EP3963009A1 - Effektpigmente - Google Patents

Effektpigmente

Info

Publication number
EP3963009A1
EP3963009A1 EP20723320.6A EP20723320A EP3963009A1 EP 3963009 A1 EP3963009 A1 EP 3963009A1 EP 20723320 A EP20723320 A EP 20723320A EP 3963009 A1 EP3963009 A1 EP 3963009A1
Authority
EP
European Patent Office
Prior art keywords
sno
pseudobrookite
tio
sio
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20723320.6A
Other languages
English (en)
French (fr)
Inventor
Lukas Hamm
Carsten Griessmann
Nicole Nelischer
Marita Jekel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of EP3963009A1 publication Critical patent/EP3963009A1/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0024Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index
    • C09C1/003Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index comprising at least one light-absorbing layer
    • C09C1/0039Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index comprising at least one light-absorbing layer consisting of at least one coloured inorganic material
    • C09C1/0042Sub-stoichiometric inorganic materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0024Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index
    • C09C1/003Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index comprising at least one light-absorbing layer
    • C09C1/0039Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index comprising at least one light-absorbing layer consisting of at least one coloured inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0024Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index
    • C09C1/0027One layer consisting of at least one sub-stoichiometric inorganic compound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0024Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index
    • C09C1/003Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index comprising at least one light-absorbing layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/36Pearl essence, e.g. coatings containing platelet-like pigments for pearl lustre
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/10Interference pigments characterized by the core material
    • C09C2200/1004Interference pigments characterized by the core material the core comprising at least one inorganic oxide, e.g. Al2O3, TiO2 or SiO2
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/10Interference pigments characterized by the core material
    • C09C2200/102Interference pigments characterized by the core material the core consisting of glass or silicate material like mica or clays, e.g. kaolin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/10Interference pigments characterized by the core material
    • C09C2200/1054Interference pigments characterized by the core material the core consisting of a metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/10Interference pigments characterized by the core material
    • C09C2200/1087Interference pigments characterized by the core material the core consisting of bismuth oxychloride, magnesium fluoride, nitrides, carbides, borides, lead carbonate, barium or calcium sulfate, zinc sulphide, molybdenum disulphide or graphite
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/30Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
    • C09C2200/301Thickness of the core
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/30Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
    • C09C2200/302Thickness of a layer with high refractive material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/30Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
    • C09C2200/303Thickness of a layer with low refractive material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/30Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
    • C09C2200/305Thickness of intermediate layers within the stack
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/30Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
    • C09C2200/307Thickness of an outermost protective layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/30Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
    • C09C2200/308Total thickness of the pigment particle
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/40Interference pigments comprising an outermost surface coating
    • C09C2200/401Inorganic protective coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2210/00Special effects or uses of interference pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2220/00Methods of preparing the interference pigments
    • C09C2220/10Wet methods, e.g. co-precipitation
    • C09C2220/106Wet methods, e.g. co-precipitation comprising only a drying or calcination step of the finally coated pigment

Definitions

  • the present invention relates to temperature-stable effect pigments based on multi-coated platelet-shaped substrates and their use in paints, varnishes, printing inks, plastics and in particular in glazes, enamels, ceramic or vitreous
  • ceramic frits used. Especially when used for ceramic glazes in the high temperature range above 900 ° C, especially above 1000 ° C, as it is used for decorating tiles,
  • Porcelain, fine china, bone china, sanitary ware or cast ceramics are used, the problem arises that the effect pigments the aggressive conditions consisting of oxidic melt
  • the oxides are here in a certain
  • golden effect pigments can only be used to a limited extent, as they partially or completely lose color and effect in the combination of the high temperature and the aggressive melt.
  • the golden multilayer pigments known from the prior art such as those known from EP 0 839 167 B1, US 6,692,561 B1, US 6,599355 B1, US 6,579,355 B, US 2015/0259538 A1, US 5,958,125 A, WO 98/53011 , WO 99/20695 have the disadvantage that they are not temperature stable at temperatures of> 900 ° C.
  • CN101289580 A discloses a gold pigment based on mica platelets, which, however, has the disadvantage that it has a relatively low color intensity C * for a multilayer pigment.
  • the object of the present invention is to find a temperature-stable and strongly colored multilayer pigment, in particular a strongly colored golden effect pigment, based on a platelet-shaped substrate with a layer sequence which is characterized in that at
  • Multi-layer pigment takes place.
  • the layer package thus remains largely unchanged during the burning process.
  • effect pigments based on platelet-shaped substrates containing two pseudobrookit layers which are separated from one another by a sufficiently thick separation layer, are stable at temperatures of> 800 ° C., since no or largely no phase reactions take place between the individual layers of the multilayer system.
  • Substrate at least one layer sequence (A) a high index coating with a refractive index of n 3 1.8
  • Oxides can be doped in amounts of £ 10% by weight based on layer (B),
  • n 3 1, 8 consisting of at least two colorless
  • Oxides can be doped in amounts of £ 10% by weight based on layer (E), and optionally
  • (F) have an outer protective layer.
  • the effect pigments according to the invention are characterized by a very high temperature stability, high color strength, high covering power and high gloss and are therefore particularly suitable for high-temperature applications, e.g. suitable for use in glazes and ceramics.
  • the invention also relates to the use of the
  • pigments according to the invention in paints, varnishes, printing inks,
  • Formulations and especially for high temperature applications e.g. for pigmenting glazes and ceramics.
  • the pigments according to the invention are also used for the production of
  • Pigment preparations as well as for the production of dry preparations such as ceramic paints, granulates, chips, pellets, briquettes, etc., suitable.
  • the dry preparations are particularly suitable for printing inks and paints.
  • Suitable base substrates for the effect pigments of the invention are semitransparent and transparent platelet-shaped substrates.
  • Preferred substrates are sheet silicate flakes, SiC, TiC, WC, B4C, BN, graphite, TiO 2 and Fe 2 O 3 flakes, doped or undoped Al 2 O 3 flakes, doped or undoped glass flakes, doped or undoped SiO 2 flakes, TiO 2 flakes, BiOCI and mixtures thereof.
  • natural and synthetic mica flakes, muscovite, talc and kaolin are particularly preferred.
  • the synthetic mica used is preferably fluorophlogopite or Zn phlogopite as substrate
  • the glass platelets can consist of all types of glass known to those skilled in the art, provided they are temperature-stable in the firing range used. Suitable glasses are, for example, quartz glass, A-glass, E-glass, C-glass, ECR-glass, waste glass, alkali borate glass, alkali silicate glass, borosilicate glass, Duran® glass, laboratory glass or optical glass.
  • the refractive index of the glass flakes is preferably 1.45-1.80, in particular 1.50-1.70. Particularly preferred are the
  • Glass substrates made of C glass, ECR glass or borosilicate glass.
  • Synthetic substrate flakes such as glass flakes, SiO 2 flakes, Al 2 O 3 flakes, can be doped or undoped. If they are doped, the doping is preferably Al, N, B, Ti, Zr, Si, In, Sn, or Zn or mixtures thereof. Furthermore, other ions from the group of transition metals (V, Cr, Mn, Fe, Co, Ni, Cu, Y, Nb, Mo, Hf,
  • the substrate is preferably undoped or doped with TiO 2 , ZrO 2 or ZnO.
  • the Al 2 O 3 platelets are
  • Suitable Al 2 O 3 platelets are preferred doped or undoped a-Al 2 O 3 flakes, in particular a-Al 2 O 3 flakes doped with TiO 2 or ZrO 2 .
  • the proportion of doping is the proportion of doping
  • the size of the base substrates is not critical per se and can be tailored to the particular application.
  • the platelet-shaped substrates have a thickness between 0.05 and 5 mm, in particular between 0.1 and 4.5 mm.
  • Substrates of different particle sizes can also be used.
  • a mixture of mica fractions of N-mica (10-60 mm), F-mica (5-20 mm) and / or M-mica ( ⁇ 15 mm) is particularly preferred.
  • N and S fractions (10-130 mm) and F and S fractions (5-130 mm) are also preferred.
  • D 10 1-50 mm, in particular 2-45 mm, very particularly preferably 5-40 mm
  • D 50 7-275 mm, in particular 10-200 mm, very particularly preferably 15-150 mm
  • D 90 15-500 mm, in particular 25-400 mm, very particularly preferably 50-200 mm.
  • high refractive index means a refractive index of 3 1.8
  • low refractive index means a refractive index of ⁇ 1.8
  • the layer (A) is a high-refractive-index layer with a refractive index of n 3 18, preferably n 3 2.0.
  • the layer (A) can be colorless or absorbent in visible light.
  • the layer (A) preferably consists of metal oxides or
  • the metal oxide is preferably selected from the group TiO 2 , ZrO 2 , ZnO, SnO 2 , Cr 2 O 3 , Ce 2 O 3 , BiOCI, Fe 2 O 3 , Fe 3 O 4 , FeO (OH), Ti suboxides ( TiO 2 partially reduced with oxidation numbers of ⁇ 4 to 2 and lower oxides such as Ti 3 O 5 , Ti 2 O 3 up to TiO), titanium oxynitride and titanium nitride, CoO, Co 2 O 3 , Co 3 O 4 , VO 2 , V 2 O 3 , NiO, WO 3 , MnO, Mn 2 O 3 or mixtures of the oxides mentioned.
  • Layer (A) preferably consists of TiO 2 , Fe 2 O 3 , Cr 2 O 3 or SnO 2 .
  • the layer (A) preferably has a layer thickness of 1-15 nm
  • the pseudobrookit layers (B) and (E) can be the same or different.
  • the layers are preferably identical in composition.
  • the pseudobrookite layers preferably consist entirely of Fe 2 TiO 5 .
  • the Fe 2 TiO 5 can be slightly over or under stoichiometric due to slight variations in the Fe / Ti ratio and the resulting lattice vacancies.
  • the layers can be produced by simultaneous addition and precipitation of an Fe-containing and a Ti-containing salt solution or by co-precipitation from a single solution containing Fe and Ti salts.
  • the pseudobrookit layers should preferably be 100% off
  • the oxides are preferably selected from the group Al 2 O 3 , Ce 2 O 3 , B 2 O 3 , ZrO 2 , SnO 2 , Cr 2 O 3 , CoO, Co 2 O 3 , Co 3 O 4 , Mn 2 O 3 .
  • Oxide mixture in the pseudobrookite layer is preferably not more than 5% by weight and is in particular in the range of 1 -5% by weight, very particularly preferably 1-3% by weight, based on layer (B) or layer (E).
  • the layers (B) and (E) each have, independently of one another, layer thicknesses preferably in the range from 60-120 nm, in particular 70-110 nm, and very particularly preferably from 80-100 nm.
  • Separation layer (C) and a separation layer (D) are separated from one another.
  • the distance between layers (B) and (E) should preferably be 40-100 nm, in particular 45-90 nm and very particularly preferably 50-80 nm.
  • the silicate layer can be doped with further alkaline earth or alkali ions.
  • Layer (C) is preferably a “silicate” layer.
  • Layer (C) very particularly preferably consists of doped or undoped SiO 2.
  • Layer (C) preferably has a layer thickness of 40-90 nm, in particular 40-70 nm and very particularly preferably 50-60 nm.
  • Refractive index of n 3 1.8, preferably n 3 2.0, consists of at least two colorless metal oxide layers.
  • Layer (D) preferably consists of 2 or 3 colorless metal oxide layers.
  • the metal oxides are
  • the coating of the layer (D) preferably consists of the
  • the coating of layer (D) preferably has layer thicknesses of 10-25 nm, in particular 11-21 nm and very particularly preferably 12-17 nm. The sum of all layer thicknesses of the individual
  • Metal oxide layers (D1), (D2), (D3) and possibly further layers of the coating of layer (D) should not exceed 25 nm.
  • Total layer thickness of layers (C) and (D) do not exceed the thickness range of 120 nm and preferably in the range 50-115 nm,
  • the TiO 2 can be in the rutile or anatase modification.
  • Particularly preferred effect pigments have the following structure: - substrate + TiO 2 + pseudobrookite + SiO 2 + SnO 2 + TiO 2 + SnO 2 + pseudobrookite
  • the Al 2 O 3 platelets are preferably doped.
  • the SiO 2 platelets are preferably undoped.
  • the metal oxide layer (s) are preferably applied wet-chemically, with those developed for the production of pearlescent pigments
  • wet chemical coating processes can be used; Such methods are e.g. B. described in US 3087828, US 3087829, US 3553001, DE 14 67 468, DE 19 59 988, DE 20 09 566, DE 22 14 545, DE 22 15 191, DE 22 44 298, DE 23 13 331, DE 25 22 572, DE 31 37 808, DE 31 37 809, DE 31 51 343, DE 31 51 354, DE 31 51 355, DE 32 11 602, DE 32 35 017, DE 196 18 568, EP 0 659 843, or also in further patent documents and other publications known to the person skilled in the art.
  • the substrate platelets are suspended in water and one or more hydrolyzable metal salts are added at a pH value suitable for hydrolysis, which is chosen so that the metal oxides or metal oxide hydrates are precipitated directly on the platelets without it comes to secondary precipitation.
  • the pH is usually kept constant by adding a base and / or acid at the same time.
  • the effect pigments are then separated off, washed and dried and, if necessary, calcined, the calcination temperature being optimized with regard to the coating present in each case can be.
  • the annealing temperatures are between 250 and 1000 ° C, preferably between 350 and 900 ° C. If desired, after the application of individual coatings, the pigment can be separated off, dried and, if necessary, calcined in order then to be resuspended again for the precipitation of the further layers.
  • Sodium or potassium waterglass solution is preferably used to fill the SiO 2 layer.
  • the coating can also be carried out in a fluidized bed reactor by gas phase coating, e.g. the methods proposed in EP 0 045 851 and EP 0 106 235 for producing pearlescent pigments can be used accordingly.
  • the hue of the pigments can be varied within wide limits by different choices of the amounts of coating or the resulting layer thicknesses.
  • the fine-tuning for a certain color shade can be achieved beyond the pure choice of quantity by approaching the desired color with a visual or measurement technique.
  • Post-coatings or post-treatments are, for example, the methods described in DE-PS 22 15 191, DE-OS 31 51 354, DE-OS 32 35 017 or DE-OS 33 34 598 in question.
  • the chemical and photochemical stability is further increased or the handling of the effect pigment, in particular its incorporation into different media, is made easier.
  • the handling of the effect pigment, in particular its incorporation into different media is made easier.
  • Functional coatings made of SnO 2 , Al 2 O 3 or ZrO 2 or mixtures thereof can be applied to the pigment surface for user media.
  • Organic after-coatings are also possible, for example with Silanes, as described, for example, in EP 0090259, EP 0 634 459, WO 99/57204, WO 96/32446, WO 99/57204, US 5,759,255, US
  • the layer (F) is preferably a layer made of SnO 2 .
  • Coating (s) in this patent application are understood to mean the complete covering / covering of the platelet-shaped substrates.
  • the effect pigments of the invention have increased temperature and heat stability compared to the unstabilized effect pigments.
  • the stabilized effect pigments can be easily incorporated into engobes and glazes.
  • the glazes can be matt to glossy or transparent to opaque, depending on the desired effect.
  • the effect pigments of the invention are also suitable for
  • the printing inks can be water-based or solvent-based.
  • the effect pigment according to the invention is preferably used in concentrations of 0.5-25% by weight, in particular 1-20% by weight, and very particularly preferably 1-10% by weight, based on the formulation.
  • the effect pigment according to the invention is preferably used in concentrations of 0.1-5% by weight, and very particularly preferably 0.5-4% by weight, based on the formulation.
  • Multi-layer pigments preferably containing 2, 3, 4, 5 or 7
  • - inorganic pigments e.g. transparent and opaque
  • White, colored and black pigments in particular temperature-stable ceramic pigments;
  • - functional pigments eg IR-reflecting or electrically conductive pigments can be used.
  • the effect pigment according to the invention can be mixed in any ratio with commercially available pigments and / or other commercially available fillers.
  • effect pigment according to the invention can also be combined in the formulations with any type of cosmetic raw materials and auxiliaries.
  • these include Oils, fats, waxes, film formers, preservatives and auxiliary substances that determine application properties in general, such as Thickeners and Theological Additives, e.g. Bentonites, hectorites, silicon dioxide, calcium silicates, gelatins, high-molecular carbohydrates and / or surface-active auxiliaries, etc.
  • the formulation containing the effect pigment according to the invention can be of the lipophilic, hydrophilic or hydrophobic type.
  • the effect pigment according to the invention can be contained in only one of the two phases or can also be distributed over both phases.
  • the pH values of the formulations can be between 1 and 14, preferably between 2 and 11 and particularly preferably between 4 and 10.
  • Active ingredients are, for example, insect repellents, inorganic UV filters such as TiO 2 , UV A / BC protective filters (e.g. OMC, B3, MBC), also in encapsulated form, anti-aging agents, vitamins and their derivatives (e.g. vitamin A , C, E, etc.), self-tanners (eg DFIA, erytrolose, etc.) and other cosmetic active ingredients such as bisabolol, LPO, ectoin, emblica, allantoin, bioflavanoids and their derivatives.
  • inorganic UV filters such as TiO 2
  • UV A / BC protective filters e.g. OMC, B3, MBC
  • anti-aging agents e.g. vitamin A , C, E, etc.
  • vitamins and their derivatives e.g. vitamin A , C, E, etc.
  • self-tanners eg DFIA, erytrolose, etc.
  • other cosmetic active ingredients such as bisabolo
  • Organic UV filters are generally used in an amount of 0.5-10% by weight, preferably 1-8% by weight, and inorganic UV filters 0.1-30% by weight, based on the formulation.
  • the formulations can also contain other customary skin-friendly or skin-care active ingredients, such as e.g. Aloe Vera, Avocado Oil, Coenzyme Q10, Green Tea Extract and also active ingredient complexes.
  • the present invention also relates to formulations, in particular formulations, in addition to the
  • Effect pigment at least one component selected from the group of absorbents, astringents, antimicrobial substances,
  • Chelating agents deodorants, emollients, emulsifiers,
  • Emulsion stabilizers dyes, humectants, film formers,
  • Buffer substances reducing agents, surfactants, propellants, opacifiers, UV filters and UV absorbers, denaturants, aloe vera, avocado oil, coenzyme Q10, green tea extract, viscosity regulators, perfume,
  • inorganic pigments e.g. transparent or opaque white, colored and black pigments, metal pigments, temperature-stable
  • the invention furthermore relates to the use of the effect pigments according to the invention in paints, varnishes, printing inks,
  • the pigments according to the invention are also used for the production of pigment preparations and for the production of dry preparations, e.g.
  • Granules, chips, pellets, briquettes, etc. are suitable.
  • the dry preparations are particularly suitable for paints and printing inks.
  • the invention also relates to formulations such as e.g. ceramic paints, coatings, tiles, cast ceramics,
  • the pH is kept constant by simultaneous dropwise addition of a 32% sodium hydroxide solution.
  • the pH is raised to 7.5 and at this pH 650 ml of sodium water glass solution (13% by weight SiO 2 ) are slowly metered in, the pH being constant with 10% hydrochloric acid is held.
  • the pH is lowered to 1.8 with 10% hydrochloric acid and a solution of 5 g of SnCl 4 ⁇ 5 H 2 O and 41 ml of hydrochloric acid (20%) is metered in.
  • 105 ml of TiCl 4 solution 400 g / l TiCl 4
  • a solution consisting of 5 g SnCl 4 ⁇ 5 H 2 O and 41 ml hydrochloric acid (20%) is then added again.
  • the pH is kept constant at 1.8 with 32% sodium hydroxide solution.
  • the pH is then adjusted to 2.8 again using sodium hydroxide solution.
  • the coated mica substrate is filtered off, washed and dried at 110 ° C. for 16 h.
  • the effect pigment obtained is calcined at 850 ° C. for 0.5 h and sieved.
  • a temperature-stable golden multilayer pigment with high brilliance is obtained.
  • the pH is kept constant by simultaneous dropwise addition of a 32% sodium hydroxide solution. After stirring for 0.5 h, the pH is raised to 7.5 and at this pH 650 ml of sodium water glass solution (13% by weight SiO 2 ) are slowly metered in, the pH being constant with 10% hydrochloric acid is held. After another
  • a temperature-stable golden multilayer pigment with high brilliance and good hiding power is obtained.
  • the pH is kept constant by simultaneous dropwise addition of a 32% sodium hydroxide solution. After stirring for 0.5 h, the pH is raised to 7.5 and at this pH 650 ml of sodium water glass solution (13% by weight SiO 2 ) are slowly metered in, the pH being constant with 10% hydrochloric acid is held. After another
  • Hydrochloric acid (20%).
  • the pH is kept constant at 1.8 with 32% sodium hydroxide solution.
  • the pH is then adjusted to 2.8 again using sodium hydroxide solution.
  • the coated mica substrate is filtered off, washed and dried at 110 ° C. for 16 h.
  • the effect pigment is calcined at 850 ° C. for 0.5 h and sieved.
  • a temperature-stable golden multilayer pigment with a strong glitter effect is obtained.
  • Soda waterglass solution (13% by weight SiO 2 ) is slowly metered in, the pH being kept constant with 10% hydrochloric acid. After a further stirring time of 0.5 h, the pH is lowered to 1.8 with 10% hydrochloric acid and a solution of 5 g SnCl 4 ⁇ 5 H 2 O and 41 ml hydrochloric acid (20%) is metered in. At the same pH value, 105 ml of TiCl 4 solution (400 g / l TiCl 4 ) are then slowly metered in. Another solution consisting of 5 g SnCl 4 ⁇ 5 H 2 O and 41 ml now follows
  • Hydrochloric acid (20%).
  • the pH value is in each case with 32% sodium hydroxide solution held constant at 1.8.
  • the pH is then adjusted to 2.8 again using sodium hydroxide solution.
  • the coated mica substrate is filtered off, washed and dried at 110 ° C. for 16 h.
  • the effect pigment obtained in this way is calcined at 850 ° C. for 0.5 h and then sieved.
  • a temperature-stable golden multilayer pigment with high hiding power is obtained.
  • Demineralized water heated to 80 ° C with stirring. After this temperature has been reached, 44 g of TiCl 4 solution (400 g / l TiCl 4 ) are metered in at pH 1.8, the pH being kept constant with 32% sodium hydroxide solution. The pH value is then adjusted to 2.8 using sodium hydroxide solution and at this pH value and 75 ° C, 600 ml of an aqueous FeCl 3 solution (w (Fe) 7%) and 462 ml of an aqueous TiCl 4 - Solution (200 g TiCl 4 / l) added. During the entire addition time, the pH is kept constant by simultaneous dropwise addition of a 32% sodium hydroxide solution.
  • a temperature-stable golden multilayer pigment with a strong glitter effect is obtained.
  • Soda waterglass solution (13% by weight SiO 2 ) is slowly metered in, the pH being kept constant with 10% hydrochloric acid. After a further stirring time of 0.5 h, the pH is lowered to 1.8 with 10% hydrochloric acid and a solution of 5 g SnCl 4 ⁇ 5 H 2 O and 41 ml hydrochloric acid (20%) is metered in. At the same pH value, 105 ml of TiCl 4 solution (400 g / l TiCl 4 ) are now slowly metered in. Another addition of a solution consisting of 5 g SnCl 4 ⁇ 5 H 2 O and 41 ml now follows
  • a temperature-stable golden multilayer pigment with a very strong glitter effect is obtained.
  • Demineralized water heated to 80 ° C with stirring. After this temperature has been reached, 44 g of TiCl 4 solution (400 g / l TiCl 4 ) are metered in at pH 1.8, the pH being kept constant with 32% sodium hydroxide solution. The pH value is then adjusted to 2.8 using sodium hydroxide solution and at this pH value and 75 ° C, 600 ml of an aqueous FeCl 3 solution (w (Fe) 7%) and 462 ml of an aqueous TiCl 4 - Solution (200 g TiCl 4 / l) added. During the entire addition time, the pH is kept constant by simultaneous dropwise addition of a 32% sodium hydroxide solution. After stirring for 0.5 h, the pH is raised to 7.5 and at this pH 650 ml of sodium water glass solution (13% by weight SiO 2 ) are slowly metered in, the pH being constant with 10% hydrochloric acid is held. After another
  • a temperature-stable golden multilayer pigment with high brilliance and good hiding power is obtained.
  • the pH is kept constant by simultaneous dropwise addition of a 32% sodium hydroxide solution.
  • the pH is raised to 7.5 and at this pH 650 ml sodium water glass solution (13% by weight SiO 2 ) are slowly metered in, the pH being kept constant with 10% hydrochloric acid becomes.
  • the pH is lowered to 1.8 with 10% hydrochloric acid and a solution of 5 g SnCl 4 ⁇ 5 H 2 O and 41 ml hydrochloric acid (20%) is metered in.
  • 105 ml of TiCl 4 solution 400 g / l TiCl 4
  • a solution consisting of 5 g SnCl 4 ⁇ 5 H 2 O and 41 ml hydrochloric acid (20%) is then added again.
  • the pH is kept constant at 1.8 with 32% sodium hydroxide solution.
  • the pH value is then adjusted to 2.8 again using sodium hydroxide solution.
  • the coated mica substrate is filtered off, washed and dried at 110 ° C. for 16 h.
  • the effect pigment obtained in this way is calcined at 850 ° C. for 0.5 h and sieved.
  • a temperature-stable golden multilayer pigment with high brilliance and moderate hiding power is obtained.
  • Demineralized water heated to 80 C with stirring. After this temperature has been reached, 44 g of TiCl 4 solution (400 g / l TiCl 4 ) are metered in at pH 1.8, the pH being kept constant with 32% sodium hydroxide solution. The pH value is then adjusted to 2.8 using sodium hydroxide solution and at this pH value and 75 ° C 1040 ml of an aqueous solution containing FeCl 3 (w (Fe) 4%) and TiCl 4 (95 g TiCl 4 / l) admitted. During the entire addition time, the pH is kept constant by simultaneous dropwise addition of a 32% sodium hydroxide solution.
  • Example 10 A temperature-stable golden multilayer pigment with high brilliance is obtained.
  • the pH is kept constant by simultaneous dropwise addition of a 32% sodium hydroxide solution. After stirring for 0.5 h, the pH is raised to 7.5 and at this pH 650 ml of sodium water glass solution (13% by weight SiO 2 ) are slowly metered in, the pH being constant with 10% hydrochloric acid is held. After another
  • the pH is then adjusted to 2.8 again using sodium hydroxide solution.
  • Example 1 A temperature-stable golden multilayer pigment with high brilliance and fine texture is obtained.
  • Example 1 1 A temperature-stable golden multilayer pigment with high brilliance and fine texture is obtained.
  • the pH is kept constant by simultaneous dropwise addition of a 32% sodium hydroxide solution.
  • the pH is raised to 7.5 and at this pH 650 ml of sodium waterglass solution (13% by weight SiO 2 ) are slowly metered in, the pH being kept constant with 10% hydrochloric acid .
  • the pH is lowered to 1.8 with 10% hydrochloric acid and a solution of 5 g SnCl 4 ⁇ 5 H 2 O and 41 ml hydrochloric acid (20%) is metered in.
  • 105 ml of TiCl 4 solution 400 g / l TiCl 4
  • Another addition of a solution consisting of 5 g of SnCl 4 ⁇ 5 H 2 O and 41 ml of hydrochloric acid (20%) now follows.
  • the pH value is 32% in each case
  • the pH is kept constant by simultaneous dropwise addition of a 32% sodium hydroxide solution. After stirring for 0.5 h, the pH is raised to 7.5 and at this pH 650 ml of sodium water glass solution (13% by weight SiO 2 ) are slowly metered in, the pH being constant with 10% hydrochloric acid is held. After another
  • the pH value is then adjusted to 2.8 again using sodium hydroxide solution.
  • Example 14 A temperature-stable greenish, golden multilayer pigment with high brilliance is obtained.
  • the pH is kept constant by simultaneous dropwise addition of a 32% sodium hydroxide solution. After stirring for a further 0.5 h, the pH is raised to 7.5 and at this pH 650 ml of sodium water glass solution (13% by weight SiO 2 ) are slowly metered in, the pH being adjusted to 10% hydrochloric acid is kept constant. After another
  • Example 15 A temperature-stable golden multilayer pigment with a strong glitter effect is obtained.
  • the pH is kept constant by simultaneous dropwise addition of a 32% sodium hydroxide solution. After stirring for a further 0.5 h, the pH is raised to 7.5 and at this pH 650 ml of sodium water glass solution (13% by weight SiO 2 ) are slowly metered in, the pH being adjusted to 10% hydrochloric acid is kept constant. After another
  • a temperature-stable golden multilayer pigment with a strong glitter effect is obtained.
  • the golden multilayer pigments of Examples 1 to 15 are all stable at temperatures of 3 1000 ° C. and show no loss of optical properties at these temperatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Cosmetics (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Paints Or Removers (AREA)

Abstract

Die vorliegende Erfindung betrifft temperaturstabile Effektpigmente auf der Basis von mehrfach beschichteten plättchenförmigen Substraten sowie deren Verwendung in Farben, Lacken, Druckfarben, Kunststoffen und insbesondere in Glasuren, Emailen, keramischen oder glasartigen Werkstoffen.

Description

Effektpigmente
Die vorliegende Erfindung betrifft temperaturstabile Effektpigmente auf der Basis von mehrfach beschichteten plättchenförmigen Substraten sowie deren Verwendung in Farben, Lacken, Druckfarben, Kunststoffen und insbesondere in Glasuren, Emailen, keramischen oder glasartigen
Werkstoffen.
In der Regel werden für dekorative Anwendungen in keramischen Glasuren Mischungen aus Effektpigmenten, z.B. Perlglanzpigmente, und
keramischen Fritten eingesetzt. Insbesondere beim Einsatz für keramische Glasuren im Hochtemperaturbereich oberhalb von 900 °C, insbesondere oberhalb von 1000 °C, wie sie gerade zur Dekoration von Fliesen,
Porzellan, Fine China, Bone China, Sanitärwaren oder Gusskeramiken eingesetzt werden, tritt das Problem auf, dass die Effektpigmente die aggressiven Bedingungen bestehend aus oxidischer Schmelze
(Frittenkomponenten) und hohen Temperaturen während des
Brennprozesses nicht unbeschadet überstehen.
Bei den besonders farbstarken Effektpigmenten handelt es sich häufig um Mehrschichtpigmente, die auf einem plättchenförmigen Substrat eine alternierenden Abfolge von Oxidschichten mit unterschiedlichen
Brechzahlen aufweisen. Die Oxide werden hier in einer bestimmten
Reihenfolge auf ein Substrat aufgebracht um eine bestimmte Farbe/Effekt zu erzeugen. Während des Brennprozesses kann es bedingt durch die hohen Temperaturen nun zu Festkörperreaktionen zwischen den einzelnen Oxidschichten kommen. Die Konsequenz ist eine Mischoxidbildung und eine Veränderung der Interferenzbedingungen, wodurch sich Glanz und Farbe während des Brennvorgangs ungewollt verändern. Besonders im Bereich der goldenen Effektpigmente, welche häufig an sich schon aus Mischoxidschichten aufgebaut sind, gibt es keine Pigmente, die den genannten Ansprüchen bei hohen Temperaturen genügen. Die
beschriebenen Phänomene führen dazu, dass man goldene Effektpigmente nur bedingt einsetzen kann, da sie bei der Kombination aus der hohen Temperatur und der aggressiven Schmelze Farbe und Effekt teilweise oder vollständig verlieren. Die aus dem Stand der Technik bekannten goldenen Mehrschichtpigmente, wie z.B. bekannt aus EP 0 839 167 B1 , US 6,692,561 B1 , US 6,599355 B1 , US 6,579,355 B, US 2015/0259538 A1 , US 5,958, 125 A, WO 98/53011 , WO 99/20695 haben den Nachteil, dass sie nicht temperaturstabil sind bei Temperaturen von > 900 °C. In der CN101289580 A wird ein Goldpigment auf der Basis von Glimmerplättchen offenbart, das aber den Nachteil hat, dass es eine verhältnismäßig niedrige Farbintensität C* für ein Mehrschich- pigment aufweist.
Aufgabe der vorliegenden Erfindung ist es ein temperaturstabiles und farbstarkes Mehrschichtpigment, insbesondere ein farbstarkes goldenes Effektpigment, basierend auf einem plättchenförmigen Substrat mit einer Schichtabfolge zu finden, das sich dadurch auszeichnet, dass bei
Temperaturen > 800 °C, vorzugsweise > 900 °C, insbesondere > 1000 °C, keine Phasenreaktion zwischen den einzelnen Schichten des
Mehrschichtpigments stattfindet. Darüber hinaus findet gleichzeitig auch keine Migration der Schichten in die umgebende Glasfritte statt. Das Schichtpaket bleibt somit während des Brennvorgangs weitestgehend unverändert. Nur somit kann gewährleistet werden, dass der gewünschte Effekt des Mehrschichtpigments, wie z.B. der Perlglanzeffekt, der Glanz und die intensive Farbe unabhängig von der Anwendung, wie z.B. bei Keramikanwendungen (Gusskeramik, Porzellan, Sanitärkeramik oder Fliesen und in anderen Glasuren, wo Temperaturen von > 800 °C während des Brennvorganges auf das Effektpigment einwirken, bestehen bleibt.
Überaschenderweise wurde gefunden, dass Effektpigmente basierend auf plättchenförmigen Substraten enthaltend zwei Pseudobrookitschichten, die durch eine hinreichend dicke Separationsschicht voneinander getrennt sind, bei Temperaturen von > 800 °C stabil sind, da zwischen den einzelnen Schichten des Mehrschichtsystems keine bzw. weitgehend keine Phasenreaktionen stattfinden.
Gegenstand der vorliegenden Erfindung sind daher Effektpigmente basierend auf plättchenförmigen Substraten, die auf der Oberfläche des
Substrats mindestens eine Schichtenfolge (A) einer hochbrechenden Beschichtung mit einem Brechungsindex von n ³ 1 ,8
(B) einer Pseudobrookit-Schicht, die optional mit ein oder mehreren
Oxiden in Mengen von £ 10 Gew.% bezogen auf Schicht (B) dotiert sein kann,
(C) einer niedrigbrechenden Schicht mit einem Brechungsindex von
n < 1 ,8
(D) einer hochbrechenden Beschichtung mit einem Brechungsindex
von n ³ 1 ,8 bestehend aus mindestens zwei farblosen
Metalloxidschichten
(E) einer Pseudobrookit-Schicht, die optional mit ein oder mehreren
Oxiden in Mengen von £ 10 Gew.% bezogen auf Schicht (E) dotiert sein kann, und optional
(F) einer äußeren Schutzschicht aufweisen.
Die erfindungsgemäßen Effektpigmente zeichnen sich durch eine sehr hohe Temperaturstabilität, eine hohe Farbstärke, hohe Deckkraft und einen hohen Glanz aus und sind daher insbesondere für Hochtemperatur- Anwendungen, wie z.B. für den Einsatz in Glasuren und Keramiken, geeignet.
Gegenstand der Erfindung ist auch die Verwendung der
erfindungsgemäßen Pigmente in Farben, Lacken, Druckfarben,
Sicherheitsdruckfarben, Kunststoffen, als Absorber für die
Lasermarkierung und das Laserschweißen, in kosmetischen
Formulierungen und insbesondere für Hochtemperaturanwendungen, wie z.B. zur Pigmentierung von Glasuren und Keramiken. Weiterhin sind die erfindungsgemäßen Pigmente auch zur Herstellung von
Pigmentpräparationen sowie zur Herstellung von Trockenpräparaten, wie z.B. keramischen Farben, Granulate, Chips, Pellets, Briketts, etc., geeignet. Die Trockenpräparate sind insbesondere für Druckfarben und Lacke geeignet.
Geeignete Basissubstrate für die erfindungsgemäßen Effektpigmente sind semitransparente und transparente plättchenförmige Substrate. Bevorzugte Substrate sind Schichtsilikatplättchen, SiC-, TiC-, WC-, B4C-, BN-, Graphit-, TiO2- und Fe2O3-Plättchen, dotierte oder undotierte Al2O3-Plättchen, dotierte oder undotierte Glasplättchen, dotierte oder undotierte SiO2- Plättchen, TiO2-Plättchen, BiOCI und deren Gemische. Aus der Gruppe der Schichtsilikate sind insbesondere bevorzugt natürliche und synthetische Glimmerplättchen, Muskovit, Talk und Kaolin. Als synthetischer Glimmer findet vorzugsweise Fluorophlogopit oder Zn-Phlogopit als Substrat
Anwendung.
Die Glasplättchen können aus allen dem Fachmann bekannten Glasarten bestehen, sofern sie im angewendeten Brennbereich temperaturstabil sind. Geeignete Gläser sind z.B. Quarzglas, A-Glas, E-Glas, C-Glas, ECR-Glas, Altglas, Alkaliboratglas, Alkalisilikatglas, Borosilikatglas, Duran®-Glas, Laborgeräteglas oder optisches Glas.
Der Brechungsindex der Glasplättchen liegt vorzugsweise bei 1 ,45-1 ,80, insbesondere bei 1 ,50-1 ,70. Besonders bevorzugt bestehen die
Glassubstrate aus C-Glas, ECR-Glas oder Borosilikatglas.
Synthetische Substratplättchen, wie z.B. Glasplättchen, SiO2-Plättchen, Al2O3-Plättchen, können dotiert oder undotiert sein. Sofern sie dotiert sind, handelt es sich bei der Dotierung vorzugsweise um AI, N, B, Ti, Zr, Si, In, Sn, oder Zn bzw. deren Gemische. Ferner können weitere Ionen aus der Gruppe der Übergangsmetalle (V, Cr, Mn, Fe, Co, Ni, Cu, Y, Nb, Mo, Hf,
Sb, Ta, W) und Ionen aus der Gruppe der Lanthaniden als Dotierstoffe dienen.
Im Falle von AI2O3 ist das Substrat vorzugsweise undotiert oder mit TiO2, ZrO2 oder ZnO dotiert. Bei den Al2O3-Plättchen handelt es sich
vorzugsweise um Korund. Geeignete Al2O3-Plättchen sind vorzugsweise dotierte oder undotierte a- Al2O3-Plättchen, insbesondere mit TiO2 oder ZrO2 dotierte a-Al2O3-Plättchen.
Sofern das Substrat dotiert ist, beträgt der Anteil der Dotierung
vorzugsweise 0,01 - 5 Gew.%, insbesondere 0,10 - 3 Gew.% bezogen auf das Substrat.
Die Größe der Basissubstrate ist an sich nicht kritisch und kann auf den jeweiligen Anwendungszweck abgestimmt werden. In der Regel haben die plättchenförmigen Substrate eine Dicke zwischen 0,05 und 5 mm, insbe- sondere zwischen 0,1 und 4,5 mm.
Es können auch Substrate unterschiedlicher Partikelgrößen eingesetzt werden. Besonders bevorzugt ist ein Gemisch aus Glimmerfraktionen von N-Glimmer (10-60 mm), F-Glimmer (5-20 mm) und/oder M-Glimmer (<15 mm). Weiterhin bevorzugt sind N- und S-Fraktionen (10-130 mm) und F- und S-Fraktionen (5-130 mm).
Typische Beispiele für Teilchengrößenverteilungen (gemessen mit Malvern Mastersizer 2000):
D1 0: 1 - 50 mm, insbesondere 2 - 45 mm, ganz besonders bevorzugt 5-40 mm
D50: 7 - 275 mm, insbesondere 10 - 200 mm, ganz besonders bevorzugt 15- 150 mm
D90: 15 - 500 mm, insbesondere 25 - 400 mm, ganz besonders bevorzugt 50-200 mm.
In dieser Patentanmeldung bedeutet "hochbrechend" ein Brechungsindex von ³ 1 ,8, während "niedrigbrechend" ein Brechungsindex von < 1 ,8 bedeutet.
Die Schichtenfolge (A)-(E) bzw. (A)-(F) des erfindungsgemäßen
Effektpigments ist wesentlich für die Stabilität des Pigments und die optischen Eigenschaften. Bei der Schicht (A) handelt es sich um eine hochbrechende Schicht mit einem Brechungsindex von n ³ 1 8 vorzugsweise n ³ 2,0. Die Schicht (A) kann farblos oder im sichtbaren Weilenlicht absorbierend sein.
Vorzugsweise besteht die Schicht (A) aus Metalloxiden oder
Metalloxidgemischen. Das Metalloxid ist vorzugsweise ausgewählt aus der Gruppe TiO2, ZrO2, ZnO, SnO2, Cr2O3, Ce2O3, BiOCI, Fe2O3, Fe3O4, FeO(OH), Ti-Suboxiden (TiO2 teilweise reduziert mit Oxidationszahlen von <4 bis 2 und niedere Oxide wie z.B. Ti3O5, Ti2O3 bis zu TiO), Titanoxynitride sowie Titannitrid, CoO, Co2O3, Co3O4, VO2, V2O3, NiO, WO3, MnO, Mn2O3 oder Gemische der genannten Oxide. Vorzugsweise besteht die Schicht (A) aus TiO2, Fe2O3, Cr2O3 oder SnO2.
Die Schicht (A) weist vorzugsweise Schichtdicken von 1-15 nm,
insbesondere von 1 -10 nm und ganz besonders bevorzugt von 1 -5 nm auf.
Die Pseudobrookit-Schichten (B) und (E) können gleich oder verschieden sein. Vorzugsweise sind die Schichten von der Zusammensetzung her identisch. Die Pseudobrookit-Schichten bestehen vorzugsweise vollständig aus Fe2TiO5. Das Fe2TiO5 kann jedoch durch leichte Variationen des Fe/Ti- Verhältnisses und daraus resultierende Gitterleerstellen leicht über- oder unterstöchiometrisch sein. Die Schichten können durch gleichzeitige Zugabe und Fällung einer Fe- haltigen und einer Ti-haltigen Salzlösung oder durch Co-Fällung aus einer einzigen Lösung enthaltend Fe- und Ti-Salze hergestellt werden.
Die Pseudobrookit-Schichten sollten vorzugsweise zu 100 % aus
kristallinem Pseudobrookit bestehen.
Die Schichten (B) und (E) und können gegebenenfalls zur Erhöhung der Stabilität und/oder Farbstärke noch mit ein oder mehreren Oxiden oder Oxidgemischen, vorzugsweise Metalloxide, dotiert sein. Die Oxide sind vorzugsweise ausgewählt aus der Gruppe Al2O3, Ce2O3, B2O3, ZrO2, SnO2, Cr2O3, CoO, Co2O3, Co3O4, Mn2O3. Der Gewichtsanteil des Oxids bzw.
Oxidgemisches in der Pseudobrookit-Schicht beträgt vorzugsweise nicht mehr als 5 Gew.% und liegt insbesondere im Bereich von 1 -5 Gew.%, ganz besonders bevorzugt 1 - 3 Gew.%, bezogen auf die Schicht (B) bzw. Schicht (E).
Die Schichten (B) und ( E) besitzen jeweils unabhängig voneinander Schichtdicken vorzugsweise im Bereich von 60 - 120 nm, insbesondere 70 - 110 nm, und ganz besonders bevorzugt von 80 - 100 nm.
Für die Stabilität der erfindungsgemäßen Effektpigmente ist es
insbesondere wichtig, dass die Schichten (B) und (E) durch eine
Separationsschicht (C) und eine Separationsschicht (D) voneinander getrennt sind. Der Abstand zwischen den Schichten (B) und (E) sollte vorzugsweise 40-100 nm, insbesondere 45-90 nm und ganz besonders bevorzugt 50-80 nm betragen.
Die niedrigbrechende Schicht (C) mit einem Brechungsindex von n < 1 ,8, vorzugsweise n < 1 ,7, besteht vorzugsweise aus SiO2, MgO*SiO2,
CaO*SiO2, Al2O3*SiO2, B2O3*SiO2 oder aus einem Gemisch der genannten Verbindungen. Weiterhin kann die Silikatschicht mit weiteren Erdalkali- oder Alkaliionen dotiert sein. Vorzugsweise handelt es sich bei der Schicht (C) um eine„silikatische“ Schicht. Ganz besonders bevorzugt besteht die Schicht (C) aus dotiertem oder undotiertem SiO2.
Die Schicht (C) weist vorzugsweise Schichtdicken von 40-90 nm, insbesondere von 40 - 70 nm und ganz besonders bevorzugt von 50 - 60 nm auf.
Die hochbrechende Beschichtung der Schicht (D) mit einem
Brechungsindex von n ³ 1 ,8, vorzugsweise n ³ 2,0, besteht aus mindestens zwei farblosen Metalloxidschichten. Vorzugsweise besteht die Schicht (D) aus 2 oder 3 farblosen Metalloxidschichten. Die Metalloxide sind
vorzugsweise ausgewählt aus der Gruppe SnO2, iO2, Al2O3, Fe2O3, Cr2O3 oder deren Gemische. Vorzugsweise besteht die Beschichtung der Schicht (D) aus den
Metalloxidschichten (D1 ) und (D2) (D1 ) SnO2-Schicht
(D2) TiO2-Schicht oder aus den Metalloxidschichten (D1 ), (D2) und (D3)
(D1 ) Al2O3-Schicht
(D2) TiO2-Schicht
(D3) Al2O3-Schicht oder
(D1 ) SnO2-Schicht
(D2) TiO2-Schicht
(D3) SnO2-Schicht.
Die Beschichtung der Schicht (D) weist vorzugsweise Schichtdicken von 10-25 nm, insbesondere von 11 -21 nm und ganz besonders bevorzugt von 12-17 nm auf. Die Summe aller Schichtdicken der einzelnen
Metalloxidschichten (D1 ), (D2), (D3) und ggf. weiterer Schichten der Beschichtung der Schicht (D) sollte 25 nm nicht übersteigen.
Damit die Schichten (C) und (D) als Separationsschichten agieren können und damit zur verminderten Phasenreaktion zwischen den einzelnen Pseudobrookit-Schichten (B) und (E) beitragen, sollte die
Gesamtschichtdicke der Schichten (C) und (D) den Dickenbereich von 120 nm nicht übersteigen und vorzugsweise im Bereich 50-115 nm,
insbesondere 51-91 nm und ganz besonders bevorzugt von 62-77 nm liegen.
Sofern die Schicht (A) bzw. (D) aus TiO2 besteht, kann das TiO2 in der Rutil- oder in der Anatasmodifikation vorliegen.
Besonders bevorzugte Effektpigmente besitzen folgenden Aufbau: - Substrat + TiO2 + Pseudobrookit + SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Substrat + Fe2O3 + Pseudobrookit + SiO2 + SnO2 + TiO2 + SnO2 +
Pseudobrookit
- Substrat + Cr2O3 + Pseudobrookit + SiO2 + SnO2 + TiO2 + SnO2 +
Pseudobrookit
- Substrat + TiO2 + Pseudobrookit + MgO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Substrat + Fe2O3 + Pseudobrookit + MgO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Substrat + Cr2O3 + Pseudobrookit + MgO*SiO2 + SnO2 + TiO2 + SnO2 +
Pseudobrookit
- Substrat + TiO2 + Pseudobrookit + CaO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Substrat + Fe2O3 + Pseudobrookit + CaO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Substrat + Cr2O3 + Pseudobrookit + CaO*SiO2 + SnO2 + TiO2 + SnO2 +
Pseudobrookit
- Substrat + TiO2 + Pseudobrookit + Al2O3*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Substrat + Fe2O3 + Pseudobrookit + Al2O3*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Substrat + Cr2O3 + Pseudobrookit + Al2O3*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Substrat + TiO2 + Pseudobrookit + SiO2 + TiO2 + SnO2 + Pseudobrookit
- Substrat + TiO2 + Pseudobrookit + SiO2 + SnO2 + TiO2 + Pseudobrookit
- Substrat + TiO2 + Pseudobrookit + SiO2 + TiO2 + SnO2 + Pseudobrookit + SnO2
- Substrat + TiO2 + Pseudobrookit + SiO2 + SnO2 + TiO2 + Pseudobrookit + SnO2
- Substrat + TiO2 + Pseudobrookit + SiO2 + SnO2 + Fe2O3 + SnO2 +
Pseudobrookit
- Substrat + TiO2 + Pseudobrookit + SiO2 + SnO2 + Cr2O3 + SnO2 +
Pseudobrookit
- Substrat + TiO2 + Pseudobrookit + SiO2 + Al2O3 + TiO2 + Al2O3 +
Pseudobrookit Ganz besonders bevorzugte Effektpigmente besitzen folgenden
Schichtaufbau:
- natürliche Glimmerplättchen + TiO2 + Pseudobrookit + SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- natürliche Glimmerpiättchen + Fe2O3 + Pseudobrookit + SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- natürliche Glimmerplättchen + Cr2O3 + Pseudobrookit + SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- natürliche Glimmerplättchen + TiO2 + Pseudobrookit + MgO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- natürliche Glimmerplättchen + Fe2O3 + Pseudobrookit + MgO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- natürliche Glimmerplättchen + Cr2O3 + Pseudobrookit + MgO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- natürliche Glimmerplättchen + TiO2 + Pseudobrookit + CaO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- natürliche Glimmerplättchen + Fe2O3 + Pseudobrookit + CaO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- natürliche Glimmerplättchen + Cr2O3 + Pseudobrookit + CaO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- natürliche Glimmerplättchen + TiO2 + Pseudobrookit + Al2O3*SiO2 +
SnO2 + TiO2 + SnO2 + Pseudobrookit
- natürliche Glimmerplättchen + Fe2O3 + Pseudobrookit + Al2O3*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- natürliche Glimmerplättchen + Cr2O3 + Pseudobrookit + Al2O3*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- natürliche Glimmerplättchen + TiO2 + Pseudobrookit + SiO2 + TiO2 + SnO2 + Pseudobrookit
- natürliche Glimmerplättchen + TiO2 + Pseudobrookit + SiO2 + SnO2 + TiO2 + Pseudobrookit
- natürliche Glimmerplättchen + TiO2 + Pseudobrookit + SiO2 + TiO2 + SnO2 + Pseudobrookit + SnO2
- natürliche Glimmerplättchen + TiO2 + Pseudobrookit + SiO2 + SnO2 + TiO2 + Pseudobrookit + SnO2 - natürliche Glimmerplättchen + TiO2 + Pseudobrookit + SiO2 + SnO2 + Fe2O3 + SnO2 + Pseudobrookit
- natürliche Glimmerplättchen + TiO2 + Pseudobrookit + SiO2 + SnO2 + Cr2O3 + SnO2 + Pseudobrookit
- natürliche Glimmerplättchen + TiO2 + Pseudobrookit + SiO2 + Al2O3 + TiO2 + Al2O3 + Pseudobrookit
- snthetische Glimmerplättchen + TiO2 + Pseudobrookit + SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- synthetische Glimmerplättchen + Fe2O3 + Pseudobrookit + SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- synthetische Glimmerplättchen + Cr2O3 + Pseudobrookit + SiO2 + SnO2
+ TiO2 + SnO2 + Pseudobrookit
- synthetische Glimmerplättchen + TiO2 + Pseudobrookit + MgO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- synthetische Glimmerplättchen + Fe2O3 + Pseudobrookit + MgO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- synthetische Glimmerplättchen + Cr2O3 + Pseudobrookit + MgO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- synthetische Glimmerplättchen + TiO2 + Pseudobrookit + CaO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- synthetische Glimmerplättchen + Fe2O3 + Pseudobrookit + CaO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- synthetische Glimmerplättchen + Cr2O3 + Pseudobrookit + CaO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- synthetische Glimmerplättchen + TiO2 + Pseudobrookit + Al2O3*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- synthetische Glimmerplättchen + Fe2O3 + Pseudobrookit + Al2O3*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- synthetische Glimmerplättchen + Cr2O3 + Pseudobrookit + Al2O3*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- synthetische Glimmerplättchen + ΊPO2 + Pseudobrookit + SiO2 + TiO2 + SnO2 + Pseudobrookit
- synthetische Glimmerpiättchen + TiO2 + Pseudobrookit + SiO2 + SnO2 + TiO2 + Pseudobrookit
- synthetische Glimmerplättchen + TiO2 + Pseudobrookit + SiO2 + TiO2 + SnO2 + Pseudobrookit + SnO2 - synthetische Glimmerplättchen + TiO2 + Pseudobrookit + SiO2 + SnO2 + TiO2 + Pseudobrookit + SnO2
- synthetische Glimmerplättchen + TiO2 + Pseudobrookit + SiO2 + SnO2 + Fe2O3 + SnO2 + Pseudobrookit
- synthetische Glimmerplättchen + TiO2 + Pseudobrookit + SiO2 + SnO2 + Cr2O3 + SnO2 + Pseudobrookit
- synthetische Glimmerplättchen + TiO2 + Pseudobrookit + SiO2 + Al2O3 + TiO2 + Al2O3 + Pseudobrookit
- Al2O3-Plättchen + TiO2 + Pseudobrookit + SiO2 + SnO2 + TiO2 + SnO2 +
Pseudobrookit
- Al2O3-Plättchen + Fe2O3 + Pseudobrookit + SiO2 + SnO2 + TiO2 + SnO2
+ Pseudobrookit
- Al2O3-Plättchen + Cr2O3 + Pseudobrookit + SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Al2O3-Plättchen + TiO2 + Pseudobrookit + MgO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Al2O3-Plättchen + Fe2O3 + Pseudobrookit + MgO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Al2O3-Plättchen + Cr2O3 + Pseudobrookit + MgO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Al2O3-Plättchen + TiO2 + Pseudobrookit + CaO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Al2O3-Plättchen + Fe2O3 + Pseudobrookit + CaO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Al2O3-Plättchen + Cr2O3 + Pseudobrookit + CaO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Al2O3-Plättchen + TiO2 + Pseudobrookit + Al2O3*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Al2O3-Plättchen + Fe2O3 + Pseudobrookit + Al2O3*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Al2O3-Plättchen + Cr2O3 + Pseudobrookit + Al2O3*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Al2O3-Plättchen + TiO2 + Pseudobrookit + SiO2 + TiO2 + SnO2 +
Pseudobrookit
- Al2O3-Plättchen + TiO2 + Pseudobrookit + SiO2 + SnO2 + TiO2 +
Pseudobrookit - Al2O3-Plättchen + TiO2 + Pseudobrookit + SiO2 + TiO2 + SnO2 +
Pseudobrookit + SnO2
- Al2O3-Plättchen + TiO2 + Pseudobrookit + SiO2 + SnO2 + TiO2 +
Pseudobrookit + SnO2
- Al2O3-Piättchen + TiO2 + Pseudobrookit + SiO2 + SnO2 + Fe2O3 + SnO2
+ Pseudobrookit
- Al2O3-Plättchen + TiO2 + Pseudobrookit + SiO2 + SnO2 + Cr2O3 + SnO2 + Pseudobrookit
- Al2O3-Plättchen + TiO2 + Pseudobrookit + SiO2 + Al2O3 + TiO2 + Al2O3 +
Pseudobrookit
- SiO2-Piättchen + TiO2 + Pseudobrookit + SiO2 + SnO2 + TiO2 + SnO2 +
Pseudobrookit
- SiO2-Plättchen + Fe2O3 + Pseudobrookit + SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- SiO2-Plättchen + Cr2O3 + Pseudobrookit + SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- SiO2-Plättchen + TiO2 + Pseudobrookit + MgO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- SiO2-Plättchen + Fe2O3 + Pseudobrookit + MgO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- SiO2-Plättchen + Cr2O3 + Pseudobrookit + MgO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- SiO2-Plättchen + TiO2 + Pseudobrookit + CaO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- SiO2-Plättchen + Fe2O3 + Pseudobrookit + CaO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- SiO2-Plättchen + Cr2O3 + Pseudobrookit + CaO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- SiO2-Plättchen + TiO2 + Pseudobrookit + Al2O3*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- SiO2-Plättchen + Fe2O3 + Pseudobrookit + Al2O3*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- SiO2-Plättchen + Cr2O3 + Pseudobrookit + Al2O3*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- SiO2-Plättchen + TiO2 + Pseudobrookit + SiO2 + TiO2 + SnO2 +
Pseudobrookit SiO2-Plättchen + TiO2 + Pseudobrookit + SiO2 + SnO2 + TiO2 +
Pseudobrookit
SiO2-Plättchen + TiO2 + Pseudobrookit + SiO2 + TiO2 + SnO2 +
Pseudobrookit + SnO2
SiO2-Plättchen + TiO2 + Pseudobrookit + SiO2 + SnO2 + TiO2 +
Pseudobrookit + SnO2
SiO2-Plättchen + TiO2 + Pseudobrookit + SiO2 + SnO2 + Fe2O3 + SnO2 + Pseudobrookit
SiO2-Plättchen + TiO2 + Pseudobrookit + SiO2 + SnO2 + Cr2O3 + SnO2 + Pseudobrookit
SiO2-Plättchen + TiO2 + Pseudobrookit + SiO2 + Al2O3 + TiO2 + Al2O3 + Pseudobrookit, wobei die SiO2- und Al2O3-Plättchen sowohl dotiert als auch undotiert sein können. Vorzugsweise sind die Al2O3-Plättchen dotiert. Die SiO2-Plättchen sind vorzugsweise undotiert.
Die Metalloxidschicht(en) werden vorzugsweise naßchemisch aufgebracht, wobei die zur Herstellung von Perlglanzpigmenten entwickelten
naßchemischen Beschichtungsverfahren angewendet werden können; Derartige Verfahren sind z. B. beschrieben in U.S. 3087828, U.S. 3087829, U.S. 3553001 , DE 14 67 468, DE 19 59 988, DE 20 09 566, DE 22 14 545, DE 22 15 191 , DE 22 44 298, DE 23 13 331 , DE 25 22 572, DE 31 37 808, DE 31 37 809, DE 31 51 343, DE 31 51 354, DE 31 51 355, DE 32 11 602, DE 32 35 017, DE 196 18 568, EP 0 659 843, oder auch in weiteren dem Fachmann bekannten Patentdokumenten und sonstigen Publikationen. Bei der Naßbeschichtung werden die Substratplättchen in Wasser suspen- diert und mit einem oder mehreren hydrolysierbaren Metallsalzen bei einem für die Hydrolyse geeigneten pH-Wert versetzt, der so gewählt wird, dass die Metalloxide bzw. Metalloxidhydrate direkt auf den Plättchen ausgefällt werden, ohne daß es zu Nebenfällungen kommt. Der pH-Wert wird üblicherweise durch gleichzeitiges Zudosieren einer Base und/oder Säure konstant gehalten. Anschließend werden die Effektpigmente abgetrennt, gewaschen und getrocknet und gegebenenfalls geglüht, wobei die Glüh- temperatur im Hinblick auf die jeweils vorliegende Beschichtung optimiert werden kann. In der Regel liegen die Glühtemperaturen zwischen 250 und 1000 °C, vorzugsweise zwischen 350 und 900 °C. Falls gewünscht kann das Pigment nach dem Aufbringen einzelner Beschichtungen abgetrennt, getrocknet und ggf. geglüht werden, um dann zur Auffällung der weiteren Schichten wieder resuspendiert zu werden.
Für das Aufbringen einer SiO2-Schicht wird bevorzugt das in der
DE 196 18 569 beschriebene Verfahren verwendet. Zur Fierstellung der SiO2-Schicht wird vorzugsweise Natrium- oder Kaliumwasserglaslösung eingesetzt.
Weiterhin kann die Beschichtung auch in einem Wirbelbettreaktor durch Gasphasenbeschichtung erfolgen, wobei z.B. die in EP 0 045 851 und EP 0 106 235 zur Fierstellung von Perlglanzpigmenten vorgeschlagenen Verfahren entsprechend angewendet werden können. Der Farbton der Pigmente kann in weiten Grenzen durch unterschiedliche Wahl der Belegungsmengen bzw. der daraus resultierenden Schichtdicken variiert werden. Die Feinabstimmung für einen bestimmten Farbton kann über die reine Mengenwahl hinaus durch visuell oder meßtechnisch kontrolliertes Anfahren der gewünschten Farbe erreicht werden.
Zur Erhöhung der Licht-, Wasser- und Wetterstabilität empfiehlt es sich häufig, in Abhängigkeit vom Einsatzgebiet, das erfindungsgemäße
Effektpigment einer anorganischen oder organischen Nachbeschichtung oder Nachbehandlung zu unterziehen (Schicht (F)). Als
Nachbeschichtungen bzw. Nachbehandlungen kommen beispielsweise die in den DE-PS 22 15 191 , DE-OS 31 51 354, DE-OS 32 35 017 oder DE-OS 33 34 598 beschriebenen Verfahren in Frage. Durch diese
Nachbeschichtung wird die chemische und photochemische Stabilität weiter erhöht oder die Handhabung des Effektpigments, insbesondere die Einarbeitung in unterschiedliche Medien erleichtert. Zur Verbesserung der Benetzbarkeit, Dispergierbarkeit und/oder Verträglichkeit mit den
Anwendermedien können funktionelle Beschichtungen aus SnO2, Al2O3 oder ZrO2 oder deren Gemische auf die Pigmentoberfläche aufgebracht werden. Weiterhin sind organische Nachbeschichtungen möglich, z.B. mit Silanen, wie beispielsweise beschrieben in der EP 0090259, EP 0 634 459, WO 99/57204, WO 96/32446, WO 99/57204, U.S. 5,759,255, U.S.
5,571 ,851 , WO 01/92425 oder in J.J. Ponjee, Philips Technical Review,
Vol. 44, No. 3, 81 ff. und P.H. Harding J.C. Berg, J. Adhesion Sei. Technol. Vol. 11 No. 4, S. 471 -493. Vorzugsweise handelt es sich bei der Schicht (F) um eine Schicht aus SnO2.
Unter Beschichtung(en) sind in dieser Patentanmeldung die vollständige Belegung/Umhüllung der plättchenförmigen Substrate zu verstehen. Die erfindungsgemäßen Effektpigmente weisen erhöhte Temperatur- und Hitzestabilität auf im Vergleich zu den nicht stabilisierten Effektpigmenten. Die stabilisierten Effektpigmente lassen sich problemlos in Engoben und Glasuren einarbeiten. Die Glasuren können je nach gewünschtem Effekt matt bis glänzend sein, bzw. transparent bis opak. Die erfindungsgemäßen Effektpigmente sind weiterhin geeignet zur
Herstellung von fließfähigen Pigmentpräparationen und Trockenpräparaten, insbesondere für Druckfarben und Lacke, vorzugsweise Autolacke, bestehend aus den erfindungsgemäßen Pigmenten, Bindemittel und optional ein oder mehreren Additiven.
Das erfindungsgemäße Effektpigment ist mit einer Vielzahl von
Farbsystemen kompatibel, vorzugsweise aus dem Bereich der Lacke, Farben und Druckfarben. Für die Herstellung der Druckfarben für z. B. den Tiefdruck, Flexodruck, Offsetdruck, Offsetüberdrucklackierung, ist eine Vielzahl von Bindern, insbesondere wasserlösliche Typen, geeignet, wie sie z. B. von den Firmen BASF, Marabu, Pröll, Sericol, Hartmann, Gebr.
Schmidt, Sicpa, Aarberg, Siegwerk, GSB-Wahl, Follmann, Ruco oder Coates Screen INKS GmbH vertrieben werden. Die Druckfarben können auf Wasserbasis oder Lösemittelbasis aufgebaut sein.
Das erfindungsgemäße Effektpigment ist geeignet für die dekorative
Kosmetik und für Personal Care Anwendungen, wie z.B. Nagellacke,
Lippenstifte, Presspuder, Gele, Lotionen, Seifen, Zahnpasta, Body Lotions, Emulsionen, Seifen, Shampoos, BB Cremes, CC Cremes, Make Up, Foundations, Mascara, Haar-, Wimpern- und Augenbrauenprodukte, etc., aber auch in Lacken, in Industrielacken und Pulverlacken, sowie in
Kunststoffen und in der Keramik. In der dekorativen Kosmetik wird das erfindungsgemäße Effektpigment vorzugsweise in Konzentrationen von 0,5 - 25 Gew.%, insbesondere 1 - 20 Gew.%, und ganz besonders bevorzugt von 1 - 10 Gew.%, bezogen auf die Formulierung eingesetzt. Bei den kosmetischen Formulierungen für Personal Care Anwendungen wird das erfindungsgemäße Effektpigment vorzugsweise in Konzentrationen von 0,1 - 5 Gew.%, und ganz besonders bevorzugt von 0,5 - 4 Gew.%, bezogen auf die Formulierung eingesetzt.
Es versteht sich von selbst, dass für die verschiedenen Anwendungs- zwecke das erfindungsgemäße Effektpigment auch vorteilhaft in
Abmischung mit z. B.
- Metalleffektpigmenten, z. B. auf der Basis von Eisen- oder
Aluminiumplättchen;
- Perlglanzpigmenten auf der Basis von metalloxidbeschichteten
synthetischen Glimmer-Plättchen, natürlichen Glimmerplättchen, Glas- Plättchen, Al2O3-Plättchen, Fe2O3-Plättchen oder SiO2-Plättchen;
- Absorptionspigmenten;
- goniochromatischen Pigmenten;
- Mehrschichtpigmenten (enthaltend vorzugsweise 2, 3, 4, 5 oder 7
Schichten) auf der Basis von metalloxidbeschichteten synthetischen Glimmer-Plättchen, natürlichen Glimmerplättchen, Glas-Plättchen, Al2O3- Plättchen, Fe2O3-Plättchen oder SiO2-Plättchen;
- organischen Farbstoffen;
- organischen Pigmenten;
- anorganischen Pigmenten, wie z.B. transparenten und deckenden
Weiß-, Bunt- und Schwarzpigmenten; insbesondere temperaturstabile keramische Pigmente;
- plättchenförmigen Eisenoxiden;
- Ruß;
- keramischen Farbkörpern;
- funktionellen Pigmenten, z.B. IR-reflektierende oder elektrisch leitfähige Pigmente eingesetzt werden kann.
Das erfindungsgemäße Effektpigment kann in jedem Verhältnis mit handelsüblichen Pigmenten und/oder weiteren handelsüblichen Füllstoffen gemischt werden.
Als handelsübliche Füllstoffe sind z.B. zu nennen natürlicher und
synthetischer Glimmer, Nylon Powder, reine oder gefüllte Melaminharze, Talkum, Gläser, Kaolin, Oxide oder Flydroxide von Aluminium, Magnesium, Calcium, Zink, BiOCI, Bariumsulfat, Calciumsulfat, Calciumcarbonat, Magnesiumcarbonat, Kohlenstoff, Bornitrid sowie physikalische oder chemische Kombinationen dieser Stoffe. Bezüglich der Partikelform des Füllstoffes gibt es keine Einschränkungen. Sie kann den Anforderungen gemäß z.B. plättchenförmig, sphärisch oder nadelförmig sein.
Selbstverständlich kann das erfindungsgemäße Effektpigment in den Formulierungen auch mit jeder Art von kosmetischen Roh- und Hilfsstoffen kombiniert werden. Dazu gehören u.a. Öle, Fette, Wachse, Filmbildner, Konservierungsmittel und allgemein anwendungstechnische Eigenschaften bestimmende Hilfsstoffe, wie z.B. Verdicker und Theologische Zusatzstoffe, wie z.B. Bentonite, Hektorite, Siliziumdioxide, Ca-Silicate, Gelatinen, hochmolekulare Kohlenhydrate und/oder oberflächenaktive Hilfsmittel, etc.
Die das erfindungsgemäße Effektpigment enthaltende Formulierung kann dem lipophilen, hydrophilen oder hydrophoben Typ angehören. Bei heterogenen Formulierungen mit diskreten wässrigen und nichtwässrigen Phasen kann das erfindungsgemäße Effektpigment in jeweils nur einer der beiden Phasen enthalten oder auch über beide Phasen verteilt sein.
Die pH-Werte der Formulierungen können zwischen 1 und 14, bevorzugt zwischen 2 und 11 und besonders bevorzugt zwischen 4 und 10 liegen.
Den Konzentrationen des erfindungsgemäßen Effektpigments in der Formulierung sind keine Grenzen gesetzt. Sie können - je nach
Anwendungsfall - zwischen 0,001 (rinse-off-Produkte, z.B. Duschgele) - und 60 % liegen. Das erfindungsgemäße Effektpigment kann weiterhin auch mit kosmetischen Wirkstoffen kombiniert werden. Geeignete
Wirkstoffe sind z.B. Insect Repellents, anorganische UV-Filter, wie z.B. TiO2, UV A/BC-Schutzfilter (z.B. OMC, B3, MBC), auch in verkapselter Form, Anti-Ageing-Wirkstoffe, Vitamine und deren Derivate (z.B. Vitamin A, C, E, etc.), Selbstbräuner (z.B. DFIA, Erytrolose, u.a.) sowie weitere kosmetische Wirkstoffe, wie z.B. Bisabolol, LPO, Ectoin, Emblica, Allantoin, Bioflavanoide und deren Derivate.
Organische UV-Filter werden in der Regel in einer Menge von 0,5 - 10 Gew.%, vorzugsweise 1 -8 Gew.%, anorganische UV-Filter von 0,1 - 30 Gew.% eingesetzt, bezogen auf die Formulierung.
Die Formulierungen können darüber hinaus weitere übliche hautschonende oder hautpflegende Wirkstoffe enthalten, wie z.B. Aloe Vera, Avocadoöl, Coenzym Q10, Grüner Tee Extrakt und auch Wirkstoffkomplexe. Gegenstand der vorliegenden Erfindung sind ebenfalls Formulierungen, insbesondere Formulierungen, die neben dem erfindungsgemäßen
Effektpigment mindestens einen Bestandteil ausgewählt aus der Gruppe der Absorptionsmittel, Adstringenzien, antimikrobiellen Stoffe,
Antioxidantien, Antiperspirantien, Antischaummitteln, Antischuppen- wirkstoffe, Antistatika, Bindemittel, biologischen Zusatzstoffe, Bleichmittel,
Chelatbildner, Desodorierungsmittel, Emollentien, Emulgatoren,
Emulsionsstabilisatoren, Farbstoffe, Feuchthaltemittel, Filmbildner,
Füllstoffe, Geruchsstoffe, Geschmacksstoffe, Insect Repellents,
Konservierungsmittel, Korrosionsschutzmittel, kosmetischen Öle,
Lösungsmittel, Oxidationsmittel, pflanzlichen Bestandteile,
Puffersubstanzen, Reduktionsmittel, Tenside, Treibgase, Trübungsmittel, UV-Filter und UV-Absorber, Vergällungsmittel, Aloe Vera, Avocadoöl, Coenzym Q10, Grüner Tee Extrakt, Viskositätsreglern, Parfüm,
anorganischen Pigmente, wie z.B. transparente oder deckende Weiß-, Bunt- und Schwarzpigmente, Metallpigmente, temperaturstabile
keramische Pigmente, keramische Farbkörper, funktionelle Pigmente, wie z.B. IR-ref lektierende Pigmente oder elektrisch leitfähige Pigmente, und Vitamine enthalten. Gegenstand der Erfindung ist weiterhin die Verwendung der erfindungs- gemäßen Effektpigmente in Farben, Lacken, Druckfarben,
Sicherheitsdruckfarben, Kunststoffen, keramischen Materialien, Gläsern, Glasuren, als Tracer, als Absorber zur Lasermarkierung von Kunststoffen und Papieren und in kosmetischen Formulierungen. Weiterhin sind die erfindungsgemäßen Pigmente auch zur Herstellung von Pigment- präparationen sowie zur Herstellung von Trockenpräparaten, wie z.B.
Granulate, Chips, Pellets, Briketts, etc., geeignet. Die Trockenpräparate sind insbesondere für Lacke und Druckfarben geeignet. Gegenstand der Erfindung sind weiterhin auch Formulierungen, wie z.B. keramische Farben, Beschichtungen, Kacheln, Gießkeramiken,
Sanitärkeramiken, Emaillen, Glasuren, Ton-, Glas- und Keramikwaren, die das erfindungsgemäße Effektpigment enthalten.
Die nachfolgenden Beispiele sollen die Erfindung erläutern, ohne sie jedoch zu begrenzen. Sofern nicht anders angegeben beziehen sich
Prozentzahlen auf Gewichtsprozent.
Beispiele
Beispiel 1
100 g natürlicher Glimmer der Teilchengröße 10-60 mm werden in 2 I entmineralisiertem Wasser unter Rühren auf 80 °C erhitzt. Nach Erreichen dieser Temperatur wird bei pH 1 ,8 44 g TiCl4-Lösung (400 g/l TiCl4) zudosiert, wobei der pH-Wert mit 32 %iger Natronlauge konstant gehalten wird. Anschließend wird der pH-Wert mittels Natronlauge auf pH 2,8 eingestellt und bei diesem pH-Wert und 75 °C gleichzeitig 600 ml einer wässrigen FeCl3-Lösung (w(Fe)= 7 %) und 462 ml einer wässrigen TiCl4- Lösung (200 g TiCl4/l) zugegeben. Während der gesamten Zugabezeit wird der pH-Wert durch gleichzeitiges Zutropfen einer 32 %igen Natronlauge konstant gehalten. Nach 0,5 h Nachrühren wird der pH-Wert auf 7,5 angehoben und bei diesem pH-Wert werden 650 ml Natronwasser- glaslösung (13 Gew.% SiO2) langsam zudosiert, wobei der pH-Wert mit 10 %iger Salzsäure konstant gehalten wird. Nach einer weiteren Nachrührzeit von 0,5 h wird der pH-Wert mit 10 %iger Salzsäure auf pH 1 ,8 abgesenkt und eine Lösung aus 5 g SnCl4 x 5 H2O und 41 ml Salzsäure (20 %) zudosiert. Beim gleichen pH-Wert werden nun 105 ml TiCl4- Lösung(400 g /I TiCl4) langsam zudosiert. Nun folgt eine erneute Zugabe eine Lösung bestehend aus 5 g SnCl4 x 5 H2O und 41 ml Salzsäure (20 %). Der pH-Wert wird jeweils mit 32 %iger Natronlauge konstant bei 1 ,8 gehalten. Im Anschluss wird der pH-Wert wieder mittels Natronlauge auf pH 2,8 eingestellt. Die äußerste Schicht wird abschließend durch parallele Zugabe von 650 ml einer wässrigen FeCl3-Lösung (w(Fe) = 7 %) und 499 ml einer wässrigen TiCl4-Lösung (200 g TiCl4/l) und gleichzeitiges Titrieren mit Natronlauge (w=10 %) aufgebracht. Nach einer Nachrührzeit von 0,5 h bei pH 3,0 wird das beschichtete Glimmersubstrat abfiltriert, gewaschen und bei 110 °C 16 h getrocknet. Zuletzt wird das erhaltene Effektpigment 0,5 h bei 850 °C geglüht und gesiebt.
Man erhält ein temperaturstabiles goldenes Mehrschichtpigment mit hoher Brillianz.
Beispiel 2
100 g natürlicher Glimmer der Teilchengröße 10-25 mm werden in 2 I entmineralisiertem Wasser unter Rühren auf 80 °C erhitzt. Nach Erreichen dieser Temperatur wird bei pH 1 ,8 44 g TiCl4-Lösung (400 g/l TiCl4) zudosiert, wobei der pH-Wert mit 32 %iger Natronlauge konstant gehalten wird. Anschließend wird der pH-Wert mittels Natronlauge auf pH 2,8 eingestellt und bei diesem pH-Wert und 75 °C gleichzeitig 600 ml einer wässrigen FeCl3-Lösung (w(Fe)= 7 %) und 462 ml einer wässrigen TiCl4- Lösung (200 g TiCl4/l) zugegeben. Während der gesamten Zugabezeit wird der pH-Wert durch gleichzeitiges Zutropfen einer 32 %igen Natronlauge konstant gehalten. Nach 0,5 h Nachrühren wird der pH-Wert auf 7,5 angehoben und bei diesem pH-Wert werden 650 ml Natronwasser- glaslösung (13 Gew.% SiO2) langsam zudosiert, wobei der pH-Wert mit 10 %iger Salzsäure konstant gehalten wird. Nach einer weiteren
Nachrührzeit von 0,5 h wird der pH-Wert mit 10 %iger Salzsäure auf pH 1 ,8 abgesenkt und eine Lösung aus 5 g SnCl4 x 5 H2O und 41 ml Salzsäure (20 %) zudosiert. Beim gleichen pH-Wert werden nun 105 ml TiCl4-Lösung (400 g /I TiCl4) langsam zudosiert. Nun folgt eine erneute Zugabe einer Lösung bestehend aus 5 g SnCl4 x 5 H2O und 41 ml Salzsäure (20 %). Der pH-Wert wird jeweils mit 32 %iger Natronlauge konstant bei 1 ,8 gehalten. Im Anschluss wird der pH-Wert wieder mittels Natronlauge auf pH 2,8 gestellt. Die äußerste Schicht wird abschließend durch parallele Zugabe von 650 ml einer wässrigen FeCl3-Lösung (w(Fe) = 7 %) und 499 ml einer wässrigen TiCl4-Lösung (200 g TiCl4/l) und gleichzeitiges Titrieren mit Natronlauge (w=10 %) aufgebracht. Nach einer Nachrührzeit von 0,5 h bei pH 3,0 wird das beschichtete Glimmersubstrat abfiltriert, gewaschen und bei 110 °C 16 h getrocknet. Zuletzt wird das so erhaltene Effektpigment 0,5 h bei 850 °C geglüht und gesiebt.
Man erhält ein temperaturstabiles goldenes Mehrschichtpigment mit hoher Brillianz und gutem Deckvermögen.
Beispiel 3
100 g natürlicher Glimmer der Teilchengröße 20-180 mm werden in 2 I entmineralisiertem Wasser unter Rühren auf 80 °C erhitzt. Nach Erreichen dieser Temperatur wird bei pH 1 ,8 38 g TiCl4-Lösung (400 g/l TiCl4) zudosiert, wobei der pH-Wert mit 32 %iger Natronlauge konstant gehalten wird. Anschließend wird der pH-Wert mittels Natronlauge auf pH 2,8 eingestellt und bei diesem pH-Wert und 75 °C gleichzeitig 508 ml einer wässrigen FeCl3-Lösung (w(Fe) = 7 %) und 431 ml einer wässrigen TiCl4- Lösung (200 g TiCl4/l) zugegeben. Während der gesamten Zugabezeit wird der pH-Wert durch gleichzeitiges Zutropfen einer 32 %igen Natronlauge konstant gehalten. Nach 0,5 h Nachrühren wird der pH-Wert auf 7,5 angehoben und bei diesem pH-Wert werden 650 ml Natronwasser- glaslösung (13 Gew.% SiO2) langsam zudosiert, wobei der pH-Wert mit 10 %iger Salzsäure konstant gehalten wird. Nach einer weiteren
Nachrührzeit von 0,5 h wird der pH-Wert mit 10 %iger Salzsäure auf pH 1 ,8 abgesenkt und eine Lösung aus 5 g SnCl4 x 5 H2O und 41 ml Salzsäure
(20 %) zudosiert. Beim gleichen pH-Wert werden nun 105 ml TiCl4-Lösung (400 g/l TiCl4) langsam zudosiert. Anschließend erfolgt eine erneute Zugabe eine Lösung bestehend aus 5 g SnCl4 x 5 H2O und 41 ml
Salzsäure (20 %). Der pH-Wert wird jeweils mit 32 %iger Natronlauge konstant bei 1 , 8 gehalten. Im Anschluss wird der pH-Wert wieder mittels Natronlauge auf pH 2,8 gestellt. Die äußerste Schicht wird abschließend durch parallele Zugabe von 650 ml einer wässrigen FeCl3-Lösung (w(Fe) = 7 %) und 499 ml einer wässrigen TiCl4-Lösung (200 g TiCl4/l) und gleichzeitiges Titrieren mit Natronlauge (w = 10 %) aufgebracht. Nach einer Nachrührzeit von 0,5 h bei pH 3,0 wird das beschichtete Glimmersubstrat abfiltriert, gewaschen und bei 110 °C 16 h getrocknet. Zuletzt wird das Effektpigment 0,5 h bei 850 °C geglüht und gesiebt.
Man erhält ein temperaturstabiles goldenes Mehrschichtpigment mit starkem Glitzereffekt.
Beispiel 4
100 g natürlicher Glimmer der Teilchengröße < 15 mm werden in 2 I entmineralisiertem Wasser unter Rühren auf 80 °C erhitzt. Nach Erreichen dieser Temperatur wird bei pH 1 ,8 53 g TiCl4-Lösung (400 g/l TiCl4) zudosiert, wobei der pH-Wert mit 32 %iger Natronlauge konstant gehalten wird. Anschließend wird der pH-Wert mittels Natronlauge auf pH 2,8 eingestellt und bei diesem pH-Wert und 75 °C werden gleichzeitig 640 ml einer wässrigen FeCl3-Lösung (w(Fe) = 7 %) und 501 ml einer wässrigen TiCl4-Lösung (200 g TiCl4/l) zugegeben. Während der gesamten
Zugabezeit wird der pH-Wert durch gleichzeitiges Zutropfen einer 32 %igen Natronlauge konstant gehalten. Nach 0,5 h Nachrühren wird der pH-Wert auf 7,5 angehoben und bei diesem pH-Wert werden 650 ml
Natronwasserglaslösung (13 Gew.% SiO2) langsam zudosiert, wobei der pH-Wert mit 10 %iger Salzsäure konstant gehalten wird. Nach einer weiteren Nachrührzeit von 0,5 h wird der pH-Wert mit 10 %iger Salzsäure auf pH 1 , 8 abgesenkt und eine Lösung aus 5 g SnCl4 x 5 H2O und 41 ml Salzsäure (20 %) zudosiert. Beim gleichen pH-Wert werden nun 105 ml TiCl4-Lösung (400 g/l TiCl4) langsam zudosiert. Nun folgt eine erneute Zugabe einer Lösung bestehend aus 5 g SnCl4 x 5 H2O und 41 ml
Salzsäure (20 %). Der pH-Wert wird jeweils mit 32 %iger Natronlauge konstant bei 1 ,8 gehalten. Im Anschluss wird der pH-Wert wieder mittels Natronlauge auf pH 2,8 gestellt. Die äußerste Schicht wird abschließend durch parallele Zugabe von 650 ml einer wässrigen FeCl3-Lösung (w(Fe) = 7 %) und 499 ml einer wässrigen TiCl4-Lösung (200 g TiCl4/l) und gleichzeitiges Titrieren mit Natronlauge (w = 10 %) aufgebracht. Nach einer Nachrührzeit von 0,5 h bei pH 3,0 wird das beschichtete Glimmersubstrat abfiltriert, gewaschen und bei 110 °C 16 h getrocknet. Zuletzt wird das so erhaltene Effektpigment 0,5 h bei 850 °C geglüht und danach gesiebt.
Man erhält ein temperaturstabiles goldenes Mehrschichtpigment mit hohem Deckvermögen.
Beispiel 5
100 g Al2O3-Plättchen der Teilchengröße 5-30 mm werden in 2 I
entmineralisiertem Wasser unter Rühren auf 80 °C erhitzt. Nach Erreichen dieser Temperatur wird bei pH 1 ,8 44 g TiCl4-Lösung(400 g/l TiCl4) zudosiert, wobei der pH-Wert mit 32 %iger Natronlauge konstant gehalten wird. Anschließend wird der pH-Wert mittels Natronlauge auf pH 2,8 eingestellt und bei diesem pH-Wert und 75 °C gleichzeitig 600 ml einer wässrigen FeCl3-Lösung (w(Fe) = 7 %) und 462 ml einer wässrigen TiCl4- Lösung (200 g TiCl4/l) zugegeben. Während der gesamten Zugabezeit wird der pH-Wert durch gleichzeitiges Zutropfen einer 32 %igen Natronlauge konstant gehalten. Nach 0,5 h Nachrühren wird der pH-Wert auf 7,5 angehoben und bei diesem pH-Wert werden 650 ml Natronwasser- glaslösung (13 Gew.-% SiO2) langsam zudosiert, wobei der pH-Wert mit 10 %iger Salzsäure konstant gehalten wird. Nach einer weiteren
Nachrührzeit von 0,5 h wird der pH-Wert mit 10 %iger Salzsäure auf pH 1 ,8 abgesenkt und eine Lösung aus 5 g SnCl4 x 5 H2O und 41 ml Salzsäure (20 %) zudosiert. Beim gleichen pH-Wert werden nun 105 ml TiCl4-Lösung (400 g/l TiCl4) langsam zudosiert. Anschließend erfolgt eine erneute Zugabe eine Lösung bestehend aus 5 g SnCl4 x 5 H2O und 41 ml
Salzsäure (20 %). Der pH-Wert wird jeweils mit 32 %iger Natronlauge konstant bei 1 ,8 gehalten. Im Anschluss wird der pH-Wert wieder mittels Natronlauge auf pH 2,8 gestellt. Die äußerste Schicht wird abschließend durch parallele Zugabe von 650 ml einer wässrigen FeCl3-Lösung (w(Fe) = 7%) und 499 ml einer wässrigen TiCl4-Lösung (200 g TiCl4/l) und
gleichzeitiges Titrieren mit Natronlauge (w = 10 %) aufgebracht. Nach einer Nachrührzeit von 0,5 h bei pH 3,0 werden die so beschichteten Al2O3- Plättchen abfiltriert, gewaschen und bei 110 °C 16 h getrocknet. Zuletzt wird das erhaltene Effektpigment 0,5 h bei 850 °C geglüht und gesiebt.
Man erhält ein temperaturstabiles goldenes Mehrschichtpigment mit starkem Glitzereffekt.
Beispiel 6
100 g Borosilikat-Glasplättchen der Teilchengröße 20-200 mm werden in 2 I entmineralisiertem Wasser unter Rühren auf 80 °C erhitzt. Nach Erreichen dieser Temperatur wird bei pH 1 ,8 38 g TiCl4-Lösung (400 g/l TiCl4) zudosiert, wobei der pH-Wert mit 32 %iger Natronlauge konstant gehalten wird. Anschließend wird der pH-Wert mittels Natronlauge auf pH 2,8 eingestellt und bei diesem pH-Wert und 75 °C gleichzeitig 508 ml einer wässrigen FeCl3-Lösung (w(Fe) = 7 %) und 431 ml einer wässrigen TiCl4- Lösung (200 g TiCl4/l) zugegeben. Während der gesamten Zugabezeit wird der pH-Wert durch gleichzeitiges Zutropfen einer 32 %igen Natronlauge konstant gehalten. Nach 0,5 h Nachrühren wird der pH-Wert auf 7,5 angehoben und bei diesem pH-Wert werden 650 ml
Natronwasserglaslösung (13 Gew.% SiO2) langsam zudosiert, wobei der pH-Wert mit 10 %iger Salzsäure konstant gehalten wird. Nach einer weiteren Nachrührzeit von 0,5 h wird der pH-Wert mit 10 %iger Salzsäure auf pH 1 ,8 abgesenkt und eine Lösung aus 5 g SnCl4 x 5 H2O und 41 ml Salzsäure (20 %) zudosiert. Beim gleichen pH-Wert werden nun 105 ml TiCl4-Lösung (400 g /I TiCl4) langsam zudosiert. Nun folgt eine erneute Zugabe eine Lösung bestehend aus 5 g SnCl4 x 5 H2O und 41 ml
Salzsäure (20 %). Der pH-Wert wird jeweils mit 32 %iger Natronlauge konstant bei 1 ,8 gehalten. Im Anschluss wird der pH-Wert wieder mittels Natronlauge auf pH 2,8 gestellt. Die äußerste Schicht wird abschließend durch parallele Zugabe von 650 ml einer wässrigen FeCl3-Lösung (w(Fe) = 7 %) und 499 ml einer wässrigen TiCl4-Lösung (200 g TiCl4/l) und gleichzeitiges Titrieren mit Natronlauge (w = 10 %) aufgebracht. Nach einer Nachrührzeit von 0,5 h bei pH 3,0 werden die so beschichteten
Glasplättchen abfiltriert, gewaschen und bei 110 °C 16 h getrocknet. Zuletzt wird das Effektpigment 0,5 h bei 850 °C geglüht und gesiebt.
Man erhält ein temperaturstabiles goldenes Mehrschichtpigment mit sehr starkem Glitzereffekt.
Beispiel 7
100 g SiO2-Plättchen der Teilchengröße 10-40 mm werden in 2 I
entmineralisiertem Wasser unter Rühren auf 80 °C erhitzt. Nach Erreichen dieser Temperatur wird bei pH 1 ,8 44 g TiCl4-Lösung (400 g/l TiCl4) zudosiert, wobei der pH-Wert mit 32 %iger Natronlauge konstant gehalten wird. Anschließend wird der pH-Wert mittels Natronlauge auf pH 2,8 eingestellt und bei diesem pH-Wert und 75° C gleichzeitig 600 ml einer wässrigen FeCl3-Lösung (w(Fe) = 7%) und 462 ml einer wässrigen TiCl4- Lösung (200 g TiCl4/l) zugegeben. Während der gesamten Zugabezeit wird der pH-Wert durch gleichzeitiges Zutropfen einer 32 %igen Natronlauge konstant gehalten. Nach 0,5 h Nachrühren wird der pH-Wert auf 7,5 angehoben und bei diesem pH-Wert werden 650 ml Natronwasser- glaslösung (13 Gew.% SiO2) langsam zudosiert, wobei der pH-Wert mit 10 %iger Salzsäure konstant gehalten wird. Nach einer weiteren
Nachrührzeit von 0,5 h wird der pH-Wert mit 10 %iger Salzsäure auf pH 1 ,8 abgesenkt und eine Lösung aus 5 g SnCl4 x 5 H2O und 41 ml Salzsäure (20 %) zudosiert. Beim gleichen pH-Wert werden nun 105 ml TiCl4-Lösung (400 g /I TiCl4) langsam zudosiert. Anschließend erfolgt eine erneute Zugabe einer Lösung bestehend aus 5 g SnCl4 x 5 H2O und 41 ml
Salzsäure (20 %). Der pH-Wert wird jeweils mit 32 %iger Natronlauge konstant bei 1 ,8 gehalten. Im Anschluss wird der pH-Wert wieder mittels Natronlauge auf pH 2,8 gestellt. Die äußerste Schicht wird abschließend durch parallele Zugabe von 650 ml einer wässrigen FeCl3-Lösung (w(Fe) = 7%) und 499 ml einer wässrigen TiCl4-Lösung (200 g TiCl4/l) und
gleichzeitiges Titrieren mit Natronlauge (w = 10 %) aufgebracht. Nach einer Nachrührzeit von 0,5 h bei pH 3,0 werden die so beschichteten SiO2- Plättchen abfiltriert, gewaschen und bei 110°C 16 h getrocknet. Zuletzt wird das Effektpigment 0,5 h bei 850 °C geglüht und gesiebt.
Man erhält ein temperaturstabiles goldenes Mehrschichtpigment mit hoher Brillianz und gutem Deckvermögen.
Beispiel 8
100 g synthetischer Glimmer der Teilchengröße 10-40 mm werden in 2 I entmineralisiertem Wasser unter Rühren auf 80°C erhitzt. Nach Erreichen dieser Temperatur wird bei pH 1 ,8 44 g TiCl4-Lösung (400 g/l TiCl4) zudosiert, wobei der pH-Wert mit 32 %iger Natronlauge konstant gehalten wird. Anschließend wird der pH-Wert mittels Natronlauge auf pH 2,8 eingestellt und bei diesem pH-Wert und 75 °C gleichzeitig 600 ml einer wässrigen FeCl3-Lösung (w(Fe) = 7 %) und 462 ml einer wässrigen TiCl4- Lösung (200 g TiCl4/l) zugegeben. Während der gesamten Zugabezeit wird der pH-Wert durch gleichzeitiges Zutropfen einer 32 %igen Natronlauge konstant gehalten. Nach 0,5 h Nachrühren wird der pH-Wert auf 7,5 angehoben und bei diesem pH-Wert werden 650 ml Natronwasser- glaslösung (13 Gew.% SiO2) langsam zudosiert, wobei der pH-Wert mit 10 % Salzsäure konstant gehalten wird. Nach einer weiteren Nachrührzeit von 0,5 h wird der pH-Wert mit 10 % Salzsäure auf pH 1 ,8 abgesenkt und eine Lösung aus 5 g SnCl4 x 5 H2O und 41 ml Salzsäure (20 %) zudosiert. Beim gleichen pH-Wert werden nun 105 ml TiCl4-Lösung (400 g /I TiCI4) langsam zudosiert. Nun folgt eine erneute Zugabe eine Lösung bestehend aus 5 g SnCl4 x 5 H2O und 41 ml Salzsäure (20%). Der pH-Wert wird jeweils mit 32 %iger Natronlauge konstant bei 1 ,8 gehalten. Im Anschluss wir der pH-Wert wieder mittels Natronlauge auf pH 2,8 gestellt. Die äußerste Schicht wird abschließend durch parallele Zugabe von 650 ml einer wässrigen FeCl3-Lösung (w(Fe)= 7 %) und 499 ml einer wässrigen TiCl4-Lösung (200 g TiCl4/l) und gleichzeitiges Titrieren mit Natronlauge (w=10 %) aufgebracht. Nach einer Nachrührzeit von 0,5 h bei pH 3,0 wird das beschichtete Glimmersubstrat abfiltriert, gewaschen und bei 110 °C 16 h getrocknet. Zuletzt wird das so erhaltene Effektpigment 0,5 h bei 850 °C geglüht und gesiebt. Man erhält ein temperaturstabiles goldenes Mehrschichtpigment mit hoher Brillianz und moderatem Deckvermögen.
Beispiel 9
100 g Glimmer der Teilchengröße 10-60 mm werden in 2 I
entmineralisiertem Wasser unter Rühren auf 80 C erhitzt. Nach Erreichen dieser Temperatur wird bei pH 1 ,8 44 g TiCl4-Lösung (400 g/l TiCl4) zudosiert, wobei der pH-Wert mit 32 %iger Natronlauge konstant gehalten wird. Anschließend wird der pH-Wert mittels Natronlauge auf pH 2,8 eingestellt und bei diesem pH-Wert und 75 °C 1040 ml einer wässrigen Lösung enthaltend FeCl3 (w(Fe)= 4 %) und TiCl4 (95 g TiCl4/l) zugegeben. Während der gesamten Zugabezeit wird der pH-Wert durch gleichzeitiges Zutropfen einer 32 %igen Natronlauge konstant gehalten. Nach 0,5 h Nachrühren wird der pH-Wert auf 7,5 angehoben und bei diesem pH-Wert werden 650 ml Natronwasserglaslösung (13 Gew.% SiO2) langsam zudosiert, wobei der pH-Wert mit 10 %iger Salzsäure konstant gehalten wird. Nach einer weiteren Nachrührzeit von 0,5 h wird der pH-Wert mit 10 %iger Salzsäure auf pH 1 ,8 abgesenkt und eine Lösung aus 5 g SnCl4 x 5 H2O und 41 ml Salzsäure (20%) zudosiert. Beim gleichen pH-Wert werden nun 105 ml TiCl4-Lösung (400 g /I TiCl4) langsam zudosiert. Nun folgt eine erneute Zugabe einer Lösung bestehend aus 5 g SnCl4 x 5 H2O und 41 ml Salzsäure (20%). Der pH-Wert wird jeweils mit 32 %iger Natronlauge konstant bei 1 ,8 gehalten. Im Anschluss wird der pH-Wert wieder mittels Natronlauge auf pH 2,8 gestellt. Die äußerste Schicht wird abschließend durch parallele Zugabe von 1150 ml einer Lösung enthaltend FeCl3 (w(Fe)= 4 %) und TiCl4-Lösung (95 g TiCl4/l) und gleichzeitiges Titrieren mit Natronlauge (w=10 %) aufgebracht. Nach einer Nachrührzeit von 0,5 h bei pH 3,0 wird das so beschichtete Glimmersubstrat abfiltriert, gewaschen und bei 110 °C 16 h getrocknet. Zuletzt wird das so erhaltene Effektpigment 0,5 h bei 850 °C geglüht und gesiebt.
Man erhält ein temperaturstabiles goldenes Mehrschichtpigment mit hoher Brillianz . Beispiel 10
100 g natürlicher Glimmer der Teilchengröße 5-40 gm werden in 2 I entmineralisiertem Wasser unter Rühren auf 80 °C erhitzt. Nach Erreichen dieser Temperatur wird bei pH 1 ,8 44 g TiCl4-Lösung(400 g/l TiCl4) zudosiert, wobei der pH-Wert mit 32 %iger Natronlauge konstant gehalten wird. Anschließend wird der pH-Wert mittels Natronlauge auf pH 2,8 eingestellt und bei diesem pH-Wert und 75 °C gleichzeitig 600 ml einer wässrigen FeCl3-Lösung (w(Fe) = 7 %) und 462 ml einer wässrigen TiCl4- Lösung (200 g TiCl4/l) zugegeben. Während der gesamten Zugabezeit wird der pH-Wert durch gleichzeitiges Zutropfen einer 32 %igen Natronlauge konstant gehalten. Nach 0,5 h Nachrühren wird der pH-Wert auf 7,5 angehoben und bei diesem pH-Wert werden 650 ml Natronwasser- glaslösung (13 Gew.% SiO2) langsam zudosiert, wobei der pH-Wert mit 10 %iger Salzsäure konstant gehalten wird. Nach einer weiteren
Nachrührzeit von 0,5 h wird der pH-Wert mit 10 %iger Salzsäure auf pH 1 ,8 abgesenkt und eine Lösung aus 5 g SnCl4 x 5 H2O und 41 ml Salzsäure (20 %) zudosiert. Beim gleichen pH-Wert werden nun 105 ml TiCl4-Lösung (400 g /I TiCl4) langsam zudosiert. Nun folgt eine erneute Zugabe einer Lösung bestehend aus 5 g SnCl4 x 5 H2O und 41 ml Salzsäure (20 %). Der pH-Wert wird jeweils mit 32 %iger Natronlauge konstant bei 1 ,8 gehalten.
Im Anschluss wird der pH-Wert wieder mittels Natronlauge auf pH 2,8 gestellt. Die äußerste Schicht wird abschließend durch parallele Zugabe von 650 ml einer wässrigen FeCl3-Lösung (w(Fe) = 7 %) und 499 ml einer wässrigen TiCl4-Lösung (200 g TiCl4/l) und gleichzeitiges Titrieren mit Natronlauge (w=10 %) aufgebracht. Nach einer Nachrührzeit von 0,5 h bei pH 3,0 wird das beschichtete Glimmersubstrat abfiltriert, gewaschen und bei 110 °C 16 h getrocknet. Zuletzt wird das so erhaltete Effektpigment 0,5 h bei 850 °C geglüht und gesiebt.
Man erhält ein temperaturstabiles goldenes Mehrschichtpigment mit hoher Brillianz und feiner Textur. Beispiel 1 1
100 g Talk der Teilchengröße < 10 gm werden in 2 I entmineralisiertem Wasser unter Rühren auf 80 °C erhitzt. Nach Erreichen dieser Temperatur wird bei pH 1 ,8 44 g TiCl4-Lösung(400 g/l TiCl4) zudosiert, wobei der pH- Wert mit 32 %iger Natronlauge konstant gehalten wird. Anschließend wird der pH-Wert mittels Natronlauge auf pH 2,8 eingestellt und bei diesem pH- Wert und 75 °C gleichzeitig 600 ml einer wässrigen FeCl3-Lösung (w(Fe) = 7 %) und 462 ml einer wässrigen TiCl4-Lösung (200 g TiCl4/l) zugegeben. Während der gesamten Zugabezeit wird der pH-Wert durch gleichzeitiges Zutropfen einer 32 %igen Natronlauge konstant gehalten. Nach 0,5 h Nachrühren wird der pH-Wert auf 7,5 angehoben und bei diesem pH-Wert werden 650 ml Natronwasserglaslösung (13 Gew.% SiO2) langsam zudosiert, wobei der pH-Wert mit 10 %iger Salzsäure konstant gehalten wird. Nach einer weiteren Nachrührzeit von 0,5 h wird der pH-Wert mit 10 %iger Salzsäure auf pH 1 ,8 abgesenkt und eine Lösung aus 5 g SnCl4 x 5 H2O und 41 ml Salzsäure (20 %) zudosiert. Beim gleichen pH-Wert werden nun 105 ml TiCl4-Lösung (400 g /I TiCl4) langsam zudosiert. Nun folgt eine erneute Zugabe einer Lösung bestehend aus 5 g SnCl4 x 5 H2O und 41 ml Salzsäure (20 %). Der pH-Wert wird jeweils mit 32 %iger
Natronlauge konstant bei 1 ,8 gehalten. Im Anschluss wird der pH-Wert wieder mittels Natronlauge auf pH 2,8 gestellt. Die äußerste Schicht wird abschließend durch parallele Zugabe von 650 ml einer wässrigen FeCl3- Lösung (w(Fe) = 7 %) und 499 ml einer wässrigen TiCl4-Lösung (200 g TiCl4/l) und gleichzeitiges Titrieren mit Natronlauge (w = 10 %) aufgebracht. Nach einer Nachrührzeit von 0,5 h bei pH 3,0 werden die so beschichteten Talkplättchen abfiltriert, gewaschen und bei 1 10 °C 16 h getrocknet. Zuletzt wird das so erhaltene Effektpigment 0,5 h bei 850 °C geglüht und gesiebt.
Man erhält ein temperaturstabiles goldenes Mehrschichtpigment mit hohem Deckvermögen. Beispiel 12
100 g natürlicher Glimmer der Teilchengröße 10-60 mm werden in 2 I entmineralisiertem Wasser unter Rühren auf 85 °C erhitzt. Nach Erreichen dieser Temperatur wird bei pH 3, 1 30 g FeCl3-Lösung (w(Fe) = 14 %) zudosiert, wobei der pH-Wert mit 32 %iger Natronlauge konstant gehalten wird. Anschließend wird der pH-Wert mittels Natronlauge auf pH 2,8 eingestellt und bei diesem pH-Wert und 75 °C gleichzeitig 600 ml einer wässrigen FeCl3-Lösung (w(Fe) = 7 %) und 462 ml einer wässrigen TiCl4- Lösung (200 g TiCl4/l) zugegeben. Während der gesamten Zugabezeit wird der pH-Wert durch gleichzeitiges Zutropfen einer 32 %igen Natronlauge konstant gehalten. Nach 0,5 h Nachrühren wird der pH-Wert auf 7,5 angehoben und bei diesem pH-Wert werden 650 ml Natronwasser- glaslösung (13 Gew.% SiO2) langsam zudosiert, wobei der pH-Wert mit 10 %iger Salzsäure konstant gehalten wird. Nach einer weiteren
Nachrührzeit von 0,5 h wird der pH-Wert mit 10 %iger Salzsäure auf pH 1 ,8 abgesenkt und eine Lösung aus 5 g SnCl4 x 5 H2O und 41 ml Salzsäure (20 %) zudosiert. Beim gleichen pH-Wert werden nun 105 ml TiCl4-Lösung (400 g /I TiCl4) langsam zudosiert. Nun folgt eine erneute Zugabe eine Lösung bestehend aus 5 g SnCl4 x 5 H2O und 41 ml Salzsäure (20 %). Der pH-Wert wird jeweils mit 32 %iger Natronlauge konstant bei 1 ,8 gehalten.
Im Anschluss wir der pH-Wert wieder mittels Natronlauge auf pH 2,8 gestellt. Die äußerste Schicht wird abschließend durch parallele Zugabe von 650 ml einer wässrigen FeCl3-Lösung (w(Fe)= 7 %) und 499 ml einer wässrigen TiCl4-Lösung (200 g TiCl4/l) und gleichzeitiges Titrieren mit Natronlauge (w = 10 %) aufgebracht. Nach einer Nachrührzeit von 0,5 h bei pH 3,0 wird das beschichtete Glimmersubstrat abfiltriert, gewaschen und bei 1 10 °C 16 h getrocknet. Zuletzt wird das so erhaltene Effektpigment 0,5 h bei 850 °C geglüht und gesiebt.
Man erhält ein temperaturstabiles rotstichiges, goldenes Mehrschicht- pigment mit hoher Brillianz. Beispiel 13
100 g natürliche Glimmerplättchen der Teilchengröße 10-60 mm werden in 2 I entmineralisiertem Wasser unter Rühren auf 75 °C erhitzt. Nach
Erreichen dieser Temperatur wird bei pH 5,9 50 g CrCl3-Lösung (w(CrCl3) = 19 %) zudosiert, wobei der pH-Wert mit 32 %iger Natronlauge konstant gehalten wird. Anschließend wird der pH-Wert mittels Natronlauge auf pH 2,8 eingestellt und bei diesem pH-Wert und 75 °C gleichzeitig 600 ml einer wässrigen FeCl3-Lösung (w(Fe) = 7 %) und 462 ml einer wässrigen TiCl4- Lösung (200 g TiCl4/l) zugegeben. Während der gesamten Zugabezeit wird der pH-Wert durch gleichzeitiges Zutropfen einer 32 %igen Natronlauge konstant gehalten. Nach 0,5 h Nachrühren wird der pH-Wert auf 7,5 angehoben und bei diesem pH-Wert werden 650 ml Natronwasser- glaslösung (13 Gew.% SiO2) langsam zudosiert, wobei der pH-Wert mit 10 %iger Salzsäure konstant gehalten wird. Nach einer weiteren
Nachrührzeit von 0,5 h wird der pH-Wert mit 10 %iger Salzsäure auf pH 1 ,8 abgesenkt und eine Lösung aus 5 g SnCl4 x 5 H2O und 41 ml Salzsäure (20 %) zudosiert. Beim gleichen pH-Wert werden nun 105 ml TiCl4- Lösung(400 g /I TiCl4) langsam zudosiert. Nun folgt eine erneute Zugabe einer Lösung bestehend aus 5 g SnCl4 x 5 H2O und 41 ml Salzsäure (20 %). Der pH-Wert wird jeweils mit 32 %iger Natronlauge konstant bei 1 ,8 gehalten. Im Anschluss wird der pH-Wert wieder mittels Natronlauge auf pH 2,8 gestellt. Die äußerste Schicht wird abschließend durch parallele Zugabe von 650 ml einer wässrigen FeCl3-Lösung (w(Fe) = 7%) und 499 ml einer wässrigen TiCl4-Lösung (200 g TiCl4/l) und gleichzeitiges Titrieren mit Natronlauge (w=10 %) aufgebracht. Nach einer Nachrührzeit von 0,5 h bei pH 3,0 wird das beschichtete Glimmersubstrat abfiltriert, gewaschen und bei 1 10 °C 16 h getrocknet. Zuletzt wird das so erhaltene Effektpigment 0,5 h bei 850 °C geglüht und gesiebt.
Man erhält ein temperaturstabiles grünstichiges, goldenes Mehrschicht- pigment mit hoher Brillianz. Beispiel 14
100 g Al2O3-Plättchen (dotiert mit TiO2) der Teilchengröße 5-30 mm werden in 2 I entmineralisiertem Wasser unter Rühren auf 80 °C erhitzt. Nach Erreichen dieser Temperatur wird bei pH 1 ,8 44 g TiCl4-Lösung(400 g/l TiCl4) zudosiert, wobei der pH-Wert mit 32 %iger Natronlauge konstant gehalten wird. Anschließend wird der pH-Wert mittels Natronlauge auf pH 2,8 eingestellt und bei diesem pH-Wert und 75 °C gleichzeitig 600 ml einer wässrigen FeCl3-Lösung (w(Fe) = 7 %) und 462 ml einer wässrigen TiCl4- Lösung (200 g TiCl4/l) zugegeben. Während der gesamten Zugabezeit wird der pH-Wert durch gleichzeitiges Zutropfen einer 32 %igen Natronlauge konstant gehalten. Nach 0,5 h Nachrühren wird der pH-Wert auf 7,5 angehoben und bei diesem pH-Wert werden 650 ml Natronwasser- glaslösung (13 Gew.-% SiO2) langsam zudosiert, wobei der pH-Wert mit 10 %iger Salzsäure konstant gehalten wird. Nach einer weiteren
Nachrührzeit von 0,5 h wird der pH-Wert mit 10 %iger Salzsäure auf pH 1 ,8 abgesenkt und eine Lösung aus 5 g SnCl4 x 5 H2O und 41 ml Salzsäure (20 %) zudosiert. Beim gleichen pH-Wert werden nun 105 ml TiCl4-Lösung (400 g/l TiCl4) langsam zudosiert. Anschließend erfolgt eine erneute Zugabe eine Lösung bestehend aus 5 g SnCl4 x 5 H2O und 41 ml
Salzsäure (20 %). Der pH-Wert wird jeweils mit 32 %iger Natronlauge konstant bei 1 ,8 gehalten. Im Anschluss wird der pH-Wert wieder mittels Natronlauge auf pH 2,8 gestellt. Die äußerste Schicht wird abschließend durch parallele Zugabe von 650 ml einer wässrigen FeCl3-Lösung (w(Fe) = 7%) und 499 ml einer wässrigen TiCl4-Lösung (200 g TiCl4/l) und
gleichzeitiges Titrieren mit Natronlauge (w = 10 %) aufgebracht. Nach einer Nachrührzeit von 0,5 h bei pH 3,0 werden die so beschichteten Al2O3- Plättchen abfiltriert, gewaschen und bei 110 °C 16 h getrocknet. Zuletzt wird das erhaltene Effektpigment 0,5 h bei 850 °C geglüht und gesiebt.
Man erhält ein temperaturstabiles goldenes Mehrschichtpigment mit starkem Glitzereffekt. Beispiel 15
100 g Al2O3-Plättchen (dotiert mit ZrO2) der Teilchengröße 5-30 gm werden in 2 I entmineralisiertem Wasser unter Rühren auf 80 °C erhitzt. Nach Erreichen dieser Temperatur wird bei pH 1 ,8 44 g TiCl4-Lösung(400 g/l TiCl4) zudosiert, wobei der pH-Wert mit 32 %iger Natronlauge konstant gehalten wird. Anschließend wird der pH-Wert mittels Natronlauge auf pH 2,8 eingestellt und bei diesem pH-Wert und 75 °C gleichzeitig 600 ml einer wässrigen FeCl3-Lösung (w(Fe) = 7 %) und 462 ml einer wässrigen TiCl4- Lösung (200 g TiCl4/l) zugegeben. Während der gesamten Zugabezeit wird der pH-Wert durch gleichzeitiges Zutropfen einer 32 %igen Natronlauge konstant gehalten. Nach 0,5 h Nachrühren wird der pH-Wert auf 7,5 angehoben und bei diesem pH-Wert werden 650 ml Natronwasser- glaslösung (13 Gew.-% SiO2) langsam zudosiert, wobei der pH-Wert mit 10 %iger Salzsäure konstant gehalten wird. Nach einer weiteren
Nachrührzeit von 0,5 h wird der pH-Wert mit 10 %iger Salzsäure auf pH 1 ,8 abgesenkt und eine Lösung aus 5 g SnCl4 x 5 H2O und 41 ml Salzsäure (20 %) zudosiert. Beim gleichen pH-Wert werden nun 105 ml TiCl4-Lösung (400 g/l TiCl4) langsam zudosiert. Anschließend erfolgt eine erneute Zugabe eine Lösung bestehend aus 5 g SnCl4 x 5 H2O und 41 ml
Salzsäure (20 %). Der pH-Wert wird jeweils mit 32 %iger Natronlauge konstant bei 1 ,8 gehalten. Im Anschluss wird der pH-Wert wieder mittels Natronlauge auf pH 2,8 gestellt. Die äußerste Schicht wird abschließend durch parallele Zugabe von 650 ml einer wässrigen FeCl3-Lösung (w(Fe) = 7%) und 499 ml einer wässrigen TiCl4-Lösung (200 g TiCl4/l) und
gleichzeitiges Titrieren mit Natronlauge (w = 10 %) aufgebracht. Nach einer Nachrührzeit von 0,5 h bei pH 3,0 werden die so beschichteten Al2O3- Plättchen abfiltriert, gewaschen und bei 1 10 °C 16 h getrocknet. Zuletzt wird das erhaltene Effektpigment 0,5 h bei 850 °C geglüht und gesiebt.
Man erhält ein temperaturstabiles goldenes Mehrschichtpigment mit starkem Glitzereffekt.
Die goldenen Mehrschichtpigmente der Beispiele 1 bis 15 sind alle bei Temperaturen von ³ 1000 °C stabil und zeigen bei diesen Temperaturen keine Einbußen hinsichtlich der optischen Eigenschaften.

Claims

Patentansprüche . Effektpigmente auf der Basis von mehrfach beschichteten
plättchenförmigen Substraten, dadurch gekennzeichnet, dass das Effektpigment auf der Oberfläche des Substrats mindestens eine Schichtenfolge
(A) einer hochbrechenden Beschichtung mit einem
Brechungsindex von n ³ 1 ,8
(B) einer Pseudobrookit-Schicht, die optional mit ein oder
mehreren Oxiden in Mengen von £ 10 Gew.% bezogen auf Schicht (B) dotiert sein kann,
(C) einer niedrigbrechenden Schicht mit einem Brechungsindex von n < 1 ,8
(D) einer hochbrechenden Beschichtung bestehend aus
mindestens 2 farblosen Metalloxidschichten
(E) einer Pseudobrookit-Schicht, die optional mit ein oder
mehreren Oxiden in Mengen von £ 10 Gew.% bezogen auf Schicht (E) dotiert sein kann, und optional
(F) einer äußere Schutzschicht aufweist.
2. Effektpigmente nach Anspruch 1 , dadurch gekennzeichnet, dass die plättchenförmigen Substrate ausgewählt sind aus der Gruppe Schichtsilikate, BiOCI, SiC-, TiC-, WC-, B4C-, BN-, Graphit-, iO2-, Fe2O3-Plättchen, dotierte oder undotierte Al2O3- Plättchen, dotierte oder undotierte Glasplättchen, dotierte oder undotierte SiO2-Plättchen oder deren Gemische.
3 Effektpigmente nach Anspruch 1 oder 2, dadurch
gekennzeichnet, dass es sich bei den Schichtsilikatplättchen um natürlichen Glimmer, synthetischen Glimmer, Kaolin oder Talk handelt
4. Effektpigmente nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Schicht (A) aus ein oder mehreren Metalloxiden besteht.
5. Effektpigmente nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Metalloxid der Schicht (A) ausgewählt ist aus der Gruppe TiO2, Fe2O3, Fe3O4, Fe(O)OH, BiOCI, Cr2O3, ZnO, Ce2O3, ZrO2, SnO2, Co2O3 Ti-Suboxiden (TiO2 teilweise reduziert mit Oxidationszahlen von <4 bis 2 und niedere Oxide oder deren Gemische), Titanoxynitride, Titannitrid, CoO, Co2O3, Co3O4, VO2, V2O3, NiO, WO3, MnO, Mn2O3 oder Gemische der genannten Oxide
6. Effektpigmente nach einem oder mehreren der Ansprüche 1 bis
5, dadurch gekennzeichnet, dass die Schicht(en) (B) und/oder (E) mit ein oder mehreren Oxiden oder Oxidgemischen ausgewählt aus der Gruppe Al2O3, Ce2O3, B2O3, ZrO2, SnO2, Cr2O3, CoO, Co2O3, Co3O4, Mn2O3 dotiert ist (sind).
7. Effektpigmente nach einem oder mehreren der Ansprüche 1 bis
6, dadurch gekennzeichnet, dass die Schicht (C) aus SiO2, MgO*SiO2, CaO*SiO2, Al2O3*SiO2, B2O3*SiO2 oder aus einem Gemisch der genannten Verbindungen besteht.
8. Effektpigmente nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Schicht (D) aus
mindestens zwei Metalloxidschichten besteht, wobei die
Metalloxide ausgewählt sind aus der Gruppe SnO2, TiO2, Al2O3, Cr2O3, Fe2O3 oder deren Gemische.
9. Effektpigmente nach einem oder mehreren der Ansprüche 1 bis
8, dadurch gekennzeichnet, dass die Schicht (D) aus den
Metalloxidschichten (D1 ) und (D2) (D1 ) SnO2-Schicht
(D2) TiO2-Schicht besteht.
10. Effektpigmente nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Schicht (D) aus den
Metalloxidschichten (D1 ), (D2) und (D3)
(D1 ) Al2O3-Schicht
(D2) TiO2-Schicht
(D3) Al2O3-Schicht besteht
11. Effektpigmente nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Schicht (D) aus den
Metalloxidschichten (D1 ), (D2) und (D3)
(D1 ) SnO2-Schicht
(D2) TiO2-Schicht
(D3) SnO2-Schicht besteht.
12. Effektpigmente nach einem oder mehreren der Ansprüche 1 bis
11 , dadurch gekennzeichnet, dass die Schichten (B) und (E) gleiche Schichtdicken aufweisen.
13. Effektpigmente nach einem oder mehreren der Ansprüche 1 bis
12, dadurch gekennzeichnet, dass die äußere Schutzschicht (F) aus SnO2 besteht.
14. Effektpigmente nach einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Gesamtschichtdicke der Schichten (C) und (D) im Bereich 50-115 nm liegt.
15. Effektpigmente nach einem oder mehreren der Ansprüche 1 bis
14, dadurch gekennzeichnet, dass sie folgenden Aufbau
aufweisen: - Substrat + TiO2 + Pseudobrookit + SiO2 + SnO2 + TiO2 + SnO2 +
Pseudobrookit
- Substrat + Fe2O3 + Pseudobrookit + SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Substrat + Cr2O3 + Pseudobrookit + SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Substrat + TiO2 + Pseudobrookit + MgO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Substrat + Fe2O3 + Pseudobrookit + MgO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Substrat + Cr2O3 + Pseudobrookit + MgO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Substrat + TiO2 + Pseudobrookit + CaO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Substrat + Fe2O3 + Pseudobrookit + CaO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Substrat + Cr2O3 + Pseudobrookit + CaO*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Substrat + TiO2 + Pseudobrookit + Al2O3*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Substrat + Fe2O3 + Pseudobrookit + Al2O3*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Substrat + Cr2O3 + Pseudobrookit + Al2O3*SiO2 + SnO2 + TiO2 + SnO2 + Pseudobrookit
- Substrat + TiO2 + Pseudobrookit + SiO2 + TiO2 + SnO2 +
Pseudobrookit
- Substrat + TiO2 + Pseudobrookit + SiO2 + SnO2 + TiO2 +
Pseudobrookit
- Substrat + TiO2 + Pseudobrookit + SiO2 + TiO2 + SnO2 +
Pseudobrookit + SnO2
- Substrat + TiO2 + Pseudobrookit + SiO2 + SnO2 + TiO2 +
Pseudobrookit + SnO2 - Substrat + TiO2 + Pseudobrookit + SiO2 + SnO2 + Fe2O3 + SnO2 + Pseudobrookit
- Substrat + TiO2 + Pseudobrookit + SiO2 + SnO2 + Cr2O3 + SnO2 + Pseudobrookit
- Substrat + TiO2 + Pseudobrookit + SiO2 + Al2O3 + TiO2 + Al2O3 + Pseudobrookit
16. Verwendung der Effektpigmente nach einem oder mehreren der Ansprüche 1 bis 15 in Farben, Lacken, Druckfarben,
Sicherheitsdruckfarben, Kunststoffen, keramischen Materialien, keramischen Farben, Glasuren, Engoben, Emaillen und Gläsern, als Absorber zur Lasermarkierung von Kunststoffen und
Papieren, in kosmetischen Formulierungen, zur Herstellung von Pigmentpräparationen und Trockenpräparaten.
17. Formulierungen enthaltend das Effektpigment nach einem oder mehreren der Ansprüche 1 bis 15.
18. Formulierungen nach Anspruch 17, dadurch gekennzeichnet,
dass sie neben dem erfindungsgemäßen Effektpigment
mindestens einen Bestandteil ausgewählt aus der Gruppe der Absorptionsmittel, Adstringenzien, antimikrobiellen Stoffe,
Antioxidantien, Antiperspirantien, Antischaummitteln,
Antischuppenwirkstoffe, Antistatika, Bindemittel, biologischen Zusatzstoffe, Bleichmittel, Chelatbildner, Desodorierungsmittel, Emollentien, Emulgatoren, Emulsionsstabilisatoren, Farbstoffe, Feuchthaltemittel, Filmbildner, Füllstoffe, Geruchsstoffe,
Geschmacksstoffe, Insect Repellents, Konservierungsmittel,
Korrosionsschutzmittel, kosmetischen Öle, Lösungsmittel,
Oxidationsmittel, pflanzlichen Bestandteile, Puffersubstanzen, Reduktionsmittel, Tenside, Treibgase, Trübungsmittel, UV-Filter, UV-Absorber, Vergällungsmittel, Aloe Vera, Avocadoöl,
Coenzym Q10, Grüner Tee Extrakt, Viskositätsregler, Parfüm, anorganischen Pigmente, Metallpigmente, keramischen
Pigmente, funktionellen Pigmenten, keramischen Farbkörpern, funktionellen Pigmente, und Vitamine enthalten.
EP20723320.6A 2019-04-30 2020-04-28 Effektpigmente Pending EP3963009A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019003072.9A DE102019003072A1 (de) 2019-04-30 2019-04-30 Effektpigmente
PCT/EP2020/061687 WO2020221715A1 (de) 2019-04-30 2020-04-28 Effektpigmente

Publications (1)

Publication Number Publication Date
EP3963009A1 true EP3963009A1 (de) 2022-03-09

Family

ID=70482619

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20723320.6A Pending EP3963009A1 (de) 2019-04-30 2020-04-28 Effektpigmente

Country Status (7)

Country Link
US (1) US20220220315A1 (de)
EP (1) EP3963009A1 (de)
JP (1) JP2022531226A (de)
KR (1) KR20220003010A (de)
CN (1) CN113767151B (de)
DE (1) DE102019003072A1 (de)
WO (1) WO2020221715A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022229232A1 (en) * 2021-04-30 2022-11-03 Merck Patent Gmbh Composition
KR102641528B1 (ko) * 2021-06-28 2024-02-28 씨큐브 주식회사 개선된 스파클링 효과를 갖는 다중 색상 진주 광택 안료 및 이의 제조방법

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3087829A (en) 1961-06-28 1963-04-30 Du Pont Micaceous pigment composition
NL280256A (de) 1961-06-28
US3087828A (en) 1961-06-28 1963-04-30 Du Pont Nacreous pigment compositions
US3553001A (en) 1969-01-02 1971-01-05 Merck Ag E Process for coating titanium dioxide on solid materials
DE2009566C2 (de) 1970-02-28 1972-06-15 Merck Patent Gmbh Verfahren zur Herstellung von Titandioxid- bzw. Titandioxidaquatüberzügen
CA964403A (en) 1971-03-26 1975-03-18 Howard R. Linton Nacreous pigments of improved luster and process for their manufacture
CA957108A (en) 1971-03-30 1974-11-05 E. I. Du Pont De Nemours And Company Pigments treated with methacrylatochromic chloride for improved humidity resistance
DE2244298C3 (de) 1972-09-09 1975-06-19 Merck Patent Gmbh, 6100 Darmstadt Perlglanzpigmente und Verfahren zu ihrer Herstellung
DE2313331C2 (de) 1973-03-17 1986-11-13 Merck Patent Gmbh, 6100 Darmstadt Eisenoxidhaltige Glimmerschuppenpigmente
DE2451042C2 (de) * 1974-10-26 1982-07-08 Bayer Ag, 5090 Leverkusen Anorganische Pigmente auf Pseudobrookit-Titandioxid-Basis
DE2522572C2 (de) 1975-05-22 1982-06-03 Merck Patent Gmbh, 6100 Darmstadt Rutilhaltige Perlglanzpigmente
DE3030056A1 (de) 1980-08-08 1982-03-25 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von mit metalloxiden beschichteten schuppenfoermigen glimmerpigmenten
DE3137809A1 (de) 1981-09-23 1983-03-31 Merck Patent Gmbh, 6100 Darmstadt "perlglanzpigmente, ihre herstellung und ihre verwendung"
DE3137808A1 (de) 1981-09-23 1983-03-31 Merck Patent Gmbh, 6100 Darmstadt Perlglanzpigmente mit verbesserter lichtechtheit, verfahren zur herstellung und verwendung
DE3151354A1 (de) 1981-12-24 1983-07-07 Merck Patent Gmbh, 6100 Darmstadt Perlglanzpigmente, verfahren zu ihrer herstellung und ihre verwendung
DE3151355A1 (de) 1981-12-24 1983-07-07 Merck Patent Gmbh, 6100 Darmstadt "perlglanzpigmente mit verbesserter lichtbestaendigkeit, ihre herstellung und verwendung"
DE3151343A1 (de) 1981-12-24 1983-07-07 Merck Patent Gmbh, 6100 Darmstadt Perlglanzpigmente mit verbesserter lichtbestaendigkeit, ihre herstellung und ihre verwendung
DE3211166A1 (de) 1982-03-26 1983-09-29 Merck Patent Gmbh, 6100 Darmstadt Verfahren zur hydrophobierung von perlglanzpigmenten
DE3211602A1 (de) 1982-03-30 1983-10-13 Merck Patent Gmbh, 6100 Darmstadt Verfahren zur herstellung von perlglanzpigmenten mit verbesserten glanzeigenschaften
DE3235017A1 (de) 1982-09-22 1984-03-22 Merck Patent Gmbh, 6100 Darmstadt Perlglanzpigmente
DE3237264A1 (de) 1982-10-08 1984-04-12 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von mit metalloxid beschichteten effektpigmenten
DE3334598A1 (de) 1983-09-24 1985-04-18 Merck Patent Gmbh Witterungsbestaendige perlglanzpigmente
DE4323914A1 (de) 1993-07-16 1995-01-19 Merck Patent Gmbh Perlglanzpigment-Zubereitung
ES2171429T3 (es) 1993-11-25 2002-09-16 Merck Patent Gmbh Pigmento no brillante.
US5571851A (en) 1994-01-28 1996-11-05 J.M. Huber Corporation Reinforcing fillers for plastics systems
JP3577576B2 (ja) 1995-04-10 2004-10-13 メルク株式会社 表面処理剤、表面処理薄片状顔料及びその製造方法
US5759255A (en) 1996-02-07 1998-06-02 Engelhard Corporation Pearlescent pigment for exterior use
CN1084772C (zh) * 1996-05-09 2002-05-15 默克专利股份有限公司 含有钛酸盐的珠光颜料
DE19618563A1 (de) * 1996-05-09 1997-11-13 Merck Patent Gmbh Titanathaltige Perlglanzpigmente
DE19618569A1 (de) 1996-05-09 1997-11-13 Merck Patent Gmbh Mehrschichtige Interferenzpigmente
DE19618568A1 (de) 1996-05-09 1997-11-13 Merck Patent Gmbh Metalloxidbeschichtete Titandioxidplättchen
US5958125A (en) 1996-07-05 1999-09-28 Schmid; Raimund Goniochromatic luster pigments based on transparent, nonmetallic, platelet-shaped substrates
DE19746067A1 (de) 1997-10-17 1999-04-22 Merck Patent Gmbh Interferenzpigmente
DE19820112A1 (de) 1998-05-06 1999-11-11 Eckart Standard Bronzepulver Mit reaktiven Orientierungshilfsmitteln beschichtete Effektpigmente
DE19915153A1 (de) * 1999-02-15 2000-08-17 Merck Patent Gmbh Farbstarke Interferenzpigmente
DE19951871A1 (de) 1999-10-28 2001-05-03 Merck Patent Gmbh Farbstarke Interferenzpigmente
DE19951869A1 (de) 1999-10-28 2001-05-03 Merck Patent Gmbh Farbstarke Interferenzpigmente
US6245323B1 (en) 2000-05-26 2001-06-12 Engelhard Corporation Bonded metal hydroxide-organic composite polymer films on particulate substrates
AU2002328827A1 (en) * 2001-07-12 2003-01-29 Merck Patent Gmbh Multilayer pigments based on glass flakes
DE102006021784A1 (de) * 2006-05-09 2007-11-15 Merck Patent Gmbh Effektpigmente und deren Verwendung in der Kosmetik und im Lebensmittel- und Pharmabereich
DE102007010986A1 (de) * 2007-03-05 2008-09-11 Merck Patent Gmbh Übergangsmetallhaltige Effektpigmente
CN100560658C (zh) 2007-04-17 2009-11-18 河北欧克精细化工股份有限公司 超强干涉金色珠光颜料生产工艺
DE102012015208A1 (de) * 2012-08-03 2014-02-06 Merck Patent Gmbh Effektpigmente
DE102012017608A1 (de) 2012-09-06 2014-05-08 Merck Patent Gmbh Goldpigment
DE102012024901A1 (de) * 2012-12-20 2014-07-10 Merck Patent Gmbh Pigmente
DE102014003975A1 (de) * 2014-03-20 2015-10-08 Merck Patent Gmbh Effektpigmente
DE102015013400A1 (de) * 2015-10-19 2017-04-20 Merck Patent Gmbh Pigment/Fritten-Gemisch
DE102017001106A1 (de) * 2017-02-07 2018-08-09 Merck Patent Gmbh Färbung von Oblaten und ähnlichen Backwaren
DE102017001107A1 (de) * 2017-02-07 2018-08-09 Merck Patent Gmbh Färbung von Oberflächen

Also Published As

Publication number Publication date
US20220220315A1 (en) 2022-07-14
JP2022531226A (ja) 2022-07-06
DE102019003072A1 (de) 2020-11-05
CN113767151B (zh) 2023-07-04
WO2020221715A1 (de) 2020-11-05
CN113767151A (zh) 2021-12-07
KR20220003010A (ko) 2022-01-07

Similar Documents

Publication Publication Date Title
EP1572812B1 (de) Silberweisse interferenzpigmente mit hohem glanz auf der basis von transparenten substratplättchen
EP1431351B1 (de) Anorganische sphärische Absorptionspigmente
EP1213330B1 (de) Silberfarbenes Glanzpigment
EP1786868B1 (de) Perlglanzpigmente
KR102195249B1 (ko) 안료
DE10346167A1 (de) Glänzende schwarze Interferenzpigmente
DE102007010986A1 (de) Übergangsmetallhaltige Effektpigmente
DE10313978A1 (de) Silberpigment
EP3119840B1 (de) Effektpigmente
WO2018167268A1 (de) Effektpigmente
EP3728485A1 (de) Effektpigmente
EP3963009A1 (de) Effektpigmente
EP2917285A1 (de) Pigmente
DE102004024455A1 (de) Polychrome Pigmente
DE10259301A1 (de) Interferenzpigmente
EP3517579B1 (de) Pigmentgemisch enthaltend rote, blaue und grüne interferenzpigmente
DE10251378A1 (de) Fünfschichtpigmente
DE10229256A1 (de) Fünfschichtpigmente
DE10302589A1 (de) Interferenzpigmente
DE102004052544A1 (de) Interferenzpigmente
DE102020007232A1 (de) Formulierungen enthaltend Mikrokapseln

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211027

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519