EP2718545B1 - Dampfturbine umfassend einen schubausgleichskolben - Google Patents

Dampfturbine umfassend einen schubausgleichskolben Download PDF

Info

Publication number
EP2718545B1
EP2718545B1 EP12743152.6A EP12743152A EP2718545B1 EP 2718545 B1 EP2718545 B1 EP 2718545B1 EP 12743152 A EP12743152 A EP 12743152A EP 2718545 B1 EP2718545 B1 EP 2718545B1
Authority
EP
European Patent Office
Prior art keywords
steam turbine
inner housing
steam
housing
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12743152.6A
Other languages
English (en)
French (fr)
Other versions
EP2718545A1 (de
Inventor
Martina Holder
Christian Lenz
Norbert Pieper
Rudolf PÖTTER
Dominic Schlehuber
Uwe Zander
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP12743152.6A priority Critical patent/EP2718545B1/de
Publication of EP2718545A1 publication Critical patent/EP2718545A1/de
Application granted granted Critical
Publication of EP2718545B1 publication Critical patent/EP2718545B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/02Use of accumulators and specific engine types; Control thereof
    • F01K3/04Use of accumulators and specific engine types; Control thereof the engine being of multiple-inlet-pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/04Machines or engines with axial-thrust balancing effected by working-fluid axial thrust being compensated by thrust-balancing dummy piston or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling

Definitions

  • the invention relates to a steam turbine having an outer casing and an inner casing, wherein a rotor comprising a thrust piston having a plurality of blades is rotatably mounted within the inner housing, wherein the inner housing has an inner housing end region formed around the thrust balance piston, wherein a seal having a third pressure space, the between the inner housing portion and the outer housing is disposed, the inner housing having a supply channel, which connects the first pressure chamber with a thrust balance piston antechamber, which is arranged between the thrust balance piston and the inner housing.
  • a steam turbine is understood to mean any turbine or sub-turbine through which a working medium in the form of steam flows.
  • gas turbines are traversed with gas and / or air as the working medium, which, however, is subject to completely different temperature and pressure conditions than the steam in a steam turbine.
  • steam turbines have e.g.
  • the working medium with the highest temperature, which flows into a partial turbine has the highest pressure.
  • An open cooling system which is open to the flow channel, can be realized in gas turbines without external supply of cooling medium.
  • an external supply for cooling medium should be provided. The prior art relating to gas turbines can not therefore be used for the assessment of the present application subject.
  • a steam turbine typically comprises a rotor-mounted rotatably mounted rotor disposed within a housing. With flow of the housing formed by the shell of the flow channel with heated and pressurized steam, the rotor is rotated by the blades through the steam in rotation.
  • the blades of the rotor are also referred to as blades.
  • usually stationary guide vanes are suspended on the inner housing, which engage along an axial extent of the body in the interspaces of the rotor blades.
  • a vane is typically held at a first location along an interior of the steam turbine casing. In this case, it is usually part of a stator blade row, which comprises a number of guide vanes, which are arranged along an inner circumference on the inside of the steam turbine housing.
  • Each vane has its blade radially inward.
  • a row of vanes at said first location along the axial extent is also referred to as a vane grille or ring.
  • a number of vane rows are connected in series. Accordingly, at a second location along the axial extent behind the first location, a further second blade is held along the inside of the steam turbine housing.
  • a pair of a vane row and a blade row is also referred to as a vane stage.
  • the housing jacket of such a steam turbine can be formed from a number of housing segments.
  • the housing shell of the steam turbine is to be understood as meaning, in particular, the stationary housing component of a steam turbine or a sub-turbine, that along the longitudinal direction of the steam turbine has an interior in the form of a flow channel, which is provided for the flow of the working medium in the form of steam.
  • this may be an inner casing and / or a guide vane carrier which does not have an inner casing or a vane carrier.
  • the EP 1 624 155 A1 discloses a steam turbine with internal cooling.
  • the seal is designed as a piston ring, which leads to a fast and cost-effective production of the steam turbine according to the invention.
  • the steam turbine comprises a valve for supplying steam into the flow channel, wherein cooling channels are formed in the valve connection, which are connected in terms of current engineering with the first pressure chamber.
  • the cooling channels are fluidically connected to the third pressure chamber.
  • the invention is based on the idea that an inherent cooling of components is possible in which a targeted pressure flow over different pressure levels is enabled or enforced.
  • the pressure in the first pressure chamber is greater than the pressure in the third pressure chamber.
  • This cooling effect is achieved in that the third pressure chamber is directly connected to the thrust balance piston antechamber.
  • the cooling channels are arranged between a valve diffuser and the outer housing.
  • FIG. 1 a cross section through a steam turbine 1 is shown.
  • the steam turbine 1 has an outer housing 2 and an inner housing 3.
  • the inner housing 3 and the outer housing 2 have a live steam supply channel, which in the FIG. 2 will be described in more detail.
  • a rotor 5 having a thrust balance piston 4 is rotatably mounted inside the inner casing 3.
  • the rotor 5 comprises a plurality of rotor blades 7.
  • the inner casing 3 has a plurality of stator blades 8.
  • the flow channel 9 comprises a plurality of blade stages, each of a series of blades 7 and a number of guide vanes 8 are formed.
  • Fresh steam flows into an inflow opening 10 via the main steam supply duct and flows from there in a flow direction 11 through the flow duct 9, which runs essentially parallel to the axis of rotation 6.
  • the live steam expands and cools down. Thermal energy is converted into rotational energy.
  • the rotor 5 is set in a rotational movement and can, for example, drive a generator for electrical power generation.
  • the thrust balance piston 4 is formed such that a thrust balance piston antechamber 12 is formed and subjected to a defined pressure.
  • the thrust balance piston antechamber 12 is here seen before the thrust balance piston 4 in the flow direction 11.
  • the live steam supply is represented symbolically by the arrow 13a.
  • the live steam usually has temperature values of, for example, up to 625 ° C and a pressure of up to 350bar.
  • the live steam flows in the flow direction 11 through the flow channel 9. After a vane stage, the steam flows into the thrust balance vane 12 via a connection comprising a feed duct 14, a first pressure chamber 15 and a supply duct 16.
  • the steam flows via a feed channel 14 which acts as a communicating tube between a first pressure chamber 15 and the flow channel 9 after a blade stage is formed, in the first pressure chamber 15 which is formed between the inner housing 3 and the outer housing 2.
  • this first pressure chamber 15 there is a pressure of p 1 .
  • the vapor present in the first pressure chamber 15 between the inner housing 3 and the outer housing 2 now has lower temperature and pressure values.
  • This steam flows through a supply channel 16, which is formed as a communicating tube between the first pressure chamber 15 and the thrust balance piston antechamber 12.
  • the thrust balance piston antechamber 12 is disposed in an axial direction 17 between the thrust balance piston 4 and the inner housing 3.
  • the Schubaus GmbHskolbenvorraum 12 may also be referred to as a second pressure chamber. In this second pressure chamber, there is a pressure p 2 .
  • a smaller part flows as a leak vapor into a leak sealing space 18.
  • This leak sealing space 18 is formed between the inner housing 3 and the rotor 5.
  • the leakage steam essentially flows in an opposite direction 19.
  • the opposite direction 19 is in this case aligned opposite to the flow direction 11.
  • the leakage steam flows through a cross-return passage 20, which is a communicating tube between the sealing space 18 formed between the rotor 5 and the housing 3 and a vane-shaped inflow space 26 into the flow passage 9.
  • the cross-return passage 20 is in this case from the sealing chamber 18 to the first pressure chamber 15 is substantially perpendicular, after a deflection 21 substantially parallel and formed after a second deflection 22 substantially perpendicular to the flow direction 11, but without connecting the sealing chamber 18 with the first pressure chamber 15.
  • the inner housing 3 and outer housing 2 with an overload discharge, not shown 23 are formed.
  • the overload discharge 23 external steam flows through a separate inflow.
  • the feed passage 14 is connected to the flow passage 9 downstream of a return scoop step 24 and the cross return passage 20 is connected to the flow passage 9 downstream of a cross return scoop step 25.
  • the cross recirculation vane stage 25 is hereby arranged in the flow direction 11 of the flow channel 9 with regard to expansion of the vapor downstream of the recirculation vane stage 24.
  • the recycle vane stage 24 is the fourth vane stage and the cross recycle vane stage 25 is the fifth vane stage.
  • a seal 27 is disposed in the region of the thrust balance piston 4.
  • This seal 27 is expediently designed, for example, as a piston ring and arranged in a groove 28 in the inner housing 3.
  • the seal 27 thereby separates the first pressure chamber 15 from a third pressure chamber 29.
  • In the third pressure chamber 29 there is a pressure p 3 .
  • the pressure p 3 may be approximately equal to the pressure p 1 .
  • the third pressure chamber 29 is limited by a further seal 30.
  • the further seal 30 is arranged between the inner housing 3 and the outer housing 2 and separates the third pressure chamber 29 from the fourth pressure chamber 31, in which the pressure p 4 prevails.
  • the third pressure chamber 29 is connected via a direct connection 32 with the thrust balance piston antechamber 12.
  • the pressure p 2 prevails in the thrust balance piston antechamber, where: p 2 ⁇ p 3 .
  • the connection 32 constitutes a fluidic connection and allows vapor, which is in the third pressure chamber 29, to flow into the thrust balance piston antechamber 12.
  • the located in the fourth pressure chamber 31 Steam flows in the inner housing end region 33 onto a thrust balance piston surface 34 of the thrust balance piston 4.
  • the FIG. 2 shows a cross section through the steam turbine 1 in section through an inflow 35.
  • the inflow 35 comprises a valve diffuser 36. From the valve diffuser 36 live steam flows into the inflow opening 10 and from there, as for FIG. 1 described, through the flow channel 9.
  • the in the first pressure chamber 15 zugeströmte vapor may flow in part into a ring cooling passage 37 which is formed between the valve diffuser 36 and the outer housing 2.
  • the steam flows via a further cooling channel 39 in the outer housing 2 to the third pressure chamber 29. From the third pressure chamber 29, the steam flows via the connection 32 into the thrust balance piston antechamber 12.
  • valve connection 40 Since the pressure p 1 > p 3 > p 4 , This creates a targeted forced flow through this component area, which advantageously cools the valve connection 40. Thus, effective cooling of the valve connection 40 is possible without using external cooling steam.
  • the valve diffuser 36 is in this case arranged sealingly against the inner housing 3.
  • contactless sealing elements such as e.g. Arranged sealing strips, which realize a pressure reduction and a separation of the pressure chambers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

  • Die Erfindung betrifft eine Dampfturbine mit einem Außengehäuse und einem Innengehäuse, wobei ein einen Schubausgleichskolben aufweisender Rotor umfassend mehrere Laufschaufeln drehgelagert innerhalb des Innengehäuses angeordnet ist, wobei das Innengehäuse einen um den Schubausgleichskolben ausgebildeten Innengehäuseendbereich aufweist, wobei eine Dichtung, die einen dritten Druckraum, der zwischen dem Innengehäusebereich und dem Außengehäuse angeordnet ist, abdichtet, wobei das Innengehäuse einen Zuführungskanal aufweist, der den ersten Druckraum mit einem Schubausgleichskolbenvorraum, der zwischen dem Schubausgleichskolben und dem Innengehäuse angeordnet ist, verbindet.
  • Unter einer Dampfturbine im Sinne der vorliegenden Anmeldung wird jede Turbine oder Teilturbine verstanden, die von einem Arbeitsmedium in Form von Dampf durchströmt wird. Im Unterschied dazu werden Gasturbinen mit Gas und/oder Luft als Arbeitsmedium durchströmt, das jedoch völlig anderen Temperatur- und Druckbedingungen unterliegt als der Dampf bei einer Dampfturbine. Im Gegensatz zu Gasturbinen weist bei Dampfturbinen z.B. das einer Teilturbine zuströmende Arbeitsmedium mit der höchsten Temperatur gleichzeitig den höchsten Druck auf. Ein offenes Kühlsystem, das zum Strömungskanal offen ist, ist bei Gasturbinen auch ohne externe Zuführung von Kühlmedium realisierbar. Für eine Dampfturbine sollte eine externe Zuführung für Kühlmedium vorgesehen sein. Der Stand der Technik betreffend Gasturbinen kann schon deswegen nicht für die Beurteilung des vorliegenden Anmeldungsgegenstandes herangezogen werden.
  • Eine Dampfturbine umfasst üblicherweise einen mit Schaufeln besetzten drehbar gelagerten Rotor, der innerhalb eines Gehäuses bzw. Gehäusemantels angeordnet ist. Bei Durchströmung des vom Gehäusemantel gebildeten Innenraums des Strömungskanals mit erhitztem und unter Druck stehendem Dampf wird der Rotor über die Schaufeln durch den Dampf in Rotation versetzt. Die Schaufeln des Rotors werden auch als Laufschaufeln bezeichnet. Am Innengehäuse sind darüber hinaus üblicherweise stationäre Leitschaufeln aufgehängt, welche entlang einer axialen Ausdehnung des Körpers in die Zwischenräume der Rotorschaufeln greifen. Eine Leitschaufel ist üblicherweise an einer ersten Stelle entlang einer Innenseite des Dampfturbinen-Gehäuses gehalten. Dabei ist sie üblicherweise Teil einer Leitschaufelreihe, welche eine Anzahl von Leitschaufeln umfasst, die entlang eines Innenumfangs an der Innenseite des Dampfturbinen-Gehäuses angeordnet sind. Dabei weist jede Leitschaufel mit ihrem Schaufelblatt radial nach innen. Eine Leitschaufelreihe an der genannten ersten Stelle entlang der axialen Ausdehnung wird auch als Leitschaufelgitter oder - kranz bezeichnet. Üblicherweise ist eine Anzahl von Leitschaufelreihen hintereinander geschaltet. Entsprechend ist an einer zweiten Stelle entlang der axialen Ausdehnung hinter der ersten Stelle eine weitere zweite Schaufel entlang der Innenseite des Dampfturbinen-Gehäuses gehalten. Ein Paar einer Leitschaufelreihe und einer Laufschaufelreihe wird auch als Schaufelstufe bezeichnet.
  • Der Gehäusemantel einer derartigen Dampfturbine kann aus einer Anzahl von Gehäusesegmenten gebildet sein. Unter dem Gehäusemantel der Dampfturbine ist insbesondere das stationäre Gehäusebauteil einer Dampfturbine oder einer Teilturbine zu verstehen, dass entlang der Längsrichtung der Dampfturbine einen Innenraum in Form eines Strömungskanals aufweist, der zur Durchströmung mit dem Arbeitsmedium in Form von Dampf vorgesehen ist. Dies kann, je nach Dampfturbinenart, ein Innengehäuse und/oder ein Leitschaufelträger sein, welches kein Innengehäuse oder keinen Leitschaufelträger aufweist.
  • Aus Wirkungsgradgründen kann die Auslegung einer derartigen Dampfturbine für sogenannte "hohe Dampfparameter", also insbesondere hohe Dampfdrücke und/oder hohe Dampftemperatur, wünschenswert sein. Allerdings ist insbesondere eine Temperaturerhöhung aus materialtechnischen Gründen nicht unbegrenzt möglich. Um dabei einen sicheren Betrieb der Dampfturbine auch bei besonders hohen Temperaturen zu ermöglichen, kann daher eine Kühlung einzelner Bauteile oder Komponenten wünschenswert sein. Die Bauteile sind üblicherweise in ihrer Temperaturfestigkeit je nach Werkstoffwahl begrenzt. Ohne effiziente Kühlung würden bei steigenden Temperaturen wesentlich teurere Materialien (z.B. Nickelbasislegierungen) nötig.
  • Bei den bisher bekannten Kühlmethoden, insbesondere für einen Dampfturbinen-Körper in Form eines Dampfturbinen-Gehäuses oder eines Rotors, ist zwischen einer aktiven Kühlung und einer passiven Kühlung zu unterscheiden. Bei einer aktiven Kühlung wird eine Kühlung durch ein dem Dampfturbinen-Körper separat, d.h. zusätzlich zum Arbeitsmedium zugeführtes Kühlmedium bewirkt. Dagegen erfolgt eine passive Kühlung lediglich durch eine geeignete Führung oder Verwendung des Arbeitsmediums. Bisher wurden Dampfturbinen-Körper vorzugsweise passiv gekühlt.
  • Zur Erzielung höherer Wirkungsgrade bei der Stromerzeugung mit fossilen Brennstoffen besteht das Bedürfnis, bei einer Turbine höhere Dampfparameter, d.h. höhere Drücke und Temperaturen als bisher üblich anzuwenden. Bei Hochtemperatur-Dampfturbinen sind beim Dampf als Arbeitsmedium Temperaturen zum Teil weit über 500°C vorgesehen.
  • Die bisher bekannten Kühlverfahren für ein Dampfturbinen-Gehäuse sehen, soweit es sich überhaupt um aktive Kühlverfahren handelt, allenfalls ein gezieltes Anströmen eines separaten und zu kühlenden Turbinenteils vor und sind auf den Einströmbereich des Arbeitsmediums, allenfalls unter Einbeziehung des ersten Leitschaufelkranzes beschränkt. Dies kann bei einer Belastung üblicher Dampfturbinen mit höheren Dampfparametern zu einer auf die ganze Turbine wirkenden erhöhten thermischen Belastung führen, welche durch eine oben beschriebene übliche Kühlung des Gehäuses nur unzureichend vermindert werden könnte. Dampfturbinen, die zur Erzielung höherer Wirkungsgrade grundsätzlich mit höheren Dampfparametern arbeiten, benötigen eine verbesserte Kühlung, insbesondere des Gehäuses und/oder des Rotors, um eine höhere thermische Belastung der Dampfturbine in genügendem Maße zu kompensieren. Dabei besteht das Problem, dass bei der Nutzung bisher üblicher Turbinenmaterialien die zunehmende Beanspruchung des Dampfturbinen-Körpers durch erhöhte Dampfparameter zu einer nachteiligen, die Lebensdauer einschränkenden thermischen Belastung der Dampfturbine führen kann. Mit der Folge, dass eine wirtschaftliche Herstellung solcher Dampfturbinen kaum mehr möglich ist.
  • Es ist dazu wichtig, neben dem Rotor und dem Gehäuse einschließlich Schrauben auch die Ventilanbindung selber gegen hohe Temperaturen und hohe Drücke auszulegen.
  • Die EP 1 624 155 A1 offenbart eine Dampfturbine mit einer internen Kühlung.
  • In der EP 1 780 376 A1 wird eine Dampfturbine mit einem Rückführungskanal zum Kühlen .der Dampfturbine offenbart.
  • Es ist Aufgabe der Erfindung eine Dampfturbine anzugeben, die selbst im Hochtemperatur-Bereich besonders effektiv gekühlt werden kann.
  • Die Aufgabe wird gelöst durch eine Dampfturbine mit den Merkmalen gemäß Anspruch 1.
  • Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.
  • In einer vorteilhaften Weiterbildung ist die Dichtung als Kolbenring ausgebildet, was zu einer schnellen und kostengünstigen Fertigung der erfindungsgemäßen Dampfturbine führt.
  • In einer weiteren vorteilhaften Weiterbildung umfasst die Dampfturbine ein Ventil zum Zuführen von Dampf in den Strömungskanal, wobei Kühlkanäle in der Ventilanbindung ausgebildet sind, die mit dem ersten Druckraum stromungstechnisch verbunden sind. Vorteilhafterweise werden die Kühlkanäle mit dem dritten Druckraum strömungstechnisch verbunden.
  • Die Erfindung geht von dem Gedanken aus, dass eine inhärente Kühlung von Bauteilen möglich ist, in dem eine gezielte Druckströmung über verschiedene Druckniveaus ermöglicht bzw. erzwungen wird. So ist der Druck im ersten Druckraum größer als der Druck im dritten Druckraum. Die Kühlkanäle, die so angeordnet sind, dass sie temperaturbelastete Bauteile umströmen, werden demzufolge mit kühlerem Dampf zwangsumströmt. Die Folge ist, dass eine deutliche Erhöhung des Kühleffektes für Komponenten der Ventilanbindung möglich ist. Dieser Kühleffekt wird dadurch erzielt, dass der dritte Druckraum mit dem Schubausgleichskolbenvorraum direkt verbunden ist.
  • Vorteilhafterweise sind die Kühlkanäle zwischen einem Ventildiffusor und dem Außengehäuse angeordnet.
  • Die Erfindung wird anhand eines Ausführungsbeispieles näher erläutert. Bauteile mit gleichen Bezugszeichen weisen im Wesentlichen die gleiche Wirkungsweise auf. Es zeigen:
  • FIG 1
    eine Querschnittsansicht einer erfindungsgemäßen Dampfturbine;
    FIG 2
    eine Querschnittsansicht im Schnitt durch die Zuströmung der erfindungsgemäßen Dampfturbine.
  • In der FIG 1 ist ein Querschnitt durch eine Dampfturbine 1 dargestellt. Die Dampfturbine 1 weist ein Außengehäuse 2 und ein Innengehäuse 3 auf. Das Innengehäuse 3 und das Außengehäuse 2 weisen einen Frischdampfzuführungskanal auf, der in der FIG 2 näher beschrieben wird. Innerhalb des Innengehäuses 3 ist ein einen Schubausgleichskolben 4 aufweisender Rotor 5 drehgelagert angeordnet. Üblicherweise ist der Rotor um eine Rotationsachse 6 rotationssymmetrisch ausgebildet. Der Rotor 5 umfasst mehrere Laufschaufeln 7. Das Innengehäuse 3 weist mehrere Leitschaufeln 8 auf. Zwischen dem Innengehäuse 3 und dem Rotor 5 wird ein Strömungskanal 9 ausgebildet. Der Strömungskanal 9 umfasst mehrere Schaufelstufen, die jeweils aus einer Reihe Laufschaufeln 7 und einer Reihe Leitschaufeln 8 ausgebildet sind.
  • Über den Frischdampfzuführungskanal strömt Frischdampf in eine Einströmöffnung 10 und strömt von dort aus in einer Strömungsrichtung 11 durch den Strömungskanal 9, die im Wesentlichen parallel zur Rotationsachse 6 verläuft. Der Frischdampf expandiert und kühlt sich hierbei ab. Thermische Energie wird hierbei in Rotationsenergie umgewandelt. Der Rotor 5 wird in eine Drehbewegung versetzt und kann beispielsweise einen Generator zur elektrischen Energieerzeugüng antreiben.
  • Je nach Beschaufelungstyp der Leitschaufeln 8 und Laufschaufeln 7 entsteht ein mehr oder weniger großer Schub des Rotors 5 in Strömungsrichtung 11. Üblicherweise wird der Schubausgleichskolben 4 derart ausgebildet, dass ein Schubausgleichskolbenvorraum 12 ausgebildet und mit einem definierten Druck beaufschlagt wird. Der Schubausgleichskolbenvorraum 12 ist hierbei vor dem Schubausgleichskolben 4 in Strömungsrichtung 11 gesehen. Durch Zuführen von Dampf mit einem bestimmten Druck in den Schubausgleichskolbenvorraum 12 entsteht eine Gegenkraft, die einer Schubkraft 13 des Schaufelpfads entgegenwirkt.
  • Im Betrieb strömt Dampf in die Einströmöffnung 10. Die Frischdampfzuführung wird symbolisch mit dem Pfeil 13a dargestellt. Der Frischdampf hat hierbei üblicherweise Temperaturwerte von beispielsweise bis zu 625°C und einen Druck von bis zu 350bar. Der Frischdampf strömt in der Strömungsrichtung 11 durch den Strömungskanal 9. Nach einer Schaufelstufe strömt der Dampf über eine Verbindung, die einen Hinführungskanal 14, einen ersten Druckraum 15 und einen Zuführungskanal 16 umfasst, in den Schubausgleichskolbenvorraum 12.
  • Insbesondere strömt der Dampf über einen Hinführungskanal 14, der als eine kommunizierende Röhre zwischen einem ersten Druckraum 15 und dem Strömungskanal 9 nach einer Schaufelstufe ausgebildet ist, in den ersten Druckraum 15, der zwischen dem Innengehäuse 3 und dem Außengehäuse 2 ausgebildet ist. In diesem ersten Druckraum 15 herrscht ein Druck von p1. Der im ersten Druckraum 15 zwischen Innengehäuse 3 und Außengehäuse 2 befindliche Dampf weist nun geringere Temperaturund Druckwerte auf. Dieser Dampf strömt über einen Zuführungskanal 16, der als kommunizierende Röhre zwischen dem ersten Druckraum 15 und dem Schubausgleichskolbenvorraum 12 ausgebildet ist.
  • Der Schubausgleichskolbenvorraum 12 ist in einer axialen Richtung 17 zwischen dem Schubausgleichskolben 4 und dem Innengehäuse 3 angeordnet. Der Schubausgleichskolbenvorraum 12 kann auch als zweiter Druckraum bezeichnet werden. In diesem zweiten Druckraum herrscht ein Druck p2.
  • Ein in die Einströmöffnung 10 strömender Frischdampf strömt zum größten Teil in Strömungsrichtung 11 durch den Strömungskanal 9. Ein kleinerer Teil strömt als Leckdampf in einen Leck-Dichtraum 18. Dieser Leck-Dichtraum 18 ist zwischen dem Innengehäuse 3 und dem Rotor 5 ausgebildet. Der Leckdampf strömt hierbei im Wesentlichen in einer Gegenrichtung 19. Die Gegenrichtung 19 ist hierbei entgegengesetzt zur Strömungsrichtung 11 ausgerichtet. Der Leckdampf strömt über einen Kreuz-Rückführungskanal 20, der als eine kommunizierende Röhre zwischen dem Dichtraum 18, der zwischen dem Rotor 5 und dem Gehäuse 3 ausgebildet ist und einem nach einer Schaufelstufe angeordneten Zuströmraum 26 in den Strömungskanal 9. Der Kreuz-Rückführungskanal 20 ist hierbei vom Dichtraum 18 zum ersten Druckraum 15 hin im Wesentlichen senkrecht, nach einer Umlenkung 21 im Wesentlichen parallel und nach einer zweiten Umlenkung 22 im Wesentlichen senkrecht zur Strömungsrichtung 11 ausgebildet, ohne jedoch den Dichtraum 18 mit dem ersten Druckraum 15 zu verbinden.
  • In einer alternativen Ausführungsform kann das Innengehäuse 3 und Außengehäuse 2 mit einer nicht näher dargestellten Überlasteinleitung 23 ausgebildet werden. In die Überlasteinleitung 23 strömt externer Dampf über eine separate Zuströmung.
  • In einem bevorzugten Ausführungsbeispiel ist der Hinführungskanal 14 mit dem Strömungskanal 9 nach einer Rückführungs-schaufelstufe 24 und der Kreuz-Rückführungskanal 20 ist mit dem Strömungskanal 9 nach einer Kreuz-Rückführungs-Schaufelstufe 25 verbunden. Die Kreuz-Rückführungs-Schaufelstufe 25 ist hierbei in der Strömungsrichtung 11 des Strömungskanals 9 hinsichtlich Expansion des Dampfes nach der Rückführungs-Schaufelstufe 24 angeordnet.
  • In einem besonders bevorzugten Ausführungsbeispiel ist die Rückführungs-Schaufelstufe 24 die vierte Schaufelstufe und die Kreuz-Rückführungs-Schaufelstufe 25 die fünfte Schaufelstufe.
  • Zwischen dem Innengehäuse 3 und dem Außengehäuse 2 wird im Bereich des Schubausgleichskolbens 4 eine Dichtung 27 angeordnet. Diese Dichtung 27 ist zweckdienlich zum Beispiel als Kolbenring ausgebildet und in einer Nut 28 im Innengehäuse 3 angeordnet. Die Dichtung 27 trennt hierdurch den ersten Druckraum 15 von einem dritten Druckraum 29. In dem dritten Druckraum 29 herrscht ein Druck p3. Der Druck p3 kann näherungsweise gleich dem Druck p1 sein. Der dritte Druckraum 29 wird durch eine weitere Dichtung 30 begrenzt. Die weitere Dichtung 30 ist zwischen dem Innengehäuse 3 und dem Außengehäuse 2 angeordnet und trennt den dritten Druckraum 29 von dem vierten Druckraum 31, in dem der Druck p4 herrscht.
  • Der dritte Druckraum 29 ist über eine direkte Verbindung 32 mit dem Schubausgleichskolbenvorraum 12 verbunden. Im Schubausgleichskolbenvorraum herrscht der Druck p2, wobei gilt: p2 < p3. Die Verbindung 32 stellt eine strömungstechnische Verbindung dar und ermöglicht es, dass Dampf, der im dritten Druckraum 29 sich befindet, in den Schubausgleichskolbenvorraum 12 strömen kann. Der im vierten Druckraum 31 befindliche Dampf mündet im Innengehäuseendbereich 33 auf eine Schubausgleichskolbenoberfläche 34 des Schubausgleichskolbens 4.
  • Die FIG 2 zeigt einen Querschnitt durch die Dampfturbine 1 im Schnitt durch eine Zuströmung 35. Die Zuströmung 35 umfasst einen Ventildiffusor 36. Vom Ventildiffusor 36 strömt Frischdampf in die Einströmöffnung 10 und von dort, wie zur FIG 1 beschrieben, durch den Strömungskanal 9. Der im ersten Druckraum 15 zugeströmte Dampf kann zum Teil in einen Ring-Kühlkanal 37, der zwischen dem Ventildiffusor 36 und dem Außengehäuse 2 ausgebildet ist, strömen. In einem Umkehrpunkt 38 strömt der Dampf über einen weiteren Kühlkanal 39 im Außengehäuse 2 zu dem dritten Druckraum 29. Vom dritten Druckraum 29 strömt der Dampf über die Verbindung 32 in den Schubausgleichskolbenvorraum 12. Da der Druck p1 > p3 > p4 ist, entsteht dadurch eine gezielte Zwangsströmung durch diesen Bauteilbereich, die die Ventilanbindung 40 vorteilhafterweise kühlt. Somit ist eine effektive Kühlung der Ventilanbindung 40 möglich, ohne externen Kühldampf zu verwenden. Der Ventildiffusor 36 ist hierbei dichtend an das Innengehäuse 3 angeordnet.
  • Zwischen dem Rotor 5 und dem Innengehäuse 3 sind im Bereich des Schubausgleichskolben 4, insbesondere in dem Leck-Dichtraum 18 und einem zweiten Leck-Dichtraum 41 üblicherweise berührungslose Dichtelemente, wie z.B. Dichtbänder angeordnet, die einen Druckabbau und eine Trennung der Druckräume realisieren. Um die Kühlung der Ventilanbindung 40 sicherzustellen, ist eine Rückführung des Dampfes vom Schubausgleichskolbenvorraum 12 über den partiellen Bereich des Dichtraums 18, weiter über den Kreuz-Rückführungskanal 20 zum Zuströmraum 26 im Strömungskanal 9 notwendig.

Claims (7)

  1. Dampfturbine (1) mit einem Außengehäuse (2) und einem Innengehäuse (3),
    wobei ein einen Schubausgleichskolben (4) aufweisender Rotor (5) umfassend mehrere Laufschaufeln (7) drehgelagert innerhalb des Innengehäuses (3) angeordnet ist,
    wobei das Innengehäuse (3) ein um den Schubausgleichskolben (4) ausgebildeten Innengehäuseendbereich (33) aufweist,
    wobei eine Dichtung (27), die einen dritten Druckraum (29), der zwischen dem Innengehäuseendbereich (33) und dem Außengehäuse (2) angeordnet ist, abdichtet,
    wobei das Innengehäuse (3) einen Zuführungskanal (16) aufweist, der einen ersten Druckraum (15) mit einem Schubausgleichskolbenvorraum (12), der zwischen dem Schubausgleichskolben (4) und dem Innengehäuse (3) angeordnet ist, verbindet,
    wobei der erste Druckraum (15) zwischen dem Innengehäuse (3) und dem Außengehäuse (2) angeordnet ist,
    die Dampfturbine (1) eine Verbindung (32) aufweist, die den dritten Druckraum (29) mit dem Schubausgleichskolbenvorraum (12) strömungstechnisch verbindet, dadurch gekennzeichnet, dass eine weitere Dichtung (30) vorgesehen ist, die zwischen dem Innengehäuse (3) und dem Außengehäuse (2) angeordnet ist,
    wobei zwischen der Dichtung (27) und der weiteren Dichtung (30) der dritte Druckraum (29) angeordnet ist, wobei
    die Verbindung (32) in den Zuführungskanal (16) mündet.
  2. Dampfturbine (1) nach Anspruch 1, wobei die Dichtung (27) als Kolbenring ausgebildet ist.
  3. Dampfturbine (1) nach einem der vorhergehenden Ansprüche,
    wobei zwischen dem Innengehäuse (3) und dem Rotor (5) ein Strömungskanal (9) mit mehreren Schaufelstufen ausgebildet ist,
    wobei das Innengehäuse (3) einen Hinführungskanal (14) aufweist, die als kommunizierende Leitung zwischen dem Strömungskanal (9) nach einer Schaufelstufe und dem ersten Druckraum (15) ausgebildet ist.
  4. Dampfturbine (1) nach einem der vorhergehenden Ansprüche,
    mit einem Ventil zum Zuführen von Dampf in den Strömungskanal (9),
    wobei ein Ring-Kühlkanal (37) in dem Ventil ausgebildet ist, der mit dem ersten Druckraum (15) strömungstechnisch verbunden ist.
  5. Dampfturbine (1) nach Anspruch 4,
    wobei der Ring-Kühlkanal (37) mit dem dritten Druckraum (29) strömungstechnisch verbunden ist.
  6. Dampfturbine (1) nach Anspruch 4 oder 5,
    wobei das Ventil einen Ventildiffusor (36) umfasst und der Ring-Kühlkanal (37) zwischen dem Ventildiffusor (36) und dem Außengehäuse (2) angeordnet ist.
  7. Dampfturbine (1) nach Anspruch 4 oder 5,
    wobei ein weiterer Kühlkanal (39) als Raumverbindung zum dritten Druckraum (29) im Außengehäuse (2) angeordnet ist.
EP12743152.6A 2011-08-04 2012-08-01 Dampfturbine umfassend einen schubausgleichskolben Not-in-force EP2718545B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12743152.6A EP2718545B1 (de) 2011-08-04 2012-08-01 Dampfturbine umfassend einen schubausgleichskolben

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11176574A EP2554789A1 (de) 2011-08-04 2011-08-04 Dampfturbine umfassend einen Schubausgleichskolben
EP12743152.6A EP2718545B1 (de) 2011-08-04 2012-08-01 Dampfturbine umfassend einen schubausgleichskolben
PCT/EP2012/065065 WO2013017634A1 (de) 2011-08-04 2012-08-01 Dampfturbine umfassend einen schubausgleichskolben

Publications (2)

Publication Number Publication Date
EP2718545A1 EP2718545A1 (de) 2014-04-16
EP2718545B1 true EP2718545B1 (de) 2016-03-02

Family

ID=45002221

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11176574A Withdrawn EP2554789A1 (de) 2011-08-04 2011-08-04 Dampfturbine umfassend einen Schubausgleichskolben
EP12743152.6A Not-in-force EP2718545B1 (de) 2011-08-04 2012-08-01 Dampfturbine umfassend einen schubausgleichskolben

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP11176574A Withdrawn EP2554789A1 (de) 2011-08-04 2011-08-04 Dampfturbine umfassend einen Schubausgleichskolben

Country Status (6)

Country Link
US (1) US20140199161A1 (de)
EP (2) EP2554789A1 (de)
JP (1) JP5756886B2 (de)
CN (1) CN103717838B (de)
IN (1) IN2014DN00164A (de)
WO (1) WO2013017634A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8893499B2 (en) * 2011-10-20 2014-11-25 Dresser-Rand Company Advanced super-critical CO2 expander-generator
DE102013219771B4 (de) * 2013-09-30 2016-03-31 Siemens Aktiengesellschaft Dampfturbine
EP2987952A1 (de) 2014-08-20 2016-02-24 Siemens Aktiengesellschaft Dampfturbine und Verfahren zum Betrieb einer Dampfturbine
EP3130748A1 (de) * 2015-08-14 2017-02-15 Siemens Aktiengesellschaft Rotorkühlung für eine dampfturbine
CN109162772B (zh) * 2018-11-06 2024-03-19 上海电气电站设备有限公司 一种汽轮机及其内冷却方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2304994A (en) * 1941-06-20 1942-12-15 Westinghouse Electric & Mfg Co Turbine cylinder cooling
US2524724A (en) * 1948-10-07 1950-10-03 Westinghouse Electric Corp Turbine apparatus
US2796231A (en) * 1954-03-24 1957-06-18 Westinghouse Electric Corp High pressure steam turbine casing structure
US4661043A (en) * 1985-10-23 1987-04-28 Westinghouse Electric Corp. Steam turbine high pressure vent and seal system
US6036433A (en) * 1998-06-29 2000-03-14 General Electric Co. Method of balancing thrust loads in steam turbines
EP1035301A1 (de) * 1999-03-08 2000-09-13 Asea Brown Boveri AG Ausgleichskolben für den axialen Schubausgleich einer Welle von einer Turbine
EP1624155A1 (de) * 2004-08-02 2006-02-08 Siemens Aktiengesellschaft Dampfturbine und Verfahren zum Betrieb einer Dampfturbine
JP4455254B2 (ja) * 2004-09-30 2010-04-21 株式会社東芝 蒸気タービンおよびこれを備える蒸気タービンプラント
EP1780376A1 (de) * 2005-10-31 2007-05-02 Siemens Aktiengesellschaft Dampfturbine
DE102008022966B4 (de) * 2008-05-09 2014-12-24 Siemens Aktiengesellschaft Rotationsmaschine
EP2410128A1 (de) * 2010-07-21 2012-01-25 Siemens Aktiengesellschaft Interne Kühlung für eine Strömungsmaschine

Also Published As

Publication number Publication date
EP2554789A1 (de) 2013-02-06
JP5756886B2 (ja) 2015-07-29
CN103717838B (zh) 2016-02-17
JP2014521872A (ja) 2014-08-28
IN2014DN00164A (de) 2015-05-22
CN103717838A (zh) 2014-04-09
EP2718545A1 (de) 2014-04-16
US20140199161A1 (en) 2014-07-17
WO2013017634A1 (de) 2013-02-07

Similar Documents

Publication Publication Date Title
EP2596213B1 (de) Dampfturbine mit einer internen kühlung
EP1774140B1 (de) Dampfturbine und verfahren zum betrieb einer dampfturbine
DE60203959T2 (de) Luftgekühltes Abgasgehäuse für eine Gasturbine
EP2718545B1 (de) Dampfturbine umfassend einen schubausgleichskolben
EP2824282A1 (de) Gasturbine mit Hochdruckturbinenkühlsystem
CH702000A2 (de) Wirbelkammern zur Spaltströmungssteuerung.
EP3130748A1 (de) Rotorkühlung für eine dampfturbine
CH708326A2 (de) Gasturbinen-Deckbandkühlung.
DE102015122928A1 (de) Gasturbinendichtung
EP2719869A1 (de) Axiale Abdichtung in einer Gehäusestruktur für eine Strömungsmaschine
EP3155226B1 (de) Dampfturbine und verfahren zum betrieb einer dampfturbine
DE102012208263A1 (de) Verdichtervorrichtung für eine Turbomaschine
EP2823154B1 (de) Kühlmittelüberbrückungsleitung, zugehörige turbinenschaufel, gasturbine und kraftwerksanlage
EP2347101B1 (de) Gasturbine und zugehörige Gas- bzw. Dampfturbinenanlage
EP2598724B1 (de) Dampfturbine sowie verfahren zum kühlen einer solchen
DE102012206090A1 (de) Axialverdichter einer Turbomaschine
EP2310633B1 (de) Verminderung der thermischen belastung eines aussengehäuses für eine strömungsmaschine
DE102006010863B4 (de) Turbomaschine, insbesondere Verdichter
EP3183426B1 (de) Kontrollierte kühlung von turbinenwellen
EP1895094B1 (de) Drallgekühlte Rotor-Schweissnaht
EP1598537B1 (de) Dampfturbinen-Körper, Verfahren zum Kühlen einer Dampfturbine sowie Verwendung
EP3445948B1 (de) Dampfturbine
EP3172407B1 (de) Gasturbine mit einer kühlung der letzten turbinenstufe
EP2236761A1 (de) Leitschaufelträger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150204

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502012006150

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F01D0003040000

Ipc: F01K0003040000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 3/04 20060101ALI20150819BHEP

Ipc: F01K 3/04 20060101AFI20150819BHEP

INTG Intention to grant announced

Effective date: 20150902

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 778213

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012006150

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160302

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160603

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160602

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160702

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160830

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160704

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160823

Year of fee payment: 5

Ref country code: CZ

Payment date: 20160729

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012006150

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20161109

Year of fee payment: 5

Ref country code: DE

Payment date: 20161020

Year of fee payment: 5

26N No opposition filed

Effective date: 20161205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160801

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160801

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160801

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012006150

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170801

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120801

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170801

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 778213

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170801