JP4560877B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP4560877B2
JP4560877B2 JP2000103046A JP2000103046A JP4560877B2 JP 4560877 B2 JP4560877 B2 JP 4560877B2 JP 2000103046 A JP2000103046 A JP 2000103046A JP 2000103046 A JP2000103046 A JP 2000103046A JP 4560877 B2 JP4560877 B2 JP 4560877B2
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
battery
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000103046A
Other languages
Japanese (ja)
Other versions
JP2001291528A (en
Inventor
信晴 小柴
辰男 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000103046A priority Critical patent/JP4560877B2/en
Publication of JP2001291528A publication Critical patent/JP2001291528A/en
Application granted granted Critical
Publication of JP4560877B2 publication Critical patent/JP4560877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、携帯型機器を駆動する動作用電源、メモリーのバックアップ電源等として用いられる充放電可能なリチウム二次電池に関するものである。
【0002】
【従来の技術】
近年、エレクトロニクス分野における技術の急速な発展により、電子機器の小型化が進み、それら機器の電源として、小型軽量で高エネルギ−密度を有する電池の需要が高まっており、負極にリチウムを用いるリチウム二次電池が注目を集め世界的に研究が行われている。しかしながら負極に金属リチウムを用いた場合、充放電の繰り返しにより、リチウムが微細化したり、リチウム負極表面にリチウムのデンドライトと呼ばれる樹枝状結晶が成長し、リチウム負極の形状が損なわれ、充放電サイクル寿命が非常に短いものであった。そして、最後には脱落リチウムがセパレータを貫通し、電池の内部ショートを引き起こす原因にもなっていた。
【0003】
このような問題に対する解決の一手段として、負極にリチウム・アルミニウム合金、リチウムを吸蔵させた鉛系合金、カーボン、リチウムをドープさせた五酸化ニオブ、アナタ−ゼ形酸化チタン、二酸化タングステン、酸化鉄などの遷移金属酸化物が検討されている。特に、リチウムがデンドライト状に析出するのを防止するには、合金よりカーボンや遷移金属酸化物が優れており、これらを負極に採用することにより充放電サイクル寿命は飛躍的に向上させることができることが明らかにされている。
【0004】
上記のようなリチウム二次電池、特に二酸化タングステンを主体とする負極を用いたリチウム二次電池については、J.J.Auborn and Y.L.Barberio,J.Electrochem.Soc.,134,638(’87)に示されるようにかなり古くから検討されており、二酸化タングステンを用いた電池の実用化への可能性が見出されている。しかし、この電池は電気容量密度や信頼性などの観点から適当な用途もなく、未だ実用化に至っていないのが実情である。
【0005】
【発明が解決しようとする課題】
二酸化タングステンを負極として用いた場合、充放電における電位挙動は、以下の通りとなる。すなわち、放電時は金属リチウムに対し、0V付近よりスタートし、放電が進むにつれ徐々に電位が上昇し、1.5V前後まで電気容量を得ることができる。しかし、さらに放電を継続すると電位が急激に上昇する。充電時は、放電時とは逆の挙動を示し、1.5V付近から0Vに向かって緩やかな充電曲線を描く。したがって、充放電電位が平坦な正極と組み合わせた場合、コンデンサーのように斜めの充放電カーブとなる。このようなカーブの場合、一般的には電気容量が小さくなってしまい、機器の駆動用電源としての用途、いわゆるパワー用途としては、十分な放電容量を有していえないものであった。
【0006】
昨今、電子回路の高集積化、回路構成の見直しなどによって機器の消費電力が低下しており、放電容量が少ない電池であっても長時間の駆動が可能になっている。さらに前記のような充放電挙動を示す電池は、充電電圧の設定範囲に柔軟性を有するため、近年使用機会が増えている低電圧ICなどに対しても対応可能である。
【0007】
然し乍、二次電池の特性としては、前記の放電容量、寿命に加えて、機器に適応した電圧が発現されることや、長期間にわたる保存、あるいは過充電や過放電にも電池性能を損なわないことも要求される。従って、電池の使用される用途、環境及び目的に適応した電位を有し、さらに充放電の可逆性、負極及び電解液に電解液が適応することなども必要となる。
【0008】
本発明は、二酸化タングステンからなる負極を用いた電池に改良を加え、実用に耐えうる電池を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために本願の第1の発明に係る電池は、充電状態において、負極活物質として用いるリチウムをドープした二酸化タングステンに、電気化学的にリチウムのドープ、脱ドープが可能な炭素を添加するものである。これは充電完了後さらに定電圧の過充電がなされた場合、負極の電位が0V付近で固定化させることが可能となる。そして、正極側に過剰の電圧が印加されないで済み、正極を安定化させることができる。
【0010】
また、第2の発明に係る電池は、負極の充放電可能なW02と炭素の電気容量が正極の可逆な電気容量以下とするものである。これは電池で0Vに至る過放電がなされたとき、正極の性能劣化を防止するために有用である。さらに負極規制にすることにより、正極の電位を充放電の可逆性のある安定な電位領域に留めることができる。
【0012】
本願の発明に係る二酸化タングステンを主体とする負極を構成する場合、活物質である二酸化タングステン及び炭素に、フッ素樹脂などの結着剤およびカーボンブラックなどの導電剤が添加されている。一般に、電解液の溶媒としてプロピレンカーボネート(PC)を用いると導電性がよく、電池の充放電サイクル寿命も伸びることが期待される。しかし、負極に添加されたカーボンブラックとの接触によってPCが分解してしまい、これに起因してガス発生が生じ、電池性能を著しく損なってしまう。このようなことから負極に炭素材料を含む場合、ガス発生のしにくい適切な電解液を選ぶことが重要なポイントとなる。本発明では、これらの知見から電解液の検討を行っており、二酸化タングステン及び炭素を負極に用いたシステムにおいて、充放電の可逆性にすぐれ、かつ過充電、過放電に強いリチウム二次電池を提供できるものである。
【0013】
前記のような電解液中を構成する溶質の例としては、LiPF6、LiCF3SO3などがある。また、他の例としては、一般式LiN(Cn2n+1SO2 )(Cm2m+1SO2)で表されるイミド系の溶質であり、その具体例としてはLiN(CF3SO22 、LiN(C25SO22、LiN(CF3SO2)(C49SO2)などがある。
【0014】
さらにまた発明は、正極として充電状態において金属リチウムに対して3.8V以下の電位を有する材料を使用することにあるとくに溶質として請求項に示すイミド系のLiN(CFSOなどは3.8V以下で強い安定性を示すので、イミド系の溶質とのマッチングもよくなる。さらにこの正極に用いられる具体的な材料としては、五酸化バナジウム、リチウム含有マンガン酸化物、三酸化タングステン、あるいは三酸化モリブデンなどがある。
【0015】
【発明の実施の形態】
以下、本発明の具体例について説明する。なお以下に示す実施形態は本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。
【0016】
(第1の実施形態)
正極として、3V級のマンガン系複合酸化物を合成した。二酸化マンガン1モルに対し水酸化リチウムを0.3モル混合し、400℃で熱処理して得られるリチウム含有二酸化マンガン(LiXMnOY)を90wt%、導電材としてカーボンブラックを5wt%、バインダーであるフッソ樹脂を5wt%加え、これらを混練し、厚さ約0.6mm、直径12.0mmの大きさのペレットになるように成型した。そして、250℃で真空乾燥して脱水処理して正極とした。
【0017】
また、負極としてはWO2の電気容量が、正極の電気容量とほぼ同等とし、添加する天然黒鉛を電気容量にして正極の20%となるようにした。このWO2及び天然黒鉛にバインダーであるフッソ樹脂を合剤に対し、5wt%となるように加え、これらを混練し、厚さ約0.6mm、直径12.0mmの大きさのペレットになるように成型した。そして、250℃で乾燥し、脱水処理して負極とした。なお、電気容量の計算は0.1mAの放電条件で放電したとき、正極の場合、金属リチウムに対し、2Vに至るまでの電気容量とし、負極の場合は同じく2Vにまでいたる電気容量とした。
【0018】
得られた正、負極を用い、図1に示すコイン形のリチウム二次電池を構成した。
【0019】
図1において、ケース1は正極端子を兼ね、負極端子2は封口板を兼ねる。ガスケット3はケースと封口板とを絶縁しており、ポリプロピレン製である。セパレータ4はポリプロピレン製不織布からなり、正極5、負極6を隔離している。
なお、本実施の形態では正極5の電気容量は約40mAhである。また電解液は、エチレンカーボネート(EC)、1・2ジメトキシエタン(DME)の等容積混合媒体にLiPF6を1モル/溶解させたものであり、正極、負極、セパレータに含浸させて用いた電池の大きさは外径約23mm高さ、約3.0mmである。これを電池Aとする。
【0020】
さらに、WO2の電気容量を正極の電気容量の70%とし、さらに添加した天然黒鉛の可逆性ある電気容量が正極電気容量の30%、20%、10%とし、負極容量の合計が正極の電気容量に対し、100%および90%、80%となるように正、負極の充填比率を調整した。そして他の条件はすべて電池Aと同じとした。これらの電池をB、C、Dとする。
【0021】
比較例として、負極のWO2の電気容量がを正極のそれとほぼ同じとなるようにし、負極の充填比率として、WO290wt%、導電材としてカーボンブラックを5wt%、バインダーであるフッソ樹脂を5wt%加え、他はすべて電池Aと同じ構成とした。これをEとする。
【0022】
また、電解液の溶媒をECのかわりにプロピレンカーボネート(PC)を用い、他は電池Aとすべて同じ構成にした。この電池をFとする。
【0023】
(第2の実施形態)
また、第2の実施形態として電解液の溶質にLiCF3SO3、LiN(CF3SO22、LiN(C25SO22 、LiN(CF3SO2)(C49SO2)を用い、他はすべて電池Aと同じ構成とした。それぞれの電池をG、H、I、Jとする。
【0024】
【実施例】
上記の実施の形態で得られた電池A〜Fを用い、印可電圧3.1V、保護抵抗300Ω、60℃雰囲気中で20日間、定電圧過充電をおこない、1kHzでの内部抵抗の比較をおこなった。その結果を(表1)に示した。
【0025】
【表1】

Figure 0004560877
【0026】
データは初期に対する倍率で現したものであるが、天然黒鉛が添加された電池A〜Dは非常に安定である。逆に、黒鉛の添加されていない電池Eは内部抵抗がかなり上昇している。電池A〜Dは3.1Vの電圧印可状態で負極の黒鉛にリチウムイオンがドープされ、その電位が0Vに保持されるため、正極に異常に高い電圧が掛からないためである。一方、比較例である黒鉛のない電池Eは負極の電位が0Vで安定化しない分、正極の電位が変化するためと考えられる。同様に比較例である電池Fは内部抵抗がやや上昇しているが、これはECが存在しないために電解液がいくらか分解し、ガスが発生したためと考えられる。
【0027】
同様に電池A〜Fを用い、3kΩの負荷で60℃中、連続20日間放電し続け、過放電状態としたのち、充電電圧3.0V、保護抵抗100Ωで24時間充電し、1mAで2Vにいたるまでの放電で、初期容量に対する回復率を測定した。
その結果を(表2)に示す。
【0028】
【表2】
Figure 0004560877
【0029】
この(表2)において、負極の合計容量が正極容量より小さく設定された電池C、Dでは回復率が非常によい。また、負極の合計容量が正極容量と同等である電池B、Eではやや低下が見られる。一方、負極の合計容量が正極容量を大きく上回る電池Aでは容量低下がかなり大きい。これは過放電状態において正極の電位が低い電位の負極に引っ張られ、大きく低下し、正極の結晶が破壊されたためと考えられる。
【0030】
比較例の電池Fはやはり電気容量の低下が見られるが、これは上述と同じくガス発生が生じているためと思われる。
【0031】
これらのことより、黒鉛の添加は定電圧過充電に対して安定な効果をもたらすし、さらに負極の合計容量を正極容量より同等以下にすることにより過放電にたいしても安定性を示すことがわかる。実施例では天然黒鉛を用いたが、充放電性能を有する、黒鉛やカーボン類はすべて適用可能である。
【0032】
また、ECの存在によりガス発生が防止できるため、電池性能を安定化させるためには効果的である。
【0033】
(実施例2)
上記の実施の形態で得られた電池G〜J、及び電池A、電池Fを用い、1mAで3Vから1Vまでの間で充放電を行い、初期に得られた電気容量に対し、50%に低下するまでのサイクル数を比較した。この結果を(表3)に示す。
【0034】
【表3】
Figure 0004560877
【0035】
(表3)から明らかなように、本発明の電池A、及び電池G〜Jは300サイクル以上クリアーしており、その中でもLiCF3SO3を使用している電池Gを除いた電池は特に好ましい。これはLiCF3SO3の導電率が他の溶質より低いためと思われる。これらに対し、比較例としてあげたECの入っていない電池Fはサイクル数が250回と少ない。これは溶媒のPCが負極のカーボン上で少しづつ分解し、発生したガスが悪影響を与えたためと考えられる。
【0036】
また、電池G〜J及び電池A、電池Fを60℃中で保存し、20日後に1kHzでの内部抵抗変化を調べ、初期に対する変化率を(表4)に示した。
【0037】
【表4】
Figure 0004560877
【0038】
(表4)から明らかなように本発明の電池G〜Jおよび電池Aは初期に対し1.5倍以下で安定しているが、比較例である電池Fは10倍以上に増加している。また、電池Fは大きく膨らんでいた。これは充放電サイクルの試験と同じくPCの分解によるガス発生が生じたためであり、しかも60℃の高温中でそれが加速されたためと思われる。これに対して本発明のLiPF6とLiCF3SO3を用いた電池A、Gは高い。これはLiPF6が高温中で分解しやすいためと思われる。
【0039】
これらのことより、電解液として溶媒としてECの入ったものは、ガス発生が防止され電池性能が安定化する。さらに、イミド結合を有するリチウム塩を溶質として用いたものはとりわけすぐれている。
【0041】
また、実質金属リチウムに対し、3.8V以下の電位を有し、3V級活物質として知られるLiMnO2、Li2MnO3、Li4/3Mn5/34、V25、a−V25、V613、MoO3を正極として電池Aに適用した場合、LiXMnOYと同様の効果があった。これは3.8V以下の電位のを有する活物質を用いた場合、電解質としてLiCF3SO3、LiN(CF3SO22などを適用することができ、とくにイミド結合を有するLiN(CF3SO22はイオン導電性にもすぐれ、すぐれた電池性能を発揮することができる。
【0042】
【発明の効果】
以上のように本発明によれば、二酸化タングステンを負極活物質とするリチウム二次電池において、充放電サイクル特性や耐過充電、耐過放電を大幅に向上させ、工業的価値が高い。
【図面の簡単な説明】
【図1】本発明の実施例における電池の縦断面図
【符号の説明】
1 ケース
2 封口板
3 ガスケット
4 セパレータ
5 正極
6 負極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chargeable / dischargeable lithium secondary battery used as an operation power source for driving a portable device, a backup power source for a memory, and the like.
[0002]
[Prior art]
In recent years, due to the rapid development of technology in the electronics field, electronic devices have been miniaturized, and as a power source for these devices, there has been an increasing demand for small, light and high energy density batteries. Secondary batteries have attracted attention and are being studied worldwide. However, when metallic lithium is used for the negative electrode, lithium becomes finer due to repeated charge and discharge, dendritic crystals called lithium dendrites grow on the surface of the lithium negative electrode, the shape of the lithium negative electrode is impaired, and the charge / discharge cycle life Was very short. And finally, the fallen lithium penetrated the separator, causing the internal short circuit of the battery.
[0003]
As a means for solving such problems, lithium-aluminum alloy, lead-based alloy in which lithium is occluded in the negative electrode, carbon, niobium pentoxide doped with lithium, anatase-type titanium oxide, tungsten dioxide, iron oxide Transition metal oxides such as In particular, in order to prevent lithium from precipitating in a dendritic form, carbon and transition metal oxides are superior to alloys, and the charge / discharge cycle life can be drastically improved by adopting these in the negative electrode. Has been revealed.
[0004]
Regarding the lithium secondary battery as described above, in particular, a lithium secondary battery using a negative electrode mainly composed of tungsten dioxide, J. Org. J. et al. Auburn and Y.M. L. Barberio, J .; Electrochem. Soc. , 134, 638 ('87), has been studied for a long time, and has found a possibility for practical use of a battery using tungsten dioxide. However, this battery does not have an appropriate use from the viewpoints of electric capacity density and reliability, and has not yet been put into practical use.
[0005]
[Problems to be solved by the invention]
When tungsten dioxide is used as the negative electrode, the potential behavior during charging and discharging is as follows. That is, the discharge starts from around 0V with respect to metallic lithium, and as the discharge progresses, the potential gradually increases, and the electric capacity can be obtained up to about 1.5V. However, if the discharge is further continued, the potential rapidly increases. At the time of charging, the behavior is opposite to that at the time of discharging, and a gentle charging curve is drawn from around 1.5V toward 0V. Therefore, when combined with a positive electrode having a flat charge / discharge potential, an oblique charge / discharge curve is obtained like a capacitor. In the case of such a curve, the electric capacity is generally small, so that it cannot have a sufficient discharge capacity for use as a power source for driving a device, that is, so-called power use.
[0006]
In recent years, the power consumption of devices has been reduced due to the high integration of electronic circuits, the review of circuit configurations, etc., and even a battery with a small discharge capacity can be driven for a long time. Further, since the battery exhibiting the charging / discharging behavior as described above has flexibility in the setting range of the charging voltage, it can cope with a low voltage IC or the like that has recently been used more frequently.
[0007]
However, as a characteristic of the secondary battery, in addition to the discharge capacity and life described above, a voltage suitable for the device is expressed, storage for a long period of time, or battery performance is impaired due to overcharge and overdischarge. Not required. Therefore, it is necessary to have a potential suitable for the use, environment and purpose of the battery, reversibility of charge and discharge, and adapting the electrolyte to the negative electrode and the electrolyte.
[0008]
An object of the present invention is to provide a battery that can be put into practical use by improving a battery using a negative electrode made of tungsten dioxide.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the battery according to the first invention of the present application, in a charged state, contains lithium-doped tungsten dioxide used as a negative electrode active material and electrochemically capable of lithium doping and dedoping. It is to be added. In this case, when the constant voltage is further overcharged after the charging is completed, the potential of the negative electrode can be fixed in the vicinity of 0V. And it is not necessary to apply an excessive voltage to the positive electrode side, and the positive electrode can be stabilized.
[0010]
The battery according to the second invention is the electric capacity of the rechargeable W0 2 and carbon of the negative electrode is less reversible capacity of the positive electrode. This is useful for preventing performance deterioration of the positive electrode when the battery is overdischarged to 0V. Further, by making negative electrode regulation, the potential of the positive electrode can be kept in a stable potential region having reversible charge / discharge.
[0012]
When a negative electrode mainly composed of tungsten dioxide according to the present invention is configured, a binder such as a fluororesin and a conductive agent such as carbon black are added to tungsten dioxide and carbon which are active materials. In general, when propylene carbonate (PC) is used as the solvent of the electrolytic solution, the conductivity is good and the charge / discharge cycle life of the battery is expected to be extended. However, the PC is decomposed by contact with the carbon black added to the negative electrode, resulting in gas generation, which significantly impairs battery performance. For this reason, when a carbon material is included in the negative electrode, it is important to select an appropriate electrolytic solution that does not easily generate gas. In the present invention, the electrolyte solution is examined from these findings, and in a system using tungsten dioxide and carbon as a negative electrode, a lithium secondary battery having excellent reversibility of charge and discharge and strong against overcharge and overdischarge is obtained. It can be provided.
[0013]
Examples of the solute constituting the electrolyte solution include LiPF 6 and LiCF 3 SO 3 . Another example is an imide-based solute represented by the general formula LiN (C n F 2n + 1 SO 2 ) (C m F 2m + 1 SO 2 ). As a specific example, LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) and the like.
[0014]
Furthermore, this invention exists in using the material which has a potential of 3.8V or less with respect to metallic lithium in a charging state as a positive electrode . In particular, the imide-based LiN (CF 3 SO 2 ) 2 shown in claim 4 as a solute exhibits strong stability at 3.8 V or less, and therefore the matching with the imide-based solute is improved. Further, specific materials used for the positive electrode include vanadium pentoxide, lithium-containing manganese oxide, tungsten trioxide, molybdenum trioxide, and the like.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, specific examples of the present invention will be described. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
[0016]
(First embodiment)
As the positive electrode, a 3V-class manganese composite oxide was synthesized. Mixing 0.3 mol of lithium hydroxide with 1 mol of manganese dioxide, heat-treating at 400 ° C, 90 wt% of lithium-containing manganese dioxide (Li x MnO y ), 5 wt% of carbon black as a conductive material, binder 5 wt% of a certain fluorine resin was added, and these were kneaded and molded into pellets having a thickness of about 0.6 mm and a diameter of 12.0 mm. Then, it was vacuum dried at 250 ° C. and dehydrated to obtain a positive electrode.
[0017]
In addition, as the negative electrode, the electric capacity of WO 2 was made almost equal to the electric capacity of the positive electrode, and the natural graphite to be added was set to an electric capacity of 20% of the positive electrode. Fluorine resin as a binder is added to WO 2 and natural graphite so as to be 5 wt% with respect to the mixture, and these are kneaded to form pellets having a thickness of about 0.6 mm and a diameter of 12.0 mm. Molded into. And it dried at 250 degreeC and spin-dry | dehydrated and set it as the negative electrode. In the calculation of the electric capacity, when discharging was performed at a discharge condition of 0.1 mA, in the case of the positive electrode, the electric capacity was up to 2 V with respect to metallic lithium, and in the case of the negative electrode, the electric capacity was also up to 2 V.
[0018]
The coin-shaped lithium secondary battery shown in FIG. 1 was constructed using the obtained positive and negative electrodes.
[0019]
In FIG. 1, the case 1 also serves as a positive electrode terminal, and the negative electrode terminal 2 also serves as a sealing plate. The gasket 3 insulates the case from the sealing plate and is made of polypropylene. The separator 4 is made of a polypropylene nonwoven fabric, and separates the positive electrode 5 and the negative electrode 6.
In the present embodiment, the positive electrode 5 has an electric capacity of about 40 mAh. The electrolyte is a battery in which 1 mol / liter of LiPF 6 is dissolved in an equal volume mixed medium of ethylene carbonate (EC) and 1.2 dimethoxyethane (DME), and the positive electrode, negative electrode, and separator are impregnated. The size of the outer diameter is about 23 mm in height and about 3.0 mm. This is referred to as battery A.
[0020]
Furthermore, the electric capacity of WO 2 is 70% of the electric capacity of the positive electrode, the reversible electric capacity of the added natural graphite is 30%, 20% and 10% of the positive electrode electric capacity, and the total negative electrode capacity is the positive electrode capacity. The positive and negative electrode filling ratios were adjusted so that the electric capacity was 100%, 90%, and 80%. All other conditions were the same as for battery A. These batteries are designated as B, C, and D.
[0021]
As a comparative example, the electric capacity of WO 2 of the negative electrode is made substantially the same as that of the positive electrode, the filling ratio of the negative electrode is 90 wt% of WO 2 , carbon black is 5 wt% as a conductive material, and fluorine resin as a binder is 5 wt%. %, And the others were all the same as the battery A. This is E.
[0022]
In addition, the solvent of the electrolytic solution was propylene carbonate (PC) instead of EC, and the other components were the same as battery A. This battery is designated as F.
[0023]
(Second Embodiment)
In the second embodiment, the electrolyte solute is LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) was used, and everything else was the same as battery A. Respective batteries are designated as G, H, I, and J.
[0024]
【Example】
Using batteries A to F obtained in the above embodiment, overvoltage was applied for 20 days in an applied voltage of 3.1 V, protective resistance of 300 Ω, 60 ° C. atmosphere, and the internal resistance was compared at 1 kHz. It was. The results are shown in (Table 1).
[0025]
[Table 1]
Figure 0004560877
[0026]
Although the data is expressed at a magnification relative to the initial value, the batteries A to D to which natural graphite was added are very stable. On the contrary, the internal resistance of the battery E to which no graphite is added is considerably increased. This is because in the batteries A to D, lithium ions are doped into the negative electrode graphite in a voltage application state of 3.1 V, and the potential is maintained at 0 V, so that an abnormally high voltage is not applied to the positive electrode. On the other hand, it is considered that the battery E without graphite, which is a comparative example, changes the potential of the positive electrode as much as the potential of the negative electrode is not stabilized at 0V. Similarly, the battery F, which is a comparative example, has a slightly increased internal resistance, which is considered to be because gas was generated due to some decomposition of the electrolyte solution because no EC was present.
[0027]
Similarly, using batteries A to F, the battery was continuously discharged for 20 days at 60 ° C. with a load of 3 kΩ, and after being over-discharged, charged with a charging voltage of 3.0 V and a protective resistance of 100Ω for 24 hours, to 1 V at 2 V. The recovery rate with respect to the initial capacity was measured by the discharge until the end.
The results are shown in (Table 2).
[0028]
[Table 2]
Figure 0004560877
[0029]
In this (Table 2), the recovery rate is very good in the batteries C and D in which the total capacity of the negative electrode is set smaller than the positive electrode capacity. In addition, the batteries B and E in which the total capacity of the negative electrode is equivalent to the positive electrode capacity are slightly reduced. On the other hand, in the battery A in which the total capacity of the negative electrode greatly exceeds the positive electrode capacity, the capacity reduction is considerably large. This is considered to be because the positive electrode potential was pulled by the low potential negative electrode in the overdischarged state, greatly decreased, and the positive electrode crystal was destroyed.
[0030]
The battery F of the comparative example still has a decrease in electric capacity, which seems to be due to gas generation as described above.
[0031]
From these facts, it can be seen that the addition of graphite has a stable effect against constant voltage overcharge, and further exhibits stability against overdischarge by making the total capacity of the negative electrode equal to or less than the positive electrode capacity. Although natural graphite was used in the examples, all graphite and carbon having charge / discharge performance are applicable.
[0032]
In addition, since the generation of gas can be prevented by the presence of EC, it is effective for stabilizing battery performance.
[0033]
(Example 2)
Using the batteries G to J and the batteries A and F obtained in the above embodiment, charging and discharging are performed between 3 V and 1 V at 1 mA, and the electric capacity obtained at the initial stage is 50%. The number of cycles to decrease was compared. The results are shown in (Table 3).
[0034]
[Table 3]
Figure 0004560877
[0035]
As is clear from (Table 3), the battery A and the batteries G to J of the present invention are cleared for 300 cycles or more, and among them, the battery excluding the battery G using LiCF 3 SO 3 is particularly preferable. . This is probably because the conductivity of LiCF 3 SO 3 is lower than that of other solutes. On the other hand, the battery F which does not contain EC given as a comparative example has as few as 250 cycles. This is presumably because the solvent PC was gradually decomposed on the carbon of the negative electrode, and the generated gas had an adverse effect.
[0036]
Further, the batteries G to J, the battery A, and the battery F were stored at 60 ° C., and the change in internal resistance at 1 kHz was examined after 20 days, and the rate of change relative to the initial value is shown in (Table 4).
[0037]
[Table 4]
Figure 0004560877
[0038]
As is clear from Table 4, the batteries G to J and the battery A of the present invention are stable at 1.5 times or less of the initial value, but the battery F as a comparative example is increased to 10 times or more. . Battery F was greatly swollen. This is because gas generation due to decomposition of PC occurred as in the charge / discharge cycle test, and it was presumed that it was accelerated at a high temperature of 60 ° C. On the other hand, the batteries A and G using LiPF 6 and LiCF 3 SO 3 of the present invention are expensive. This seems to be because LiPF 6 tends to decompose at high temperatures.
[0039]
For these reasons, gas containing EC as a solvent as an electrolytic solution is prevented from generating gas and the battery performance is stabilized. Further, those using lithium salts having imide bonds as solutes are particularly excellent.
[0041]
In addition, LiMnO 2 , Li 2 MnO 3 , Li 4/3 Mn 5/3 O 4 , V 2 O 5 , a having a potential of 3.8 V or less with respect to substantial metallic lithium and known as 3V class active materials When -V 2 O 5 , V 6 O 13 , and MoO 3 were used as the positive electrode for the battery A, the same effect as Li X MnO Y was obtained. In this case, when an active material having a potential of 3.8 V or less is used, LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 or the like can be applied as an electrolyte, and particularly LiN (CF 3 having an imide bond). SO 2 ) 2 has excellent ionic conductivity and can exhibit excellent battery performance.
[0042]
【The invention's effect】
As described above, according to the present invention, in a lithium secondary battery using tungsten dioxide as a negative electrode active material, the charge / discharge cycle characteristics, overcharge resistance, and overdischarge resistance are greatly improved, and the industrial value is high.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a battery according to an embodiment of the present invention.
1 Case 2 Sealing plate 3 Gasket 4 Separator 5 Positive electrode 6 Negative electrode

Claims (4)

電気化学的にリチウムのドープ、脱ドープが可能な二酸化タングステンを負極活物質とする負極、正極および有機電解液から構成される発電要素を備えたリチウム二次電池であって、
前記負極は、二酸化タングステンにリチウムがドープされた状態において電気化学的にリチウムのドープ、脱ドープが可能な炭素が前記負極に添加されており、前記正極は、五酸化バナジウム、リチウム含有マンガン酸化物、三酸化タングステン、三酸化モリブデンから選択されることを特徴とするリチウム二次電池。
A lithium secondary battery including a power generation element composed of a negative electrode, a positive electrode, and an organic electrolyte using tungsten dioxide that can be electrochemically doped with lithium and dedoped as a negative electrode active material,
In the negative electrode, carbon that can be electrochemically doped and dedoped with lithium in a state where tungsten dioxide is doped with lithium is added to the negative electrode, and the positive electrode includes vanadium pentoxide, a lithium-containing manganese oxide. A lithium secondary battery selected from tungsten trioxide and molybdenum trioxide .
負極を構成する二酸化タングステン及び炭素の充放電可能な電気容量が、充放電の可逆性を有する電位領域における正極の電気容量以下に設定された請求項1記載のリチウム二次電池。  2. The lithium secondary battery according to claim 1, wherein the electric capacity capable of charging and discharging tungsten dioxide and carbon constituting the negative electrode is set to be equal to or lower than the electric capacity of the positive electrode in a potential region having reversibility of charging and discharging. 有機電解液を構成する溶質が、イミド結合を有する一般式LiN(C2n+1SO)(C2m+1SO)で表されるリチウム塩である請求項1もしくは請求項2記載のリチウム二次電池。 3. The lithium according to claim 1 , wherein the solute constituting the organic electrolytic solution is a lithium salt represented by a general formula LiN (C n F 2n + 1 SO 2 ) (C m F 2m + 1 SO 2 ) having an imide bond. Secondary battery. イミド結合を有するリチウム塩が、LiN(CFSO、LiN(C、LiN(CFSO)(CSO)のいずれかである請求項記載のリチウム二次電池。The lithium salt having an imide bond is any one of LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 O 2 ) 2 , and LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ). 3. The lithium secondary battery according to 3 .
JP2000103046A 2000-04-05 2000-04-05 Lithium secondary battery Expired - Fee Related JP4560877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000103046A JP4560877B2 (en) 2000-04-05 2000-04-05 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000103046A JP4560877B2 (en) 2000-04-05 2000-04-05 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2001291528A JP2001291528A (en) 2001-10-19
JP4560877B2 true JP4560877B2 (en) 2010-10-13

Family

ID=18616813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000103046A Expired - Fee Related JP4560877B2 (en) 2000-04-05 2000-04-05 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4560877B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5350845B2 (en) * 2009-03-13 2013-11-27 株式会社豊田中央研究所 Lithium ion secondary battery
JP7088156B2 (en) * 2019-10-09 2022-06-21 三菱マテリアル株式会社 Negative electrode material manufacturing method and battery manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1069922A (en) * 1996-08-27 1998-03-10 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte lithium secondary battery
JP2000090926A (en) * 1998-09-11 2000-03-31 Mitsubishi Chemicals Corp Nonaqueous secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3707801B2 (en) * 1992-03-13 2005-10-19 Fdk株式会社 Non-aqueous electrolyte secondary battery
JP3203118B2 (en) * 1993-12-27 2001-08-27 三洋電機株式会社 Non-aqueous electrolyte secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1069922A (en) * 1996-08-27 1998-03-10 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte lithium secondary battery
JP2000090926A (en) * 1998-09-11 2000-03-31 Mitsubishi Chemicals Corp Nonaqueous secondary battery

Also Published As

Publication number Publication date
JP2001291528A (en) 2001-10-19

Similar Documents

Publication Publication Date Title
JP3269396B2 (en) Non-aqueous electrolyte lithium secondary battery
US6534216B1 (en) Positive electrode for non-aqueous electrolyte cell and manufacturing method of the same
TWI269472B (en) Cathode active material comprising additive for improving overdischarge-performance and lithium secondary battery using the same
JP3252414B2 (en) Non-aqueous electrolyte secondary battery
JP3244389B2 (en) Lithium secondary battery
JP3079382B2 (en) Non-aqueous secondary battery
JP2000012090A (en) Lithium secondary battery
JP2001126765A (en) Nonaqueous electrolyte secondary battery
JP3082117B2 (en) Non-aqueous electrolyte secondary battery
US6482546B1 (en) Rechargeable lithium battery
JP4560877B2 (en) Lithium secondary battery
JPWO2003036751A1 (en) Non-aqueous electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JPH1027627A (en) Lithium secondary battery
JP3519919B2 (en) Lithium secondary battery
JP3448544B2 (en) Non-aqueous electrolyte battery
JP2000306610A (en) Nonaqueous electrolyte secondary battery
JP2000188132A (en) Nonaqueous electrode secondary battery
JP2002015775A (en) Nonaqueous solvent secondary cell and positive active material for the same
JPH05326017A (en) Nonaqueous solvent type lithium secondary battery
JPH06302336A (en) Nonaqueous electrolyte secondary battery
JPH042065A (en) Secondary battery with non-aqueous electrolyte and manufacture thereof
JP2001023697A (en) Nonaqueous electrolyte secondary battery
JPH1021961A (en) Organic electrolyte lithium secondary battery
JP2000133313A (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070412

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees