EP2853029B1 - Schaltungsanordnung und verfahren zum kalibrieren von ansteuersignalen für spannungsgesteuerte oszillatoren - Google Patents

Schaltungsanordnung und verfahren zum kalibrieren von ansteuersignalen für spannungsgesteuerte oszillatoren Download PDF

Info

Publication number
EP2853029B1
EP2853029B1 EP13756304.5A EP13756304A EP2853029B1 EP 2853029 B1 EP2853029 B1 EP 2853029B1 EP 13756304 A EP13756304 A EP 13756304A EP 2853029 B1 EP2853029 B1 EP 2853029B1
Authority
EP
European Patent Office
Prior art keywords
vcm
connection
transistor
varactor
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13756304.5A
Other languages
English (en)
French (fr)
Other versions
EP2853029A2 (de
Inventor
Heinz Werker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silicon Line GmbH
Original Assignee
Silicon Line GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silicon Line GmbH filed Critical Silicon Line GmbH
Publication of EP2853029A2 publication Critical patent/EP2853029A2/de
Application granted granted Critical
Publication of EP2853029B1 publication Critical patent/EP2853029B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/0805Details of the phase-locked loop the loop being adapted to provide an additional control signal for use outside the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B1/00Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop

Definitions

  • CDR circuits with binary phase detectors are often used for data transmission in the frequency range greater than one gigahertz, because they are easier to implement at limited speed of the technology used and show a very robust behavior (better so-called power supply rejection).
  • VCO Voltage Controlled Oscillator
  • Fig. 1 shows a first example of a voltage-controlled ring oscillator RO with two tuning inputs Vtune1, Vtune2 from the prior art.
  • the frequency of this voltage-controlled oscillator RO can be set separately via these two tuning inputs Vtune1 and Vtune2.
  • the frequency change is set by four separate varactor (diodes) D1, D2, D3, D4.
  • Fig. 2 shows a second example of a voltage-controlled ring oscillator RO 'with two tuning inputs Vtune1, Vtune2 from the prior art.
  • up and dnb can be the digital output signals of a binary phase detector.
  • the publication US Pat. No. 7,129,763 B1 discloses a digital circuitry for a computing device; in particular, the disclosure US Pat. No. 7,129,763 B1 adjusting the power consumption of the digital circuitry by generating a frequency error representing an error in a signal delay. Consequently, the US Pat. No. 7,129,763 B1 the goal is to reduce power consumption in a digital circuit. As a measure serve internal signal delays of the circuit, which must remain within acceptable limits.
  • the present invention has the object, a circuit arrangement according to the preamble of claim 1 and a method according to the preamble of claim 13 educate so that the energy consumption as possible low and the output frequency is as large as possible.
  • VCO Voltage-Controlled Oscillator
  • CDR Clock and Data Recovery
  • the at least one binary phase detector so-called Bang-Bang phase detector or up / Down phase detector
  • a low power consumption that is, a low energy consumption feasible, because due to lower parasitic capacity than in the prior art less power is required to achieve the same output frequency.
  • a higher output frequency is feasible, because only two varactors (instead of four varactors in the prior art) less parasitic capacitance is generated in the voltage controlled oscillator, so that the layout of the voltage controlled oscillator can be made more compact.
  • VCO Voltage-Controlled Oscillator
  • CDR clock and data recovery
  • Fig. 4 shows an embodiment of a voltage-controlled ring oscillator 10.
  • the frequency of this voltage-controlled oscillator 10 may - unlike in the prior art (see. Fig. 1 . Fig. 2 ), according to which two tuning inputs are required - are set via a calibrated drive signal Vbb.
  • the frequency change is set by two varactor (diodes) or tuning diodes or varactor diodes or varicaps 12, 14.
  • Fig. 4 can be seen that the anodic terminal of the first varactor 12 of the voltage controlled oscillator 10 and the anodic terminal of the second varactor 14 of the voltage controlled oscillator 10 are supplied with the calibrated drive signal Vbb.
  • the cathodic terminal of the first varactor 12 is connected to the source contact or emitter terminal of a first transistor 22 of the voltage controlled oscillator 10 and to the drain contact or collector terminal of a second transistor 24 of the voltage controlled oscillator 10, and the cathodic terminal of the second varactor 14 is connected to the source contact or Emitter terminal of a third transistor 26 of the voltage controlled oscillator 10 and to the drain contact or collector terminal of a fourth transistor 28 of the voltage controlled oscillator 10 is connected.
  • the source contact or emitter terminal of the second transistor 24 and the source contact or emitter terminal of the fourth transistor 28 are connected to one another and to a current source 20.
  • the gate contact or base terminal of the first transistor 22 and the gate contact or base terminal of the third transistor 26 are connected to each other and are applied with a bias voltage or bias voltage V bias.
  • the drain contact or collector terminal of the first transistor 22 and the drain contact or collector terminal of the third transistor 26 provide the output signal Ve of the voltage-controlled oscillator 10.
  • the frequency tuning characteristic changes over the operating parameters such as technology, supply voltage and temperature.
  • the present invention has a calibration circuit 100, as described with reference to an embodiment in FIG Fig. 7 illustrates:
  • the calibration circuit 100 according to Fig. 7 has two additional oscillators 30, 50 of substantially the same type as those described above with reference to FIG Fig. 4 described main oscillator 10 on.
  • these two additional oscillators 30, 50 can be operated at a much lower frequency and thus with much lower power consumption than the main oscillator 10; however, these two additional oscillators 30, 50 have substantially the same tuning characteristics as the main oscillator 10.
  • One of the two additional oscillators 30, 50 is a based Fig. 8
  • the anodic terminal of a first varactor 52 of the calibration oscillator 50 is supplied with the first tuning voltage Vcm and the second tuning voltage Vcm-, and the anodic terminal of a second varactor 54 of the calibration oscillator 50 is supplied with the first tuning voltage Vcm and the third tuning voltage Vcm +.
  • the cathodic terminal of the first varactor 52 and the cathodic terminal of the second varactor 54 are connected to one another, to the source contact or emitter terminal of a first transistor 62 of the calibration oscillator 50 and to the drain contact or collector terminal of a second transistor 64 of the calibration oscillator 50.
  • the anodic terminal of a third varactor 56 of the calibration oscillator 50 is supplied with the first tuning voltage Vcm and the second tuning voltage Vcm-, and the anodic terminal of a fourth varactor 58 of the calibration oscillator 50 is supplied with the first tuning voltage Vcm and the third tuning voltage Vcm +.
  • the cathodic terminal of the third varactor 56 and the cathodic terminal of the fourth varactor 58 are connected to each other, to the source contact or emitter terminal of a third transistor 66 of the calibration oscillator 50 and to the drain contact or collector terminal of a fourth transistor 68 of the calibration oscillator 50.
  • the source contact or emitter terminal of the second transistor 64 and the source contact or emitter terminal of the fourth transistor 68 are connected to one another and to a current source 60 connected.
  • the gate contact or base terminal of the first transistor 62 and the gate contact or base terminal of the third transistor 66 are connected to each other and are applied with a bias voltage or bias voltage Vbias.
  • the drain contact or collector terminal of the first transistor 62 and the drain contact or collector terminal of the third transistor 66 provide the output signal Vc of the calibration oscillator 50.
  • the other of the two additional oscillators 30, 50 is a based Fig. 9 Exemplary illustrated reference oscillator 30 which is associated with the calibration oscillator 50 in terms of timing.
  • the anodic terminal of a first varactor 32 of the reference oscillator 30 and the anodic terminal of a second varactor 34 of the reference oscillator 30 are subjected to a reference potential or reference potential GND, namely ground potential or ground potential or zero potential.
  • the cathodic terminal of the first varactor 32 and the cathodic terminal of the second varactor 34 are connected to one another, to the source contact or emitter terminal of a first transistor 42 of the reference oscillator 30 and to the drain contact or collector terminal of a second transistor 44 of the reference oscillator 30.
  • the anodic terminal of a third varactor 36 of the reference oscillator 30 and the anodic terminal of a fourth varactor 38 of the reference oscillator 30 are supplied with the reference potential or reference potential GND, namely with ground potential or ground potential or zero potential.
  • the cathodic terminal of the third varactor 36 and the cathodic terminal of the fourth varactor 38 are connected to one another, to the source contact or emitter terminal of a third transistor 46 of the reference oscillator 30 and to the drain contact or collector terminal of a fourth transistor 48 of the reference oscillator 30.
  • the source contact or emitter terminal of the second transistor 44 and the source contact or emitter terminal of the fourth transistor 48 are connected to one another and to a current source 40.
  • the gate contact or base terminal of the first transistor 42 and the gate contact or base terminal of the third transistor 46 are connected to each other and are applied with a bias voltage or bias voltage Vbias.
  • the drain contact or collector terminal of the first transistor 42 and the drain contact or collector terminal of the third transistor 46 provide the output signal Vr of the reference oscillator 30.
  • varactor diodes or tuning diodes or varicabs 12, 14, 32, 34, 36, 38, 52, 54, 56, 58 are electronic semiconductor devices in which a variation occurs by changing the applied voltage the capacity of for example 10 to 1 reach, so that an electrically controllable capacity is available.
  • a portion of the aforementioned transistors 22, 24, 26, 28, 42, 44, 46, 48, 62, 64, 66, 68 may or all of the aforementioned transistors 22, 24, 26, 28, 42, 44, 46, 48, 62nd , 64, 66, 68 can be used, in particular, as field-effect transistors (FETs), for example as metal oxide semiconductor field-effect transistors (MOSFETs), such as n-type field effect transistors.
  • MOSFETs metal oxide semiconductor field-effect transistors
  • n-type MOSFETs may be formed.
  • a clock counter 70 (so-called clock cycle error counter) connected downstream of the calibration oscillator 50 and the reference oscillator 30 compares the respective number N of clocks (clock cycles) of the calibration oscillator 50 on the basis of the output signal Vc of the calibration oscillator 50 and of the output signal Vr of the reference oscillator 30. of the reference oscillator 30 and forms the difference.
  • N clock error DE (so-called clock cycle error) is integrated in the clock counter 70 and provided as a digital bus signal to the clock counter 70 subsequent digital-to-analog converter 90 as an input signal.
  • the digital-to-analog converter 90 converts the clock error DE into an analog signal which sets the tuning voltage Vcm, Vcm-, Vcm + in the calibration oscillator 50 to the correct value.
  • Fig. 10 exemplifies the calculations of the calibration circuit 100, in particular accuracy, standard deviation ⁇ , necessary counter length of the clock counter 70, bit width of the digital-to-analog converter 90 and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Manipulation Of Pulses (AREA)

Description

    Technisches Gebiet
  • Die vorliegende Erfindung betrifft grundsätzlich das technische Gebiet des Ansteuerns mindestens eines spannungsgesteuerten Oszillators für Schaltungen zur Takt- und Datenrückgewinnung (= CDR = Clock and Data Recovery); im Spezielleren betrifft die vorliegende Erfindung eine Schaltungsanordnung gemäß dem Oberbegriff des Anspruchs 1 sowie ein Verfahren gemäß dem Oberbegriff des Anspruchs 13.
  • Stand der Technik, insbesondere dessen Nachteile und technische Probleme
  • Bei derartigen Schaltungen zur Takt- und Datenrückgewinnung oder CDR-Schaltungen wird grundsätzlich die Art des Phasendetektors unterschieden:
    • linearer Phasendetektor:
      • die lineare Phasendifferenz an beiden Eingängen des Phasendetektors wird am Ausgang des Phasendetektors angezeigt;
    • binärer Phasendetektor:
      • am Ausgang des Phasendetektors wird das Vorzeichen der Phasendifferenz der beiden Eingänge des Phasendetektors ermittelt (voreilend oder nacheilend); dies kann zum Beispiel durch zwei digitale Phasendetektor-Ausgangssignale "up" (für voreilend) und "down" (für nacheilend) angezeigt werden oder aber durch ein Phasendetektor-Ausgangssignal, das drei verschiedene Ausgangspegel annehmen kann, zum Beispiel 200 Millivolt für voreilend, 400 Millivolt für Phasendifferenz gleich null und 600 Millivolt für nacheilend; charakteristisch für binäre Phasendetektoren ist, dass die Höhe der Ausgangsspannung keine Information über die aktuelle Phasendifferenz an den Eingängen des Phasendetektors liefert - es wird nur unterschieden zwischen Phasendifferenz kleiner null, Phasendifferenz gleich null, Phasendifferenz größer null.
  • CDR-Schaltungen mit binären Phasendetektoren werden häufig bei Datenübertragungen im Frequenzbereich größer als ein Gigahertz eingesetzt, denn sie sind bei begrenzter Geschwindigkeit der verwendeten Technologie einfacher zu implementieren und zeigen ein sehr robustes Verhalten (bessere sogenannte Power-Supply-Rejection).
  • Des Weiteren ist es bei der Implementierung von CDR-Schaltungen üblich, dass ein spannungsgesteuerter Oszillator (= VCO = Voltage-Controlled Oscillator) mit zwei Tuning-Eingängen eingesetzt wird, um im benötigten Schleifenfilter der CDR-Schaltung kleinere on-chip-Kapazitäten zu implementieren und des Weiteren das Phasenrauschen der CDR-Schaltung zu verbessern.
  • Fig. 1 zeigt ein erstes Beispiel für einen spannungsgesteuerten Ringoszillator RO mit zwei Tuning-Eingängen Vtune1, Vtune2 aus dem Stand der Technik. Die Frequenz dieses spannungsgesteuerten Oszillators RO kann über diese beiden Tuning-Eingänge Vtune1 und Vtune2 separat eingestellt werden. Hierbei wird die Frequenzänderung durch vier separate Varaktor(diod)en D1, D2, D3, D4 eingestellt.
  • Fig. 2 zeigt ein zweites Beispiel für einen spannungsgesteuerten Ringoszillator RO' mit zwei Tuning-Eingängen Vtune1, Vtune2 aus dem Stand der Technik. Mittels des ersten Tuning-Eingangs Vtune1 wird üblicherweise eine Grobeinstellung des spannungsgesteuerten Oszillators RO' vorgenommen, wobei sich die Stromstärke 11 einer ersten Stromquelle SQ1' zu 11 = ID[irect]C[urrent] + Leitwert* Vtune1 und die Stromstärke 12 einer zweiten Stromquelle SQ2' zu 12 = ID[irect]C[urrent] - Leitwert* Vtune1 ergeben.
  • Mit den beiden digitalen Signalen up und dnb wird eine Feineinstellung des spannungsgesteuerten Oszillators RO' vorgenommen. up und dnb können die digitalen Ausgangssignale eines binären Phasendetektors sein.
  • Fig. 3 zeigt den Frequenz-Tuning-Bereich des spannungsgesteuerten Oszillators RO' aus Fig. 2, wenn zum Beispiel die Spannung an up oder an dnb von 100 Millivolt bis ein Volt verändert wird (= Rechtsachse). Da die beiden Tuningsignale up und dnb üblicherweise digitaler Natur sind, hat der Oszillator RO' drei unterschiedliche Ausgangsfrequenzen:
    • up = 0, dnb = 1: Ausgangsfrequenz f0;
    • up = 1, dnb = 1: Ausgangsfrequenz f0 - df;
    • up = 1, dnb = 0: Ausgangsfrequenz f0;
    • up = 0, dnb = 0: Ausgangsfrequenz f0 + df.
  • Die Nachteile der gemäß den beiden Beispielen der Fig. 1 bis Fig. 3 beschriebenen konventionellen Lösungen sind zum einen ein hoher Energieverbrauch wegen der Erzeugung zweier digitaler Signale up und dnb, zum anderen eine niedrige Ausgangsfrequenz, denn es sind vier Varaktoren D1, D2, D3, D4 (vgl. erstes Beispiel gemäß Fig. 1) bzw. D1', D2', D3', D4' (vgl. zweites Beispiel gemäß Fig. 2 und Fig. 3) erforderlich, so dass mehr parasitäre Kapazität im Oszillators RO bzw. Oszillators RO' erzeugt wird.
  • Die Druckschrift US 7 129 763 B1 offenbart einen digitalen Schaltungsaufbau für ein Rechengerät; insbesondere offenbart die US 7 129 763 B1 ein Einstellen der Leistungsaufnahme des digitalen Schaltungsaufbaus durch Erzeugen eines Frequenzfehlers, der einen Fehler in einer Signalverzögerung darstellt. Mithin hat die US 7 129 763 B1 zum Ziel, in einer digitalen Schaltung die Leistungsaufnahme zu senken. Als Maß dienen interne Signalverzögerungen der Schaltung, die in akzeptablen Grenzen bleiben müssen.
  • Zum technologischen Hintergrund der vorliegenden Erfindung wird auf die Druckschrift US 6 259 326 B1 sowie auf die Druckschrift EP 0 739 089 A2 aufmerksam gemacht.
  • Darstellung der vorliegenden Erfindung: Aufgabe, Lösung, Vorteile
  • Ausgehend von den vorstehend dargelegten Nachteilen und Unzulänglichkeiten sowie unter Würdigung des umrissenen Standes der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine Schaltungsanordnung gemäß dem Oberbegriff des Anspruchs 1 sowie ein Verfahren gemäß dem Oberbegriff des Anspruchs 13 so weiterzubilden, dass der Energieaufwand möglichst gering und die Ausgangsfrequenz möglichst groß ist.
  • Diese Aufgabe wird durch eine Schaltungsanordnung mit den Merkmalen des Anspruchs 1 sowie durch ein Verfahren mit den Merkmalen des Anspruchs 13 gelöst. Vorteilhafte Ausgestaltungen und zweckmäßige Weiterbildungen der vorliegenden Erfindung sind in den jeweiligen Unteransprüchen gekennzeichnet.
  • Erfindungsgemäß wird mindestens ein spannungsgesteuerter Oszillator (= VCO = Voltage-Controlled Oscillator) für mindestens eine Schaltung zur Takt- und Datenrückgewinnung (= CDR = Clock and Data Recovery), die mindestens einen binären Phasendetektor (= sogenannten Bang-Bang-Phasendetektor oder Aufwärts/Abwärts-Phasendetektor) aufweist, derart angesteuert, dass nicht mehr vier, sondern nur noch zwei Varaktor(diod)en oder Abstimmdioden oder Kapazitätsdioden oder Varicaps benötigt werden, wobei die Frequenzänderung nicht mehr mit zwei Ansteuersignalen, sondern nur noch mit einem Ansteuersignal erzielt wird.
  • Hierdurch ist zum einen ein niedriger Strombedarf, das heißt ein niedriger Energieverbrauch realisierbar, denn aufgrund geringerer Parasitär-Kapazität als im Stand der Technik ist weniger Strom erforderlich, um die gleiche Ausgangsfrequenz zu erzielen. Zum anderen ist eine höhere Ausgangsfrequenz realisierbar, denn durch lediglich zwei Varaktoren (anstelle vierer Varaktoren im Stand der Technik) wird weniger parasitäre Kapazität im spannungsgesteuerten Oszillator erzeugt, so dass das Layout des spannungsgesteuerten Oszillators kompakter gestaltet werden kann.
  • Die vorliegende Erfindung betrifft schließlich die Verwendung mindestens einer Schaltungsanordnung gemäß der vorstehend dargelegten Art und/oder eines Verfahrens gemäß der vorstehend dargelegten Art zum Ansteuern mindestens eines spannungsgesteuerten Oszillators (= VCO = Voltage-Controlled Oscillator) für mindestens eine Schaltung zur Takt- und Datenrückgewinnung (= CDR = Clock and Data Recovery) mit mindestens einem binären Phasendetektor (= sogenannter Bang-Bang-Phasendetektor oder Aufwärts/Abwärts-Phasendetektor).
  • Kurze Beschreibung der Zeichnungen
  • Wie bereits vorstehend erörtert, gibt es verschiedene Möglichkeiten, die Lehre der vorliegenden Erfindung in vorteilhafter Weise auszugestalten und weiterzubilden. Hierzu wird einerseits auf die dem Anspruch 1 sowie dem Anspruch 13 nachgeordneten Ansprüche verwiesen, andererseits werden weitere Ausgestaltungen, Merkmale und Vorteile der vorliegenden Erfindung nachstehend unter Anderem anhand des durch Fig. 4 bis Fig. 10 veranschaulichten Ausführungsbeispiels näher erläutert. Es zeigt:
  • Fig. 1
    in konzeptuell-schematischer Darstellung ein erstes Beispiel für einen spannungsgesteuerten Oszillator aus dem Stand der Technik, der nach dem Verfahren aus dem Stand der Technik arbeitet;
    Fig. 2
    in konzeptuell-schematischer Darstellung ein zweites Beispiel für einen spannungsgesteuerten Oszillator aus dem Stand der Technik, der nach dem Verfahren aus dem Stand der Technik arbeitet;
    Fig.3
    in diagrammatischer Darstellung die typische Frequenz-Tuning-Charakteristik des spannungsgesteuerten Oszillators aus Fig. 2, wobei die Ansteuerspannung auf der Rechtsachse aufgetragen ist;
    Fig. 4
    in konzeptuell-schematischer Darstellung ein Ausführungsbeispiel für einen spannungsgesteuerten Oszillator, der Teil der erfindungsgemäßen Schaltungsanordnung aus Fig. 7 ist und nach dem Verfahren gemäß der vorliegenden Erfindung arbeitet;
    Fig. 5
    in diagrammatischer Darstellung die Frequenz-Tuning-Charakteristik des spannungsgesteuerten Oszillators aus Fig. 4, wobei die Ansteuerspannung auf der Rechtsachse aufgetragen ist;
    Fig. 6
    in diagrammatischer Darstellung betriebsparameterbedingte Abweichungen in der Frequenz-Tuning-Charakteristik aus Fig. 5;
    Fig. 7
    in konzeptuell-schematischer Darstellung ein Ausführungsbeispiel für eine Schaltungsanordnung gemäß der vorliegenden Erfindung, die nach dem Verfahren gemäß der vorliegenden Erfindung arbeitet;
    Fig.8
    in konzeptuell-schematischer Darstellung ein Ausführungsbeispiel für einen Kalibrierungsoszillator, der Teil der erfindungsgemäßen Schaltungsanordnung aus Fig. 7 ist und nach dem Verfahren gemäß der vorliegenden Erfindung arbeitet;
    Fig. 9
    in konzeptuell-schematischer Darstellung ein Ausführungsbeispiel für einen Referenzoszillator, der Teil der erfindungsgemäßen Schaltungsanordnung aus Fig. 7 ist und nach dem Verfahren gemäß der vorliegenden Erfindung arbeitet; und
    Fig. 10
    in diagrammatischer Darstellung eine visuelle Veranschaulichung der Berechnungen der Schaltungsanordnung aus Fig. 7.
  • Gleiche oder ähnliche Ausgestaltungen, Elemente oder Merkmale sind in Fig. 1 bis Fig. 10 mit identischen Bezugszeichen versehen.
  • Bester Weg zur Ausführung der vorliegenden Erfindung
  • Fig. 4 zeigt ein Ausführungsbeispiel für einen spannungsgesteuerten Ringoszillator 10. Die Frequenz dieses spannungsgesteuerten Oszillators 10 kann - anders als im Stand der Technik (vgl. Fig. 1, Fig. 2), demzufolge zwei Tuning-Eingänge benötigt werden - über ein kalibriertes Ansteuersignal Vbb eingestellt werden. Hierbei wird die Frequenzänderung durch zwei Varaktor(diod)en oder Abstimmdioden oder Kapazitätsdioden oder Varicaps 12, 14 eingestellt.
  • Fig. 4 ist entnehmbar, dass der anodische Anschluss des ersten Varaktors 12 des spannungsgesteuerten Oszillators 10 und der anodische Anschluss des zweiten Varaktors 14 des spannungsgesteuerten Oszillators 10 mit dem kalibrierten Ansteuersignal Vbb beaufschlagt werden.
  • Der kathodische Anschluss des ersten Varaktors 12 ist mit dem Sourcekontakt oder Emitteranschluss eines ersten Transistors 22 des spannungsgesteuerten Oszillators 10 sowie mit dem Drainkontakt oder Kollektoranschluss eines zweiten Transistors 24 des spannungsgesteuerten Oszillators 10 verbunden, und der kathodische Anschluss des zweiten Varaktors 14 ist mit dem Sourcekontakt oder Emitteranschluss eines dritten Transistors 26 des spannungsgesteuerten Oszillators 10 sowie mit dem Drainkontakt oder Kollektoranschluss eines vierten Transistors 28 des spannungsgesteuerten Oszillators 10 verbunden.
  • Der Sourcekontakt oder Emitteranschluss des zweiten Transistors 24 und der Sourcekontakt oder Emitteranschluss des vierten Transistors 28 sind miteinander sowie mit einer Stromquelle 20 verbunden. Der Gatekontakt oder Basisanschluss des ersten Transistors 22 und der Gatekontakt oder Basisanschluss des dritten Transistors 26 sind miteinander verbunden und werden mit einer Biasspannung oder Vorspannung Vbias beaufschlagt. Der Drainkontakt oder Kollektoranschluss des ersten Transistors 22 und der Drainkontakt oder Kollektoranschluss des dritten Transistors 26 stellen das Ausgangssignal Ve des spannungsgesteuerten Oszillators 10 zur Verfügung.
  • Fig. 5 zeigt die typische Frequenz-Tuning-Charakteristik, wenn die Ansteuerspannung Vbb im Bereich von 100 Millivolt bis 700 Millivolt variiert wird. Der Oszillator 10 erhält am Tuning-Eingang Vbb nun drei diskrete, entsprechend vom Ausgang des binären Phasendetektors erzeugte Spannungen und erzeugt damit nun drei diskrete Ausgangsfrequenzen:
    • Tuningspannung Vbb = 200 Millivolt --> Ausgangsfrequenz f0 - df;
    • Tuningspannung Vbb = 400 Millivolt --> Ausgangsfrequenz f0;
    • Tuningspannung Vbb = 600 Millivolt --> Ausgangsfrequenz f0 + df.
  • Die Frequenz-Tuning-Charakteristik ändert sich über die Betriebsparameter, wie etwa Technologie, Versorgungsspannung und Temperatur. Dieses Verhalten ist in Fig. 6 dargestellt, in der zum optimalen Einstellen der Ausgangsfrequenz f0 eine Ansteuerspannung Vbb von etwa 495 Millivolt anstelle 400 Millivolt angezeigt ist, das heißt die Abweichung von Vbb = 400 Millivolt beträgt zum Beispiel für eine Chip-Temperatur von 120 Grad Celsius etwa 95 Millivolt.
  • Um nun für alle Betriebsparameter jeweils die korrekte Tuningspannung Vbb zu erzeugen, weist die vorliegende Erfindung eine Kalibrierungsschaltung 100 auf, wie anhand eines Ausführungsbeispiels in Fig. 7 veranschaulicht:
  • Die Kalibrierungsschaltung 100 gemäß Fig. 7 weist zwei zusätzliche Oszillatoren 30, 50 von im Wesentlichen gleicher Bauart wie den vorstehend unter Bezugnahme auf Fig. 4 beschriebenen Hauptoszillator 10 auf. Jedoch können diese beiden zusätzlichen Oszillatoren 30, 50 mit wesentlich niedrigerer Frequenz und damit mit wesentlich niedrigerem Stromverbrauch als der Hauptoszillator 10 betrieben werden; gleichwohl weisen diese beiden zusätzlichen Oszillatoren 30, 50 im Wesentlichen die gleichen Tuning-Eigenschaften wie der Hauptoszillator 10 auf.
  • Der eine der beiden zusätzlichen Oszillatoren 30, 50 ist ein anhand Fig. 8 exemplarisch veranschaulichter Kalibrierungsoszillator 50, der jeweils abwechselnd für die Zeitspanne Tref eine erste Tuningspannung Vcm von etwa 400 Millivolt, anschließend eine dritte Tuningspannung Vcm+ von etwa 600 Millivolt (= Vcm + 200 Millivolt) und daran anschließend eine zweite Tuningspannung Vcm- von etwa 200 Millivolt (= Vcm - 200 Millivolt) erhält.
  • Der anodische Anschluss eines ersten Varaktors 52 des Kalibrierungsoszillators 50 wird mit der ersten Tuningspannung Vcm und mit der zweiten Tuningspannung Vcm- beaufschlagt, und der anodische Anschluss eines zweiten Varaktors 54 des Kalibrierungsoszillators 50 wird mit der ersten Tuningspannung Vcm und mit der dritten Tuningspannung Vcm+ beaufschlagt.
  • Der kathodische Anschluss des ersten Varaktors 52 und der kathodische Anschluss des zweiten Varaktors 54 sind miteinander, mit dem Sourcekontakt oder Emitteranschluss eines ersten Transistors 62 des Kalibrierungsoszillators 50 sowie mit dem Drainkontakt oder Kollektoranschluss eines zweiten Transistors 64 des Kalibrierungsoszillators 50 verbunden.
  • Der anodische Anschluss eines dritten Varaktors 56 des Kalibrierungsoszillators 50 wird mit der ersten Tuningspannung Vcm und mit der zweiten Tuningspannung Vcm- beaufschlagt, und der anodische Anschluss eines vierten Varaktors 58 des Kalibrierungsoszillators 50 wird mit der ersten Tuningspannung Vcm und mit der dritten Tuningspannung Vcm+ beaufschlagt.
  • Der kathodische Anschluss des dritten Varaktors 56 und der kathodische Anschluss des vierten Varaktors 58 sind miteinander, mit dem Sourcekontakt oder Emitteranschluss eines dritten Transistors 66 des Kalibrierungsoszillators 50 sowie mit dem Drainkontakt oder Kollektoranschluss eines vierten Transistors 68 des Kalibrierungsoszillators 50 verbunden.
  • Der Sourcekontakt oder Emitteranschluss des zweiten Transistors 64 und der Sourcekontakt oder Emitteranschluss des vierten Transistors 68 sind miteinander sowie mit einer Stromquelle 60 verbunden. Der Gatekontakt oder Basisanschluss des ersten Transistors 62 und der Gatekontakt oder Basisanschluss des dritten Transistors 66 sind miteinander verbunden und werden mit einer Biasspannung oder Vorspannung Vbias beaufschlagt. Der Draihkontakt oder Kollektoranschluss des ersten Transistors 62 und der Drainkontakt oder Kollektoranschluss des dritten Transistors 66 stellen das Ausgangssignal Vc des Kalibrierungsoszillators 50 zur Verfügung.
  • Der anderen der beiden zusätzlichen Oszillatoren 30, 50 ist ein anhand Fig. 9 exemplarisch veranschaulichter Referenzoszillator 30, der dem Kalibrierungsoszillator 50 taktmäßig zugeordnet ist.
  • Der anodische Anschluss eines ersten Varaktors 32 des Referenzoszillators 30 und der anodische Anschluss eines zweiten Varaktors 34 des Referenzoszillators 30 werden mit einem Bezugspotential oder Referenzpotential GND, nämlich mit Erdpotential oder Massepotential oder Nullpotential beaufschlagt.
  • Der kathodische Anschluss des ersten Varaktors 32 und der kathodische Anschluss des zweiten Varaktors 34 sind miteinander, mit dem Sourcekontakt oder Emitteranschluss eines ersten Transistors 42 des Referenzoszillators 30 sowie mit dem Drainkontakt oder Kollektoranschluss eines zweiten Transistors 44 des Referenzoszillators 30 verbunden.
  • Der anodische Anschluss eines dritten Varaktors 36 des Referenzoszillators 30 und der anodische Anschluss eines vierten Varaktors 38 des Referenzoszillators 30 werden mit dem Bezugspotential oder Referenzpotential GND, nämlich mit Erdpotential oder Massepotential oder Nullpotential beaufschlagt.
  • Der kathodische Anschluss des dritten Varaktors 36 und der kathodische Anschluss des vierten Varaktors 38 sind miteinander, mit dem Sourcekontakt oder Emitteranschluss eines dritten Transistors 46 des Referenzoszillators 30 sowie mit dem Drainkontakt oder Kollektoranschluss eines vierten Transistors 48 des Referenzoszillators 30 verbunden.
  • Der Sourcekontakt oder Emitteranschluss des zweiten Transistors 44 und der Sourcekontakt oder Emitteranschluss des vierten Transistors 48 sind miteinander sowie mit einer Stromquelle 40 verbunden. Der Gatekontakt oder Basisanschluss des ersten Transistors 42 und der Gatekontakt oder Basisanschluss des dritten Transistors 46 sind miteinander verbunden und werden mit einer Biasspannung oder Vorspannung Vbias beaufschlagt. Der Drainkontakt oder Kollektoranschluss des ersten Transistors 42 und der Drainkontakt oder Kollektoranschluss des dritten Transistors 46 stellen das Ausgangssignal Vr des Referenzoszillators 30 zur Verfügung.
  • Bei den vorgenannten Varaktor(diod)en oder Abstimmdioden oder Kapazitätsdioden oder Varicaps 12, 14, 32, 34, 36, 38, 52, 54, 56, 58 handelt es sich um elektronische Halbleiterbauteile, bei denen sich durch Ändern der angelegten Spannung eine Variation der Kapazität von zum Beispiel 10 zu 1 erreichen lässt, so dass eine elektrisch steuerbare Kapazität zur Verfügung steht.
  • Ein Teil der vorgenannten Transistoren 22, 24, 26, 28, 42, 44, 46, 48, 62, 64, 66, 68 kann oder alle vorgenannten Transistoren 22, 24, 26, 28, 42, 44, 46, 48, 62, 64, 66, 68 können insbesondere als Feldeffekttransistoren (FET = Field-Effect Transistor), zum Beispiel als Metall-Oxid-Halbleiter-Feldeffekttransistoren (MOSFET = Metal-Oxide-Semiconductor Field-Effect Transistor), wie etwa als n-Typ-Metall-Oxid-Halbleiter-Feldeffekttransistoren (n-type MOSFETs), ausgebildet sein.
  • Ein dem Kalibrierungsoszillator 50 sowie dem Referenzoszillator 30 nachgeschalteter Taktzähler 70 (sogenannter clock cycle error counter) vergleicht auf Basis des Ausgangssignals Vc des Kalibrierungsoszillators 50 sowie des Ausgangssignals Vr des Referenzoszillators 30 die jeweilige Anzahl N der Takte (sogenannte clock cycles) des Kalibrierungsoszillators 50 bzw. des Referenzoszillators 30 und bildet die Differenz.
  • Der sich aus der Differenz dieser beiden Taktanzahlen N ergebende Taktfehler DE (sogenannter clock cycle error) wird im Taktzähler 70 integriert und als digitales Bus-Signal einem dem Taktzähler 70 nachfolgenden Digital-Analog-Wandler 90 als Eingangssignal bereit gestellt. Der Digital-Analog-Wandler 90 wandelt den Taktfehler DE in ein analoges Signal um, das die Tuningspannung Vcm, Vcm-, Vcm+ im Kalibrierungsoszillator 50 auf den richtigen Wert einstellt.
  • Fig. 10 veranschaulicht exemplarisch die Berechnungen der Kalibrierungsschaltung 100, insbesondere Genauigkeit, Standardabweichung σ, notwendige Zählerlänge des Taktzählers 70, Bitbreite des Digital-Analog-Wandlers 90 und dergleichen.
  • Hierbei
    • ist in der obersten Zeile der Fig. 10 die jeweils durch einen Doppelpfeil angedeutete zeitliche Signallänge N*Tref± σref*N0,5 veranschaulicht,
    • in der zweitobersten Zeile wird die Funktion des N Zyklen zählenden Referenzoszillators 30 veranschaulicht,
    • in der zweituntersten Zeile wird die Funktion des die Frequenz verschiebenden Kalibrierungsoszillators 50 veranschaulicht und
    • in der untersten Zeile wird die Funktion des digitalen Integrierers innerhalb des Taktzählers 70 veranschaulicht.
  • Hierbei ergibt sich die Anzahl Ncount@600 der clock cycles (Takte) während der Tuningspannung Vcm + 200 Millivolt (= etwa 600 Millivolt) zu Ncount@600 = [N*Tref ± σref*N0,5 ± σ600*(N*Tref/T600)0,5]T600; entsprechend ergibt sich die Anzahl Ncount@400 der clock cycles (Takte) während der Tuningspannung Vcm (= etwa 400 Millivolt) zu Ncount@400 = [N*Tref 2 ± σref*N0,5 ±σ400*(N*Tref/T400)0,5]/T400, und die Anzahl Ncount@200 der clock cycles (Takte) während der Tuningspannung Vcm - 200 Millivolt (= etwa 200 Millivolt) ergibt sich zu Ncount@200 = [N*Tref ± σref*N0,5 ± σ200*(N*Tref/T200)0,5]/T200.
  • Wenn der Referenzoszillator 30 von derselben Art wie der Kalibrierungsoszillator 50 ist, so ist auch die Jitter-Performance dieselbe, so dass in obiger Formel σ600*(N*Tref/T600)0,5 = σref*N0,5 bzw. σ400*(N*Tref/T400)0,5 = σref*N0,5 bzw. σ200*(N*Tref/T200)0,5 = σref*N0,5 gilt.
  • In diesem Falle ergibt sich die Anzahl Ncount@600 der clock cycles (Takte) während der Tuningspannung Vcm + 200 Millivolt (= etwa 600 Millivolt) zu Anzahl Ncount@600 = [N*Tref ± 2*σref*N0,5]/T600; entsprechend ergibt sich die Anzahl Ncount@400 der clock cycles (Takte) während der Tuningspannung Vcm (= etwa 400 Millivolt) zu Anzahl Ncount@400 = [N*Tref ± 2*σref*N0,5]/T400, und die Anzahl Ncount@200 der clock cycles (Takte) während der Tuningspannung Vcm - 200 Millivolt (= etwa 200 Millivolt) ergibt sich zu zu Anzahl Ncount@200 = [N*Tref ± 2*σref*N0,5]/T200.
  • Der digitale Integrierer innerhalb des Taktzählers 70 gibt unter Berücksichtigung des digitalen Fehlers DE die Gesamtanzahl Ncount@600 - Ncount@400 + Ncount@200 - Ncount@400 = [N*Tref ± 2*σref*N0,5]/T600 - [N*Tref ± 2*σref*N0,5]/T400 + [N*Tref ± 2*σref*N0,5]/T200 - [N*Tref ± 2*σref*N0,5]/T400 aus.
  • Da nun ± 2*σref*N0,5]/T600 ± 2*σref*N0,5]/T400 ± 2*σref*N0,5]/T200 ± 2*σref*N0,5]/T400 = ± 8*σref*N0,5]/T400, ergibt sich eine Frequenzabweichung Δf600-400 - Δf400-200 = 1/T600 - 1/T400 - (1/T400 - 1/T200) = 1/T600 - 1/T400 + 1/T200 - 1/T400 = ± 8*σref/Tref*T400*N0,5).
  • Bezugszeichenliste
  • 100
    Schaltungsanordnung, insbesondere Kalibrierungsschaltung
    10
    spannungsgesteuerter Oszillator, insbesondere spannungsgesteuerter Ringoszillator
    12
    erster Varaktor des spannungsgesteuerten Oszillators 10
    14
    zweiter Varaktor des spannungsgesteuerten Oszillators 10
    20
    Stromquelle des spannungsgesteuerten Oszillators 10
    22
    erster Transistor des spannungsgesteuerten Oszillators 10
    24
    zweiter Transistor des spannungsgesteuerten Oszillators 10
    26
    dritter Transistor des spannungsgesteuerten Oszillators 10
    28
    vierter Transistor des spannungsgesteuerten Oszillators 10
    30
    Referenzoszillator
    32
    erster Varaktor des Referenzoszillators 30
    34
    zweiter Varaktor des Referenzoszillators 30
    36
    dritter Varaktor des Referenzoszillators 30
    38
    vierter Varaktor des Referenzoszillators 30
    40
    Stromquelle des Referenzoszillators 30
    42
    erster Transistor des Referenzoszillators 30
    44
    zweiter Transistor des Referenzoszillators 30
    46
    dritter Transistor des Referenzoszillators 30
    48
    vierter Transistor des Referenzoszillators 30
    50
    Kalibrierungsoszillator
    52
    erster Varaktor des Kalibrierungsoszillators 50
    54
    zweiter Varaktor des Kalibrierungsoszillators 50
    56
    dritter Varaktor des Kalibrierungsoszillators 50
    58
    vierter Varaktor des Kalibrierungsoszillators 50
    60
    Stromquelle des Kalibrierungsoszillators 50
    62
    erster Transistor des Kalibrierungsoszillators 50
    64
    zweiter Transistor des Kalibrierungsoszillators 50
    66
    dritter Transistor des Kalibrierungsoszillators 50
    68
    vierter Transistor des Kalibrierungsoszillators 50
    70
    Taktzähler
    90
    Digital-Analog-Wandler
    D1
    erster Varaktor des spannungsgesteuerten Oszillators RO (= Stand der Technik; vgl. Fig. 1)
    D1'
    erster Varaktor des spannungsgesteuerten Oszillators RO' (= Stand der Technik; vgl. Fig. 2)
    D2
    zweiter Varaktor des spannungsgesteuerten Oszillators RO (= Stand der Technik; vgl. Fig. 1)
    D2'
    zweiter Varaktor des spannungsgesteuerten Oszillators RO' (= Stand der Technik; vgl. Fig. 2)
    D3
    dritter Varaktor des spannungsgesteuerten Oszillators RO (= Stand der Technik; vgl. Fig. 1)
    D3'
    dritter Varaktor des spannungsgesteuerten Oszillators RO' (= Stand der Technik; vgl. Fig. 2)
    D4
    vierter Varaktor des spannungsgesteuerten Oszillators RO (= Stand der Technik; vgl. Fig. 1)
    D4'
    vierter Varaktor des spannungsgesteuerten Oszillators RO' (= Stand der Technik; vgl. Fig. 2)
    DE
    Taktfehler, insbesondere digitaler Taktfehler
    dnb
    zweites digitales Signal zur Feineinstellung des spannungsgesteuerten Oszillators RO' (= Stand der Technik; vgl. Fig. 2)
    GND
    Bezugspotential oder Referenzpotential, insbesondere Erdpotential oder Massepotential oder Nullpotential
    I1
    Stromstärke der ersten Stromquelle SQ1' (= Stand der Technik; vgl. Fig. 2)
    I2
    Stromstärke der zweiten Stromquelle SQ2' (= Stand der Technik; vgl. Fig. 2)
    N
    Taktanzahl
    RO
    spannungsgesteuerter Oszillator, insbesondere spannungsgesteuerter Ringoszillator (= Stand der Technik; vgl. Fig. 1)
    RO'
    spannungsgesteuerter Oszillator, insbesondere spannungsgesteuerter Ringoszillator (= Stand der Technik; vgl. Fig. 2)
    SQ
    Stromquelle des spannungsgesteuerten Oszillators RO (= Stand der Technik; vgl. Fig. 1)
    SQ1'
    erste Stromquelle des spannungsgesteuerten Oszillators RO' (= Stand der Technik; vgl. Fig. 2)
    SQ2'
    zweite Stromquelle des spannungsgesteuerten Oszillators RO' (= Stand der Technik; vgl. Fig. 2)
    Tref
    Zeit oder Zeitspanne
    T1
    erster Transistor des spannungsgesteuerten Oszillators RO (= Stand der Technik; vgl. Fig. 1)
    T1'
    erster Transistor des spannungsgesteuerten Oszillators RO' (= Stand der Technik; vgl. Fig. 2)
    T2
    zweiter Transistor des spannungsgesteuerten Oszillators RO (= Stand der Technik; vgl. Fig. 1)
    T2'
    zweiter Transistor des spannungsgesteuerten Oszillators RO' (= Stand der Technik; vgl. Fig. 2)
    T3
    dritter Transistor des spannungsgesteuerten Oszillators RO (= Stand der Technik; vgl. Fig. 1)
    T3'
    dritter Transistor des spannungsgesteuerten Oszillators RO' (= Stand der Technik; vgl. Fig. 2)
    T4
    vierter Transistor des spannungsgesteuerten Oszillators RO (= Stand der Technik; vgl. Fig. 1)
    T4'
    vierter Transistor des spannungsgesteuerten Oszillators RO' (= Stand der Technik; vgl. Fig. 2)
    T5'
    fünfter Transistor des spannungsgesteuerten Oszillators RO' (= Stand der Technik; vgl. Fig. 2)
    T6'
    sechster Transistor des spannungsgesteuerten Oszillators RO' (= Stand der Technik; vgl. Fig. 2)
    up
    erstes digitales Signal zur Feineinstellung des spannungsgesteuerten Oszillators RO' (= Stand der Technik; vgl. Fig. 2)
    Vbb
    Ansteuersignal des spannungsgesteuerten Oszillators 10
    Vbias
    Biasspannung oder Vorspannung
    Vc
    Ausgangssignal des Kalibrierungsoszillators 50
    Vcm
    erstes Tuningsignal des Kalibrierungsoszillators 50
    Vcm-
    zweites Tuningsignal des Kalibrierungsoszillators 50
    Vcm+
    drittes Tuningsignal des Kalibrierungsoszillators 50
    Ve
    Ausgangssignal des spannungsgesteuerten Oszillators 10
    Vr
    Ausgangssignal des Referenzoszillators 30
    Vtune1
    erster Tuning-Eingang (= Stand der Technik; vgl. Fig. 1 und Fig. 2)
    Vtune2
    zweiter Tuning-Eingang (= Stand der Technik; vgl. Fig. 1)

Claims (15)

  1. Schaltungsanordnung (100) zum Kalibrieren mindestens eines für einen spannungsgesteuerten Oszillator (10) vorgesehenen Ansteuersignals (Vbb),
    gekennzeichnet durch
    - mindestens einen Kalibrierungsoszillator (50),
    - mindestens einen dem Kalibrierungsoszillator (50) zugeordneten Referenzoszillator (30),
    - mindestens einen dem Kalibrierungsoszillator (50) und dem Referenzoszillator (30) nachgeschalteten Taktzähler (70) zum Zählen der jeweiligen Taktanzahl (N) des Kalibrierungsoszillators (50) und des Referenzoszillators (30) sowie zum Integrieren eines sich aus der Differenz dieser beiden Taktanzahlen (N) ergebenden Taktfehlers (DE) und
    - mindestens einen dem Taktzähler (70) nachgeschalteten Digital-Analog-Wandler (90) zum Wandeln des Taktfehlers (DE) in analoge Tuningsignale (Vcm, Vcm-, Vcm+), aus denen das kalibrierte Ansteuersignal (Vbb) ableitbar ist.
  2. Schaltungsanordnung gemäß Anspruch 1, dadurch gekennzeichnet, dass der spannungsgesteuerte Oszillator (10) aufweist:
    - einen ersten Varaktor (12), dessen kathodischer Anschluss mit dem Sourcekontakt oder Emitteranschluss eines ersten Transistors (22) sowie mit dem Drainkontakt oder Kollektoranschluss eines zweiten Transistors (24) verbunden ist, und
    - einen zweiten Varaktor (14), dessen kathodischer Anschluss mit dem Sourcekontakt oder Emitteranschluss eines dritten Transistors (26) sowie mit dem Drainkontakt oder Kollektoranschluss eines vierten Transistors (28) verbunden ist.
  3. Schaltungsanordnung gemäß Anspruch 2, dadurch gekennzeichnet, dass der Sourcekontakt oder Emitteranschluss des zweiten Transistors (24) und der Sourcekontakt oder Emitteranschluss des vierten Transistors (28) miteinander sowie mit mindestens einer Stromquelle (20) verbunden sind.
  4. Schaltungsanordnung gemäß Anspruch 2 oder 3, dadurch gekennzeichnet,
    - dass der Gatekontakt oder Basisanschluss des ersten Transistors (22) und der Gatekontakt oder Basisanschluss des dritten Transistors (26) miteinander verbunden sowie mit einer Biasspannung oder Vorspannung (Vbias) beaufschlagbar sind und
    - dass der Drainkontakt oder Kollektoranschluss des ersten Transistors (22) und der Drainkontakt oder Kollektoranschluss des dritten Transistors (26) das Ausgangssignal (Ve) des spannungsgesteuerten Oszillators (10) zur Verfügung stellen.
  5. Schaltungsanordnung gemäß mindestens einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass der anodische Anschluss des ersten Varaktors (12) des spannungsgesteuerten Oszillators (10) und der anodische Anschluss des zweiten Varaktors (14) des spannungsgesteuerten Oszillators (10) mit dem kalibrierten Ansteuersignal (Vbb) beaufschlagbar sind.
  6. Schaltungsanordnung gemäß mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Referenzoszillator (30) aufweist:
    - einen ersten Varaktor (32), dessen anodischer Anschluss mit einem Bezugspotential oder Referenzpotential (GND), insbesondere mit Erdpotential oder Massepotential oder Nullpotential, beaufschlagbar ist, sowie
    - einen zweiten Varaktor (34), dessen anodischer Anschluss mit dem Bezugspotential oder Referenzpotential (GND) beaufschlagbar ist,
    wobei der kathodische Anschluss des ersten Varaktors (32) und der kathodische Anschluss des zweiten Varaktors (34) miteinander, mit dem Sourcekontakt oder Emitteranschluss eines ersten Transistors (42) sowie mit dem Drainkontakt oder Kollektoranschluss eines zweiten Transistors (44) verbunden sind, und
    - einen dritten Varaktor (36), dessen anodischer Anschluss mit dem Bezugspotential oder Referenzpotential (GND) beaufschlagbar ist, sowie
    - einen vierten Varaktor (38), dessen anodischer Anschluss mit dem Bezugspotential oder Referenzpotential (GND) beaufschlagbar ist,
    wobei der kathodische Anschluss des dritten Varaktors (36) und der kathodische Anschluss des vierten Varaktors (38) miteinander, mit dem Sourcekontakt oder Emitteranschluss eines dritten Transistors (46) sowie mit dem Drainkontakt oder Kollektoranschluss eines vierten Transistors (48) verbunden sind.
  7. Schaltungsanordnung gemäß Anspruch 6, dadurch gekennzeichnet, dass der Sourcekontakt oder Emitteranschluss des zweiten Transistors (44) und der Sourcekontakt oder Emitteranschluss des vierten Transistors (48) miteinander sowie mit mindestens einer Stromquelle (40) verbunden sind.
  8. Schaltungsanordnung gemäß Anspruch 6 oder 7, dadurch gekennzeichnet,
    - dass der Gatekontakt oder Basisanschluss des ersten Transistors (42) und der Gatekontakt oder Basisanschluss des dritten Transistors (46) miteinander verbunden sowie mit einer Biasspannung oder Vorspannung (Vbias) beaufschlagbar sind und
    - dass der Drainkontakt oder Kollektoranschluss des ersten Transistors (42) und der Drainkontakt oder Kollektoranschluss des dritten Transistors (46) das Ausgangssignal (Vr) des Referenzoszillators (30) zur Verfügung stellen.
  9. Schaltungsanordnung gemäß mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Kalibrierungsoszillator (50) aufweist:
    - einen ersten Varaktor (52), dessen anodischer Anschluss mit einem ersten (Vcm) der Tuningsignale (Vcm, Vcm-, Vcm+) und mit einem zweiten (Vcm-) der Tuningsignale (Vcm, Vcm-, Vcm+) beaufschlagbar ist, sowie
    - einen zweiten Varaktor (54), dessen anodischer Anschluss mit dem ersten Tuningsignal (Vcm) und mit einem dritten (Vcm+) der Tuningsignale (Vcm, Vcm-, Vcm+) beaufschlagbar ist,
    wobei der kathodische Anschluss des ersten Varaktors (52) und der kathodische Anschluss des zweiten Varaktors (54) miteinander, mit dem Sourcekontakt oder Emitteranschluss eines ersten Transistors (62) sowie mit dem Drainkontakt oder Kollektoranschluss eines zweiten Transistors (64) verbunden sind, und
    - einen dritten Varaktor (56), dessen anodischer Anschluss mit dem ersten Tuningsignal (Vcm) und mit dem zweiten Tuningsignal (Vcm-) beaufschlagbar ist, sowie
    - einen vierten Varaktor (58), dessen anodischer Anschluss mit dem ersten Tuningsignal (Vcm) und mit dem dritten Tuningsignal (Vcm+) beaufschlagbar ist,
    wobei der kathodische Anschluss des dritten Varaktors (56) und der kathodische Anschluss des vierten Varaktors (58) miteinander, mit dem Sourcekontakt oder Emitteranschluss eines dritten Transistors (66) sowie mit dem Drainkontakt oder Kollektoranschluss eines vierten Transistors (68) verbunden sind.
  10. Schaltungsanordnung gemäß Anspruch 9, dadurch gekennzeichnet, dass der Sourcekontakt oder Emitteranschluss des zweiten Transistors (64) und der Sourcekontakt oder Emitteranschluss des vierten Transistors (68) miteinander sowie mit mindestens einer Stromquelle (60) verbunden sind.
  11. Schaltungsanordnung gemäß Anspruch 9 oder 10, dadurch gekennzeichnet,
    - dass der Gatekontakt oder Basisanschluss des ersten Transistors (62) und der Gatekontakt oder Basisanschluss des dritten Transistors (66) miteinander verbunden sowie mit einer Biasspannung oder Vorspannung (Vbias) beaufschlagbar sind und
    - dass der Drainkontakt oder Kollektoranschluss des ersten Transistors (62) und der Drainkontakt oder Kollektoranschluss des dritten Transistors (66) das Ausgangssignal (Vc) des Kalibrierungsoszillators (50) zur Verfügung stellen.
  12. Schaltungsanordnung gemäß mindestens einem der Ansprüche 9 bis 11, dadurch gekennzeichnet,
    - dass ein erstes kalibriertes Ansteuersignal (Vbb) dem ersten Tuningsignal (Vcm) entspricht, insbesondere durch das erste Tuningsignal (Vcm) gegeben ist,
    - dass ein zweites kalibriertes Ansteuersignal (Vbb) dem zweiten Tuningsignal (Vcm-) entspricht, insbesondere durch das zweite Tuningsignal (Vcm-) gegeben ist, und
    - dass ein drittes kalibriertes Ansteuersignal (Vbb) dem dritten Tuningsignal (Vcm+) entspricht, insbesondere durch das dritte Tuningsignal (Vcm+) gegeben ist.
  13. Verfahren zum Kalibrieren mindestens eines für einen spannungsgesteuerten Oszillator (10) vorgesehenen Ansteuersignals (Vbb),
    dadurch gekennzeichnet
    - dass die jeweilige Taktanzahl (N) mindestens eines Kalibrierungsoszillators (50) und mindestens eines dem Kalibrierungsoszillator (50) zugeordneten Referenzoszillators (30) mittels mindestens eines dem Kalibrierungsoszillator (50) und dem Referenzoszillator (30) nachgeschalteten Taktzählers (70) gezählt sowie ein sich aus der Differenz dieser beiden Taktanzahlen (N) ergebender Taktfehler (DE) integriert wird und
    - dass der Taktfehler (DE) mittels mindestens eines dem Taktzähler (70) nachgeschalteten Digital-Analog-Wandlers (90) in analoge Tuningsignale (Vcm, Vcm-, Vcm+) gewandelt wird, aus denen das kalibrierte Ansteuersignal (Vbb) abgeleitet wird.
  14. Verfahren gemäß Anspruch 13, dadurch gekennzeichnet,
    - dass ein erstes kalibriertes Ansteuersignal (Vbb) einem ersten (Vcm) der Tuningsignale (Vcm, Vcm-, Vcm+) entspricht, insbesondere durch ein erstes (Vcm) der Tuningsignale (Vcm, Vcm-, Vcm+) gegeben ist,
    - dass ein zweites kalibriertes Ansteuersignal (Vbb) einem zweiten (Vcm-) der Tuningsignale (Vcm, Vcm-, Vcm+) entspricht, insbesondere durch ein zweites (Vcm-) der Tuningsignale (Vcm, Vcm-, Vcm+) gegeben ist, und
    - dass ein drittes kalibriertes Ansteuersignal (Vbb) einem dritten (Vcm+) der Tuningsignale (Vcm, Vcm-, Vcm+) entspricht, insbesondere durch ein drittes (Vcm+) der Tuningsignale (Vcm, Vcm-, Vcm+) gegeben ist.
  15. Verwendung mindestens einer Schaltungsanordnung (100) gemäß mindestens einem der Ansprüche 1 bis 12 und/oder eines Verfahrens gemäß Anspruch 13 oder 14 zum Ansteuern mindestens eines spannungsgesteuerten Oszillators (10) für mindestens eine Schaltung zur Takt- und Datenrückgewinnung mit mindestens einem binären Phasendetektor.
EP13756304.5A 2012-05-23 2013-05-23 Schaltungsanordnung und verfahren zum kalibrieren von ansteuersignalen für spannungsgesteuerte oszillatoren Active EP2853029B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012104472 2012-05-23
PCT/DE2013/200016 WO2013174377A2 (de) 2012-05-23 2013-05-23 Schaltungsanordnung und verfahren zum kalibrieren von ansteuersignalen für spannungsgesteuerte oszillatoren

Publications (2)

Publication Number Publication Date
EP2853029A2 EP2853029A2 (de) 2015-04-01
EP2853029B1 true EP2853029B1 (de) 2016-05-18

Family

ID=48537785

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13756304.5A Active EP2853029B1 (de) 2012-05-23 2013-05-23 Schaltungsanordnung und verfahren zum kalibrieren von ansteuersignalen für spannungsgesteuerte oszillatoren

Country Status (5)

Country Link
US (1) US9484929B2 (de)
EP (1) EP2853029B1 (de)
JP (1) JP6460980B2 (de)
DE (1) DE112013002663A5 (de)
WO (1) WO2013174377A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018010732A2 (de) 2016-07-14 2018-01-18 Silicon Line Gmbh Vorrichtung und verfahren zum steuerbaren verzoegern elektrischer signale
CN111404545B (zh) * 2020-04-20 2022-07-29 成都华微电子科技股份有限公司 带数字修调功能的振荡器电路和时钟信号生成方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726607A (en) * 1992-06-15 1998-03-10 Adc Telecommunications, Inc. Phase locked loop using a counter and a microcontroller to produce VCXO control signals
US5631920A (en) * 1993-11-29 1997-05-20 Lexmark International, Inc. Spread spectrum clock generator
US6259326B1 (en) * 1999-08-24 2001-07-10 Agere Systems Guardian Corp. Clock recovery from a burst-mode digital signal each packet of which may have one of several predefined frequencies
JP4089938B2 (ja) * 2000-06-09 2008-05-28 日本電信電話株式会社 電圧制御発振器
US7129763B1 (en) * 2004-11-08 2006-10-31 Western Digital Technologies, Inc. Adjusting power consumption of digital circuitry by generating frequency error representing error in propagation delay
JP4733152B2 (ja) * 2008-01-31 2011-07-27 日本電信電話株式会社 周波数制御回路およびcdr回路
JP2010178148A (ja) * 2009-01-30 2010-08-12 Hitachi Kokusai Electric Inc バッファ回路
US8125285B2 (en) * 2009-09-10 2012-02-28 Analog Devices, Inc. Digitally controlled oscillators

Also Published As

Publication number Publication date
JP6460980B2 (ja) 2019-01-30
JP2015525499A (ja) 2015-09-03
WO2013174377A2 (de) 2013-11-28
US9484929B2 (en) 2016-11-01
WO2013174377A3 (de) 2014-01-30
DE112013002663A5 (de) 2015-06-18
US20150381185A1 (en) 2015-12-31
EP2853029A2 (de) 2015-04-01

Similar Documents

Publication Publication Date Title
DE10321200B3 (de) Einrichtung und Verfahren zur Kalibrierung von R/C-Filterschaltungen
EP3335012B1 (de) Elektronische steuerungseinheit
DE69412306T2 (de) Temperaturkompensierter Quarzoszillator
DE102006047958B4 (de) Generator für eine exakte Dreieckssignalform
DE102006032276B4 (de) Amplitudenregelungsschaltung
DE102007016522B4 (de) Quarzoszillator-Schaltkreis
DE102013113989A1 (de) Frequenzabstimmung und Schrittsteuerung eines digital gesteuerten Oszillators
DE4139117C1 (de)
EP0974196B1 (de) Digitale afc-einstellung durch reziproke dds
DE3128331A1 (de) "c-mos-oszillatorschaltung"
EP2853029B1 (de) Schaltungsanordnung und verfahren zum kalibrieren von ansteuersignalen für spannungsgesteuerte oszillatoren
DE2349749A1 (de) Oszillator
DE102013005055A1 (de) Erzeugen einer abgestimmten Frequenzausgabe aus einem Signalgenerator
EP1525662B1 (de) Digital gesteuerter oszillator
EP1233249B1 (de) Verfahren und Vorrichtung zur Synchrondemodulation mehrfach modulierter Signale
EP2862280A2 (de) Schaltungsanordnung und verfahren zur takt- und/oder datenrückgewinnung
EP1588483B1 (de) Vorrichtung und verfahren zur frequenzsynthese
DE10260713B4 (de) Digital steuerbarer Oszillator
DE2310314C3 (de) Regelschaltung zur Erzeugung eines Signals konstanter Frequenz für einen elektronischen Zeitgeber
EP3653991A1 (de) Verfahren zur automatischen frequenzanpassung eines filters in einer geschlossenen regelschleife
DE10319899B4 (de) Verfahren und Frequenzvergleichseinrichtung zum Erzeugen eines Kontrollsignals, das eine Frequenzabweichung anzeigt
DE3113800A1 (de) Frequenzmodulator
DE10049531C2 (de) Taktgenerator
DE102019201411B3 (de) Synchronisation einer integrierten Schaltung mit Sensor
DE3024014A1 (de) Wechsel- in gleichspannungswandler in form einer integrierten schaltung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141223

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151123

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SILICON LINE GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: AT

Ref legal event code: REF

Ref document number: 801234

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013003086

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160518

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160818

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160819

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013003086

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

26N No opposition filed

Effective date: 20170221

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160523

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160523

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 801234

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20210830

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230531

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230530

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230630

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230731

Year of fee payment: 11