JP2003176115A - Method of manufacturing graphite powder, graphite powder and lithium ion secondary battery - Google Patents

Method of manufacturing graphite powder, graphite powder and lithium ion secondary battery

Info

Publication number
JP2003176115A
JP2003176115A JP2001378567A JP2001378567A JP2003176115A JP 2003176115 A JP2003176115 A JP 2003176115A JP 2001378567 A JP2001378567 A JP 2001378567A JP 2001378567 A JP2001378567 A JP 2001378567A JP 2003176115 A JP2003176115 A JP 2003176115A
Authority
JP
Japan
Prior art keywords
graphite powder
softening point
pitch
graphite
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001378567A
Other languages
Japanese (ja)
Inventor
Hiromi Okamoto
寛巳 岡本
Tetsuo Shiode
哲夫 塩出
Kenji Fujii
謙治 藤井
Atsushi Kitagawa
淳 北川
Kazuaki Tabayashi
一晃 田林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adchemco Corp
Original Assignee
Adchemco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adchemco Corp filed Critical Adchemco Corp
Priority to JP2001378567A priority Critical patent/JP2003176115A/en
Publication of JP2003176115A publication Critical patent/JP2003176115A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide graphite powder having a high graphitization ratio and low specific surface area and exhibiting a high capacity, a low irreversible capacity and a high load characteristic when used a negative pole material of a lithium ion secondary battery. <P>SOLUTION: In the method of manufacturing the graphite powder which is composed of processes of heat-treating pitch under an inert gas atmosphere to produce high softening point pitch having 350°C, pulverizing, making infusible, carbonizing and graphitizing, high crystalline graphite powder is added into and mixed with fine powder obtained after one of processes of pulverizing, making infusible, carbonizing and graphitizing. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池用の負極材料として用いた場合、高容量である
が、不可逆容量が小さく、高負荷特性を有する黒鉛粉
末、および該黒鉛粉末を負極材料として使用したリチウ
ムイオン二次電池に関する。
TECHNICAL FIELD The present invention relates to a graphite powder having a high capacity but a small irreversible capacity and a high load characteristic when used as a negative electrode material for a lithium ion secondary battery, and the graphite powder as a negative electrode. The present invention relates to a lithium ion secondary battery used as a material.

【0002】[0002]

【従来の技術】近年、電子機器や通信機器の小型化およ
び軽量化が急速に進んでおり、これらの駆動用電源とし
て用いられる二次電池に対しても小型化および軽量化の
要求が強く、高エネルギー密度でかつ高電圧を有するリ
チウムイオン二次電池が提案されている。リチウムイオ
ン二次電池は、正極に、例えば、コバルト酸リチウムを
使用し、負極に黒鉛などの炭素質材料を使用して、充電
時にリチウムイオンを負極に吸蔵させ、放電時にこれら
のリチウムイオンを負極から放出させるものである。
2. Description of the Related Art In recent years, electronic devices and communication devices have been rapidly reduced in size and weight, and there is a strong demand for reduction in size and weight of secondary batteries used as power sources for driving these devices. A lithium ion secondary battery having a high energy density and a high voltage has been proposed. A lithium ion secondary battery uses, for example, lithium cobalt oxide for the positive electrode and a carbonaceous material such as graphite for the negative electrode to occlude lithium ions in the negative electrode during charging and to discharge these lithium ions into the negative electrode during discharging. Is to be released from.

【0003】この負極材料としては、天然の鉱物資源で
ある天然黒鉛と石油あるいは石炭系の重質油から誘導さ
れるMCMB(メソカーボンマイクロビーズ)や特開平
9−251855号公報に記載のように、メソフェーズ
ピッチの微粒子を黒鉛化した人造黒鉛が使用されてい
る。一般的には、黒鉛化性と負極材料の容量には相関性
があり、黒鉛化性がよい程、容量が高くなる傾向にあ
る。そのため、高結晶である鱗状天然黒鉛は、黒鉛の理
論容量である372mAh/gに匹敵する容量を示す。
ただし、これらの鱗状天然黒鉛は形状が鱗状であるため
に、塗工液とした場合に集電体への塗工性に劣り、集電
体に対する黒鉛粒子の配向が起こる。その物理的な問題
のために、電極面内の電気抵抗が高くなり、結果的に
は、不可逆容量が大きくなったり、高負荷特性が悪くな
ったり、電池としてのサイクル特性が悪くなるなどの問
題が出てきているものと推測される。
As this negative electrode material, MCMB (mesocarbon microbeads) derived from natural graphite, which is a natural mineral resource, and petroleum or coal-based heavy oil, and as described in JP-A-9-251855. Artificial graphite in which fine particles of mesophase pitch are graphitized is used. Generally, there is a correlation between the graphitization property and the capacity of the negative electrode material, and the higher the graphitization property, the higher the capacity tends to be. Therefore, highly crystalline scaly natural graphite exhibits a capacity comparable to the theoretical capacity of graphite of 372 mAh / g.
However, since these scaly natural graphites are scaly in shape, when used as a coating solution, the coatability on the current collector is poor and the graphite particles are oriented with respect to the current collector. Due to the physical problem, the electric resistance in the electrode surface becomes high, and as a result, the irreversible capacity becomes large, the high load characteristic deteriorates, and the cycle characteristic as a battery deteriorates. Is supposed to have come out.

【0004】[0004]

【発明が解決しようとする課題】そのため最近では、高
結晶性であっても、その粉砕方法を工夫したり、あるい
はメカニカルフュージョンなどの方法で、アスペクト比
が3以下の比較的塊状あるいは球に近い高結晶黒鉛ある
いは天然黒鉛が生産されるようになってきた。しかし、
これらの天然黒鉛は、比表面積が比較的大きいために、
リチウムイオン二次電池の負極材料として用いた場合、
電解液との反応性が高くなり、不可逆容量が大きくな
る。
Therefore, recently, even if the crystallinity is high, a crushing method is devised, or a method such as mechanical fusion is used so that the aspect ratio is 3 or less, and it is relatively close to a lump or a sphere. High crystalline graphite or natural graphite has been produced. But,
Since these natural graphites have a relatively large specific surface area,
When used as a negative electrode material for lithium-ion secondary batteries,
The reactivity with the electrolytic solution becomes high and the irreversible capacity becomes large.

【0005】また、電極を成型する際の圧縮により、天
然黒鉛の形状は改善されているが、天然黒鉛が高結晶の
ために一方向に圧縮されて負荷特性が悪くなる。しか
し、これら天然黒鉛は理論値に近い容量を示すので、そ
の利用に対する要望は強い。これらの問題を解決するた
めに特開平11−96995号公報などでは、炭素材料
に対して強固な皮膜形成を行う方法を提案している。し
かし、これらの皮膜形成方法は複雑でかつ形成された皮
膜部分は黒鉛本来の特性を損なうという課題がある。従
って、本発明は上記課題を解決し、黒鉛化性が高く、比
表面積が低く、リチウムイオン二次電池用の負極材料と
して使用した場合に、高容量で、低不可逆容量かつ高負
荷特性の黒鉛粉末を提供することである。
Further, although the shape of natural graphite has been improved by the compression at the time of molding the electrode, since the natural graphite is highly crystalline, it is compressed in one direction and the load characteristics deteriorate. However, since these natural graphites have a capacity close to the theoretical value, there is a strong demand for their use. In order to solve these problems, Japanese Patent Application Laid-Open No. 11-96995 proposes a method of forming a strong film on a carbon material. However, these film forming methods have a problem in that the formed film part impairs the original properties of graphite. Therefore, the present invention solves the above problems and has high graphitization property, low specific surface area, and high capacity, low irreversible capacity and high load characteristics when used as a negative electrode material for a lithium ion secondary battery. To provide a powder.

【0006】[0006]

【課題を解決するための手段】上記目的は以下の本発明
によって達成される。すなわち、本発明は、ピッチ類を
不活性雰囲気で熱処理し、軟化点が350℃以上の高軟
化点ピッチを製造した後、該高軟化点ピッチを微粉砕
し、不融化、炭化および黒鉛化をする工程からなる黒鉛
粉末の製造方法において、上記微粉砕工程後、不融化工
程後、炭化工程後および黒鉛化工程後のいずれかの工程
後の微粉末に、高結晶黒鉛粉末を添加混合することを特
徴とする黒鉛粉末の製造方法を提供する。
The above object can be achieved by the present invention described below. That is, the present invention heat-treats pitches in an inert atmosphere to produce a high softening point pitch having a softening point of 350 ° C. or higher, and then finely pulverizes the high softening point pitch for infusibilization, carbonization and graphitization. In the method for producing a graphite powder comprising the steps of, the finely pulverizing step, the infusibilizing step, the carbonizing step and the fine powder after any step after the graphitizing step, and adding and mixing the high crystalline graphite powder. A method for producing a graphite powder is provided.

【0007】また、本発明は、ピッチ類を不活性雰囲気
で熱処理し、軟化点が350℃以上の高軟化点ピッチを
製造した後、該高軟化点ピッチを炭化し、該炭化物を微
粉砕し、黒鉛化する工程からなる黒鉛粉末の製造方法に
おいて、上記微粉砕工程後および黒鉛化工程後のいずれ
かの工程後の微粉末に、高結晶黒鉛粉末を添加混合する
ことを特徴とする黒鉛粉末の製造方法を提供する。
According to the present invention, the pitches are heat-treated in an inert atmosphere to produce a high softening point pitch having a softening point of 350 ° C. or higher, the high softening point pitch is carbonized, and the carbide is pulverized. In the method for producing graphite powder, which comprises a step of graphitizing, graphite powder characterized by adding and mixing high-crystal graphite powder to the fine powder after any of the steps of pulverizing and graphitizing. A method for manufacturing the same is provided.

【0008】上記高結晶黒鉛粉末としては、平均粒径が
5〜60μm、アスペクト比が3以下、比表面積が0.
5〜10m2/gおよびX線回折の測定値であるLcが
400Å以上、Laが400Å以上、d002が3.37
Å以下、アルゴンレーザーを用いたラマン分光法により
測定した1360cm-1バンドの1580cm-1バンド
に対する強度比をR値(R=I1360/I1580)とした場
合に、そのR値が0.1以上である天然黒鉛が好まし
い。
The above-mentioned highly crystalline graphite powder has an average particle size of 5 to 60 μm, an aspect ratio of 3 or less, and a specific surface area of 0.
5 to 10 m 2 / g and Lc measured by X-ray diffraction is 400 Å or more, La is 400 Å or more, and d 002 is 3.37.
Å or less, the intensity ratio 1360 cm -1 band 1580 cm -1 band as measured by Raman spectroscopy using an argon laser when the R value (R = I 1360 / I 1580 ), the R value is 0.1 The above-mentioned natural graphite is preferable.

【0009】また、本発明は、上記高結晶黒鉛粉末の添
加量が、ピッチ類由来の微粉末に対して、10〜90重
量%であることが好ましい。また、上記で得られる黒鉛
粉末は、その比表面積が0.1〜6m2/gであること
が好ましい。上記本発明の黒鉛粉末は、リチウムイオン
二次電池の負極材料として有効に使用することができ
る。
Further, in the present invention, it is preferable that the addition amount of the high crystal graphite powder is 10 to 90% by weight based on the fine powder derived from pitches. In addition, the graphite powder obtained above preferably has a specific surface area of 0.1 to 6 m 2 / g. The graphite powder of the present invention can be effectively used as a negative electrode material for lithium ion secondary batteries.

【0010】[0010]

【発明の実施の形態】次に好ましい実施の形態を挙げて
本発明をさらに詳しく説明する。本発明者らは、前記課
題を解決するために、鋭意検討の結果、ピッチ類から製
造する人造黒鉛の製造工程の中で、天然黒鉛のような高
結晶黒鉛を添加混合することによって、得られる黒鉛粉
末の比表面積を簡単に小さくし、負荷特性を上げる方法
を見出した。この方法により製造された黒鉛粉末は、黒
鉛化性が高く、比表面積が低く、リチウムイオン二次電
池用の負極材料として用いた場合、高容量で、低不可逆
容量、かつ高負荷特性の材料である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail with reference to the following preferred embodiments. In order to solve the above problems, the inventors of the present invention have earnestly studied, and in the manufacturing process of artificial graphite manufactured from pitches, obtained by adding and mixing highly crystalline graphite such as natural graphite. We have found a method to easily reduce the specific surface area of graphite powder and improve the load characteristics. The graphite powder produced by this method has high graphitization property, low specific surface area, and when used as a negative electrode material for a lithium ion secondary battery, has a high capacity, a low irreversible capacity, and a high load characteristic material. is there.

【0011】本発明で使用される原料ピッチは、ナフタ
レンなどの縮合多環炭化水素をフッ化水素・三フッ化ホ
ウ素などの超強酸の存在下合成したピッチでも、石油系
ピッチ、コールタール系ピッチなどでもよく、特に限定
されるものではない。また、高結晶の黒鉛粉末を得るた
めに、ボロン化合物、鉄化合物、珪素化合物、アルミ化
合物を添加・混合したものでもよい。以上のピッチを不
活性雰囲気で、熱処理をすることによって、軟化点35
0℃以上の高軟化点ピッチを製造する。
The raw material pitch used in the present invention is a pitch produced by synthesizing a condensed polycyclic hydrocarbon such as naphthalene in the presence of a super strong acid such as hydrogen fluoride or boron trifluoride, a petroleum pitch or a coal tar pitch. Etc. may be used and is not particularly limited. Further, a boron compound, an iron compound, a silicon compound, or an aluminum compound may be added and mixed to obtain a highly crystalline graphite powder. By heat-treating the above pitch in an inert atmosphere, the softening point 35
A high softening point pitch of 0 ° C. or higher is manufactured.

【0012】この高軟化点ピッチを、負極材料としてよ
り好ましい形状とするためには、最終的に得られる黒鉛
物質を粉砕するのではなく、この高軟化点ピッチを微粉
砕するか、あるいは炭化後の炭化物を微粉砕することが
望ましい。これら微粉砕については、平均粒径としては
50μm以下、好ましくは5〜30μmの範囲に粉砕す
る。粉砕機としては、特に限定されず、例えば、ボール
ミル、攪拌ミル、ジェット粉砕機などの粉砕機が使用で
きる。炭化物を微粉砕した場合、それを黒鉛化すれば、
黒鉛粉末として負極材料となるが、高軟化点ピッチを微
粉砕した場合は、その形状を保つために、高軟化点ピッ
チの微粉砕物を酸化処理をすることが必要となる。高軟
化点ピッチを微粉砕する場合の工程について以下に記述
する。
In order to make this high softening point pitch into a more preferable shape as a negative electrode material, the graphite material finally obtained is not pulverized, but this high softening point pitch is finely pulverized or after carbonization. It is desirable to finely pulverize the carbides. The fine particles are pulverized to have an average particle size of 50 μm or less, preferably 5 to 30 μm. The crusher is not particularly limited and, for example, a crusher such as a ball mill, a stirring mill, and a jet crusher can be used. If the carbide is pulverized and graphitized,
It becomes a negative electrode material as graphite powder, but when the high softening point pitch is finely pulverized, it is necessary to oxidize the finely pulverized material having the high softening point pitch in order to maintain its shape. The process for finely grinding the high softening point pitch will be described below.

【0013】高軟化点ピッチを微粉砕して得られる微粉
末に、高結晶黒鉛粉末をピッチ類由来の微粉末に対して
10〜90重量%の範囲で添加混合することが好まし
い。高結晶黒鉛粉末を90重量%より多く添加すると、
得られる黒鉛粉末において高結晶黒鉛の特性が顕著に出
るため、不可逆容量が大きくなり、負荷特性が悪くな
る。また、高結晶黒鉛粉末の添加量が10重量%より少
ないと、得られる黒鉛粉末において放電容量の向上が望
めない。この混合は、できるだけ均一に行う必要がある
が、特に混合方法は限定されるものではない。この高結
晶黒鉛粉末としては、平均粒径が5〜60μm、アスペ
クト比が3以下、比表面積が0.5〜10m 2/gおよ
びX線回折の測定値であるLcが400Å以上、Laが
400Å以上、d002が3.37Å以下、アルゴンレー
ザーを用いたラマン分光法により測定した1360cm
-1バンドの1580cm-1バンドに対する強度比をR値
(R=I1360/I1580)とした場合に、そのR値が0.
1以上である天然黒鉛を添加混合することがよい。
Fine powder obtained by finely pulverizing a high softening point pitch
Finally, high crystal graphite powder is used for fine powder derived from pitches.
It is preferable to add and mix in the range of 10 to 90% by weight.
Yes. If more than 90% by weight of high crystal graphite powder is added,
In the graphite powder obtained, the characteristics of highly crystalline graphite are remarkably exhibited.
Therefore, the irreversible capacity increases and the load characteristics deteriorate.
It Also, the amount of high crystalline graphite powder added is less than 10% by weight.
Without it, it is hoped that the resulting graphite powder will have improved discharge capacity.
I don't. This mixing should be as uniform as possible
However, the mixing method is not particularly limited. This high knot
The crystalline graphite powder has an average particle size of 5 to 60 μm
Ct ratio is 3 or less, specific surface area is 0.5 to 10 m 2/ G and
And X-ray diffraction measured value Lc is 400 Å or more, La is
400Å or more, d002Is 3.37Å or less, Argon Ray
1360 cm measured by Raman spectroscopy
-1Band 1580 cm-1R value for intensity ratio to band
(R = I1360/ I1580), The R value is 0.
It is preferable to add and mix one or more natural graphites.

【0014】次に、この混合した微粉末を酸化処理す
る。この酸化処理は、次の炭化・黒鉛化の際に微粒子同
士が融着しないために必要である。また、高結晶黒鉛で
ある天然黒鉛は、この酸化処理の間に、表面がマイルド
に酸化処理されるため、高結晶黒鉛粉末の表面に熱分解
炭素がより強固に被覆できるようになる。酸化処理は、
空気中で140〜300℃の温度で行ってもよいが、酸
化炉中に窒素ガスを流して酸素濃度16〜18重量%程
度で行うことが好ましい。また、酸化に際しては、微粒
子が融着して凝集物を形成しないように、酸化炉を多分
割して温度制御が正確にできるようにしたり、微粒子が
熱源に接触しないように流動床で処理したり、微粒子が
酸化炉内の通過を薄い層で行ったりするのが好ましい。
ただし、高結晶黒鉛を混合することにより、融着凝集物
を形成することが少なくなり、融着することなく、ピッ
チ由来の微粉末の酸化度を上げられる。
Next, the mixed fine powder is subjected to an oxidation treatment. This oxidation treatment is necessary because the fine particles do not fuse with each other during the subsequent carbonization / graphitization. In addition, since the surface of natural graphite, which is high crystal graphite, is mildly oxidized during this oxidation treatment, the surface of the high crystal graphite powder can be more strongly coated with pyrolytic carbon. The oxidation treatment is
It may be carried out in air at a temperature of 140 to 300 ° C., but it is preferably carried out at a concentration of oxygen of 16 to 18 wt% by flowing a nitrogen gas into the oxidation furnace. Further, during oxidation, the oxidation furnace is divided into multiple sections so that temperature control can be accurately performed so that the particles do not fuse and form aggregates, and the particles are treated in a fluidized bed so that they do not come into contact with the heat source. Alternatively, it is preferable that the particles pass through the oxidation furnace in a thin layer.
However, by mixing the highly crystalline graphite, the formation of fused aggregates is reduced, and the degree of oxidation of the fine powder derived from pitch can be increased without fusion.

【0015】この不融化の際に、ピッチ類由来の熱分解
物質が、高結晶黒鉛粉末の表面上を被覆するものと考え
られる。この被覆した熱分解物質は、炭化・黒鉛化をす
る過程でさらに強固に、高結晶黒鉛粉末の表面を被覆
し、得られる黒鉛粉末の不可逆容量や負荷特性などを向
上させる。炭化処理は500〜1,200℃の温度で行
い、また、黒鉛化処理は2,500〜3,000℃の温
度で行う。それぞれの処理時間は、使用する装置により
異なるので、採用した装置により最適な時間を選択すれ
ばよい。これらの炭化・黒鉛化処理は連続的に行うこと
もでき、炭化・黒鉛化の各種条件および装置は従来公知
の各種条件および装置がそのまま使用できる。
It is considered that during the infusibilization, the pyrolytic substance derived from pitches coats the surface of the highly crystalline graphite powder. The coated pyrolyzed substance more strongly coats the surface of the highly crystalline graphite powder in the process of carbonization and graphitization, and improves the irreversible capacity and load characteristics of the obtained graphite powder. The carbonization treatment is performed at a temperature of 500 to 1,200 ° C, and the graphitization treatment is performed at a temperature of 2,500 to 3,000 ° C. Since each processing time differs depending on the device used, the optimum time may be selected depending on the device used. These carbonization / graphitization treatments can be carried out continuously, and various conventionally known conditions / apparatuses can be used as they are.

【0016】ピッチ類由来の微粉末と高結晶黒鉛粉末の
混合は、上述のように酸化工程前でもよいし、炭化処理
工程前でも、黒鉛化処理工程前でも、黒鉛化処理工程後
でもよい。このうち、酸化工程前、炭化処理工程前で高
結晶黒鉛粉末を添加・混合した場合は、次工程を通し
て、高結晶黒鉛粉末の表面にピッチ類由来の熱分解物質
が被覆するために、得られる黒鉛粉末の特性向上の効果
が著しい。しかし、黒鉛化処理工程前後においても、ピ
ッチ由来の微粉末に対して、高結晶黒鉛である天然黒鉛
を添加することにより、全体としては比表面積が小さ
く、高配向性を抑制した電極形成ができる黒鉛粉末とな
る。
The fine powder derived from pitches and the highly crystalline graphite powder may be mixed before the oxidation step as described above, before the carbonization step, before the graphitization step, or after the graphitization step. Of these, when the high-crystal graphite powder is added and mixed before the oxidation step and the carbonization step, it is obtained because the surface of the high-crystal graphite powder is covered with a pyrolyzed substance derived from pitches through the following steps. The effect of improving the properties of graphite powder is remarkable. However, even before and after the graphitization process, the addition of natural graphite, which is highly crystalline graphite, to the fine powder derived from pitch makes it possible to form an electrode with a small specific surface area and suppressed high orientation. It becomes graphite powder.

【0017】以上の本発明で得られる黒鉛粉末のリチウ
ムイオン二次電池用電極材料としての用途を以下に説明
する。電極板を形成する活物質は、少なくとも活物質と
結着剤(バインダー)とからなる電極塗工液から形成さ
れる。負極活物質としては前記本発明の黒鉛粉末を使用
し、正極物質としては、例えば、LiCoO2、LiM
24などのリチウム酸化物、TiS2、MnO2、Mo
3、V25などのカルコゲン化合物のうちの一種、あ
るいはこれらの複数種を組み合わせて用いることによっ
て、4ボルト程度の高い放電電圧のリチウムイオン二次
電池が得られる。これらの活物質は形成される塗工膜中
に均一に分散されるのが好ましい。このために、正およ
び負の活物質として1〜100μmの範囲の粒径を有す
る平均粒径が5〜40μm程度、さらに好ましくは10
〜25μm程度の微粒子を用いるのが好ましい。
The use of the graphite powder obtained in the present invention as an electrode material for a lithium ion secondary battery will be described below. The active material forming the electrode plate is formed from an electrode coating liquid containing at least the active material and a binder. The graphite powder of the present invention is used as the negative electrode active material, and as the positive electrode material, for example, LiCoO 2 , LiM
Lithium oxide such as n 2 O 4 , TiS 2 , MnO 2 , Mo
By using one kind of chalcogen compounds such as O 3 and V 2 O 5 or a combination of plural kinds thereof, a lithium ion secondary battery having a high discharge voltage of about 4 V can be obtained. These active materials are preferably uniformly dispersed in the formed coating film. For this reason, the positive and negative active materials have an average particle size in the range of 1 to 100 μm and an average particle size of about 5 to 40 μm, more preferably 10 μm.
It is preferable to use fine particles of about 25 μm.

【0018】また、活物質層の結着剤としては、例え
ば、熱可塑性樹脂、すなわち、ポリエステル樹脂、ポリ
アミド樹脂、ポリアクリル酸エステル樹脂、ポリカーボ
ネート樹脂、ポリウレタン樹脂、セルロース樹脂、ポリ
オレフィン樹脂、ポリビニル樹脂、弗素系樹脂およびポ
リイミド樹脂などから任意に選択して使用することがで
きる。
Examples of the binder for the active material layer include thermoplastic resins, that is, polyester resins, polyamide resins, polyacrylic acid ester resins, polycarbonate resins, polyurethane resins, cellulose resins, polyolefin resins, polyvinyl resins, It is possible to arbitrarily select and use from a fluorine resin and a polyimide resin.

【0019】電極板を構成する活物質層は、以下のよう
な方法によって作成される。まず、上記の材料から適宜
に選択された結着剤と微粒子の活物質とを適当な分散媒
を用いて、混練あるいは分散溶解して電極塗工液を作製
する。次に、得られた塗工液を用いて、集電体上に塗工
する。塗工する方法としては、グラビア、グラビアリバ
ース、ダイコートおよびスライドコートなどの方式を用
いる。その後、塗工した塗工液を乾燥させる乾燥工程を
経て所望の膜厚の活物質層を形成して正および負の電極
板とする。
The active material layer forming the electrode plate is prepared by the following method. First, an electrode coating liquid is prepared by kneading or dispersing and dissolving a binder appropriately selected from the above materials and a fine particle active material using a suitable dispersion medium. Next, the obtained coating liquid is used to coat on a current collector. As a coating method, a method such as gravure, gravure reverse, die coating and slide coating is used. Then, an active material layer having a desired film thickness is formed through a drying step of drying the applied coating liquid to obtain positive and negative electrode plates.

【0020】電極板に用いられる集電体としては、例え
ば、アルミニウム、銅などの金属箔が好ましく用いられ
る。金属箔の厚さとしては、10〜30μm程度のもの
を用いる。また、以上のように作製した正極および負極
の電極板を用いて、リチウムイオン二次電池を作製する
場合には、電解液として、溶質のリチウム塩を有機溶媒
に溶かした非水電解液が用いられる。この際に使用され
る有機溶媒としては、環状エステル類、鎖状エステル
類、環状エーテル類、鎖状エーテル類などがあり、例え
ば、環状エステル類としては、プロピレンカーボネー
ト、エチレンカーボネート、ジエチレンカーボネートな
どがあり、また、環状エーテル類としては、テトラヒド
ロフランなどがあり、また、鎖状エーテル類としては、
1,2−ジメトキシエタンなどが挙げられる。電解液と
しては、これら有機溶媒を、1種または数種組み合わせ
て用いられる。
As the current collector used for the electrode plate, for example, a metal foil such as aluminum or copper is preferably used. The thickness of the metal foil is about 10 to 30 μm. Further, when a lithium ion secondary battery is manufactured using the positive electrode plate and the negative electrode plate prepared as described above, a nonaqueous electrolytic solution prepared by dissolving a solute lithium salt in an organic solvent is used as the electrolytic solution. To be Examples of the organic solvent used at this time include cyclic esters, chain esters, cyclic ethers, chain ethers, and the like.For example, as the cyclic esters, propylene carbonate, ethylene carbonate, diethylene carbonate, etc. The cyclic ethers include tetrahydrofuran and the like, and the chain ethers include
1,2-dimethoxyethane and the like can be mentioned. As the electrolytic solution, these organic solvents may be used alone or in combination of several kinds.

【0021】また、上記の有機溶媒とともに非水電解液
を形成する溶質のリチウム塩としてはLiClO4、L
iBF4、LiPF6、LiAsF6、LiCl、LiB
rなどの無機リチウム塩、およびLiB(C65)4、L
iN(SO2CF3)2、LiC(SO2CF3)3、LiOSO
2CF3、LiOSO225、LiOSO237、Li
OSO249、LiOSO2511、LiOSO26
13、LiOSO271 5などの有機リチウム塩などが
用いられる。
Further, as a solute lithium salt which forms a non-aqueous electrolyte together with the above organic solvent, LiClO 4 , L
iBF 4 , LiPF 6 , LiAsF 6 , LiCl, LiB
Inorganic lithium salt such as r, and LiB (C 6 H 5 ) 4 , L
iN (SO 2 CF 3) 2 , LiC (SO 2 CF 3) 3, LiOSO
2 CF 3 , LiOSO 2 C 2 F 5 , LiOSO 2 C 3 F 7 , Li
OSO 2 C 4 F 9 , LiOSO 2 C 5 F 11 , LiOSO 2 C 6
And organic lithium salts such as F 13, LiOSO 2 C 7 F 1 5 is used.

【0022】[0022]

【実施例】次に実施例および比較例を挙げて本発明をさ
らに具体的に説明する。なお、文中「部」または「%」
とあるのは重量基準である。 <実施例1>原料として軟化点105℃、一次キノリン
不溶分が4.7%のコールタールピッチを反応器の中で
軟化溶融させ、このピッチに対して、0.17Nm3
ピッチkg・時間の条件で窒素を吹き込み、攪拌しなが
ら、400℃で6時間熱処理を行った。この熱処理ピッ
チは軟化点が372℃の高軟化点ピッチであった。
EXAMPLES Next, the present invention will be described more specifically with reference to Examples and Comparative Examples. In addition, "part" or "%" in the sentence
It is based on weight. <Example 1> As a raw material, coal tar pitch having a softening point of 105 ° C and a primary quinoline insoluble content of 4.7% was softened and melted in a reactor, and 0.17 Nm 3 /
Nitrogen was blown in under the condition of pitch kg · hour, and heat treatment was performed at 400 ° C. for 6 hours while stirring. The heat treatment pitch was a high softening point pitch having a softening point of 372 ° C.

【0023】この高軟化点ピッチを、平均粒径18μm
に微粉砕した。この微粉砕した粉末に、平均粒径が21
μmで、比表面積が5m2/g、アスペクト比が2の天
然黒鉛を、ピッチ由来の微粉末に対して、40%になる
ように添加・混合した。その後、この微粉末を空気気流
中において昇温速度4℃/分で130℃から260℃ま
で昇温して、260℃で30分間保持し、酸化処理を行
った。次いで窒素雰囲気下1,000℃で炭化を行った
後、アルゴン雰囲気下3,000℃で黒鉛処理をして黒
鉛粉末を得た。得られた黒鉛粉末は、比表面積が1.6
2/gであるアスペクト比の小さい高結晶の黒鉛粉末
であった。
This high softening point pitch has an average particle size of 18 μm.
Finely crushed. This pulverized powder has an average particle size of 21
Natural graphite having a specific surface area of 5 m 2 / g and an aspect ratio of 2 in μm was added and mixed so as to be 40% with respect to the fine powder derived from pitch. Then, this fine powder was heated in an air stream from 130 ° C. to 260 ° C. at a temperature rising rate of 4 ° C./min and held at 260 ° C. for 30 minutes for oxidation treatment. Then, after carbonizing at 1,000 ° C. in a nitrogen atmosphere, graphite treatment was performed at 3,000 ° C. in an argon atmosphere to obtain graphite powder. The obtained graphite powder has a specific surface area of 1.6.
It was a highly crystalline graphite powder having a small aspect ratio of m 2 / g.

【0024】実施例1で得られた黒鉛粉末を用いて以下
の手法により、それぞれの放電容量を測定した。 (電極材料としての評価)黒鉛に対し8%のPVDF
(ポリフッ化ビニリデン)を、溶媒としてNMP(n−
メチルピロリドン)を用いてスラリーとし、銅箔上にド
クターブレードを用いて塗布した。乾燥後、円形に打ち
抜き、プレス成型して黒鉛電極とした。対極にリチウム
箔、セパレータにポリプロピレン多孔質膜、電解液とし
て1M LiPF6 EC/DEC(エチレンカーボネ
ート/ジエチレンカーボネート)1/1の溶液を用いて
ビーカー型電池セルを組み立てた。電池測定は充電時に
は0.5mA/cm2で10mVまで定電流充電後、
0.1mAまで定電圧充電を行った。放電時には0.5
mA/cm2で1.5Vまで放電し放電容量を求めた。
また、負荷特性については、充電条件を上記と同じ条件
で行い、放電時の電流密度を5.0mA/cm2で放電
させた際の放電容量を測定することにより行った。負荷
特性の表示は、5.0mA/cm2の放電容量を0.5
mA/cm2の放電容量で除したものを百分率表示した
ものである。
The discharge capacity of each of the graphite powders obtained in Example 1 was measured by the following method. (Evaluation as electrode material) 8% PVDF with respect to graphite
(Polyvinylidene fluoride) as a solvent, NMP (n-
(Methylpyrrolidone) to form a slurry, which was then applied onto a copper foil using a doctor blade. After drying, it was punched into a circle and press-molded to obtain a graphite electrode. A beaker type battery cell was assembled using a lithium foil as a counter electrode, a polypropylene porous membrane as a separator, and a 1M LiPF 6 EC / DEC (ethylene carbonate / diethylene carbonate) 1/1 solution as an electrolytic solution. For battery measurement, after charging with constant current of 0.5 mA / cm 2 to 10 mV,
Constant voltage charging was performed up to 0.1 mA. 0.5 when discharged
The discharge capacity was obtained by discharging to 1.5 V at mA / cm 2 .
The load characteristics were measured under the same charging conditions as above and by measuring the discharge capacity when discharged at a current density of 5.0 mA / cm 2 . The display of the load characteristics shows that the discharge capacity of 5.0 mA / cm 2 is 0.5.
It is a value expressed as a percentage, which is divided by the discharge capacity of mA / cm 2 .

【0025】<実施例2>実施例1と同じようにして製
造したピッチ由来の平均粒径18μmの微粉末を単独
で、空気気流中において昇温速度4℃/分で130℃か
ら260℃まで昇温して、260℃で30分間保持し、
酸化処理を行った。この酸化後の微粉末に対して、実施
例1で使用した天然黒鉛を酸化後の微粉末に対して45
%添加・混合した。次いでこの混合微粉末に対して、窒
素雰囲気下1,000℃で炭化を行った後、アルゴン雰
囲気下3,000℃で黒鉛処理をして、比表面積1.7
2/gの黒鉛粉末を得た。この黒鉛粉末に対して、実
施例1と同様に電池特性を測定した。
Example 2 Pitch-derived fine powder having an average particle size of 18 μm produced in the same manner as in Example 1 was used alone in an air stream at a temperature rising rate of 4 ° C./minute from 130 ° C. to 260 ° C. Heat up and hold at 260 ° C for 30 minutes,
Oxidation treatment was performed. For this fine powder after oxidation, the natural graphite used in Example 1 was added to the fine powder after oxidation at 45
% Added and mixed. Next, this mixed fine powder is carbonized at 1,000 ° C. in a nitrogen atmosphere, and then graphitized at 3,000 ° C. in an argon atmosphere to give a specific surface area of 1.7.
m 2 / g of graphite powder was obtained. For this graphite powder, the battery characteristics were measured in the same manner as in Example 1.

【0026】<実施例3>実施例2と同じようにして製
造したピッチ由来の酸化粉末を単独で、窒素雰囲気下
1,000℃で炭化処理を行った。この炭化後の微粉末
に対して、実施例1で使用した天然黒鉛を酸化後の微粉
末に対して48%添加・混合した。次いでこの混合微粉
末に対して、アルゴン雰囲気下3,000℃で黒鉛処理
をして、比表面積2.2m2/gの黒鉛粉末を得た。
Example 3 Pitch-derived oxide powder produced in the same manner as in Example 2 was singly carbonized at 1,000 ° C. in a nitrogen atmosphere. To the fine powder after carbonization, 48% of the natural graphite used in Example 1 was added and mixed with the fine powder after oxidation. Next, this mixed fine powder was subjected to a graphite treatment at 3000 ° C. in an argon atmosphere to obtain a graphite powder having a specific surface area of 2.2 m 2 / g.

【0027】<実施例4>実施例3と同じようにして製
造したピッチ由来の炭化粉末を単独で、アルゴン雰囲気
下3,000℃で黒鉛化処理を行った。この黒鉛化後の
微粉末に対して、実施例1で使用した天然黒鉛を酸化後
の微粉末に対して50%添加・混合し、比表面積3.0
2/gの黒鉛粉末を得た。
Example 4 Pitch-derived carbonized powder produced in the same manner as in Example 3 was independently graphitized at 3,000 ° C. in an argon atmosphere. The natural graphite used in Example 1 was added to and mixed with 50% of the fine powder after graphitization to obtain a specific surface area of 3.0.
m 2 / g of graphite powder was obtained.

【0028】<比較例1>実施例1〜4までの酸化処
理、炭化処理および黒鉛化処理を、天然黒鉛を混合する
ことなく、実施し、比表面積0.8m2/gの黒鉛粉末
を得た。この粉末に対しても実施例と同じように電池測
定を行ったところ、放電容量が、実施例に比較すると小
さくなった。
<Comparative Example 1> The oxidation treatment, carbonization treatment and graphitization treatment of Examples 1 to 4 were carried out without mixing natural graphite to obtain a graphite powder having a specific surface area of 0.8 m 2 / g. It was When the battery was measured for this powder in the same manner as in the example, the discharge capacity was smaller than that in the example.

【0029】<比較例2>実施例1〜4で使用した天然
黒鉛粉末を単独で用いて、実施例と同様にして電池測定
を行ったところ、放電容量は高いが、不可逆容量も大き
く、負荷特性も悪くなった。なお、実施例1〜4で使用
した天然黒鉛は、平均粒径が21μm、アスペクト比が
2、比表面積が5m2/gおよびX線回折の測定値であ
るLcが563Å、Laが567Å、d002が3.36
4Å、アルゴンレーザーを用いたラマン分光法により測
定したR値が0.14であった。
Comparative Example 2 When the natural graphite powders used in Examples 1 to 4 were used alone and the battery was measured in the same manner as in Example, the discharge capacity was high, but the irreversible capacity was large and the load was high. The characteristics have also deteriorated. The natural graphite used in Examples 1 to 4 had an average particle size of 21 μm, an aspect ratio of 2, a specific surface area of 5 m 2 / g, and Lc of 563Å, La of 567Å, which is a measured value of X-ray diffraction, and d. 002 is 3.36
4Å, the R value measured by Raman spectroscopy using an argon laser was 0.14.

【0030】 表1に示したように、実施例1〜4では加成性以上の効
果を示すことがわかる。
[0030] As shown in Table 1, it can be seen that Examples 1 to 4 exhibit the effect of additive property or more.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
コールタールピッチなどのピッチ類を不活性雰囲気で、
熱処理し、高軟化点ピッチを製造した後、微粉砕し、不
融化、炭化および黒鉛化をするに際し、あるいは上記ピ
ッチ類を炭化、微粉砕および黒鉛化をするに際し、それ
ぞれ、微粉砕工程後、不融化工程後、炭化工程後、黒鉛
化工程後のいずれかの工程後の微粉末に天然黒鉛などの
高結晶黒鉛粉末を添加混合することにより、高容量であ
るが、不可逆容量が小さく、高負荷特性のリチウムイオ
ン二次電池負極材料を得ることができる。
As described above, according to the present invention,
Pitches such as coal tar pitch in an inert atmosphere,
Heat treatment, after producing a high softening point pitch, finely pulverized, infusibilizing, in carbonizing and graphitizing, or in carbonizing the pitches, finely pulverizing and graphitizing, respectively, after the fine grinding step, After the infusibilizing step, the carbonizing step, and the high-capacity graphite powder such as natural graphite is added to and mixed with the fine powder after any step after the graphitizing step, the capacity is high, but the irreversible capacity is small and high. A lithium ion secondary battery negative electrode material having load characteristics can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤井 謙治 東京都千代田区九段北四丁目1−3 アド ケムコ株式会社内 (72)発明者 北川 淳 東京都千代田区九段北四丁目1−3 アド ケムコ株式会社内 (72)発明者 田林 一晃 東京都千代田区九段北四丁目1−3 アド ケムコ株式会社内 Fターム(参考) 4G046 EA02 EB02 EC02 EC05 EC06 5H029 AJ03 AK03 AK05 AL06 AL07 AM02 AM07 CJ02 CJ08 CJ14 CJ28 DJ16 DJ17 EJ01 EJ12 HJ01 HJ04 HJ05 HJ07 HJ13 HJ14 5H050 AA08 BA17 CA08 CA09 CA11 CB07 CB08 GA02 GA05 GA10 GA15 GA27 HA01 HA04 HA05 HA07 HA13 HA14    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kenji Fujii             4th, 3rd, 9th North, Chiyoda-ku, Tokyo             Within Chemco Co., Ltd. (72) Inventor Jun Kitagawa             4th, 3rd, 9th North, Chiyoda-ku, Tokyo             Within Chemco Co., Ltd. (72) Inventor Kazuaki Tabayashi             4th, 3rd, 9th North, Chiyoda-ku, Tokyo             Within Chemco Co., Ltd. F-term (reference) 4G046 EA02 EB02 EC02 EC05 EC06                 5H029 AJ03 AK03 AK05 AL06 AL07                       AM02 AM07 CJ02 CJ08 CJ14                       CJ28 DJ16 DJ17 EJ01 EJ12                       HJ01 HJ04 HJ05 HJ07 HJ13                       HJ14                 5H050 AA08 BA17 CA08 CA09 CA11                       CB07 CB08 GA02 GA05 GA10                       GA15 GA27 HA01 HA04 HA05                       HA07 HA13 HA14

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ピッチ類を不活性雰囲気で熱処理し、軟
化点が350℃以上の高軟化点ピッチを製造した後、該
高軟化点ピッチを微粉砕し、不融化、炭化および黒鉛化
をする工程からなる黒鉛粉末の製造方法において、上記
微粉砕工程後、不融化工程後、炭化工程後および黒鉛化
工程後のいずれかの工程後の微粉末に、高結晶黒鉛粉末
を添加混合することを特徴とする黒鉛粉末の製造方法。
1. A pitch is heat-treated in an inert atmosphere to produce a high softening point pitch having a softening point of 350 ° C. or higher, and then the high softening point pitch is pulverized to be infusibilized, carbonized and graphitized. In the method for producing graphite powder consisting of steps, after the fine pulverizing step, after the infusibilizing step, the fine powder after any step after the carbonizing step and after the graphitizing step, the high crystalline graphite powder is added and mixed. A method for producing a graphite powder, which is characterized.
【請求項2】 ピッチ類を不活性雰囲気で熱処理し、軟
化点が350℃以上の高軟化点ピッチを製造した後、該
高軟化点ピッチを炭化し、該炭化物を微粉砕し、黒鉛化
する工程からなる黒鉛粉末の製造方法において、上記微
粉砕工程後および黒鉛化工程後のいずれかの工程後の微
粉末に、高結晶黒鉛粉末を添加混合することを特徴とす
る黒鉛粉末の製造方法。
2. A pitch is heat-treated in an inert atmosphere to produce a high softening point pitch having a softening point of 350 ° C. or higher, the high softening point pitch is carbonized, and the carbide is pulverized and graphitized. A method for producing a graphite powder, comprising: adding a high-crystal graphite powder to and mixing with the fine powder after any one of the fine pulverizing step and the graphitizing step.
【請求項3】 高結晶黒鉛粉末として、平均粒径が5〜
60μm、アスペクト比が3以下、比表面積が0.5〜
10m2/gおよびX線回折の測定値であるLcが40
0Å以上、Laが400Å以上、d002が3.37Å以
下、アルゴンレーザーを用いたラマン分光法により測定
した1360cm-1バンドの1580cm -1バンドに対
する強度比をR値(R=I1360/I1580)とした場合
に、そのR値が0.1以上である天然黒鉛を添加混合す
る請求項1または2に記載の黒鉛粉末の製造方法。
3. The high crystal graphite powder has an average particle size of 5 to 5.
60 μm, aspect ratio 3 or less, specific surface area 0.5-
10m2/ G and Lc measured by X-ray diffraction is 40
0 Å or more, La is 400 Å or more, d002Is 3.37Å or less
Bottom, measured by Raman spectroscopy using an argon laser
Done 1360 cm-1Band 1580 cm -1Pair with band
R value (R = I1360/ I1580)
To, add and mix natural graphite with an R value of 0.1 or more
The method for producing the graphite powder according to claim 1 or 2.
【請求項4】 高結晶黒鉛粉末の添加量が、ピッチ類由
来の微粉末に対して、10〜90重量%である請求項1
または2に記載の黒鉛粉末の製造方法。
4. The high crystalline graphite powder is added in an amount of 10 to 90% by weight based on the fine powder derived from pitches.
Alternatively, the method for producing the graphite powder according to Item 2.
【請求項5】 請求項1または2に記載の方法で製造
し、かつ比表面積が0.1〜6m2/gであることを特
徴とする黒鉛粉末。
5. A graphite powder produced by the method according to claim 1 or 2, and having a specific surface area of 0.1 to 6 m 2 / g.
【請求項6】 請求項5に記載の黒鉛粉末を負極材料と
して使用したことを特徴とするリチウムイオン二次電
池。
6. A lithium-ion secondary battery using the graphite powder according to claim 5 as a negative electrode material.
JP2001378567A 2001-12-12 2001-12-12 Method of manufacturing graphite powder, graphite powder and lithium ion secondary battery Pending JP2003176115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001378567A JP2003176115A (en) 2001-12-12 2001-12-12 Method of manufacturing graphite powder, graphite powder and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001378567A JP2003176115A (en) 2001-12-12 2001-12-12 Method of manufacturing graphite powder, graphite powder and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2003176115A true JP2003176115A (en) 2003-06-24

Family

ID=19186252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001378567A Pending JP2003176115A (en) 2001-12-12 2001-12-12 Method of manufacturing graphite powder, graphite powder and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2003176115A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005027243A1 (en) * 2003-09-09 2005-03-24 Sanyo Electric Co.,Ltd. Nonaqueous electrolyte secondary battery
WO2005078829A1 (en) * 2004-02-12 2005-08-25 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same, and lithium secondary battery
WO2006067952A1 (en) * 2004-12-20 2006-06-29 Konica Minolta Holdings, Inc. Gas-barrier thin film laminate, gas-barrier resin base and organic el device
CN1314150C (en) * 2004-01-19 2007-05-02 陈闻杰 Modified natural graphite cell negative polar material and preparing method
JP2014517454A (en) * 2011-05-23 2014-07-17 エルジー ケム. エルティーディ. High power lithium secondary battery with improved power density characteristics
JP2016069230A (en) * 2014-09-30 2016-05-09 イビデン株式会社 Production process for pyrolytic carbon-cladded graphite member
JP2016146343A (en) * 2015-02-04 2016-08-12 Jfeケミカル株式会社 Carbon material for lithium ion secondary battery negative electrode, lithium ion secondary battery negative electrode and method of manufacturing lithium ion secondary battery
US9525167B2 (en) 2011-07-13 2016-12-20 Lg Chem, Ltd. Lithium secondary battery of high energy with improved energy property
US9601756B2 (en) 2011-05-23 2017-03-21 Lg Chem, Ltd. Lithium secondary battery of high energy density with improved energy property
US9985278B2 (en) 2011-05-23 2018-05-29 Lg Chem, Ltd. Lithium secondary battery of high energy density with improved energy property

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8268485B2 (en) 2003-09-09 2012-09-18 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
WO2005027243A1 (en) * 2003-09-09 2005-03-24 Sanyo Electric Co.,Ltd. Nonaqueous electrolyte secondary battery
CN1314150C (en) * 2004-01-19 2007-05-02 陈闻杰 Modified natural graphite cell negative polar material and preparing method
KR100912849B1 (en) * 2004-02-12 2009-08-18 미쓰비시 가가꾸 가부시키가이샤 Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same, and lithium secondary battery
KR100954306B1 (en) * 2004-02-12 2010-04-21 미쓰비시 가가꾸 가부시키가이샤 Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same, and lithium secondary battery
JP2012018933A (en) * 2004-02-12 2012-01-26 Mitsubishi Chemicals Corp Negative electrode material for lithium secondary battery and method of manufacturing the same, and negative electrode for lithium secondary battery using it and lithium secondary battery
JP2012023048A (en) * 2004-02-12 2012-02-02 Mitsubishi Chemicals Corp Negative electrode material for lithium secondary battery, manufacturing method of the same, negative electrode for lithium secondary battery using the same, and lithium secondary battery
WO2005078829A1 (en) * 2004-02-12 2005-08-25 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same, and lithium secondary battery
WO2006067952A1 (en) * 2004-12-20 2006-06-29 Konica Minolta Holdings, Inc. Gas-barrier thin film laminate, gas-barrier resin base and organic el device
JP2014517454A (en) * 2011-05-23 2014-07-17 エルジー ケム. エルティーディ. High power lithium secondary battery with improved power density characteristics
US9385372B2 (en) 2011-05-23 2016-07-05 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high energy density
US9601756B2 (en) 2011-05-23 2017-03-21 Lg Chem, Ltd. Lithium secondary battery of high energy density with improved energy property
US9985278B2 (en) 2011-05-23 2018-05-29 Lg Chem, Ltd. Lithium secondary battery of high energy density with improved energy property
US9525167B2 (en) 2011-07-13 2016-12-20 Lg Chem, Ltd. Lithium secondary battery of high energy with improved energy property
JP2016069230A (en) * 2014-09-30 2016-05-09 イビデン株式会社 Production process for pyrolytic carbon-cladded graphite member
JP2016146343A (en) * 2015-02-04 2016-08-12 Jfeケミカル株式会社 Carbon material for lithium ion secondary battery negative electrode, lithium ion secondary battery negative electrode and method of manufacturing lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP5823790B2 (en) Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery and lithium secondary battery using the same
JP5081375B2 (en) Negative electrode material for lithium secondary battery, production method thereof, and negative electrode for lithium secondary battery and lithium secondary battery using the same
KR100951388B1 (en) Carbon material, production method and use thereof
JP3803866B2 (en) Double-layer carbon material for secondary battery and lithium secondary battery using the same
JPWO2012157590A1 (en) Non-aqueous secondary battery carbon material, negative electrode using the carbon material, and non-aqueous secondary battery
EP1906472A1 (en) Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing it, cathode and non-aqueous secondary battery
JP2000272911A (en) Metal-carbon composite particle, its production, cathode material, cathode for lithium secondary battery and lithium secondary battery
JP2012033375A (en) Carbon material for nonaqueous secondary battery
JP2976299B2 (en) Anode material for lithium secondary battery
JP2005019399A (en) Negative pole material for lithium ion secondary battery and its producing method, negative pole for lithium ion secondary battery and lithium ion secondary battery
JP7334735B2 (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
KR100575971B1 (en) Mesophase spherular graphitized substance, anode material, anode, and lithium ion secondary battery using same
JP2004196609A (en) Production method for composite graphite particle, composite graphite particle, cathode material for lithium ion secondary battery, and lithium ion secondary battery
JP4045438B2 (en) Double-layer carbon material for secondary battery and lithium secondary battery using the same
JP2000182617A (en) Carbon material for lithium secondary battery electrode and its manufacture, and lithium secondary battery
JP4933092B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4672958B2 (en) Graphite particles, lithium ion secondary battery, negative electrode material therefor and negative electrode
JP5394721B2 (en) Lithium ion secondary battery, negative electrode material and negative electrode therefor
JP4171259B2 (en) Method for producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP6584975B2 (en) Carbon material for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and method for producing lithium ion secondary battery
KR100935129B1 (en) Carbon material, production method and use thereof
JP2003176115A (en) Method of manufacturing graphite powder, graphite powder and lithium ion secondary battery
JP2000003708A (en) Coated carbon material, manufacture thereof and lithium secondary battery using the material
JP2976300B1 (en) Method for producing negative electrode material for lithium secondary battery
JP2013229343A (en) Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery