EP2877865A1 - Simulateur d'erreurs pour la vérification du diagnostic implémenté dans un calculateur d'une sonde lambda dans un moteur à combustion interne - Google Patents

Simulateur d'erreurs pour la vérification du diagnostic implémenté dans un calculateur d'une sonde lambda dans un moteur à combustion interne

Info

Publication number
EP2877865A1
EP2877865A1 EP13736540.9A EP13736540A EP2877865A1 EP 2877865 A1 EP2877865 A1 EP 2877865A1 EP 13736540 A EP13736540 A EP 13736540A EP 2877865 A1 EP2877865 A1 EP 2877865A1
Authority
EP
European Patent Office
Prior art keywords
broadband lambda
lambda probe
control unit
fault simulator
pumping current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13736540.9A
Other languages
German (de)
English (en)
Inventor
Bernhard Ledermann
Claudius Bevot
Thomas Steinert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48783227&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2877865(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2877865A1 publication Critical patent/EP2877865A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4163Systems checking the operation of, or calibrating, the measuring apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/10Testing internal-combustion engines by monitoring exhaust gases or combustion flame
    • G01M15/102Testing internal-combustion engines by monitoring exhaust gases or combustion flame by monitoring exhaust gases
    • G01M15/104Testing internal-combustion engines by monitoring exhaust gases or combustion flame by monitoring exhaust gases using oxygen or lambda-sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/409Oxygen concentration cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/41Oxygen pumping cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/4175Calibrating or checking the analyser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/281Interface circuits between sensors and control unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/419Measuring voltages or currents with a combination of oxygen pumping cells and oxygen concentration cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/007Arrangements to check the analyser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • G01R31/007Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks using microprocessors or computers

Definitions

  • the invention relates to a method for checking the fault detection of a control device of an internal combustion engine in the event of a malfunction of a connected one
  • a broadband lambda probe wherein the check is performed with a fault simulator located between the broadband lambda probe and the controller, and wherein the fault simulator selectively modifies electrical signals exchanged between the broadband lambda probe and the controller to simulate broadband lambda probe errors.
  • the invention further relates to a fault simulator for checking the fault detection of a control unit of an internal combustion engine in the event of a malfunction of a connected broadband lambda probe, the fault simulator being arranged to simulate broadband lambda probe errors between the broadband lambda probe and the control unit.
  • lambda sensors are used in modern internal combustion engines for determining the composition of the exhaust gas and for controlling the internal combustion engine.
  • Lambda sensors determine the oxygen content of the exhaust gas, which is used to control the internal combustion engine supplied air-fuel mixture and thus the Abgaslamb- before a catalyst.
  • the air and fuel supply of the internal combustion engine is controlled via a lambda control loop in such a way that an exhaust gas aftertreatment by in the exhaust passage of the internal combustion engine is provided.
  • Catalyst optimal composition of the exhaust gas is achieved.
  • gasoline engines is usually on a lambda of 1, ie a stoichiometric ratio of air to fuel regulated. The pollutant emission of the internal combustion engine can be minimized.
  • an internal combustion engine can also be regulated for lean operation with excess air.
  • the sensor element of a broadband lambda probe has an opening on the surface through which exhaust gas enters.
  • the inlet opening is followed by a porous layer, through which the exhaust gas diffuses into a cavity.
  • This cavity is separated from the outer exhaust gas by an oxygen ion conducting electrolyte material.
  • Both on the outside of the electrolyte and on the side of the cavity are electrodes which are connected via cable with plug contacts.
  • the intermediate electrolyte is called the pumping cell.
  • a reference gas with a certain constant oxygen concentration is located inside the sensor element, separated from the cavity by the same electrolyte material.
  • In contact with the reference gas is another electrode, which is also connected to a plug contact.
  • the electrolyte between this and the cavity side electrode is referred to as a measuring cell.
  • an electrical voltage referred to below as the Nernst voltage UNO, is applied across the measuring cell, which is determined by the concentration of oxidizing and reducing exhaust gas components in the cavity and in the reference gas. Since the concentration in the reference gas is known and invariable, the dependence on the concentration in the cavity is reduced.
  • the Nernst voltage UNO is detected by the electrodes and transmitted to the engine control unit.
  • the engine control unit contains a control circuit that keeps the Nernst voltage above the measuring cell at a setpoint value by a so-called pumping current IP is driven through the pumping cell.
  • the loop contains a pumping current regulator, which is often referred to as Nernstschreibsregler also according to its control variable. Since the current flow in the electrolyte is due to oxygen ions, the oxygen concentration in the cavity is influenced.
  • the diffusion equation results in a linear relationship between the diffusion current, and thus the pumping current, and the oxygen concentration in the exhaust gas.
  • the pumping current is now measured in the engine control unit or specified by the engine control unit in dependence on the measured Nernst voltage.
  • the pumping current represents a linear signal for the oxygen balance in the exhaust gas.
  • a broadband lambda probe If a broadband lambda probe is faulty, this must be detected by the engine control unit.
  • today fault simulators are used, which are arranged during the review between the engine control unit and the broadband lambda probe.
  • the fault simulator behaves in relation to the engine control unit like a broadband lambda probe with the errors to be checked.
  • the engine control unit must detect the relevant error cases without software or application changes.
  • One of the error cases to be simulated is a change in the lambda signal of the broadband lambda probe.
  • the engine control unit is given a delayed or corrupted signal of the broadband lambda probe.
  • the pump current is varied to simulate this error, thus causing changes in the broadband lambda probe and a corresponding reaction in the engine control unit. These changes must be detected and displayed by the diagnostic function in the engine control unit. Changing the pump current to simulate a broadband lambda probe error can make the fault simulation itself too slow. This may cause the engine control unit to respond, for example, to real signal changes that are due to real changes in the composition of the exhaust gas, although the fault simulator should suppress those changes.
  • the pumping current is the output and the Nernst voltage UNO is the input signal of the pumping current controller.
  • An error simulation by changing the pump current signal acts here first on the broadband lambda probe.
  • the Nernst voltage UNO and thus the input signal of the pumping current controller changes.
  • the known method for fault simulation via a change in the pumping current has the disadvantage here that the change in the pumping current arrives late in the signal acquisition in the engine control unit. Therefore, real broadband lambda sensor responses to signal changes typically can not be completely suppressed.
  • the object of the invention relating to the method is achieved by feeding to the fault simulator a Nernst voltage UN0 meS s of the broadband lambda probe and a pumping current IP M SG of the control unit, that the broadband lambda probe fault simulator a pumping current I Pprobe and the control unit a Nernst voltage U NOsteii feeds and that the fault simulator for the simulation of broadband lambda probe errors changes the Nernst voltage UN0 st eii supplied to the control unit with respect to the Nernst voltage UNO meS s output by the broadband lambda probe.
  • the deviation of the Nernst voltage UNO from the Nernst voltage setpoint is the input variable of the pumping current regulator.
  • the pumping current IP is the output signal of the pumping current regulator and at the same time the measured variable, which is further processed in the control unit.
  • Different error of the broadband lambda probe for example a due to aging effects delayed response or a corrupted Nernstsig- nal, can be simulated by the fact that the error simulator for simulating errors a predetermined Nernst voltage UN s TEII or variable depending on the time Nernst UNOsteii to the control unit.
  • the fault simulator predetermines the predetermined Nernst voltage UNOsteii or the Nernst voltage U NOsteii which varies as a function of time independently of or dependent on the Nernst voltage UNO msS s output by the broadband lambda probe.
  • the output Nernst voltage UNOsteii can be specified by a provided in the fault simulator ⁇ -controller.
  • the pump current I Pprobe output to the broadband lambda probe corresponds to the pumping current IP M SG output by the motor control unit or
  • the choice of the output to the broadband lambda probe pump current I Psonde can be made depending on the error to be simulated.
  • Corresponds to the pump current IP So hands to the pump current I PMSG output by the engine control system, it can be fed through from the engine control by the fault simulator to the broadband lambda probe. If the pumping current I Pprobe is predetermined by the fault simulator, the pumping current I PMSG provided by the motor control can be lowered in the fault simulator.
  • the pump current I Psonde outputted to the broadband lambda probe is predefined by the fault simulator as a function of the pumping current I PMSG output by the control unit, it can be provided that the PMSG is predetermined by the fault simulator and sent to the broadband lambda probe as a function of the pumping current I PMSG output pump current I Pprobe is greater or smaller and / or delayed in time compared to the pump current I PMSG is specified.
  • the fault simulator for an internal resistance measurement with respect to the control unit simulates a load and provides a corresponding voltage signal.
  • the problem of the invention relating to the fault simulator is solved by supplying to the fault simulator a Nernst voltage UN0 meS s of the broadband lambda probe and a pumping current IP M SG of the control unit, that the broadband lambda probe a pumping current I Psonde and the controller a Nernst mecanic UN0 s tei is supplied by the fault simulator and that the fault simulator is adapted to the Nernst voltage UN0 s teii supplied to the controller compared to that of the broadband
  • the fault simulator thus makes it possible to carry out the method described.
  • FIG. 1 shows a fault simulator for checking the fault detection of a control unit.
  • FIG. 1 shows a fault simulator 12 for checking the fault detection of a control unit 14.
  • the fault simulator 12 is connected between a broadband lambda probe 10 and a control unit 14.
  • the fault simulator 12 is supplied with a Nernst voltage U NOmess 1 1 of the broadband lambda probe 10 and a pumping current I PMSG 16 of the control unit 14.
  • the fault simulator 12 supplies the broadband lambda probe 10 with a pumping current I Pprobe 15 and the control unit 14 with a Nernst voltage UNO S 13.
  • the signals are represented by corresponding arrows, the number of signal lines shown is limited to the Necessary for the representation of the invention number.
  • Fault simulators 12 are used to test certain fault scenarios in broadband lambda probes 10.
  • the fault simulator 12 is connected between the broadband lambda probe 10 and the associated control unit 14.
  • the fault simulator 12 behaves in relation to the control unit 14 like a broadband lambda probe 10 with the errors to be checked, while the broadband lambda probe 10 continues to operate.
  • the control unit 14 must recognize the errors specified by the fault simulator without software or application changes.
  • An error case to be simulated is a change in the lambda signal of the broadband lambda probe 10, so that the control unit 14 is simulated a delayed or falsified lambda signal.
  • the pump current IP is changed in order to bring about changes in the broadband lambda probe 10. These changes must be detected by the control unit 14 through a diagnostic function.
  • the variation of the pumping current IP to simulate a broadband lambda probe 10 fault may cause the fault simulation itself to be too slow. This may result in the controller 14 causing the controller to, for example, respond to real signal changes with a corresponding real change in the exhaust gas composition, although the fault simulator 12 should suppress this change.
  • the fault simulation is performed by the fault simulator 12 on the basis of the Nernst voltage UNO.
  • the fault simulator 12 also interrupts the supply of the output from the broadband lambda probe 10 Nernstschreib UN0 meSs 1 1 to the controller 14 and outputs a correspondingly changed Nernstschreib UN0 ste ii 13 and the controller 14 from.
  • the fault simulator 12 can thus cause a change in the pumping current I PMSG 16 by the Nernstschreib UN0 ste ii 13 is changed accordingly. Since this change takes place before the regulation itself, no unwanted reactions to changes in the pumping current signal due to a change in the real exhaust gas are visible in the control unit 14.
  • the control unit 14 can arbitrarily set the output Nernst voltage UN0 ste ii 13 and in particular a time change of the Nernst voltage UN0 ste ii 13. This can be done by a ⁇ -controller provided in the fault simulator 12, for example, depending on the measured Nernst voltage UN0 meSs or independently.
  • the pumping current I PMSG 16 then calculated and output by the control unit 14 can pass directly through the fault simulator 12 to the broadband lambda probe 10 to get redirected.
  • the pumping current IP M SG 6 can be lowered in the fault simulator 12 without affecting the broadband lambda probe 10.
  • the broadband lambda probe 10 is supplied with a pumping current I Pprobe 15, which in the fault simulator 12 based on the Nernstpressive UN0 meS s 1 1 was calculated.
  • a third possibility is to manipulate the pumping current I Pprobe 15 as a function of the pumping current IP M SG 16 and forward it to the broadband lambda probe 10.
  • the pumping current I Pprobe 15 can be selected larger, smaller or delayed with respect to the pumping current IP M SG 16.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Emergency Medicine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Testing Of Engines (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

L'invention concerne un procédé permettant de vérifier la détection d'erreurs par un calculateur (14) d'un moteur à combustion interne en cas de dysfonctionnement d'une sonde lambda à large bande (10) raccordée. La vérification est effectuée à l'aide d'un simulateur d'erreurs (12) placé entre la sonde lambda à large bande (10) et le calculateur (14) et le simulateur d'erreurs (12) destiné à simuler des erreurs de la sonde lambda à large bande (10) modifie de façon ciblée des signaux électriques échangés entre la sonde lambda à large bande (10) et le calculateur (14). Selon l'invention, le simulateur d'erreurs est alimenté par une tension de Nernst UNOmess (11) de la sonde lambda à large bande (10) et d'un courant de pompe IPMSG (16) du calculateur; le simulateur d'erreurs (12) alimente la sonde lambda à large bande (10) d'un courant de pompe I Psonde (15) et le calculateur d'une tension de Nernst UNOstell (13); le simulateur d'erreurs (12) destiné à la simulation d'erreurs de la sonde lambda à large bande (10) modifie la tension de Nernst UNOstell (13) dont le calculateur est alimenté par rapport à la tension de Nernst UNOmess (11) émise par la sonde lambda à large bande. L'invention concerne en outre un simulateur d'erreurs destiné à exécuter le procédé. Le procédé et le simulateur d'erreurs permettent de surveiller la détection d'erreurs par des calculateurs pour des sondes lambda à large bande.
EP13736540.9A 2012-07-25 2013-07-09 Simulateur d'erreurs pour la vérification du diagnostic implémenté dans un calculateur d'une sonde lambda dans un moteur à combustion interne Withdrawn EP2877865A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012213068.3A DE102012213068A1 (de) 2012-07-25 2012-07-25 Verfahren und Fehlersimulator zur Überprüfung der Fehlererkennung eines Steuergerätes
PCT/EP2013/064454 WO2014016109A1 (fr) 2012-07-25 2013-07-09 Simulateur d'erreurs pour la vérification du diagnostic implémenté dans un calculateur d'une sonde lambda dans un moteur à combustion interne

Publications (1)

Publication Number Publication Date
EP2877865A1 true EP2877865A1 (fr) 2015-06-03

Family

ID=48783227

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13736540.9A Withdrawn EP2877865A1 (fr) 2012-07-25 2013-07-09 Simulateur d'erreurs pour la vérification du diagnostic implémenté dans un calculateur d'une sonde lambda dans un moteur à combustion interne

Country Status (8)

Country Link
US (1) US9880127B2 (fr)
EP (1) EP2877865A1 (fr)
JP (1) JP6092385B2 (fr)
KR (1) KR20150038248A (fr)
CN (1) CN104471411B (fr)
DE (1) DE102012213068A1 (fr)
IN (1) IN2014DN08552A (fr)
WO (1) WO2014016109A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104977920B (zh) * 2014-04-04 2017-09-26 联创汽车电子有限公司 宽域氧传感器负载仿真器
DE102016110014A1 (de) 2016-05-31 2017-11-30 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren und Vorrichtung zur Überprüfung einer Erkennung von Fehlern einer Lambdasonde
DE102016124328A1 (de) * 2016-12-14 2018-06-14 Dspace Digital Signal Processing And Control Engineering Gmbh Prüfstand zur Nachbildung der elektrischen Antwort einer Breitbandlambdasonde
CN108398527B (zh) * 2018-01-31 2021-02-23 广西玉柴机器股份有限公司 一种天然气发动机氧传感器检测方法
CN109932604A (zh) * 2019-04-03 2019-06-25 武汉菱电汽车电控***股份有限公司 宽氧故障模拟方法、装置及***

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859955A (en) 1985-11-06 1989-08-22 The Grass Valley Group, Inc. Apparatus for smoothing an abrupt change in signal level
DE3903314A1 (de) * 1989-02-04 1990-08-09 Bosch Gmbh Robert Schaltung zum messen des innenwiderstandes einer lambdasonde
DE4113316C2 (de) * 1991-04-24 2003-09-11 Bosch Gmbh Robert Anschlußschaltung für eine Lambdasonde und Prüfverfahren für eine solche Schaltung
US5522250A (en) * 1995-04-06 1996-06-04 Ford Motor Company Aged exhaust gas oxygen sensor simulator
DE10007688A1 (de) 2000-02-19 2001-08-23 Bosch Gmbh Robert Einrichtung zum Steuern der Neigenfunktion eines Hubmastes, insbesondere für einen Gabelstapler
DE10025578C2 (de) * 2000-05-24 2002-03-21 Siemens Ag Prüf- und Kalibriervorrichtung für eine Auswerteschaltung einer linearen Sauerstoffsonde (Lambdasonde)
US7010773B1 (en) 2001-11-19 2006-03-07 Cypress Semiconductor Corp. Method for designing a circuit for programmable microcontrollers
JP3869338B2 (ja) * 2002-08-30 2007-01-17 日本特殊陶業株式会社 酸素センサの劣化シミュレータ
KR100468763B1 (ko) 2002-09-03 2005-01-29 삼성전자주식회사 광 디스크 플레이어의 로딩모터 제어장치
US6831471B2 (en) * 2002-11-14 2004-12-14 Delphi Technologies, Inc. Configurable interface circuit for exhaust gas oxygen sensors
JP2004316570A (ja) * 2003-04-17 2004-11-11 Hitachi Unisia Automotive Ltd センサの擬似劣化信号発生装置
DE102006008539A1 (de) * 2006-02-22 2007-08-30 Robert Bosch Gmbh Verfahren und Schaltungsanordnung zur Simulation von Fehlerzuständen in einem Steuergerät
JP4995487B2 (ja) * 2006-05-24 2012-08-08 日本特殊陶業株式会社 ガスセンサの劣化信号発生装置
DE102006024606A1 (de) * 2006-05-26 2007-11-29 Bayerische Motoren Werke Ag Verfahren zur Funktionsprüfung eines Steuergeräts für ein Kraftfahrzeug
JP2008076191A (ja) 2006-09-20 2008-04-03 Toyota Motor Corp 酸素センサの故障診断装置
JP2008248819A (ja) * 2007-03-30 2008-10-16 Mazda Motor Corp 空燃比センサの故障診断装置
JP4760806B2 (ja) * 2007-09-04 2011-08-31 株式会社デンソー ガスセンサの劣化シミュレータ
DE102008027896B4 (de) * 2008-06-11 2012-06-28 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren und Schaltungsanordnung zur Funktionsprüfung von Steuergeräten
DE102008027895B4 (de) * 2008-06-11 2012-07-05 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren und Schaltungsanordnung zur Funktionsprüfung von Motorsteuergeräten
US7899606B2 (en) * 2008-10-17 2011-03-01 Alfred Manuel Bartick Fuel/air mixture control device and method
JP5179523B2 (ja) * 2010-01-20 2013-04-10 日本特殊陶業株式会社 酸素センサの劣化信号生成装置
CN101793604B (zh) 2010-02-08 2011-11-30 清华大学 氧传感器信号模拟器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014016109A1 *

Also Published As

Publication number Publication date
JP6092385B2 (ja) 2017-03-08
US20150204814A1 (en) 2015-07-23
CN104471411B (zh) 2018-11-06
JP2015530510A (ja) 2015-10-15
DE102012213068A1 (de) 2014-01-30
CN104471411A (zh) 2015-03-25
IN2014DN08552A (fr) 2015-05-15
US9880127B2 (en) 2018-01-30
WO2014016109A1 (fr) 2014-01-30
KR20150038248A (ko) 2015-04-08

Similar Documents

Publication Publication Date Title
DE102009047648B4 (de) Verfahren und Vorrichtung zur Diagnose von Abweichungen bei einer Einzelzylinder-Lambdaregelung
DE102015108515B4 (de) Vorrichtung und Verfahren zum Steuern eines Sauerstoffsensors
DE102008001569B4 (de) Verfahren und Vorrichtung zur Adaption eines Dynamikmodells einer Abgassonde
EP2877865A1 (fr) Simulateur d'erreurs pour la vérification du diagnostic implémenté dans un calculateur d'une sonde lambda dans un moteur à combustion interne
DE102014200063A1 (de) Verfahren und Vorrichtung zur Überwachung der Fettgas-Messfähigkeit einer Abgas-Sonde
EP2580584B1 (fr) Méthode pour identifier le type de sonde lambda
EP2912447B1 (fr) Procede et appareil pour faire un diagnostic du canal de reference d'air d'une sonde lambda a bande large
DE102016219689A1 (de) Verfahren und Steuereinrichtung zur Regelung einer Sauerstoff-Beladung eines Dreiwege-Katalysators
WO2020187879A1 (fr) Procédé pour déterminer un défaut d'un capteur de gaz d'échappement d'un moteur à combustion interne
DE102012221549A1 (de) Verfahren und Vorrichtung zur Bestimmung einer Zusammensetzung eines Gasgemischs
DE102015215521B4 (de) Verfahren und Vorrichtung zum Diagnostizieren der Trennung eines Sauerstoffsensors
DE102012212596A1 (de) Verfahren und Vorrichtung zum Betreiben einer Abgassonde
DE102012200032B4 (de) Verfahren und Vorrichtung zur Dynamik-Diagnose von Sensoren
DE102008027895A1 (de) Verfahren und Schaltungsanordnung zur Funktionsprüfung von Motorsteuergeräten
DE102012212580A1 (de) Verfahren und Vorrichtung zum Betreiben einer Abgassonde
EP2756180B1 (fr) Procédé et dispositif de modification d'un système asservi
DE19819581C2 (de) Verfahren zur Bestimmung der NO¶x¶-Konzentration
DE102010040817A1 (de) Verfahren zum Abgleich eines Sensorelements zur Erfassung einer Gaseigenschaft
EP2411796A1 (fr) Procédé pour faire fonctionner un élément sensible et élément sensible
WO2017102709A1 (fr) Procédé, dispositif, système, programme d'ordinateur et produit-programme d'ordinateur pour le diagnostic d'un capteur de potentiel mixte
DE102013210859A1 (de) Verfahren und Vorrichtung zur Diagnose einer Leckage in einer Abgassonde
WO2024083431A1 (fr) Procédé pour faire fonctionner un capteur pour détecter au moins une propriété d'un gaz de mesure dans une chambre de gaz de mesure
DE102014224942A1 (de) Verfahren zur Erkennung eines Zustands eines Heizelements in einem Sensor
DE102013217013A1 (de) Verfahren und Vorrichtung zur Korrektur einer Kennlinie einer Zweipunkt-Lambdasonde
WO2015189052A1 (fr) Procédé permettant d'évaluer l'écart d'une courbe caractéristique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150225

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180201