and the catalyst core by a method such as etching or plasma using a corrosive solution such as an acid;
Providing an electroless plating layer in a region where the solder resist or plating resist is not provided,
including.
 本発明において、サブトラクティブ法とは、銅張積層板上の銅箔の不要部分を、エッチングなどによって、選択的に除去して、導体パターンを形成する方法を指す。 In the present invention, the subtractive method refers to a method of selectively removing unnecessary portions of the copper foil on the copper clad laminate by etching or the like to form a conductor pattern.
 従って、サブトラクティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の表面に、電解めっき層を設ける工程、
前記電解めっき層または/および前記極薄銅層の表面にエッチングレジストを設ける工程、
前記エッチングレジストに対して露光し、回路パターンを形成する工程、
前記極薄銅層および前記無電解めっき層および前記電解めっき層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して、回路を形成する工程、
前記エッチングレジストを除去する工程、
を含む。
Therefore, in one embodiment of the method for producing a printed wiring board according to the present invention using a subtractive method, a step of preparing the carrier-attached copper foil and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the through hole or / and the blind via;
Providing an electroplating layer on the surface of the electroless plating layer;
A step of providing an etching resist on the surface of the electrolytic plating layer or / and the ultrathin copper layer;
Exposing the etching resist to form a circuit pattern;
Removing the ultrathin copper layer and the electroless plating layer and the electrolytic plating layer by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit;
Removing the etching resist;
including.
 サブトラクティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の表面にマスクを形成する工程、
マスクが形成されいない前記無電解めっき層の表面に電解めっき層を設ける工程、
前記電解めっき層または/および前記極薄銅層の表面にエッチングレジストを設ける工程、
前記エッチングレジストに対して露光し、回路パターンを形成する工程、
前記極薄銅層および前記無電解めっき層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して、回路を形成する工程、
前記エッチングレジストを除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using a subtractive method, a step of preparing the carrier-attached copper foil and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the through hole or / and the blind via;
Forming a mask on the surface of the electroless plating layer;
Providing an electroplating layer on the surface of the electroless plating layer on which no mask is formed;
A step of providing an etching resist on the surface of the electrolytic plating layer or / and the ultrathin copper layer;
Exposing the etching resist to form a circuit pattern;
Removing the ultra-thin copper layer and the electroless plating layer by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit;
Removing the etching resist;
including.
 スルーホールまたは/およびブラインドビアを設ける工程、及びその後のデスミア工程は行わなくてもよい。 ¡Through holes and / or blind vias and subsequent desmear steps may not be performed.
 ここで、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例を図面を用いて詳細に説明する。なお、ここでは粗化処理層が形成された極薄銅層を有するキャリア付銅箔を例に説明するが、これに限られず、粗化処理層が形成されていない極薄銅層を有するキャリア付銅箔を用いても同様に下記のプリント配線板の製造方法を行うことができる。
 まず、図2-Aに示すように、表面に粗化処理層が形成された極薄銅層を有するキャリア付銅箔(1層目)を準備する。
 次に、図2-Bに示すように、極薄銅層の粗化処理層上にレジストを塗布し、露光・現像を行い、レジストを所定の形状にエッチングする。
 次に、図2-Cに示すように、回路用のめっきを形成した後、レジストを除去することで、所定の形状の回路めっきを形成する。
 次に、図3-Dに示すように、回路めっきを覆うように(回路めっきが埋没するように)極薄銅層上に埋め込み樹脂を設けて樹脂層を積層し、続いて別のキャリア付銅箔(2層目)を極薄銅層側から接着させる。
 次に、図3-Eに示すように、2層目のキャリア付銅箔からキャリアを剥がす。
 次に、図3-Fに示すように、樹脂層の所定位置にレーザー穴あけを行い、回路めっきを露出させてブラインドビアを形成する。
 次に、図4-Gに示すように、ブラインドビアに銅を埋め込みビアフィルを形成する。
 次に、図4-Hに示すように、ビアフィル上に、上記図2-B及び図2-Cのようにして回路めっきを形成する。
 次に、図4-Iに示すように、1層目のキャリア付銅箔からキャリアを剥がす。
 次に、図5-Jに示すように、フラッシュエッチングにより両表面の極薄銅層を除去し、樹脂層内の回路めっきの表面を露出させる。
 次に、図5-Kに示すように、樹脂層内の回路めっき上にバンプを形成し、当該はんだ上に銅ピラーを形成する。このようにして本発明のキャリア付銅箔を用いたプリント配線板を作製する。
Here, the specific example of the manufacturing method of the printed wiring board using the copper foil with a carrier of this invention is demonstrated in detail using drawing. Here, the carrier-attached copper foil having an ultrathin copper layer on which a roughened layer is formed will be described as an example. However, the present invention is not limited thereto, and the carrier has an ultrathin copper layer on which a roughened layer is not formed. The following method for producing a printed wiring board can be similarly performed using an attached copper foil.
First, as shown in FIG. 2-A, a copper foil with a carrier (first layer) having an ultrathin copper layer having a roughened layer formed on the surface is prepared.
Next, as shown in FIG. 2-B, a resist is applied on the roughened layer of the ultrathin copper layer, exposed and developed, and etched into a predetermined shape.
Next, as shown in FIG. 2C, after forming a circuit plating, the resist is removed to form a circuit plating having a predetermined shape.
Next, as shown in FIG. 3-D, an embedded resin is provided on the ultrathin copper layer so as to cover the circuit plating (so that the circuit plating is buried), and then the resin layer is laminated, and then another carrier is attached. A copper foil (second layer) is bonded from the ultrathin copper layer side.
Next, as shown in FIG. 3E, the carrier is peeled off from the second layer copper foil with carrier.
Next, as shown in FIG. 3F, laser drilling is performed at a predetermined position of the resin layer to expose the circuit plating and form a blind via.
Next, as shown in FIG. 4-G, copper is embedded in the blind via to form a via fill.
Next, as shown in FIG. 4-H, circuit plating is formed on the via fill as shown in FIGS. 2-B and 2-C.
Next, as shown in FIG. 4-I, the carrier is peeled off from the first layer of copper foil with carrier.
Next, as shown in FIG. 5-J, the ultrathin copper layers on both surfaces are removed by flash etching, and the surface of the circuit plating in the resin layer is exposed.
Next, as shown in FIG. 5K, bumps are formed on the circuit plating in the resin layer, and copper pillars are formed on the solder. Thus, the printed wiring board using the copper foil with a carrier of this invention is produced.
 上記別のキャリア付銅箔(2層目)は、本発明のキャリア付銅箔を用いてもよく、従来のキャリア付銅箔を用いてもよく、さらに通常の銅箔を用いてもよい。また、図4-Hに示される2層目の回路上に、さらに回路を1層或いは複数層形成してもよく、それらの回路形成をセミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法のいずれかの方法によって行ってもよい。 The other carrier-attached copper foil (second layer) may be the carrier-attached copper foil of the present invention, a conventional carrier-attached copper foil, or a normal copper foil. Further, one or more circuits may be formed on the second layer circuit shown in FIG. 4-H, and these circuits may be formed by a semi-additive method, a subtractive method, a partial additive method, or a modified semi-conductor method. You may carry out by any method of an additive method.
 上述のようなプリント配線板の製造方法によれば、回路めっきが樹脂層に埋め込まれた構成となっているため、例えば図5-Jに示すようなフラッシュエッチングによる極薄銅層の除去の際に、回路めっきが樹脂層によって保護され、その形状が保たれ、これにより微細回路の形成が容易となる。また、回路めっきが樹脂層によって保護されるため、耐マイグレーション性が向上し、回路の配線の導通が良好に抑制される。このため、微細回路の形成が容易となる。また、図5-J及び図5-Kに示すようにフラッシュエッチングによって極薄銅層を除去したとき、回路めっきの露出面が樹脂層から凹んだ形状となるため、当該回路めっき上にバンプが、さらにその上に銅ピラーがそれぞれ形成しやすくなり、製造効率が向上する。 According to the printed wiring board manufacturing method as described above, the circuit plating is embedded in the resin layer. For example, when removing the ultrathin copper layer by flash etching as shown in FIG. In addition, the circuit plating is protected by the resin layer, and the shape thereof is maintained, thereby facilitating the formation of a fine circuit. Further, since the circuit plating is protected by the resin layer, the migration resistance is improved, and the continuity of the circuit wiring is satisfactorily suppressed. For this reason, formation of a fine circuit becomes easy. Also, as shown in FIGS. 5-J and 5-K, when the ultrathin copper layer is removed by flash etching, the exposed surface of the circuit plating has a shape recessed from the resin layer, so that bumps are formed on the circuit plating. In addition, copper pillars can be easily formed thereon, and the production efficiency is improved.
 なお、埋め込み樹脂(レジン)には公知の樹脂、プリプレグを用いることができる。例えば、BT(ビスマレイミドトリアジン)レジンやBTレジンを含浸させたガラス布であるプリプレグ、味の素ファインテクノ株式会社製ABFフィルムやABFを用いることができる。また、前記埋め込み樹脂(レジン)には本明細書に記載の樹脂層および/または樹脂および/またはプリプレグを使用することができる。 A known resin or prepreg can be used as the embedding resin (resin). For example, a prepreg that is a glass cloth impregnated with BT (bismaleimide triazine) resin or BT resin, an ABF film or ABF manufactured by Ajinomoto Fine Techno Co., Ltd. can be used. Moreover, the resin layer and / or resin and / or prepreg as described in this specification can be used for the embedding resin (resin).
 また、前記一層目に用いられるキャリア付銅箔は、当該キャリア付銅箔の表面に基板または樹脂層を有してもよい。当該基板または樹脂層を有することで一層目に用いられるキャリア付銅箔は支持され、しわが入りにくくなるため、生産性が向上するという利点がある。なお、前記基板または樹脂層には、前記一層目に用いられるキャリア付銅箔を支持する効果するものであれば、全ての基板または樹脂層を用いることが出来る。例えば前記基板または樹脂層として本願明細書に記載のキャリア、プリプレグ、樹脂層や公知のキャリア、プリプレグ、樹脂層、金属板、金属箔、無機化合物の板、無機化合物の箔、有機化合物の板、有機化合物の箔を用いることができる。 Further, the carrier-attached copper foil used in the first layer may have a substrate or a resin layer on the surface of the carrier-attached copper foil. By having the said board | substrate or resin layer, the copper foil with a carrier used for the first layer is supported, and since it becomes difficult to wrinkle, there exists an advantage that productivity improves. As the substrate or resin layer, any substrate or resin layer can be used as long as it has an effect of supporting the copper foil with carrier used in the first layer. For example, as the substrate or resin layer, the carrier, prepreg, resin layer and known carrier, prepreg, resin layer, metal plate, metal foil, inorganic compound plate, inorganic compound foil, organic compound plate described in the present specification, Organic compound foils can be used.
 以下に、本発明の実施例によって本発明をさらに詳しく説明するが、本発明は、これらの実施例によってなんら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples of the present invention, but the present invention is not limited to these examples.
(実施例1~9、11、12、比較例1~5)
 電解槽の中に、チタン製の回転ドラムと、ドラムの周囲に極間距離を置いて電極を配置した。次に、電解槽において表1に記載のキャリア箔製造条件で電解を行い、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に厚さ18μmの電解銅箔を製造し、これを銅箔キャリアとした。なお、実施例1、2、6、8、9及び12については表面処理後の銅箔キャリアの厚みがそれぞれ12μm、5μm、70μm、12μm、35μm、35μmであった。また、比較例3については厚み12μmの銅箔キャリアとした。実施例1、2、6、8、9及び12については、銅箔キャリアに表1に記載の条件で表面処理を行った。なお、電解時間は0.5~2分、電解液温度は40~60℃とした。
 ここで、実施例2及び8の表面処理について説明する。実施例2及び8では、形成した電解銅箔の析出面(マット面またはM面ともいう)側にカソードを配置し、銅箔をアノードとして、直流による電解処理を施すことにより、銅箔のマット面に逆電解研磨処理を行い、銅を実施例2では3~8g/m2、実施例8では8~15g/m2溶解させた。なお、逆電解研磨処理の電流密度は実施例2では5~15A/dm2、実施例8では16~25A/dm2とした。銅箔幅方向の60度鏡面光沢度は13~40、銅箔長さ方向の60度鏡面光沢度は20~94であった。なお、60度鏡面光沢度はJIS Z8741に準拠した日本電色工業株式会社製光沢度計ハンディーグロスメーターPG-1を使用して入射角60度で測定した。
(Examples 1 to 9, 11, 12 and Comparative Examples 1 to 5)
In the electrolytic cell, a titanium rotating drum and electrodes were arranged around the drum with a distance between the electrodes. Next, electrolysis is performed in the electrolytic cell under the carrier foil production conditions shown in Table 1, copper is deposited on the surface of the rotating drum, the copper deposited on the surface of the rotating drum is peeled off, and electrolysis with a thickness of 18 μm is continuously performed. A copper foil was produced and used as a copper foil carrier. In Examples 1, 2, 6, 8, 9, and 12, the thickness of the copper foil carrier after the surface treatment was 12 μm, 5 μm, 70 μm, 12 μm, 35 μm, and 35 μm, respectively. Comparative Example 3 was a copper foil carrier having a thickness of 12 μm. For Examples 1, 2, 6, 8, 9, and 12, the copper foil carrier was surface treated under the conditions described in Table 1. The electrolysis time was 0.5 to 2 minutes, and the electrolyte temperature was 40 to 60 ° C.
Here, the surface treatment of Examples 2 and 8 will be described. In Examples 2 and 8, a cathode is arranged on the deposition surface (also referred to as mat surface or M surface) side of the formed electrolytic copper foil, and the copper foil mat is subjected to electrolytic treatment by direct current using the copper foil as an anode. The surface was subjected to reverse electropolishing to dissolve 3 to 8 g / m 2 of copper in Example 2 and 8 to 15 g / m 2 in Example 8. Incidentally, the reverse current density electrolytic polishing Example 2 in 5 ~ 15A / dm 2, was in Examples 8 16 ~ 25A / dm 2. The 60 ° specular gloss in the copper foil width direction was 13 to 40, and the 60 ° specular gloss in the copper foil length direction was 20 to 94. The 60-degree specular gloss was measured at an incident angle of 60 degrees using a gloss meter PG-1 manufactured by Nippon Denshoku Industries Co., Ltd. in accordance with JIS Z8741.
 続いて、以下の条件にて中間層を形成した。
以下の条件でロール・トウ・ロール型の連続めっきラインで電気めっきすることにより4000μg/dm2の付着量のNi層を形成した。
Subsequently, an intermediate layer was formed under the following conditions.
An Ni layer having an adhesion amount of 4000 μg / dm 2 was formed by electroplating on a roll-to-roll continuous plating line under the following conditions.
・Ni層
 硫酸ニッケル:250~300g/L
 塩化ニッケル:35~45g/L
 酢酸ニッケル:10~20g/L
 クエン酸三ナトリウム:15~30g/L
 光沢剤:サッカリン、ブチンジオール等
 ドデシル硫酸ナトリウム:30~100ppm
 pH:4~6
 浴温:50~70℃
 電流密度:3~15A/dm2
・ Ni layer Nickel sulfate: 250-300 g / L
Nickel chloride: 35 to 45 g / L
Nickel acetate: 10-20g / L
Trisodium citrate: 15-30 g / L
Brightener: Saccharin, butynediol, etc. Sodium dodecyl sulfate: 30 to 100 ppm
pH: 4-6
Bath temperature: 50-70 ° C
Current density: 3 to 15 A / dm 2
 水洗及び酸洗後、引き続き、ロール・トウ・ロール型の連続めっきライン上で、Ni層の上に11μg/dm2の付着量のCr層を以下の条件で電解クロメート処理することにより付着させた。
・電解クロメート処理
 液組成:重クロム酸カリウム1~10g/L、亜鉛0~5g/L
 pH:3~4
 液温:50~60℃
 電流密度:0.1~2.6A/dm2
 クーロン量:0.5~30As/dm2
After washing with water and pickling, a Cr layer having an adhesion amount of 11 μg / dm 2 was deposited on the Ni layer by electrolytic chromate treatment under the following conditions on a roll-to-roll type continuous plating line. .
Electrolytic chromate treatment Liquid composition: potassium dichromate 1-10 g / L, zinc 0-5 g / L
pH: 3-4
Liquid temperature: 50-60 ° C
Current density: 0.1 to 2.6 A / dm 2
Coulomb amount: 0.5-30 As / dm 2
 中間層の形成後、中間層の上に厚み1~10μmの極薄銅層を以下の条件で電気めっきすることにより形成し、キャリア付銅箔とした。
・極薄銅層
 銅濃度:30~120g/L
 H2SO4濃度:20~120g/L
 電解液温度:20~80℃
 電流密度:10~100A/dm2
 なお、実施例2、3には極薄銅層の上に更に、粗化処理層、耐熱処理層、クロメート層、シランカップリング処理層を設けた。
・粗化処理
 Cu:10~20g/L
 Co:1~10g/L
 Ni:1~10g/L
 pH:1~4
 温度:40~50℃
 電流密度Dk:20~30A/dm2
 時間:1~5秒
 Cu付着量:15~40mg/dm2
 Co付着量:100~3000μg/dm2
 Ni付着量:100~1000μg/dm2
・耐熱処理
 Zn:0~20g/L
 Ni:0~5g/L
 pH:3.5
 温度:40℃
 電流密度Dk :0~1.7A/dm2
 時間:1秒
 Zn付着量:5~250μg/dm2
 Ni付着量:5~300μg/dm2
・クロメート処理
 K2Cr27
 (Na2Cr27或いはCrO3):2~10g/L
 NaOH或いはKOH:10~50g/L
 ZnO或いはZnSO47H2O:0.05~10g/L
 pH:7~13
 浴温:20~80℃
 電流密度0.05~5A/dm2
 時間:5~30秒
 Cr付着量:10~150μg/dm2
・シランカップリング処理
 ビニルトリエトキシシラン水溶液
 (ビニルトリエトキシシラン濃度:0.1~1.4wt%)
 pH:4~5
 時間:5~30秒
After forming the intermediate layer, an ultrathin copper layer having a thickness of 1 to 10 μm was formed on the intermediate layer by electroplating under the following conditions to obtain a copper foil with a carrier.
・ Ultra-thin copper layer Copper concentration: 30-120 g / L
H 2 SO 4 concentration: 20 to 120 g / L
Electrolyte temperature: 20-80 ° C
Current density: 10 to 100 A / dm 2
In Examples 2 and 3, a roughening layer, a heat-resistant layer, a chromate layer, and a silane coupling layer were further provided on the ultrathin copper layer.
・ Roughening Cu: 10 to 20 g / L
Co: 1-10g / L
Ni: 1-10g / L
pH: 1 to 4
Temperature: 40-50 ° C
Current density Dk: 20 to 30 A / dm 2
Time: 1 to 5 seconds Cu adhesion amount: 15 to 40 mg / dm 2
Co adhesion amount: 100 to 3000 μg / dm 2
Ni adhesion amount: 100 to 1000 μg / dm 2
・ Heat-resistant treatment Zn: 0 to 20 g / L
Ni: 0-5g / L
pH: 3.5
Temperature: 40 ° C
Current density Dk: 0 to 1.7 A / dm 2
Time: 1 second Zn deposition amount: 5 to 250 μg / dm 2
Ni adhesion amount: 5 to 300 μg / dm 2
・ Chromate treatment K 2 Cr 2 O 7
(Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / L
NaOH or KOH: 10-50g / L
ZnO or ZnSO 4 7H 2 O: 0.05 to 10 g / L
pH: 7-13
Bath temperature: 20-80 ° C
Current density 0.05-5A / dm 2
Time: 5 to 30 seconds Cr adhesion amount: 10 to 150 μg / dm 2
・ Silane coupling treatment Vinyltriethoxysilane aqueous solution (vinyltriethoxysilane concentration: 0.1 to 1.4 wt%)
pH: 4-5
Time: 5-30 seconds
(実施例10)
 圧延銅箔(タフピッチ銅、JIS H3100 C1100)を準備し、当該圧延銅箔に対し、サンドブラストにより表面を粗化した圧延ロールを用いて仕上げの冷間圧延を行った。このとき、圧延ロール粗さRa=0.39~0.42μm、油膜当量35000とした。これにより銅箔キャリアを得た。
 続いて、実施例1と同様にして電解銅箔の表面(マット面)に中間層及び極薄銅層を形成することでキャリア付銅箔を作製した。
(Example 10)
A rolled copper foil (tough pitch copper, JIS H3100 C1100) was prepared, and cold rolling was performed on the rolled copper foil using a rolling roll whose surface was roughened by sandblasting. At this time, the rolling roll roughness Ra was set to 0.39 to 0.42 μm, and the oil film equivalent was set to 35000. This obtained the copper foil carrier.
Then, the copper foil with a carrier was produced by forming an intermediate | middle layer and an ultra-thin copper layer on the surface (matte surface) of electrolytic copper foil like Example 1. FIG.
 上記のようにして得られた実施例及び比較例のキャリア付銅箔について、以下の方法で各評価を実施した。 Each evaluation was implemented with the following methods about the copper foil with a carrier of the Example and comparative example which were obtained as mentioned above.
<極薄銅層の厚み>
 作製したキャリア付銅箔の極薄銅層の厚みは、FIB-SIMを用いて観察した(倍率:10000~30000倍)。極薄銅層の断面を観察することで30μm間隔で5箇所測定し、平均値を求めた。
<Thickness of ultrathin copper layer>
The thickness of the ultrathin copper layer of the prepared copper foil with carrier was observed using FIB-SIM (magnification: 10000-30000 times). By observing the cross section of the ultrathin copper layer, five points were measured at intervals of 30 μm, and the average value was obtained.
<極薄銅層の表面粗さ>
 キャリア付極薄銅層と基材(三菱ガス化学(株)製:GHPL-832NX-A)に対して、220℃で2時間加熱の積層プレスを行った後、銅箔キャリアをJIS C 6471(1995、なお、銅箔を引き剥がす方法は、8.1 銅箔の引き剥がし強さ 8.1.1試験方法の種類(1)方法A(銅箔を銅箔除去面に対して90°方向に引き剥がす方法)とした。)に準拠して引き剥がし、極薄銅層を露出させた。次に、以下の手順により、極薄銅層の露出面の各種粗さを測定した。
 (1)極薄銅層の中間層側の表面粗さ
 極薄銅層の中間層側の表面粗さRz(レーザー)を、JIS B0601-1994に準拠して、オリンパス社製レーザー顕微鏡OLS4000(LEXT OLS 4000)にて、測定した。Rz(レーザー)を任意に10箇所測定し、そのRz(レーザー)の10箇所の平均値をRz(レーザー)の値とした。また、Rz(レーザー)について10箇所の値の標準偏差を算出した。
 また、極薄銅層の中間層側の表面粗さRa(レーザー)を、JIS B0601-1994に準拠して、オリンパス社製レーザー顕微鏡OLS4000にて測定した。Ra(レーザー)を任意に10箇所測定し、そのRa(レーザー)の10箇所の平均値をRa(レーザー)の値とした。また、Ra(レーザー)について10箇所の値の標準偏差を算出した。
 また、極薄銅層の中間層側の表面粗さSz(レーザー)を、ISO25178に準拠して、オリンパス社製レーザー顕微鏡OLS4000にて、測定した。Sz(レーザー)を任意に10箇所測定し、そのSz(レーザー)の10箇所の平均値をSz(レーザー)の値とした。また、Sz(レーザー)について10箇所の値の標準偏差を算出した。
 さらに、ISO25178に準拠して、オリンパス社製レーザー顕微鏡OLS4000にて、極薄銅層の中間層側の表面のSkuを測定した。
 (2)極薄銅層を形成する側の、キャリアの表面粗さ
 極薄銅層を形成する側の、キャリアの表面粗さRz(レーザー)を、JIS B0601-1994に準拠して、オリンパス社製レーザー顕微鏡OLS4000(LEXT OLS 4000)にて、測定した。Rz(レーザー)を任意に10箇所測定し、そのRz(レーザー)の10箇所の平均値をRz(レーザー)の値とした。また、Rz(レーザー)について10箇所の値の標準偏差を算出した。
 また、極薄銅層を形成する側の、キャリアの表面粗さRa(レーザー)を、JIS B0601-1994に準拠して、オリンパス社製レーザー顕微鏡OLS4000にて測定した。Ra(レーザー)を任意に10箇所測定し、そのRa(レーザー)の10箇所の平均値をRa(レーザー)の値とした。また、10箇所のRa(レーザー)の値の標準偏差を算出した。
 また、 極薄銅層を形成する側の、キャリアの表面粗さSz(レーザー)を、ISO25178に準拠して、オリンパス社製レーザー顕微鏡OLS4000にて、測定した。Sz(レーザー)を任意に10箇所測定し、そのSz(レーザー)の10箇所の平均値をSz(レーザー)の値とした。また、Sz(レーザー)について10箇所の値の標準偏差を算出した。
 さらに、ISO25178に準拠して、オリンパス社製レーザー顕微鏡OLS4000にて、極薄銅層を形成する側の、キャリアの表面のSkuを測定した。
 なお、上記Rz、Raについては、極薄銅層及びキャリア表面の観察において評価長さ(基準長さ)257.9μm、カットオフ値ゼロの条件で、キャリアが圧延銅箔である場合は圧延方向と垂直な方向(TD)の測定で、または、キャリアが電解銅箔である場合は電解銅箔の製造装置における電解銅箔の進行方向と垂直な方向(TD)の測定で、それぞれ値を求めた。また、前述のSzおよびSkuについては極薄銅層及びキャリア表面について評価面積(基準面積)66524μm2、カットオフ値ゼロの条件で測定を行うことによりそれぞれ値を求めた。レーザー顕微鏡による表面のSz、Rz、Ra及びSkuの測定環境温度は23~25℃とした。なお、実施例1、2、6、8、9及び12については表面処理後の銅箔キャリアのSz、Ra、Rz及びSkuを測定した。
<Surface roughness of ultra-thin copper layer>
An ultrathin copper layer with a carrier and a base material (manufactured by Mitsubishi Gas Chemical Co., Ltd .: GHPL-832NX-A) were laminated and heated at 220 ° C. for 2 hours. 1995, the method of peeling off the copper foil is 8.1. The peel strength of the copper foil 8.1.1 Type of test method (1) Method A (90 ° direction of the copper foil with respect to the copper foil removal surface) In accordance with (1), the ultrathin copper layer was exposed. Next, various roughnesses of the exposed surface of the ultrathin copper layer were measured by the following procedure.
(1) Surface roughness on the intermediate layer side of the ultrathin copper layer The surface roughness Rz (laser) on the intermediate layer side of the ultrathin copper layer is measured according to Olympus laser microscope OLS4000 (LEXT) in accordance with JIS B0601-1994. (OLS 4000). Rz (laser) was arbitrarily measured at 10 locations, and the average value at 10 locations of the Rz (laser) was defined as the value of Rz (laser). Moreover, the standard deviation of the value of 10 places was calculated about Rz (laser).
Further, the surface roughness Ra (laser) on the intermediate layer side of the ultrathin copper layer was measured with an Olympus laser microscope OLS4000 in accordance with JIS B0601-1994. Ra (laser) was arbitrarily measured at 10 locations, and the average value of the 10 locations of Ra (laser) was defined as the value of Ra (laser). Moreover, the standard deviation of the value of 10 places was calculated about Ra (laser).
Further, the surface roughness Sz (laser) on the intermediate layer side of the ultrathin copper layer was measured with an Olympus laser microscope OLS4000 in accordance with ISO25178. Sz (laser) was arbitrarily measured at 10 locations, and the average value at 10 locations of the Sz (laser) was taken as the value of Sz (laser). Moreover, the standard deviation of the value of 10 places was calculated about Sz (laser).
Furthermore, in accordance with ISO25178, the Sku of the surface on the intermediate layer side of the ultrathin copper layer was measured with a laser microscope OLS4000 manufactured by Olympus.
(2) Carrier surface roughness on the side on which the ultra-thin copper layer is formed The carrier surface roughness Rz (laser) on the side on which the ultra-thin copper layer is formed in accordance with JIS B0601-1994, Olympus Corporation Measurement was performed with a laser microscope OLS4000 (LEXT OLS 4000). Rz (laser) was arbitrarily measured at 10 locations, and the average value at 10 locations of the Rz (laser) was defined as the value of Rz (laser). Moreover, the standard deviation of the value of 10 places was calculated about Rz (laser).
Further, the surface roughness Ra (laser) of the carrier on the side on which the ultrathin copper layer is formed was measured with an Olympus laser microscope OLS4000 in accordance with JIS B0601-1994. Ra (laser) was arbitrarily measured at 10 locations, and the average value of the 10 locations of Ra (laser) was defined as the value of Ra (laser). In addition, the standard deviation of 10 Ra (laser) values was calculated.
Further, the surface roughness Sz (laser) of the carrier on the side on which the ultrathin copper layer was formed was measured with an Olympus laser microscope OLS4000 in accordance with ISO25178. Sz (laser) was arbitrarily measured at 10 locations, and the average value at 10 locations of the Sz (laser) was taken as the value of Sz (laser). Moreover, the standard deviation of the value of 10 places was calculated about Sz (laser).
Furthermore, in accordance with ISO25178, Sku on the surface of the carrier on the side on which the ultrathin copper layer was formed was measured with an Olympus laser microscope OLS4000.
In addition, about said Rz and Ra, in the observation of an ultra-thin copper layer and a carrier surface, when the carrier is a rolled copper foil under the conditions of an evaluation length (reference length) of 257.9 μm and a cutoff value of zero, the rolling direction Or the direction perpendicular to the traveling direction of the electrolytic copper foil (TD) in the electrolytic copper foil manufacturing apparatus when the carrier is an electrolytic copper foil. It was. Further, the above-described values of Sz and Sku were obtained by measuring the ultrathin copper layer and the carrier surface under the conditions of an evaluation area (reference area) of 66524 μm 2 and a cutoff value of zero. The measurement environmental temperature of Sz, Rz, Ra and Sku on the surface with a laser microscope was set to 23 to 25 ° C. In addition, about Example 1, 2, 6, 8, 9 and 12, Sz, Ra, Rz, and Sku of the copper foil carrier after surface treatment were measured.
<レーザー穴空け性>
 次に、極薄銅層の未処理表面(極薄銅層の中間層側表面)に、レーザーを下記条件にて1ショット照射し、照射後の穴形状を顕微鏡にて観察し、計測を実施した。表では、穴空けの「実数」として、12個の地点に穴空けを試みて実際に何個(X)の穴が空けられたかを示し(X/12)、さらにそのときの穴の空いた「割合」(%)を示している。また、表には、このとき生じた穴の平均径、生じた穴の径の標準偏差及び平均径/ビーム径についても示す。なお、穴の径は、穴を取り囲む最小円の直径とした。
・ガス種:CO2
・銅箔開口径(狙い):80μm径
・ビーム形状:トップハット
・出力:2.40W/10μs
・パルス幅:33μs
・ショット数:1ショット
・穴空け数:12穴/エリア
<Laser drillability>
Next, the untreated surface of the ultrathin copper layer (the surface on the intermediate layer side of the ultrathin copper layer) is irradiated with one shot of laser under the following conditions, and the shape of the hole after irradiation is observed with a microscope and measured. did. The table shows how many (X) holes were actually drilled by trying to drill holes at 12 points as “real numbers” (X / 12). "Percentage" (%) is shown. The table also shows the average diameter of the holes generated at this time, the standard deviation of the diameter of the generated holes, and the average diameter / beam diameter. The diameter of the hole was the diameter of the smallest circle surrounding the hole.
・ Gas type: CO 2
Copper foil opening diameter (target): 80 μm diameter Beam shape: Top hat Output: 2.40 W / 10 μs
・ Pulse width: 33μs
・ Number of shots: 1 shot ・ Number of holes: 12 holes / area
<エッチング性>
 キャリア付銅箔をポリイミド基板に貼り付けて220℃で2時間加熱圧着し、その後、極薄銅層をキャリアから剥がした。続いて、ポリイミド基板上の極薄銅層表面に、感光性レジストを塗布した後、露光工程により50本のL/S=5μm/5μm幅の回路を印刷し、銅層の不要部分を除去するエッチング処理を以下のスプレーエッチング条件にて行った。
 (スプレーエッチング条件)
 エッチング液:塩化第二鉄水溶液(ボーメ度:40度)
 液温:60℃
 スプレー圧:2.0MPa
 エッチングを続け、回路トップ幅が4μmになるまでの時間を測定し、さらにそのときの回路ボトム幅(底辺Xの長さ)及びエッチングファクターを評価した。エッチングファクターは、末広がりにエッチングされた場合(ダレが発生した場合)、回路が垂直にエッチングされたと仮定した場合の、銅箔上面からの垂線と樹脂基板との交点からのダレの長さの距離をaとした場合において、このaと銅箔の厚さbとの比:b/aを示すものであり、この数値が大きいほど、傾斜角は大きくなり、エッチング残渣が残らず、ダレが小さくなることを意味する。図1に、回路パターンの幅方向の横断面の模式図と、該模式図を用いたエッチングファクターの計算方法の概略とを示す。このXは回路上方からのSEM観察により測定し、エッチングファクター(EF=b/a)を算出した。なお、a=(X(μm)-4(μm))/2で計算した。エッチングファクターは回路中の12点を測定し、平均値をとったものを示す。これにより、エッチング性の良否を簡単に判定できる。また、12点のエッチングファクターの標準偏差も算出することで、エッチングにより形成した回路の直線性の良し悪しを判定することができる。
 本発明では、エッチングファクターが4以上をエッチング性:○、2.5以上4未満をエッチング性:△、2.5未満或いは算出不可または回路形成不可をエッチング性:×、剥離不可をエッチング性:-と評価した。また、エッチングファクターの標準偏差は小さいほど回路の直線性が良好であると云える。エッチングファクターの標準偏差が0.8未満を直線性:○、0.8~1.2未満を直線性:△、1.2以上を直線性:×と判断した。
 試験条件及び試験結果を表1~3に示す。
<Etching property>
A copper foil with a carrier was attached to a polyimide substrate and heat-pressed at 220 ° C. for 2 hours, and then the ultrathin copper layer was peeled off from the carrier. Subsequently, after applying a photosensitive resist on the surface of the ultrathin copper layer on the polyimide substrate, 50 L / S = 5 μm / 5 μm wide circuits are printed by an exposure process to remove unnecessary portions of the copper layer. The etching process was performed under the following spray etching conditions.
(Spray etching conditions)
Etching solution: ferric chloride aqueous solution (Baume degree: 40 degrees)
Liquid temperature: 60 ° C
Spray pressure: 2.0 MPa
Etching was continued, the time until the circuit top width reached 4 μm was measured, and the circuit bottom width (the length of the base X) and the etching factor at that time were evaluated. The etching factor is the distance of the length of sagging from the intersection of the vertical line from the upper surface of the copper foil and the resin substrate, assuming that the circuit is etched vertically when sagging is etched (when sagging occurs) Is a ratio of a to the thickness b of the copper foil: b / a, and the larger the value, the larger the inclination angle, and the etching residue does not remain and the sagging is small. It means to become. FIG. 1 shows a schematic diagram of a cross section in the width direction of a circuit pattern and an outline of a method for calculating an etching factor using the schematic diagram. This X was measured by SEM observation from above the circuit, and the etching factor (EF = b / a) was calculated. In addition, it calculated by a = (X (μm) −4 (μm)) / 2. The etching factor is obtained by measuring 12 points in the circuit and taking an average value. Thereby, the quality of etching property can be determined easily. Also, by calculating the standard deviation of the 12 etching factors, it is possible to determine whether the linearity of the circuit formed by etching is good or bad.
In the present invention, an etching factor of 4 or more is etching property: ◯, 2.5 or more and less than 4 are etching property: Δ, less than 2.5 or calculation is impossible or circuit formation is impossible. It was evaluated as-. Moreover, it can be said that the smaller the standard deviation of the etching factor, the better the linearity of the circuit. When the standard deviation of the etching factor was less than 0.8, the linearity was evaluated as ◯, when 0.8 to less than 1.2 was determined as the linearity: Δ, and when 1.2 or more, the linearity was determined as ×.
Test conditions and test results are shown in Tables 1 to 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (評価結果)
 実施例1~12は、いずれも極薄銅層の中間層側の表面粗さSz(レーザー)が1.40μm以上4.05μm以下であったため、レーザー穴空け性及びエッチング性が良好であった。
 比較例1、5は、極薄銅層の中間層側の表面粗さSz(レーザー)がいずれも1.40μm未満であったため、レーザー穴空け性が不良であった。
 比較例2~4は、極薄銅層の中間層側の表面粗さSz(レーザー)がいずれも4.05μmを超えたため、エッチング性が不良であった。
 また、実施例1~12は、いずれも極薄銅層の中間層側の表面粗さRa(レーザー)が0.14μm以上0.35μm以下であったため、レーザー穴開け性及びエッチング性が良好であった。
 比較例1、5は、極薄銅層の中間層側の表面粗さRa(レーザー)がいずれも0.14μm未満であったため、レーザー穴開け性が不良であった。
 比較例2~4は、極薄銅層の中間層側の表面粗さRa(レーザー)がいずれも0.35μmを超えたため、エッチング性が不良であった。
 また、実施例1~12は、いずれも極薄銅層の中間層側の表面粗さRz(レーザー)が0.62μm以上1.59μm以下であり、且つ、表面粗さRz(レーザー)の標準偏差が0.51μm以下であったため、レーザー穴空け性及びエッチング性が良好であった。
 比較例1、5は、極薄銅層の中間層側の表面粗さRz(レーザー)がいずれも0.62μm未満であったため、レーザー穴空け性が不良であった。
 比較例2~4は、極薄銅層の中間層側の表面粗さRz(レーザー)がいずれも1.59μmを超えたため、エッチング性が不良であった。
(Evaluation results)
In each of Examples 1 to 12, since the surface roughness Sz (laser) on the intermediate layer side of the ultrathin copper layer was 1.40 μm or more and 4.05 μm or less, the laser holeability and etching property were good. .
In Comparative Examples 1 and 5, since the surface roughness Sz (laser) on the intermediate layer side of the ultrathin copper layer was less than 1.40 μm, the laser holeability was poor.
In Comparative Examples 2 to 4, since the surface roughness Sz (laser) on the intermediate layer side of the ultrathin copper layer exceeded 4.05 μm, the etching property was poor.
In each of Examples 1 to 12, since the surface roughness Ra (laser) on the intermediate layer side of the ultrathin copper layer was 0.14 μm or more and 0.35 μm or less, the laser drilling property and the etching property were good. there were.
In Comparative Examples 1 and 5, since the surface roughness Ra (laser) on the intermediate layer side of the ultrathin copper layer was less than 0.14 μm, the laser drillability was poor.
In Comparative Examples 2 to 4, since the surface roughness Ra (laser) on the intermediate layer side of the ultrathin copper layer exceeded 0.35 μm, the etching property was poor.
In each of Examples 1 to 12, the surface roughness Rz (laser) on the intermediate layer side of the ultrathin copper layer is 0.62 μm or more and 1.59 μm or less, and the standard for the surface roughness Rz (laser) Since the deviation was 0.51 μm or less, the laser drilling property and the etching property were good.
In Comparative Examples 1 and 5, since the surface roughness Rz (laser) on the intermediate layer side of the ultrathin copper layer was less than 0.62 μm, the laser holeability was poor.
In Comparative Examples 2 to 4, since the surface roughness Rz (laser) on the intermediate layer side of the ultrathin copper layer exceeded 1.59 μm, the etching property was poor.

Claims (26)

  1.  キャリアと、中間層と、極薄銅層とをこの順に備えたキャリア付銅箔であって、
     前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さSzが1.40μm以上4.05μm以下であるキャリア付銅箔。
    A copper foil with a carrier provided with a carrier, an intermediate layer, and an ultrathin copper layer in this order,
    After heating the copper foil with a carrier at 220 ° C. for 2 hours and then peeling off the ultrathin copper layer in accordance with JIS C 6471, the surface on the intermediate layer side of the ultrathin copper layer measured with a laser microscope A copper foil with a carrier having a roughness Sz of 1.40 μm or more and 4.05 μm or less.
  2.  前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さRaが0.14μm以上0.35μm以下である請求項1に記載のキャリア付銅箔。 After heating the copper foil with carrier at 220 ° C. for 2 hours and then peeling off the ultrathin copper layer in accordance with JIS C 6471, the surface of the ultrathin copper layer on the intermediate layer side measured with a laser microscope The copper foil with a carrier according to claim 1, wherein the roughness Ra is 0.14 μm or more and 0.35 μm or less.
  3.  キャリアと、中間層と、極薄銅層とをこの順に備えたキャリア付銅箔であって、
     前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さRaが0.14μm以上0.35μm以下であるキャリア付銅箔。
    A copper foil with a carrier provided with a carrier, an intermediate layer, and an ultrathin copper layer in this order,
    After heating the copper foil with a carrier at 220 ° C. for 2 hours and then peeling off the ultrathin copper layer in accordance with JIS C 6471, the surface on the intermediate layer side of the ultrathin copper layer measured with a laser microscope The copper foil with a carrier whose roughness Ra is 0.14 micrometer or more and 0.35 micrometer or less.
  4.  前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さRzが0.62μm以上1.59μm以下であり、且つ、表面粗さRzの標準偏差が0.51μm以下である請求項1~3のいずれか一項に記載のキャリア付銅箔。 After heating the copper foil with carrier at 220 ° C. for 2 hours and then peeling off the ultrathin copper layer in accordance with JIS C 6471, the surface of the ultrathin copper layer on the intermediate layer side measured with a laser microscope The copper foil with a carrier according to any one of claims 1 to 3, wherein the roughness Rz is 0.62 µm or more and 1.59 µm or less, and the standard deviation of the surface roughness Rz is 0.51 µm or less.
  5.  キャリアと、中間層と、極薄銅層とをこの順に備えたキャリア付銅箔であって、
     前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さRzが0.62μm以上1.59μm以下であり、且つ、表面粗さRzの標準偏差が0.51μm以下であるキャリア付銅箔。
    A copper foil with a carrier provided with a carrier, an intermediate layer, and an ultrathin copper layer in this order,
    After heating the copper foil with a carrier at 220 ° C. for 2 hours and then peeling off the ultrathin copper layer in accordance with JIS C 6471, the surface on the intermediate layer side of the ultrathin copper layer measured with a laser microscope A copper foil with a carrier having a roughness Rz of 0.62 μm or more and 1.59 μm or less and a standard deviation of the surface roughness Rz of 0.51 μm or less.
  6.  前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さSzの標準偏差が1.30μm以下である請求項1~5のいずれか一項に記載のキャリア付銅箔。 After heating the copper foil with carrier at 220 ° C. for 2 hours and then peeling off the ultrathin copper layer in accordance with JIS C 6471, the surface of the ultrathin copper layer on the intermediate layer side measured with a laser microscope The copper foil with a carrier according to any one of claims 1 to 5, wherein a standard deviation of the roughness Sz is 1.30 μm or less.
  7.  前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さSzの標準偏差が0.01μm以上1.20μm以下である請求項6に記載のキャリア付銅箔。 After heating the copper foil with carrier at 220 ° C. for 2 hours and then peeling off the ultrathin copper layer in accordance with JIS C 6471, the surface of the ultrathin copper layer on the intermediate layer side measured with a laser microscope The copper foil with a carrier according to claim 6, wherein the standard deviation of the roughness Sz is 0.01 μm or more and 1.20 μm or less.
  8.  前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さSzが1.60μm以上3.70μm以下である請求項1~7のいずれか一項に記載のキャリア付銅箔。 After heating the copper foil with carrier at 220 ° C. for 2 hours and then peeling off the ultrathin copper layer in accordance with JIS C 6471, the surface of the ultrathin copper layer on the intermediate layer side measured with a laser microscope The copper foil with a carrier according to any one of claims 1 to 7, wherein the roughness Sz is 1.60 µm or more and 3.70 µm or less.
  9.  前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さRaの標準偏差が0.11μm以下である請求項1~8のいずれか一項に記載のキャリア付銅箔。 After heating the copper foil with carrier at 220 ° C. for 2 hours and then peeling off the ultrathin copper layer in accordance with JIS C 6471, the surface of the ultrathin copper layer on the intermediate layer side measured with a laser microscope The copper foil with a carrier according to any one of claims 1 to 8, wherein a standard deviation of the roughness Ra is 0.11 µm or less.
  10.  前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さRaの標準偏差が0.001μm以上0.10μm以下である請求項9に記載のキャリア付銅箔。 After heating the copper foil with carrier at 220 ° C. for 2 hours and then peeling off the ultrathin copper layer in accordance with JIS C 6471, the surface of the ultrathin copper layer on the intermediate layer side measured with a laser microscope The copper foil with a carrier according to claim 9, wherein the standard deviation of the roughness Ra is 0.001 μm or more and 0.10 μm or less.
  11.  前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面粗さRzの標準偏差が0.01μm以上0.48μm以下である請求項1~10のいずれか一項に記載のキャリア付銅箔。 After heating the copper foil with carrier at 220 ° C. for 2 hours and then peeling off the ultrathin copper layer in accordance with JIS C 6471, the surface of the ultrathin copper layer on the intermediate layer side measured with a laser microscope The copper foil with a carrier according to any one of claims 1 to 10, wherein the standard deviation of the roughness Rz is 0.01 µm or more and 0.48 µm or less.
  12.  前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面高さ分布のとがり度Skuが0.50以上3.70以下である請求項1~11のいずれか一項に記載のキャリア付銅箔。 After heating the copper foil with carrier at 220 ° C. for 2 hours and then peeling off the ultrathin copper layer in accordance with JIS C 6471, the surface of the ultrathin copper layer on the intermediate layer side measured with a laser microscope The carrier-attached copper foil according to any one of claims 1 to 11, wherein the height distribution sharpness Sku is 0.50 or more and 3.70 or less.
  13.  前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、レーザー顕微鏡で測定される前記極薄銅層の前記中間層側の表面高さ分布のとがり度Skuが1.00以上3.60以下である請求項12に記載のキャリア付銅箔。 After heating the copper foil with carrier at 220 ° C. for 2 hours and then peeling off the ultrathin copper layer in accordance with JIS C 6471, the surface of the ultrathin copper layer on the intermediate layer side measured with a laser microscope The copper foil with a carrier according to claim 12, wherein the degree of sharpness Sku of the height distribution is 1.00 or more and 3.60 or less.
  14.  前記キャリアの厚みが5~70μmである請求項1~13のいずれか一項に記載のキャリア付銅箔。 The carrier-attached copper foil according to any one of claims 1 to 13, wherein the carrier has a thickness of 5 to 70 µm.
  15.  前記極薄銅層表面に粗化処理層を有する請求項1~14のいずれか一項に記載のキャリア付銅箔。 The copper foil with a carrier according to any one of claims 1 to 14, which has a roughened layer on the surface of the ultrathin copper layer.
  16.  前記粗化処理層が、銅、ニッケル、りん、タングステン、ヒ素、モリブデン、クロム、鉄、バナジウム、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層である請求項15に記載のキャリア付銅箔。 The roughening layer is made of any single element selected from the group consisting of copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, iron, vanadium, cobalt, and zinc, or an alloy containing one or more of them. The copper foil with a carrier according to claim 15 which is a layer.
  17.  前記粗化処理層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する請求項15又は16に記載のキャリア付銅箔。 The copper with a carrier according to claim 15 or 16, comprising at least one layer selected from the group consisting of a heat-resistant layer, a rust-proof layer, a chromate-treated layer, and a silane coupling-treated layer on the surface of the roughened layer. Foil.
  18.  前記極薄銅層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する請求項1~14のいずれか一項に記載のキャリア付銅箔。 The surface of the ultrathin copper layer has one or more layers selected from the group consisting of a heat-resistant layer, a rust-proof layer, a chromate treatment layer, and a silane coupling treatment layer. The copper foil with a carrier of description.
  19.  前記極薄銅層上に樹脂層を備える請求項1~14のいずれか一項に記載のキャリア付銅箔。 The copper foil with a carrier according to any one of claims 1 to 14, further comprising a resin layer on the ultrathin copper layer.
  20.  前記粗化処理層上に樹脂層を備える請求項15又は16に記載のキャリア付銅箔。 The copper foil with a carrier according to claim 15 or 16, comprising a resin layer on the roughening treatment layer.
  21.  前記耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層の上に樹脂層を備える請求項17又は18に記載のキャリア付銅箔。 The copper foil with a carrier according to claim 17 or 18, comprising a resin layer on one or more layers selected from the group consisting of the heat-resistant layer, the rust prevention layer, the chromate treatment layer and the silane coupling treatment layer.
  22.  請求項1~21のいずれか一項に記載のキャリア付銅箔を用いて製造したプリント配線板。 A printed wiring board manufactured using the carrier-attached copper foil according to any one of claims 1 to 21.
  23.  請求項1~21のいずれか一項に記載のキャリア付銅箔を用いて製造した銅張積層板。 A copper-clad laminate produced using the carrier-attached copper foil according to any one of claims 1 to 21.
  24.  請求項22に記載のプリント配線板を用いて製造した電子機器。 An electronic device manufactured using the printed wiring board according to claim 22.
  25.  請求項1~21のいずれか一項に記載のキャリア付銅箔と絶縁基板とを準備する工程、
     前記キャリア付銅箔と絶縁基板とを積層する工程、及び、
     前記キャリア付銅箔と絶縁基板とを積層した後に、前記キャリア付銅箔のキャリアを剥がす工程を経て銅張積層板を形成し、
    その後、セミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法のいずれかの方法によって、回路を形成する工程を含むプリント配線板の製造方法。
    A step of preparing the carrier-attached copper foil according to any one of claims 1 to 21 and an insulating substrate;
    A step of laminating the copper foil with carrier and an insulating substrate; and
    After laminating the carrier-attached copper foil and the insulating substrate, a copper-clad laminate is formed through a step of peeling the carrier of the carrier-attached copper foil,
    Then, the manufacturing method of a printed wiring board including the process of forming a circuit by any method of a semi-additive method, a subtractive method, a partly additive method, or a modified semi-additive method.
  26.  請求項1~21のいずれか一項に記載のキャリア付銅箔の前記極薄銅層側表面に回路を形成する工程、
     前記回路が埋没するように前記キャリア付銅箔の前記極薄銅層側表面に樹脂層を形成する工程、
     前記樹脂層上に回路を形成する工程、
     前記樹脂層上に回路を形成した後に、前記キャリアを剥離させる工程、及び、
     前記キャリアを剥離させた後に、前記極薄銅層を除去することで、前記極薄銅層側表面に形成した、前記樹脂層に埋没している回路を露出させる工程
    を含むプリント配線板の製造方法。
    Forming a circuit on the ultrathin copper layer side surface of the carrier-attached copper foil according to any one of claims 1 to 21;
    Forming a resin layer on the ultrathin copper layer side surface of the carrier-attached copper foil so that the circuit is buried;
    Forming a circuit on the resin layer;
    Forming the circuit on the resin layer, and then peeling the carrier; and
    After the carrier is peeled off, the printed wiring board includes a step of exposing the circuit embedded in the resin layer formed on the surface of the ultrathin copper layer by removing the ultrathin copper layer Method.
PCT/JP2014/059570 2013-03-29 2014-03-31 Copper foil with carrier, printed circuit board, copper clad laminated sheet, electronic device, and printed circuit board fabrication method WO2014157728A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480019381.6A CN105142897B (en) 2013-03-29 2014-03-31 The manufacturing method of Copper foil with carrier, printing distributing board, copper-cover laminated plate, e-machine and printing distributing board
KR1020157031096A KR101803165B1 (en) 2013-03-29 2014-03-31 Copper foil with carrier, printed circuit board, copper clad laminated sheet, electronic device, and printed circuit board fabrication method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-075201 2013-03-29
JP2013075201 2013-03-29
JP2013-075188 2013-03-29
JP2013-075198 2013-03-29
JP2013075198 2013-03-29
JP2013075188 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014157728A1 true WO2014157728A1 (en) 2014-10-02

Family

ID=51624683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059570 WO2014157728A1 (en) 2013-03-29 2014-03-31 Copper foil with carrier, printed circuit board, copper clad laminated sheet, electronic device, and printed circuit board fabrication method

Country Status (4)

Country Link
KR (1) KR101803165B1 (en)
CN (1) CN105142897B (en)
TW (1) TWI526299B (en)
WO (1) WO2014157728A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014208910A (en) * 2013-03-29 2014-11-06 Jx日鉱日石金属株式会社 Copper foil with a carrier, printed wiring board, copper-clad laminate, electronic apparatus and method for producing printed wiring board
CN105555012A (en) * 2014-10-22 2016-05-04 Jx日矿日石金属株式会社 Copper heat dissipation material, printed-wiring board and manufacture method thereof, and products containing the copper heat dissipation material
EP3048864A3 (en) * 2015-01-21 2017-04-12 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, and method for fabricating printed wiring board
TWI817166B (en) * 2021-07-23 2023-10-01 先豐通訊股份有限公司 Circuit board and method for manufacturing the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160093555A (en) * 2015-01-29 2016-08-08 제이엑스금속주식회사 Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, laminate, printed circuit board, electronic device and method of manufacturing printed circuit board
JP6782561B2 (en) 2015-07-16 2020-11-11 Jx金属株式会社 Copper foil with carrier, laminate, manufacturing method of laminate, manufacturing method of printed wiring board and manufacturing method of electronic equipment
JP6058182B1 (en) 2015-07-27 2017-01-11 Jx金属株式会社 Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
JP6200042B2 (en) * 2015-08-06 2017-09-20 Jx金属株式会社 Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
JP6190500B2 (en) 2015-08-06 2017-08-30 Jx金属株式会社 Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
JP6339636B2 (en) * 2015-08-06 2018-06-06 Jx金属株式会社 Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
CN108349208B (en) * 2015-12-25 2021-04-20 三井金属矿业株式会社 Copper foil with carrier, copper foil with resin, and method for manufacturing printed wiring board
JP6945523B2 (en) * 2016-04-14 2021-10-06 三井金属鉱業株式会社 Surface-treated copper foil, copper foil with carrier, and methods for manufacturing copper-clad laminates and printed wiring boards using them.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373338A (en) * 1989-05-17 1991-03-28 Fukuda Metal Foil & Powder Co Ltd Composite foil and manufacture thereof
JP2000269637A (en) * 1999-03-18 2000-09-29 Furukawa Circuit Foil Kk Copper foil for high-density ultrafine wiring board
JP2009004423A (en) * 2007-06-19 2009-01-08 Hitachi Cable Ltd Copper foil with carrier foil
WO2012046804A1 (en) * 2010-10-06 2012-04-12 古河電気工業株式会社 Copper foil and manufacturing method therefor, copper foil with carrier and manufacturing method therefor, printed circuit board, and multilayer printed circuit board

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027162A (en) * 2001-07-13 2003-01-29 Nippon Mining & Metals Co Ltd Copper alloy foil for laminated board
JP4612978B2 (en) * 2001-09-20 2011-01-12 日本電解株式会社 Composite copper foil and method for producing the same
TW584596B (en) * 2001-12-10 2004-04-21 Mitsui Chemicals Inc Method for manufacturing a polyimide and metal compound sheet
WO2009050970A1 (en) * 2007-10-18 2009-04-23 Nippon Mining & Metals Co., Ltd. Metal covered polyimide composite, process for producing the composite, and apparatus for producing the composite
JP5406278B2 (en) * 2009-03-27 2014-02-05 Jx日鉱日石金属株式会社 Copper foil for printed wiring board and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373338A (en) * 1989-05-17 1991-03-28 Fukuda Metal Foil & Powder Co Ltd Composite foil and manufacture thereof
JP2000269637A (en) * 1999-03-18 2000-09-29 Furukawa Circuit Foil Kk Copper foil for high-density ultrafine wiring board
JP2009004423A (en) * 2007-06-19 2009-01-08 Hitachi Cable Ltd Copper foil with carrier foil
WO2012046804A1 (en) * 2010-10-06 2012-04-12 古河電気工業株式会社 Copper foil and manufacturing method therefor, copper foil with carrier and manufacturing method therefor, printed circuit board, and multilayer printed circuit board

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014208910A (en) * 2013-03-29 2014-11-06 Jx日鉱日石金属株式会社 Copper foil with a carrier, printed wiring board, copper-clad laminate, electronic apparatus and method for producing printed wiring board
CN105555012A (en) * 2014-10-22 2016-05-04 Jx日矿日石金属株式会社 Copper heat dissipation material, printed-wiring board and manufacture method thereof, and products containing the copper heat dissipation material
TWI670381B (en) * 2014-10-22 2019-09-01 日商Jx日鑛日石金屬股份有限公司 Copper heat releasing material, printed wiring board, manufacturing method thereof, and product using the copper heat releasing material
CN105555012B (en) * 2014-10-22 2020-03-03 Jx日矿日石金属株式会社 Copper heat-radiating material, printed wiring board, method for producing same, and product using same
EP3048864A3 (en) * 2015-01-21 2017-04-12 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, and method for fabricating printed wiring board
US10178775B2 (en) 2015-01-21 2019-01-08 Jx Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, and method for fabricating printed wiring board
TWI817166B (en) * 2021-07-23 2023-10-01 先豐通訊股份有限公司 Circuit board and method for manufacturing the same

Also Published As

Publication number Publication date
TW201446488A (en) 2014-12-16
TWI526299B (en) 2016-03-21
CN105142897A (en) 2015-12-09
CN105142897B (en) 2018-09-28
KR101803165B1 (en) 2017-11-29
KR20150135523A (en) 2015-12-02

Similar Documents

Publication Publication Date Title
JP6403969B2 (en) Copper foil with carrier, printed wiring board, copper-clad laminate, electronic device, and method for manufacturing printed wiring board
WO2014157728A1 (en) Copper foil with carrier, printed circuit board, copper clad laminated sheet, electronic device, and printed circuit board fabrication method
JP6591893B2 (en) Copper foil with carrier, copper clad laminate, printed wiring board, electronic device, resin layer, method for producing copper foil with carrier, and method for producing printed wiring board
JP2022169670A (en) Surface treated copper foil, surface treated copper foil with resin layer, copper foil with carrier, laminate, manufacturing method for circuit board, and manufacturing method for electronic apparatus
TWI638590B (en) Carrier copper foil, laminated body, printed wiring board, and printed wiring board manufacturing method
TWI623422B (en) Carrier copper foil, laminated body, method for producing laminated body, method for producing printed wiring board, and method for manufacturing electronic device
WO2015012376A1 (en) Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper-clad laminate, and method for manufacturing printed circuit board
WO2014136785A1 (en) Copper foil with attached carrier, copper-clad laminate using same, printed circuit board, electronic device, and method for manufacturing printed circuit board
JP2023123687A (en) Surface treated copper foil, surface treated copper foil with resin layer, copper foil with carrier, laminate, method for producing printed circuit board, and method for producing electronic device
WO2014192895A1 (en) Copper foil, copper foil with carrier, copper-clad laminate, printed circuit board, circuit forming substrate for semiconductor package, semiconductor package, electronic device, resin substrate, circuit forming method, semiadditive method, and printed circuit board manufacturing method
JP6247829B2 (en) Copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate and printed wiring board manufacturing method
JP2014208484A (en) Copper foil with a carrier, printed wiring board, copper-clad laminate, electronic apparatus and method for producing printed wiring board
JP2016194112A (en) Metal foil with carrier, laminate, printed wiring board, electronic device, manufacturing method of metal foil with carrier and manufacturing method of printed wiring board
JP6353193B2 (en) Copper foil with carrier, method for producing a copper-clad laminate using the copper foil with carrier, method for producing a printed wiring board using the copper foil with carrier, and method for producing a printed wiring board
JP2014208909A (en) Copper foil with a carrier, printed wiring board, copper-clad laminate, electronic apparatus and method for producing printed wiring board
JP2014208481A (en) Copper foil with a carrier, printed wiring board, copper-clad laminate, electronic apparatus and method for producing printed wiring board
JP6425399B2 (en) Carrier-coated copper foil, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP2014208485A (en) Copper foil with a carrier, printed wiring board, copper-clad laminate, electronic apparatus and method for producing printed wiring board
JP2014210427A (en) Copper foil with carrier, printed wiring sheet, copper clad laminated sheet, electronic device and manufacturing method of printed wiring sheet
JP6522974B2 (en) Copper foil with carrier, laminate, method of producing laminate, and method of producing printed wiring board
JP6158573B2 (en) Copper foil with carrier, method for producing copper-clad laminate and method for producing printed wiring board
JP6438208B2 (en) Copper foil with carrier, copper-clad laminate using the same, printed wiring board, electronic device, and method for manufacturing printed wiring board
JP2017088943A (en) Copper foil with carrier, laminate, manufacturing method of laminate, manufacturing method of printed wiring board and manufacturing method of electronic device
JP2014208482A (en) Copper foil with a carrier, printed wiring board, copper-clad laminate, electronic apparatus and method for producing printed wiring board
JP6842232B2 (en) Manufacturing method of metal foil with carrier, laminate, printed wiring board, electronic device, metal foil with carrier and manufacturing method of printed wiring board

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480019381.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157031096

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14774953

Country of ref document: EP

Kind code of ref document: A1