EP3543796A1 - Procede de fabrication d'un spiral en silicium - Google Patents

Procede de fabrication d'un spiral en silicium Download PDF

Info

Publication number
EP3543796A1
EP3543796A1 EP18163053.4A EP18163053A EP3543796A1 EP 3543796 A1 EP3543796 A1 EP 3543796A1 EP 18163053 A EP18163053 A EP 18163053A EP 3543796 A1 EP3543796 A1 EP 3543796A1
Authority
EP
European Patent Office
Prior art keywords
hairspring
silicon
layer
spiral
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18163053.4A
Other languages
German (de)
English (en)
Inventor
Pierre Cusin
Marco Verardo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nivarox Far SA
Nivarox SA
Original Assignee
Nivarox Far SA
Nivarox SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nivarox Far SA, Nivarox SA filed Critical Nivarox Far SA
Priority to EP18163053.4A priority Critical patent/EP3543796A1/fr
Priority to EP19712197.3A priority patent/EP3769160A1/fr
Priority to PCT/EP2019/057160 priority patent/WO2019180177A1/fr
Priority to JP2020549548A priority patent/JP7100711B2/ja
Priority to KR1020207026526A priority patent/KR102448668B1/ko
Priority to CN201980017845.2A priority patent/CN111819501A/zh
Priority to US16/982,418 priority patent/US11300926B2/en
Publication of EP3543796A1 publication Critical patent/EP3543796A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/22Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
    • G04B17/227Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/26Compensation of mechanisms for stabilising frequency for the effect of variations of the impulses

Definitions

  • the invention relates to a method of manufacturing a silicon spiral and, more specifically, such a spiral used as a compensating spring cooperating with a known balance of inertia to form a resonator having a predetermined frequency.
  • the step of etching several spirals in a silicon wafer offers a non-negligible geometrical dispersion between the spirals of the same wafer and a greater dispersion between spirals of two wafers etched at different times.
  • the stiffness of each spiral engraved with the same engraving pattern is variable by creating significant manufacturing dispersions.
  • the object of the present invention is to overcome all or part of the disadvantages mentioned above by proposing a method of manufacturing a spiral whose dimensions are sufficiently precise not to require retouching.
  • a compensating balance spring is thus obtained which, advantageously according to the invention, comprises a silicon-based core and a coating based on silicon oxide.
  • the compensating hairspring thus has a very high dimensional accuracy and, incidentally, a thermal compensation of the whole resonator very fine.
  • the invention relates to a compensating hairspring 1 visible at the figure 2a and its manufacturing process to ensure a very high dimensional accuracy of the spiral and, incidentally, to ensure a more precise stiffness of said spiral.
  • the compensating spiral 1 is formed based on a material, optionally coated with a thermal compensation layer, and intended to cooperate with a known inertia balance.
  • the silicon-based material used as a compensating spiral may be monocrystalline silicon whatever its crystalline orientation, doped monocrystalline silicon whatever its crystalline orientation, amorphous silicon, porous silicon, polycrystalline silicon, silicon nitride, silicon carbide, quartz regardless of its crystalline orientation or the oxide of silicon.
  • monocrystalline silicon whatever its crystalline orientation
  • doped monocrystalline silicon whatever its crystalline orientation
  • amorphous silicon porous silicon
  • polycrystalline silicon silicon
  • silicon nitride silicon carbide
  • quartz regardless of its crystalline orientation or the oxide of silicon.
  • other materials can be envisioned as a glass, a ceramic, a cermet, a metal or a metal alloy.
  • the explanation below will be focused on a silicon-based material.
  • Each type of material may be surface-modified or layer-coated to thermally compensate for the base material as explained above.
  • the invention relates to a method of manufacturing a silicon spiral 1 visible at the figure 3 .
  • the process steps represent only a median section along the line A of a single silicon balance spring 1 formed in the wafer 10 of the figure 1 , the number of turns 3 of the spiral 1 being reduced to facilitate the reading of the figures.
  • the method comprises, as illustrated in figure 3 a first step a) consisting in providing SOI wafers 10, that is to say composed of two silicon layers 11 and 12, bonded to one another by a silicon oxide layer 13 Each of these three layers has one or more specific roles.
  • the lower layer of silicon 12, called “handle”, serves essentially as mechanical support, so as to perform the process on a sufficiently rigid assembly (which the reduced thickness of the "device” is not able to guarantee) . It is also formed of a monocrystalline silicon plate, generally of a similar orientation to the "device" layer.
  • the oxide layer 13 intimately bonds the two silicon layers 11 and 12. In addition, it will also serve as a stop layer for subsequent operations.
  • the following step b) consists in growing on the surface of the wafer (s) 10 a layer of silicon oxide, exposing the wafer or wafers to an oxidizing atmosphere at high temperature.
  • the layer varies according to the thickness of the "device" to be structured. It is typically between 1 and 4 ⁇ m.
  • step d the areas exposed or on the contrary coated with resin are then exploited.
  • a first etching process makes it possible to transfer the patterns defined in the resin in the preceding steps to the previously grown silicon oxide.
  • silicon oxide is structured by a plasma dry etching, directional and reproducing the quality of the flanks of the resin serving as a mask for this operation.
  • the silicon surface of the upper layer 11 is then exposed and ready for a DRIE etching.
  • the resin can be preserved or not depending on whether it is desired to use the resin as a mask during the DRIE etching.
  • Silicon exposed and unprotected by silicon oxide is etched in a direction perpendicular to the surface of the wafer (Bosch® DRIE anisotropic etching).
  • the patterns formed first in the resin, then in the silicon oxide, are "projected” into the thickness of the "device” layer 11.
  • the etching opens on the silicon oxide layer 13 bonding the two silicon layers 11 and 12, the etching stops. Indeed, like the silicon oxide serving as a mask during the Bosch® process and resistant to etching itself, the buried oxide layer 13, of the same nature, also resists therein.
  • the "device" silicon layer 11 is then structured throughout its thickness by the defined patterns representing the components to be manufactured, now revealed by this DRIE etching, namely a spiral 1 comprising turns 3 and a ferrule 2.
  • the components remain integral with the "handle" layer 12 to which they are bonded by the buried silicon oxide layer 13.
  • step e) could equally well be obtained by chemical etching in the same silicon-based material.
  • step e several spirals can be formed in the same wafer in dimensions larger than the dimensions necessary to obtain several spirals of an initial stiffness or several spirals of several initial stiffnesses.
  • step e) the residues of the passivation resin resulting from the Bosch® process are then removed, and the oxide having served as a mask for the DRIE etching is removed in solution. aqueous hydrofluoric acid.
  • a layer of silicon oxide is again grown on the surface of the silicon (around the "device” 11 and “handle” layers 12), this oxide layer will serve as a protection for the components during the operation to release them by separating them from the "handle” layer 12.
  • a second photolithography operation similar to the first carried out in step c) is carried out on the back of the wafer 10 (hence on the "handle" layer 12). To do this the wafer 10 is returned, the resin is deposited therein and then exposed through a mask.
  • the area of the exposed resin is then removed by means of a solvent, revealing the previously formed oxide layer, which is then structured via dry etching.
  • a complete etching of the exposed "handle" layer 12 is carried out using an aqueous solution, based on potassium hydroxide (KOH), tetramethylammonium hydroxide, or DRIE engraving.
  • KOH potassium hydroxide
  • tetramethylammonium hydroxide or DRIE engraving.
  • step g1) to completely release the components, the various silicon oxide layers are then etched by wet etching with a hydrofluoric acid solution.
  • the spirals 1 formed are held at a frame via at least one fastener, the frame and the fasteners having been formed at the same time as the spirals during the step e) of etching DRIE.
  • the method comprises a step h) intended to determine the initial stiffness of the hairspring.
  • a step h) can be carried out directly on the hairspring still attached to the wafer 10 or on the whole or on a sample of the spirals still attached to the wafer or on a spiral detached from the wafer.
  • step h) comprises a first phase h1) intended to measure the frequency of an assembly comprising the hairspring coupled with a balance having a known inertia and then to deduce the initial stiffness of the hairspring.
  • the oscillation frequency of the sprung balance assembly makes it possible to determine the angular stiffness of the spiral tested, and thereby the precise dimensions of the turn section 3 of the spiral spring 1 (its thickness mainly, the height being known , since this is the thickness of the "device" layer of the base substrate).
  • Such a measurement phase can in particular be dynamic and carried out according to the teachings of the document EP 2 423 764 , incorporated by reference into the present application.
  • a static method carried out according to the teachings of the document EP 2 423 764 can also be used to determine the stiffness of the hairspring.
  • step h) may also consist of a determination of the average initial stiffness of a representative sample or the set of spirals formed on the same wafer.
  • the turn dimensions to be obtained are calculated to obtain the overall dimensions necessary to obtain said hairspring of a desired stiffness (or final stiffness).
  • the process continues with a sequence for removing the excess material from the hairspring to the necessary dimensions to obtain the hairspring of final stiffness.
  • Step i) is to oxidize the hairspring in order to convert said thickness of silicon-based material to silicon dioxide and thereby form an oxidized hairspring.
  • a phase may, for example, be obtained by thermal oxidation.
  • thermal oxidation can, for example, be carried out between 800 and 1200 ° C under an oxidizing atmosphere using water vapor or oxygen gas to form silicon oxide on the spiral.
  • the silicon oxide grows regularly, the oxidation rate and the resulting thickness are perfectly mastered by those skilled in the art which ensures uniformity of the oxide layer.
  • Step i) is continued with a step j) intended to remove the oxide of the spiral making it possible to obtain a silicon-based spiral with the overall dimensions necessary to obtain the final stiffness.
  • a step is obtained by a chemical etching.
  • Such chemical etching can be carried out, for example, by means of a solution based on hydrofluoric acid for removing silicon oxide from the spiral.
  • Steps i) and j) make it possible to bring the dimensions of the turn 3 to intermediate values determined during the calculation step h2).
  • step k) consists in oxidizing the hairspring again to coat it with a layer of silicon dioxide in order to form a hairspring 1 which is thermally compensated.
  • a step may, for example, be obtained by thermal oxidation.
  • thermal oxidation can, for example, be carried out between 800 and 1200 ° C under an oxidizing atmosphere using water vapor or oxygen gas to form silicon oxide on the spiral.
  • FIGS. Figures 2a and 2b which, advantageously according to the invention, comprises a core 30 based on silicon and a coating 31 based on silicon oxide.
  • This second oxidation makes it possible to adjust both the mechanical (stiffness) and thermal (temperature compensation) performance of the future hairspring 1.
  • the dimensions of the turn 3 satisfy the requirement of angular stiffness sought and the layer silicon oxide increases the stiffness according to the dimensional change of the balance / hairspring depending on the temperature.
  • the method may also comprise a metallization step I). Indeed, the growth of a non-negligible layer of silicon oxide on the surface of the spirals does not bring only advantages. This layer traps and fixes electrical charges, which will lead to phenomena of electrostatic bonding either with the spiral environment, or turns between them.
  • This layer also has hydrophilic properties, and it is known that the absorption of moisture causes a drift of the stiffness of the hairspring and therefore the running of the watch.
  • a thin layer of a metal such as chromium, titanium, tantalum or one of their alloys renders both the surface of the hairspring 1 waterproof and conductive, eliminating the effects mentioned above.
  • a metal such as chromium, titanium, tantalum or one of their alloys renders both the surface of the hairspring 1 waterproof and conductive, eliminating the effects mentioned above.
  • Such a layer can be obtained according to the teachings of the document EP 2,920,653 , incorporated by reference into the present application.
  • This thin layer is chosen as thin as possible so as not to disturb the performance adjusted above. Adequate heat treatment ensures good adhesion of the thin layer.
  • the method may also comprise step I) intended to separate the spirals 1 of the wafer 10 and to assemble them with a known balance of inertia to form a balance-spring resonator which is compensated thermally or otherwise, it is that is, whose frequency is sensitive or not to temperature variations.
  • the balance even if it comprises a predefined construction inertia, may comprise movable weights to provide a setting parameter before or after the sale of the timepiece.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Micromachines (AREA)
  • Springs (AREA)
  • Cosmetics (AREA)

Abstract

L'invention se rapporte à un procédé de fabrication d'un spiral d'une raideur finale comportant les étapes de fabrication d'un spiral selon des dimensions surépaissies, de détermination de la raideur initiale du spiral formé afin de retirer le volume de matériau pour obtenir le spiral aux dimensions nécessaires à ladite raideur finale.

Description

    Domaine de l'invention
  • L'invention se rapporte à un procédé de fabrication d'un spiral en silicium et, plus précisément, un tel spiral utilisé comme spiral compensateur coopérant avec un balancier d'inertie connue pour former un résonateur comportant une fréquence prédéterminée.
  • Arrière-plan de l'invention
  • Il est expliqué dans le document EP 1 422 436 , incorporé par référence à la présente demande, comment former un spiral compensateur comportant une âme en silicium revêtue de dioxyde de silicium et coopérant avec un balancier d'inertie connue pour compenser thermiquement l'ensemble dudit résonateur.
  • Fabriquer un tel spiral compensateur apporte de nombreux avantages mais possède également des inconvénients. En effet, l'étape de gravage de plusieurs spiraux dans une plaquette de silicium offre une dispersion géométrique non négligeable entre les spiraux d'une même plaquette et une dispersion plus grande entre des spiraux de deux plaquettes gravées à des moments différents. Incidemment, la raideur de chaque spiral gravé avec le même motif de gravage est variable en créant des dispersions de fabrication non négligeables.
  • Résumé de l'invention
  • Le but de la présente invention est de pallier tout ou partie les inconvénients cités précédemment en proposant un procédé de fabrication d'un spiral dont les dimensions sont suffisamment précises pour ne pas nécessiter de retouche.
  • A cet effet, l'invention se rapporte à un procédé de fabrication d'un spiral en silicium ayant une raideur finale connue comportant les étapes suivantes :
    1. a) se munir d'un wafer SOI comprenant successivement une couche de silicium dite « handle », une couche de liaison en oxyde de silicium, et une couche de silicium dite « device »;
    2. b) faire croître une couche d'oxyde de silicium à la surface du wafer ;
    3. c) réaliser une photolithographie sur la couche « device » pour former un masque de résine ;
    4. d) graver la couche d'oxyde de silicium à travers le masque de résine formé précédemment;
    5. e) réaliser un gravage ionique réactif profond pour former le spiral en silicium ;
    6. f) faire croître une couche d'oxyde de silicium en surface du silicium, la couche d'oxyde servant de protection des composants ;
    7. g) graver la couche « handle » pour exposer la couche de liaison et ensuite libérer le spiral, le spiral étant maintenu au wafer par au moins une attache ;
    8. h) déterminer la raideur initiale du spiral et calculer les dimensions de spire à obtenir pour obtenir le spiral d'une raideur finale ;
    9. i) oxyder le spiral formé afin de transformer ladite épaisseur de matériau à base de silicium à retirer en dioxyde de silicium et ainsi former un spiral oxydé ;
    10. j) retirer l'oxyde du spiral oxydé permettant d'obtenir un spiral à base de silicium aux dimensions globales nécessaires pour obtenir la raideur finale ;
    11. k) oxyder à nouveau le spiral pour obtenir un spiral d'une raideur finale et ajuster les performances thermiques dudit spiral.
  • On obtient ainsi un spiral compensateur qui, avantageusement selon l'invention, comporte une âme à base de silicium et un revêtement à base d'oxyde de silicium. Avantageusement selon l'invention, le spiral compensateur possède donc une très haute précision dimensionnelle et, incidemment, une compensation thermique de l'ensemble du résonateur très fine.
  • On comprend donc que le procédé permet de garantir une très haute précision dimensionnelle du spiral et, incidemment un comportement de sa raideur selon la température qui va compenser les dérives de l'ensemble qu'il forme avec un balancier.
  • Conformément à d'autres variantes avantageuses de l'invention :
    • l'étape e) est réalisée à l'aide d'un gravage chimique ;
    • l'étape g) comporte les phases suivantes :
      • g1) réaliser une photolithographie et une gravure sèche pour exposer le silicium de la couche « handle » ;
      • g2) graver la couche « handle » avec une solution d'hydroxyde de potassium, d'hydroxyde de tetramethylammonium, ou par un gravage DRIE ;
    • lors de l'étape e), plusieurs spiraux sont formés dans un même wafer selon des dimensions supérieures aux dimensions nécessaires pour obtenir plusieurs spiraux d'une raideur initiale ou plusieurs spiraux de plusieurs raideurs initiales ;
    • l'étape h) comporte les phases suivantes :
      • h1) mesurer la fréquence d'un ensemble comportant le spiral formé lors de l'étape e) couplé avec un balancier doté d'une inertie connue et déduire de la fréquence mesurée, la raideur initiale du spiral formé ;
      • h2) calculer, à partir de la détermination de la raideur initiale du spiral, les dimensions de spire à obtenir pour obtenir ledit spiral d'une raideur finale ;
    • après l'étape k), le procédé comporte, en outre, l'étape suivante :
      l) former, sur au moins une partie dudit spiral d'une raideur prédéterminée, une couche mince sur une partie de la surface externe dudit spiral permettant de former un spiral moins sensible aux variations climatiques et aux interférences à caractère électrostatique.
    Description sommaire des dessins
  • D'autres particularités et avantages ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels :
    • la figure 1 illustre un wafer avec une multitude de spiraux obtenus selon un procédé conforme à l'invention ;
    • les figures 2a et 2b illustrent respectivement une vue en perspective et une vue en coupe d'un spiral obtenu selon un procédé conforme à l'invention ;
    • la figure 3 illustre les différentes étapes d'un procédé conforme à l'invention.
    Description détaillée des modes de réalisation préférés
  • L'invention se rapporte à un spiral compensateur 1 visible à la figure 2a ainsi que son procédé de fabrication permettant de garantir une très haute précision dimensionnelle du spiral et, incidemment, de garantir une raideur plus précise dudit spiral.
  • Selon l'invention, le spiral compensateur 1 est formé à base d'un matériau, éventuellement revêtu d'une couche de compensation thermique, et destiné à coopérer avec un balancier d'inertie connue.
  • L'utilisation d'un matériau, par exemple à base de silicium, de verre ou de céramique, pour la fabrication d'un spiral offre l'avantage d'être précis par les méthodes de gravage existantes et de posséder de bonnes propriétés mécaniques et chimiques en étant notamment peu ou pas sensible aux champs magnétiques. Il doit en revanche être revêtu ou modifié superficiellement pour pouvoir former un spiral compensateur.
  • Préférentiellement, le matériau à base de silicium utilisé comme spiral compensateur peut être du silicium monocristallin quelle que soit son orientation cristalline, du silicium monocristallin dopé quelle que soit son orientation cristalline, du silicium amorphe, du silicium poreux, du silicium polycristallin, du nitrure de silicium, du carbure de silicium, du quartz quelle que soit son orientation cristalline ou de l'oxyde de silicium. Bien entendu d'autres matériaux peuvent être envisagés comme un verre, une céramique, un cermet, un métal ou un alliage métallique. Par simplification, l'explication ci-dessous sera portée sur un matériau à base de silicium.
  • Chaque type de matériau peut être modifié superficiellement ou revêtu d'une couche afin de compenser thermiquement le matériau de base comme expliqué ci-dessus.
  • Ainsi, l'invention se rapporte à un procédé de fabrication d'un spiral silicium 1 visible à la figure 3. Par soucis de lisibilité et de compréhension, les étapes du procédé représentent seulement une coupe médiane selon la ligne A d'un seul spiral silicium 1 formé dans le wafer 10 de la figure 1, le nombre de spires 3 du spiral 1 étant réduit pour faciliter la lecture des figures.
  • Selon l'invention, le procédé comporte, comme illustré à la figure 3, une première étape a) qui consiste à se munir de wafers SOI 10, c'est-à-dire composés de deux couches de silicium 11 et 12, liées l'une à l'autre par une couche d'oxyde de silicium 13. Chacune de ces trois couches a un ou des rôles bien précis.
  • La couche supérieure de silicium 11, nommée "device" et formée dans une plaque de silicium monocristallin (dont les orientations principales peuvent être variées), comporte une épaisseur qui va déterminer l'épaisseur finale du composant à fabriquer, typiquement, en horlogerie, entre 100 et 200µm.
  • La couche inférieure de silicium 12, nommée "handle", sert essentiellement de support mécanique, de façon à pouvoir effectuer le procédé sur un ensemble suffisamment rigide (ce que l'épaisseur réduite du "device" n'est pas en mesure de garantir). Elle est également formée d'une plaque de silicium monocristallin, en général d'une orientation similaire à la couche "device".
  • La couche d'oxyde 13 permet de lier intimement les deux couches de silicium 11 et 12. En outre, elle va également servir de couche d'arrêt lors d'opérations ultérieures.
  • L'étape b) qui suit consiste à faire croître à la surface du ou des wafers 10 une couche d'oxyde de silicium, en exposant le ou les wafers à une atmosphère oxydante à haute température. La couche varie selon l'épaisseur du « device » à structurer. Elle se situe typiquement entre 1 et 4µm.
  • L'étape c) du procédé, va permettre de définir, par exemple dans une résine positive, les motifs que l'on souhaite réaliser par la suite dans le wafer 10 en silicium. Cette étape comprend les opérations suivantes :
    • la résine est déposée, par exemple à la tournette, en une couche très mince d'épaisseur comprise entre 1 et 2µm,
    • une fois séchée, cette résine, aux propriétés photolithographiques, est exposée à travers un masque photolithographique (plaque transparente recouverte d'une couche de chrome, elle-même représentant les motifs souhaités) à l'aide d'une source lumineuse ;
    • dans le cas précis d'une résine positive, les zones exposées de la résine sont ensuite éliminées au moyen d'un solvant, révélant alors la couche d'oxyde. En l'occurrence, les zones toujours recouvertes de résine définissent les zones que l'on ne souhaite pas voir attaquées dans l'opération ultérieure de gravage ionique réactif profond (également connu sous l'abréviation « D.R.I.E. ») du silicium.
  • Lors de l'étape d), on exploite alors les zones exposées ou au contraire recouvertes de résine. Un premier processus de gravure permet de transférer dans l'oxyde de silicium préalablement crû, les motifs définis dans la résine aux étapes précédentes. Toujours dans une optique de répétabilité du processus de fabrication, l'oxyde de silicium est structuré par une gravure sèche par plasma, directionnelle et reproduisant la qualité des flancs de la résine servant de masque pour cette opération.
  • Une fois l'oxyde de silicium gravé dans les zones ouvertes de la résine, la surface de silicium de la couche supérieure 11 est alors exposée et prête pour une gravure DRIE. La résine peut être conservée ou non selon qu'on souhaite employer la résine comme masque lors de la gravure DRIE.
  • Le silicium exposé et non protégé par l'oxyde de silicium est gravé selon une direction perpendiculaire à la surface du wafer (gravure anisotrope DRIE Bosch®). Les motifs formés d'abord dans la résine, puis dans l'oxyde de silicium, sont "projetés" dans l'épaisseur de la couche "device" 11.
  • Lorsque la gravure débouche sur la couche d'oxyde de silicium 13 liant les deux couches de silicium 11 et 12, la gravure s'arrête. En effet, à l'instar de l'oxyde de silicium servant de masque lors du processus Bosch® et résistant à la gravure elle-même, la couche d'oxyde enterrée 13, de même nature, y résiste également.
  • La couche de silicium "device" 11 est alors structurée dans toute son épaisseur par les motifs définis représentant les composants à fabriquer, maintenant révélés par cette gravure DRIE à savoir un spiral 1 comprenant des spires 3 et une virole 2.
  • Les composants restent solidaires de la couche "handle" 12 à laquelle ils sont liés par la couche d'oxyde de silicium enterrée 13.
  • Bien entendu, le procédé ne saurait se limiter à une gravure DRIE lors de l'étape e). A titre d'exemple, l'étape e) pourrait tout aussi bien être obtenue par un gravage chimique dans un même matériau à base de silicium.
  • Lors de l'étape e), plusieurs spiraux peuvent être formés dans le même wafer selon des dimensions supérieures aux dimensions nécessaires pour obtenir plusieurs spiraux d'une raideur initiale ou plusieurs spiraux de plusieurs raideurs initiales.
  • A la suite de l'étape e), lors d'une séquence e1), les résidus de la résine de passivation résultant du processus Bosch® sont ensuite éliminés, et l'oxyde ayant servi de masque à la gravure DRIE est éliminé en solution aqueuse à base d'acide fluorhydrique.
  • Lors d'une étape f), on fait à nouveau croître une couche d'oxyde de silicium en surface du silicium (autour des couches « device » 11 et « handle » 12), cet couche d'oxyde va servir de protection des composants lors de l'opération servant à les libérer en les séparant de la couche "handle" 12.
  • Une seconde opération de photolithographie similaire à la première réalisée lors de l'étape c) est réalisée au dos du wafer 10 (donc côté couche « handle » 12). Pour ce faire le wafer 10 est retourné, la résine y est déposée, puis exposée à travers un masque.
  • La zone de la résine exposée est ensuite éliminée au moyen d'un solvant, révélant alors la couche d'oxyde formée précédemment et qui est ensuite structurée via une gravure sèche.
  • A l'étape g) suivante, on réalise une gravure complète de la couche "handle" 12 exposée au moyen d'une solution aqueuse, à base d'hydroxyde de potassium (KOH), d'hydroxyde de tetramethylammonium, ou bien par une gravure DRIE. Ces solutions sont bien connues pour graver facilement le silicium, tout en épargnant l'oxyde de silicium.
  • Lors de l'étape g1) pour libérer complétement les composants, les diverses couches d'oxyde de silicium sont alors gravées par le biais d'une gravure humide avec une solution à base d'acide fluorhydrique. Avantageusement, les spiraux 1 formés sont maintenus à un cadre via au moins une attache, le cadre et les attaches ayant été formés en même temps que les spiraux lors de l'étape e) de gravure DRIE.
  • Le procédé comporte une étape h) destinée à déterminer la raideur initiale du spiral. Une telle étape h) peut être réalisée directement sur le spiral encore attaché au wafer 10 ou sur l'ensemble ou sur un échantillon des spiraux encore attachés au wafer ou sur un spiral détaché du wafer.
  • Préférentiellement selon l'invention, l'étape h) comporte une première phase h1) destinée à mesurer la fréquence d'un ensemble comportant le spiral couplé avec un balancier doté d'une inertie connue puis, en déduire la raideur initiale du spiral.
  • La fréquence d'oscillation de l'ensemble balancier-spiral permet de déterminer la raideur angulaire du spiral testé, et par là-même, les dimensions précises de la section de spire 3 du ressort spiral 1 (son épaisseur principalement, la hauteur étant connue, puisqu'il s'agit de l'épaisseur de la couche "device" du substrat de base).
  • Une telle phase de mesure peut notamment être dynamique et réalisée selon les enseignements du document EP 2 423 764 , incorporé par référence à la présente demande. Toutefois, alternativement, une méthode statique, réalisée selon les enseignements du document EP 2 423 764 , peut également être mise en oeuvre pour déterminer la raideur du spiral.
  • Bien entendu, comme expliqué ci-dessus, le procédé ne se limitant pas au gravage d'un unique spiral par plaquette, l'étape h) peut également consister en une détermination de la raideur initiale moyenne d'un échantillon représentatif ou de l'ensemble des spiraux formés sur un même wafer.
  • Lors de la deuxième phase h2), on calcule les dimensions de spire à obtenir, à partir de la détermination de la raideur initiale du spiral, pour obtenir les dimensions globales nécessaires pour obtenir ledit spiral d'une raideur souhaitée (ou raideur finale).
  • Le procédé se poursuit avec une séquence destinée à retirer la matière excédentaire du spiral jusqu'aux dimensions nécessaires en vue d'obtenir le spiral d'une raideur finale.
  • L'étape i) consiste à oxyder le spiral afin de transformer ladite épaisseur de matériau à base de silicium à retirer en dioxyde de silicium et ainsi former un spiral oxydé. Une telle phase peut, par exemple, être obtenue par oxydation thermique. Une telle oxydation thermique peut, par exemple, être réalisée entre 800 et 1200 °C sous atmosphère oxydante à l'aide de vapeur d'eau ou de gaz de dioxygène permettant de former de l'oxyde de silicium sur le spiral. Lors de cette étape, on exploite le fait que l'oxyde de silicium croît de façon régulière, la vitesse d'oxydation et l'épaisseur qui en résulte sont parfaitement maitrisées par l'homme du métier ce qui permet d'assurer l'uniformité de la couche d'oxyde.
  • L'étape i) se poursuit avec une étape j) destinée à retirer l'oxyde du spiral permettant d'obtenir un spiral à base de silicium aux dimensions globales nécessaires pour obtenir la raideur finale. Une telle étape est obtenue par une gravure chimique. Une telle gravure chimique peut être réalisée, par exemple, au moyen d'une solution à base d'acide fluorhydrique permettant de retirer l'oxyde de silicium du spiral.
  • Les étapes i) et j) permettent d'amener les dimensions de la spire 3 à des valeurs intermédiaires déterminées lors de l'étape de calcul h2).
  • Enfin, l'étape k) consiste à oxyder à nouveau le spiral pour le revêtir d'une couche de dioxyde de silicium afin de former un spiral 1 qui est thermocompensé. Une telle étape peut, par exemple, être obtenue par oxydation thermique. Une telle oxydation thermique peut, par exemple, être réalisée entre 800 et 1200 °C sous atmosphère oxydante à l'aide de vapeur d'eau ou de gaz de dioxygène permettant de former de l'oxyde de silicium sur le spiral.
  • On obtient ainsi le spiral 1 compensateur comme illustré aux figures 2a et 2b qui, avantageusement selon l'invention, comporte une âme 30 à base de silicium et un revêtement 31 à base d'oxyde de silicium.
  • Cette seconde oxydation permet d'ajuster à la fois les performances mécanique (raideur) et thermique (compensation en température) du futur spiral 1. A ce stade, les dimensions de la spire 3 répondent à l'exigence de raideur angulaire cherchée et la couche d'oxyde de silicium crû permet d'ajuster la raideur en fonction du changement dimensionnel de l'ensemble balancier/spiral selon la température.
  • Avantageusement selon l'invention, il est ainsi possible de fabriquer sans plus de complexité un spiral 1 comportant notamment :
    • une ou plusieurs spires 3 de section(s) plus précise(s) que celle obtenue par un unique gravage ;
    • des variations d'épaisseur et/ou de pas le long de la spire ;
    • une virole monobloc 2 ;
    • une spire interne du type à courbe Grossmann ;
    • une attache de pitonnage monobloc ;
    • un élément d'encastrement externe monobloc ;
    • une portion de la spire externe surépaissie par rapport au reste des spires.
  • Le procédé peut aussi comporter une étape I) de métallisation. En effet, la croissance d'une couche d'oxyde de silicium non négligeable à la surface des spiraux n'apporte pas que des avantages. Cette couche trappe et fixe des charges électriques, lesquelles vont conduire à des phénomènes de collement électrostatique soit avec l'environnement du spiral, soit des spires entre elles.
  • Cette couche a également des propriétés hydrophiles, et il est connu que l'absorption d'humidité provoque une dérive de la raideur du spiral et partant, de la marche de la montre.
  • Aussi, une couche mince d'un métal tel que du chrome, du titane, du tantale ou un de leurs alliages, rend à la fois la surface du spiral 1 étanche et conductrice, éliminant les effets mentionnés ci-dessus. Une telle couche peut être obtenue selon les enseignements du document EP 2 920 653 , incorporé par référence à la présente demande.
  • L'épaisseur de cette couche mince est choisie aussi fine que possible pour ne pas perturber les performances ajustées ci-dessus. Un traitement thermique adéquat garantit la bonne adhérence de la couche mince.
  • Enfin, le procédé peut également comporter l'étape I) destinée à séparer les spiraux 1 du wafer 10 et les assembler avec un balancier d'inertie connue pour former un résonateur du type balancier - spiral qui est compensé thermiquement ou non, c'est-à-dire dont la fréquence est sensible ou non aux variations de température.
  • Bien entendu, la présente invention ne se limite pas à l'exemple illustré mais est susceptible de diverses variantes et modifications qui apparaîtront à l'homme de l'art. En particulier, comme expliqué ci-dessus, le balancier, même s'il comporte une inertie prédéfinie de construction, peut comporter des masselottes déplaçables permettant d'offrir un paramètre de réglage avant ou après la vente de la pièce d'horlogerie.

Claims (7)

  1. Procédé de fabrication d'un spiral comportant les étapes suivantes :
    a) se munir d'un wafer SOI (10) comprenant successivement une couche de silicium dite « device » (11), un couche de liaison (13) en oxyde de silicium, et une couche de silicium dite « handle » (12);
    b) faire croître une couche d'oxyde de silicium à la surface du wafer (10) ;
    c) réaliser une photolithographie sur la couche «device» (11) pour former un masque de résine ;
    d) graver la couche d'oxyde de silicium à travers le masque de résine formé précédemment ;
    e) réaliser un gravage ionique réactif profond pour former le spiral (1) en silicium ;
    f) faire croître une couche d'oxyde de silicium en surface du silicium, la couche d'oxyde servant de protection pour le spiral (1) formé ;
    g) graver la couche « handle » (12) pour exposer la couche de liaison et ensuite libérer le spiral (1), le spiral (1) étant maintenu au wafer (10) par au moins une attache ;
    h) déterminer la raideur initiale du spiral (1) et calculer les dimensions de spire (3) pour obtenir le spiral d'une raideur finale ;
    i) oxyder le spiral formé afin de transformer ladite épaisseur de matériau à base de silicium à retirer en dioxyde de silicium et ainsi former un spiral oxydé ;
    j) retirer l'oxyde du spiral oxydé permettant d'obtenir un spiral à base de silicium aux dimensions globales nécessaires pour obtenir la raideur finale.
    k) oxyder à nouveau le spiral pour obtenir un spiral d'une raideur finale et ajuster les performances thermiques dudit spiral.
  2. Procédé de fabrication selon la revendication 1, caractérisé en ce que l'étape e) est réalisée à l'aide d'un gravage chimique.
  3. Procédé de fabrication selon les revendications 1 et 2, caractérisé en ce que l'étape g) comporte les phases suivantes :
    g1) réaliser une photolithographie et une gravure pour exposer le silicium de la couche « handle » (12) ;
    g2) graver la couche « handle » (12) par une solution d'hydroxyde de potassium, une solution d'hydroxyde de tetramethylammonium, ou un gravage DRIE ;
  4. Procédé de fabrication selon l'une des revendications précédentes, caractérisé en ce que, lors de l'étape e), plusieurs spiraux sont formés dans un même wafer selon des dimensions supérieures aux dimensions nécessaires pour obtenir plusieurs spiraux d'une raideur initiale ou plusieurs spiraux de plusieurs raideurs initiales.
  5. Procédé de fabrication selon l'une des revendications précédentes, caractérisé en ce que l'étape h) comporte les phases suivantes :
    h1) mesurer la fréquence d'un ensemble comportant le spiral formé lors de l'étape e) couplé avec un balancier doté d'une inertie connue et déduire de la fréquence mesurée, la raideur initiale du spiral formé ;
    h2) calculer, à partir de la détermination de la raideur initiale du spiral, les dimensions de spire à obtenir pour obtenir ledit spiral d'une raideur finale.
  6. Procédé de fabrication selon l'une des revendications précédentes, caractérisé en ce que, après l'étape j), le procédé comporte, en outre, l'étape suivante :
    k) former, sur au moins une partie dudit spiral d'une raideur finale, une couche mince sur une partie de la surface externe dudit spiral permettant de former un spiral moins sensible aux variations climatiques et aux interférences à caractère électrostatique.
  7. Procédé de fabrication selon la revendication 6, caractérisé en ce que la couche mince comporte du chrome, du titane, du tantale ou un de leurs alliages.
EP18163053.4A 2018-03-21 2018-03-21 Procede de fabrication d'un spiral en silicium Withdrawn EP3543796A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP18163053.4A EP3543796A1 (fr) 2018-03-21 2018-03-21 Procede de fabrication d'un spiral en silicium
EP19712197.3A EP3769160A1 (fr) 2018-03-21 2019-03-21 Procede de fabrication d'un spiral en silicium
PCT/EP2019/057160 WO2019180177A1 (fr) 2018-03-21 2019-03-21 Procede de fabrication d'un spiral en silicium
JP2020549548A JP7100711B2 (ja) 2018-03-21 2019-03-21 ケイ素ひげぜんまいを製造する方法
KR1020207026526A KR102448668B1 (ko) 2018-03-21 2019-03-21 실리콘 헤어스프링을 제조하기 위한 방법
CN201980017845.2A CN111819501A (zh) 2018-03-21 2019-03-21 制造硅游丝的方法
US16/982,418 US11300926B2 (en) 2018-03-21 2019-03-21 Process for fabricating a silicon hairspring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18163053.4A EP3543796A1 (fr) 2018-03-21 2018-03-21 Procede de fabrication d'un spiral en silicium

Publications (1)

Publication Number Publication Date
EP3543796A1 true EP3543796A1 (fr) 2019-09-25

Family

ID=61911349

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18163053.4A Withdrawn EP3543796A1 (fr) 2018-03-21 2018-03-21 Procede de fabrication d'un spiral en silicium
EP19712197.3A Pending EP3769160A1 (fr) 2018-03-21 2019-03-21 Procede de fabrication d'un spiral en silicium

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP19712197.3A Pending EP3769160A1 (fr) 2018-03-21 2019-03-21 Procede de fabrication d'un spiral en silicium

Country Status (6)

Country Link
US (1) US11300926B2 (fr)
EP (2) EP3543796A1 (fr)
JP (1) JP7100711B2 (fr)
KR (1) KR102448668B1 (fr)
CN (1) CN111819501A (fr)
WO (1) WO2019180177A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH716603A1 (fr) * 2019-09-16 2021-03-31 Sigatec Sa Procédé de fabrication de spiraux horlogers.
EP3882714A1 (fr) * 2020-03-19 2021-09-22 Patek Philippe SA Genève Procédé de fabrication d'un composant horloger en silicium

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH716605A1 (fr) 2019-09-16 2021-03-31 Richemont Int Sa Procédé de fabrication d'une pluralité de résonateurs sur une plaquette.
EP3907565A1 (fr) 2020-05-07 2021-11-10 Patek Philippe SA Genève Procede de fabrication d'un composant horloger en silicium
EP4312084A1 (fr) 2022-07-26 2024-01-31 Nivarox-FAR S.A. Procede de fabrication d'un spiral en silicium
EP4332686A1 (fr) 2022-08-30 2024-03-06 ETA SA Manufacture Horlogère Suisse Spiral pour ensemble balancier-spiral d'un mouvement d'horlogerie

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1422436A1 (fr) 2002-11-25 2004-05-26 CSEM Centre Suisse d'Electronique et de Microtechnique SA Ressort spiral de montre et son procédé de fabrication
EP2423764A1 (fr) 2010-08-31 2012-02-29 Rolex S.A. Dispositif pour la mesure du couple d'un spiral
EP2920653A1 (fr) 2012-11-16 2015-09-23 Nivarox-FAR S.A. Résonateur moins sensible aux variations climatiques
CH711248A2 (fr) * 2015-06-25 2016-12-30 Nivarox Far Sa Pièce à base de silicium avec au moins un chanfrein et son procédé de fabrication.
EP3181938A1 (fr) * 2015-12-18 2017-06-21 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Procede de fabrication d'un spiral d'une raideur predeterminee par retrait de matiere
CH711962A2 (fr) * 2015-12-18 2017-06-30 Csem Centre Suisse D'electronique Et De Microtechnique Sa – Rech Et Développement Procédé de fabrication d'un spiral d'une raideur prédéterminée par retrait localisé de matière.
EP3232277A1 (fr) * 2014-12-12 2017-10-18 Citizen Watch Co., Ltd. Composant d'horloge, et procédé de fabrication de celle-ci

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH447042A (fr) * 1965-09-24 1968-03-15 Tissot Horlogerie Dispositif de fixation de l'extrémité extérieure d'un spiral réglant de pièce d'horlogerie
JPH04318491A (ja) * 1991-04-17 1992-11-10 Seiko Epson Corp 時計用外装部品
CN101274740A (zh) * 2007-03-28 2008-10-01 中国科学院微电子研究所 基于二氧化硅特性制作热剪切应力传感器的方法
EP2105807B1 (fr) * 2008-03-28 2015-12-02 Montres Breguet SA Spiral à élévation de courbe monobloc et son procédé de fabrication
EP2151722B8 (fr) * 2008-07-29 2021-03-31 Rolex Sa Spiral pour résonateur balancier-spiral
CH702151A1 (fr) * 2009-11-10 2011-05-13 Cartier Creation Studio Sa Procede de realisation de pieces micromecaniques, notamment en verre ceramique.
CN102800699B (zh) * 2011-05-25 2015-04-29 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
EP2781968A1 (fr) 2013-03-19 2014-09-24 Nivarox-FAR S.A. Résonateur moins sensible aux variations climatiques
CN104253042B (zh) * 2013-06-28 2017-07-07 无锡华润上华半导体有限公司 一种绝缘栅双极晶体管的制造方法
JP6345493B2 (ja) * 2014-02-25 2018-06-20 シチズン時計株式会社 ひげぜんまい
JP6486697B2 (ja) 2014-02-26 2019-03-20 シチズン時計株式会社 ひげぜんまいの製造方法及びひげぜんまい
EP2952972B1 (fr) * 2014-06-03 2017-01-25 The Swatch Group Research and Development Ltd. Procédé de fabrication d'un spiral compensateur composite
JP2016133495A (ja) 2015-01-22 2016-07-25 シチズンホールディングス株式会社 時計部品の製造方法および時計部品
US10042964B2 (en) 2015-03-02 2018-08-07 General Electric Company Method of evaluating a part
CN104737989B (zh) 2015-03-06 2017-06-16 浙江省农业科学院 一种利用蝇蛆规模化处理发酵滤渣和畜禽粪混合物的方法
JP2016173355A (ja) 2015-03-16 2016-09-29 シチズンホールディングス株式会社 機械部品の製造方法
CN104977425B (zh) * 2015-06-19 2017-10-03 东南大学 一种测风传感器芯片结构及其制造方法
JP6514993B2 (ja) 2015-08-25 2019-05-15 シチズン時計株式会社 時計部品の製造方法
JP6736365B2 (ja) 2016-06-10 2020-08-05 シチズン時計株式会社 時計部品の製造方法
TWI774925B (zh) * 2018-03-01 2022-08-21 瑞士商Csem瑞士電子及微技術研發公司 製造螺旋彈簧的方法
EP3543795A1 (fr) * 2018-03-20 2019-09-25 Patek Philippe SA Genève Procede de fabrication de composants horlogers en silicium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1422436A1 (fr) 2002-11-25 2004-05-26 CSEM Centre Suisse d'Electronique et de Microtechnique SA Ressort spiral de montre et son procédé de fabrication
EP2423764A1 (fr) 2010-08-31 2012-02-29 Rolex S.A. Dispositif pour la mesure du couple d'un spiral
EP2920653A1 (fr) 2012-11-16 2015-09-23 Nivarox-FAR S.A. Résonateur moins sensible aux variations climatiques
EP3232277A1 (fr) * 2014-12-12 2017-10-18 Citizen Watch Co., Ltd. Composant d'horloge, et procédé de fabrication de celle-ci
CH711248A2 (fr) * 2015-06-25 2016-12-30 Nivarox Far Sa Pièce à base de silicium avec au moins un chanfrein et son procédé de fabrication.
EP3181938A1 (fr) * 2015-12-18 2017-06-21 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Procede de fabrication d'un spiral d'une raideur predeterminee par retrait de matiere
CH711962A2 (fr) * 2015-12-18 2017-06-30 Csem Centre Suisse D'electronique Et De Microtechnique Sa – Rech Et Développement Procédé de fabrication d'un spiral d'une raideur prédéterminée par retrait localisé de matière.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH716603A1 (fr) * 2019-09-16 2021-03-31 Sigatec Sa Procédé de fabrication de spiraux horlogers.
EP3845770A1 (fr) * 2019-09-16 2021-07-07 Sigatec SA Procédé de fabrication de spiraux horlogers
EP3915788A1 (fr) * 2019-09-16 2021-12-01 Sigatec SA Procédé de fabrication d'un lot de spiraux horlogers
EP3882714A1 (fr) * 2020-03-19 2021-09-22 Patek Philippe SA Genève Procédé de fabrication d'un composant horloger en silicium
WO2021186333A1 (fr) * 2020-03-19 2021-09-23 Patek Philippe Sa Geneve Procede de fabrication d'un composant horloger en silicium

Also Published As

Publication number Publication date
JP7100711B2 (ja) 2022-07-13
KR102448668B1 (ko) 2022-09-28
EP3769160A1 (fr) 2021-01-27
US20210080909A1 (en) 2021-03-18
US11300926B2 (en) 2022-04-12
WO2019180177A1 (fr) 2019-09-26
JP2021535356A (ja) 2021-12-16
KR20200120949A (ko) 2020-10-22
CN111819501A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
EP3543796A1 (fr) Procede de fabrication d'un spiral en silicium
EP3181938B1 (fr) Procede de fabrication d'un spiral d'une raideur predeterminee par retrait de matiere
EP3769162B1 (fr) Procede de fabrication de composants horlogers en silicium
EP3181939B1 (fr) Procede de fabrication d'un spiral d'une raideur predeterminee par ajout de matiere
EP3181940B1 (fr) Procede de fabrication d'un spiral d'une raideur predeterminee par retrait localise de matiere
EP2523053A1 (fr) Spiral pour résonateur balancier-spiral
WO2009068091A1 (fr) Oscillateur mécanique présentant un coefficient thermoélastique optimisé
EP2229470A1 (fr) Procédé de fabrication d'une microstructure métallique et microstructure obtenue selon ce procédé
EP3845770B1 (fr) Procédé de fabrication de spiraux horlogers
CH714815A2 (fr) Procédé de fabrication d’un spiral en silicium pour l’horlogerie.
EP3416001A1 (fr) Procede de fabrication d'un oscillateur a pivot flexible
EP3865954A1 (fr) Procédé de fabrication d'un dispositif à lames flexibles monobloc en silicium, pour l'horlogerie
CH717124A2 (fr) Procédé de fabrication d'un dispositif à lames flexibles monobloc en silicium, notamment pour l'horlogerie.
EP3670440A1 (fr) Procédé de fabrication d'un composant horloger
EP3982205A1 (fr) Procede de fabrication d'un ressort horloger de raideur precise
CH714806B1 (fr) Procédé de fabrication de composants horlogers en silicium.
CH711960B1 (fr) Procédé de fabrication d'un spiral d'une raideur prédéterminée avec retrait de matière.
WO2021170473A1 (fr) Composant horloger en silicium pour pièce d'horlogerie
CH711961A2 (fr) Procédé de fabrication d'un spiral d'une raideur prédéterminée par ajout de matière.
EP4372479A1 (fr) Procede de fabrication de spiraux d'horlogerie
EP3839642A1 (fr) Procede de fabrication de ressorts horlogers et masque de gravure pour un tel procede
CH718082A2 (fr) Procédé de fabrication d'un élément élastique pour un système micromécanique.
CH716967A2 (fr) Procédé de fabrication d'un composant horloger et composant obtenu selon ce procédé.
CH714705A2 (fr) Ressort de rappel angulaire pour oscillateur thermo-compensé.
CH714706B1 (fr) Ressort de rappel angulaire pour oscillateur thermo-compensé.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20200325

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200603