EP2347101B1 - Gasturbine und zugehörige Gas- bzw. Dampfturbinenanlage - Google Patents

Gasturbine und zugehörige Gas- bzw. Dampfturbinenanlage Download PDF

Info

Publication number
EP2347101B1
EP2347101B1 EP09827201.6A EP09827201A EP2347101B1 EP 2347101 B1 EP2347101 B1 EP 2347101B1 EP 09827201 A EP09827201 A EP 09827201A EP 2347101 B1 EP2347101 B1 EP 2347101B1
Authority
EP
European Patent Office
Prior art keywords
turbine
gas turbine
gas
wall
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09827201.6A
Other languages
English (en)
French (fr)
Other versions
EP2347101A1 (de
Inventor
Francois Benkler
Tobias Buchal
Andreas Böttcher
Martin Hartmann
Patricia Hülsmeier
Uwe Kahlstorf
Ekkehard Maldfeld
Dieter Minninger
Michael Neubauer
Peter Schröder
Rostislav Teteruk
Vyacheslav Veitsman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL09827201T priority Critical patent/PL2347101T3/pl
Priority to EP09827201.6A priority patent/EP2347101B1/de
Publication of EP2347101A1 publication Critical patent/EP2347101A1/de
Application granted granted Critical
Publication of EP2347101B1 publication Critical patent/EP2347101B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/246Fastening of diaphragms or stator-rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings

Definitions

  • the invention relates to a gas turbine having a substantially hollow conical or hollow cylindrical, extending along a machine axis vane carrier and a segmented in the circumferential and / or axial direction in ring segments, substantially hollow cone-shaped or hollow cylindrical outer wall of an annular hot gas path whose ring segments by means of a number are fastened by hooking elements on the inside of the guide blade carrier.
  • Gas turbines are used in many areas to drive generators or work machines.
  • the energy content of a fuel is used to generate a rotational movement of a turbine shaft.
  • the fuel is burned in a combustion chamber, compressed air being supplied by an air compressor.
  • the working medium produced in the combustion chamber by the combustion of the fuel, under high pressure and at high temperature, is guided via a turbine unit arranged downstream of the combustion chamber, where it relaxes to perform work.
  • a number of rotor blades which are usually combined into blade groups or rows of blades, are arranged thereon and drive the turbine shaft via a momentum transfer from the working medium.
  • guide vanes are also usually arranged between adjacent rotor blade rows and connected to the turbine housing, which are combined into rows of guide blades. These are attached to a usually hollow cylindrical or hollow cone-shaped vane carrier.
  • the hot gas channel is usually lined by so-called ring segments which form axial sections of the outer wall of the hot gas channel. These are usually fastened via hooking elements on the guide blade carrier, so that the entirety of the ring segments in the circumferential direction as well as the guide blade carrier form a hollow conical or hollow cylindrical structure.
  • the components of the gas turbine can deform by different thermal expansion in different operating conditions, which has a direct influence on the size of the radial gap between the blades and the outer wall of the hot gas channel.
  • These radial gaps are differently dimensioned when starting and stopping the turbine than in regular operation.
  • the gas turbine components such as guide vane or outer wall are always to be dimensioned so that the radial gaps are kept sufficiently large to cause any damage to the gas turbine in any operating condition.
  • a correspondingly comparatively generous design of the radial gaps leads to considerable losses in the efficiency.
  • the invention is therefore based on the object to provide a gas turbine, which allows a particularly high efficiency while maintaining the greatest possible operational safety and life.
  • interlocking elements of at least one of the ring segments of the input gas turbine engine are geometrically adjusted such that in the non-operating state the outer wall delimiting the hot gas path has a substantially elliptical cross-sectional contour in a section perpendicular to the machine axis.
  • the invention is based on the consideration that a particularly high efficiency would be possible by reducing the radial gaps in regular operation, ie, for example, full load operation of the gas turbine.
  • a comparatively large dimension of the radial gaps was required in particular because the turbine deforms differently in different operating states.
  • an ovalization of the cylindrical or conically shaped components of the gas turbine occurs, which must be taken into account in the design of the radial gaps.
  • the ovalization in the operation of the gas turbine should be kept as low as possible.
  • This cross-sectional contour should be designed in such a way that the cross-sectional contour present at room temperature after installation of the gas turbine is then circular due to thermal deformations occurring in the operating state
  • the thermal expansions should therefore not, as in the prior art JP 2005-042612 and JP 54-081409 to be suppressed.
  • the ring segments described at the beginning with which the hot gas path is lined outside the rotor blades, correspondingly.
  • the ring segments form in the axial section of the blades in the circumferential direction of the outer wall of the hot gas path, which thus together form the rotor blades the closest lying hollow cone-shaped or hollow cylindrical component of the gas turbine. Therefore, the cross-section perpendicular to the machine axis of the ring segments forming the outer wall of the hot gas path has the elliptical cross-sectional contour described in the inoperative state.
  • the ring segments forming the outer wall of the hot gas path in the axial section of the rotor blades are usually hooked in the guide blade carrier via hooking elements. Since the vane support is a relatively solid component which has a comparatively large deformation during operation, the cross-sectional contour formed by all ring segments in the operating state is often determined by the attachment or clamping of the ring segments in the vane support and its deformation during operation. It is therefore not absolutely necessary to manufacture the cold contour of the external wall consisting of ring segments in elliptical form, since the deformation induced by the contact points on the interlocking elements is established anyway.
  • the compensation of the ovalization of the guide vane carrier can therefore be achieved by advantageously only the individual hooking elements of the ring segments are adapted so that the outer wall of a substantially elliptical Has cross-sectional contour. Since these ring segments are exchangeable service parts, this makes it possible on the one hand to retrofit existing gas turbines, on the other hand to compensate for manufacturing errors in guide vanes and also a particularly simple adaptation to changing driving styles including other modified measures to reduce the radial gap.
  • the length of the main and minor axes of the elliptical cross-sectional contour in each case selected such that the respective component has a substantially circular cross-sectional contour by its thermal deformation in the operating state in the production of the hollow cone-shaped or hollow cylindrical components of the gas turbine.
  • This can be done, for example, by introducing an expected in operation by 90 degrees offset ovalization.
  • the elliptical shape of these components is thus chosen so that the deformations are compensated in the operating state just so that the operation produces a circular cross-section and thus over the entire circumference of the gas turbine same radial gaps are present, d. h.,
  • the radial gaps have no variance over the circumference. As a result, even in the construction of the radial gaps can be sized accordingly narrow, which has a higher efficiency of the gas turbine result.
  • the interlocking elements are adapted in their radial length and / or arranged to change the radial position of the interlocking elements in a corresponding retaining groove of the guide blade carrier inserts. These then lie between the hooks of the hooking elements and the retaining groove and thus lead along the circumference to different radial positions of ring segments.
  • De Facto can thus be provided either distributed along the circumference ring segments with different lengths radial entanglements in the vane support, or the Verhakungsetti the ring segments along a circumference are identical, in which case to change the radial Position of the ring segments along the circumference of different thickness supplements are used for the corresponding entanglements.
  • the turbine shaft in the cold operating state, can be displaced in the direction of the hot gas flow, so that an enlargement of the radial gap occurs in the case of a hollow conical shape of the outer wall with enlargement of the radius in the direction of the hot gas flow in the cold inoperative state, and thus in the cold state (eg when starting the combustion process) Gas turbine), the remaining counter-ovalization represents no restriction for the achievable radial gap in the warm state. As a result, an even greater efficiency of the gas turbine can be achieved.
  • such a gas turbine is used in a gas and steam turbine plant.
  • the advantages achieved by the invention are, in particular, that a particularly high efficiency of the gas turbine is achieved by a reduction of the radial gaps by a targeted design of the hollow cone-shaped or hollow cylindrical components of a gas turbine such that they have a substantially elliptical cross-sectional contour in the inoperative state.
  • a particularly high efficiency of the gas turbine is achieved by a reduction of the radial gaps by a targeted design of the hollow cone-shaped or hollow cylindrical components of a gas turbine such that they have a substantially elliptical cross-sectional contour in the inoperative state.
  • the gas turbine 1 has a compressor 2 for combustion air, a combustion chamber 4 and a turbine unit 6 for driving the compressor 2 and a generator, not shown, or a working machine.
  • the turbine unit 6 and the compressor 2 are arranged on a common, also referred to as a turbine rotor turbine shaft 8, with which the generator or the working machine is connected, and which is rotatably mounted about its turbine axis 9.
  • the running in the manner of an annular combustion chamber 4 is equipped with a number of burners 10 for the combustion of a liquid or gaseous fuel.
  • the turbine unit 6 has a number of rotatable blades 12 connected to the turbine shaft 8.
  • the blades 12 are arranged in a ring on the turbine shaft 8 and thus form a number of blade rows.
  • the turbine unit 6 comprises a number of stationary vanes 14, which are also attached in a donut-like manner to a vane support 16 of the turbine unit 6 to form rows of vanes.
  • the blades 12 serve to drive the turbine shaft 8 by momentum transfer from the turbine unit 6 flowing through the working medium M.
  • the vanes 14, however, serve to guide the flow of the working medium M between two seen in the flow direction of the working medium M consecutive blade rows or blade rings.
  • a successive pair of a ring of vanes 14 or a row of vanes and a ring of blades 12 or a blade row is also referred to as a turbine stage.
  • Each vane 14 has a platform 18 which is arranged to fix the respective vane 14 to a vane support 16 of the turbine unit 6 as a wall element.
  • the platform 18 is a thermally comparatively heavily loaded component which forms the outer boundary of a hot gas channel for the working medium M flowing through the turbine unit 6.
  • Each blade 12 is attached to the turbine shaft 8 in an analogous manner via a platform 19, also referred to as a blade root.
  • each ring segment 21 is arranged on a guide blade carrier 16 of the turbine unit 6 respectively.
  • the inner surface of each ring segment 21 is also exposed to the hot, the turbine unit 6 flowing through the working medium M and therefore limits the outside of the annular hot gas path as the outer wall.
  • In the radial direction is the outer wall from the outer end of the opposite blades 12 spaced by a radial gap.
  • the ring segments 21 arranged between adjacent guide blade rows serve in particular as cover elements which protect the guide blade carrier 16 or other housing built-in components against thermal overstress by the hot working medium M flowing through the turbine 6.
  • the combustion chamber 4 is designed in the embodiment as a so-called annular combustion chamber, in which a plurality of circumferentially around the turbine shaft 8 arranged around burners 10 open into a common combustion chamber space.
  • the combustion chamber 4 is configured in its entirety as an annular structure which is positioned around the turbine shaft 8 around.
  • FIG. 2 and FIG. 3 now schematically show the guide vane 16 of the gas turbine 1 in a cross section perpendicular to the turbine axis 9 once left in the inoperative state, ie at cold gas turbine 1, and right in the operating state, ie at operating temperature.
  • the guide vane carrier 16 has a material temperature corresponding to the ambient temperature of the gas turbine.
  • the operating temperature is much higher; beyond 100 ° C.
  • the guide blade carrier 16 is composed of an upper segment 24 and a lower segment 26.
  • the two segments 24, 26 are connected to one another via flanges 28 and each form a connecting joint 30 at their connection point.
  • FIG. 2 4 illustrates a deformation of the prior art vane support 16 such that the distance between the peaks 32 of the respective upper and lower portions 24, 26 increases.
  • the cross section of the guide blade carrier 16 thereby deforms into a vertical ellipse.
  • a circular contour is shown for comparison in dashed line style.
  • the turbine shaft 8 is displaceable along the turbine axis 9.
  • the turbine shaft 8 In the cold state, that is, if there is an elliptical shape of the hot gas channel, then the turbine shaft 8 can be moved in the direction of the hot gas flow direction. As a result of the conical shape of the hot gas channel, this causes an enlargement of the radial gaps. Then, when in operation, a circular cross-section sets by thermal deformation, the turbine shaft 8 is displaced in the reverse direction to optimize the radial gap.
  • the ring segments 21 can be configured by a correspondingly introduced ovalization so that the hot gas channel receives a circular cross-section during operation.
  • the Verhakungs institute for fixing the ring segments 21 on the guide blade carrier 16 may be different lengths, ie be different lengths for different circumferential positions, or inserts between the hook and holding the guide vane 16 are introduced, which influence the radial position of the respective ring segments 21 with the same length Verhakungs instituten.
  • the perpendicular to the machine axis cross-sectional contour of the Ring segments 21 formed radially outer outer wall of the annular hot gas channel is namely largely determined by the passed through the Verhakungs institute the ring segments deformation of the vane support 16. Accordingly, in 2 and FIG. 3 Instead of guide vanes 16 also be understood - then flangeless - the outer wall of the hot gas path of a gas turbine.
  • the ovalization can be avoided in the operating state.
  • the radial gaps can be designed correspondingly smaller, resulting in a significantly higher overall efficiency of the gas turbine 1 without sacrificing operational safety.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

  • Die Erfindung betrifft eine Gasturbine mit einem im Wesentlichen hohlkegelförmig oder hohlzylindrisch ausgebildeten, sich entlang einer Maschinenachse erstreckenden Leitschaufelträger und einer in Umfangs- und/oder axialer Richtung in Ringsegmente segmentierten, im Wesentlichen hohlkegelförmig oder hohlzylindrisch ausgebildeten Außenwand eines ringförmigen Heißgaspfades, deren Ringsegmente mittels einer Anzahl von Verhakungselementen an der Innenseite des Leitschaufelträgers befestigt sind.
  • Gasturbinen werden in vielen Bereichen zum Antrieb von Generatoren oder von Arbeitsmaschinen eingesetzt. Dabei wird der Energieinhalt eines Brennstoffes zur Erzeugung einer Rotationsbewegung einer Turbinenwelle genutzt. Der Brennstoff wird dazu in einer Brennkammer verbrannt, wobei von einem Luftverdichter verdichtete Luft zugeführt wird. Das in der Brennkammer durch die Verbrennung des Brennstoffs erzeugte, unter hohem Druck und unter hoher Temperatur stehende Arbeitsmedium wird dabei über eine der Brennkammer nachgeschaltete Turbineneinheit geführt, wo es sich arbeitsleistend entspannt.
  • Zur Erzeugung der Rotationsbewegung der Turbinenwelle sind dabei an dieser eine Anzahl von üblicherweise in Schaufelgruppen oder Schaufelreihen zusammengefassten Laufschaufeln angeordnet, die über einen Impulsübertrag aus dem Arbeitsmedium die Turbinenwelle antreiben. Zur Strömungsführung des Arbeitsmediums sind zudem üblicherweise zwischen benachbarten Laufschaufelreihen mit dem Turbinengehäuse verbundene, zu Leitschaufelreihen zusammengefasste Leitschaufeln angeordnet. Diese sind an einem üblicherweise hohlzylinder- oder hohlkegelförmigen Leitschaufelträger befestigt.
  • Bei der Auslegung derartiger Gasturbinen ist zusätzlich zur erreichbaren Leistung üblicherweise ein besonders hoher Wirkungsgrad ein Auslegungsziel. Eine Erhöhung des Wirkungsgrades lässt sich dabei aus thermodynamischen Gründen grundsätzlich durch eine Erhöhung der Austrittstemperatur erreichen, mit der das Arbeitsmedium aus der Brennkammer ab und in die Turbineneinheit einströmt. Dabei werden Temperaturen von etwa 1200°C bis 1500°C für derartige Gasturbinen angestrebt und auch erreicht.
  • Bei derartig hohen Temperaturen des Arbeitsmediums sind jedoch die diesem ausgesetzten Komponenten und Bauteile hohen thermischen Belastungen ausgesetzt. Daher ist der Heißgaskanal üblicherweise durch so genannte Ringsegmente ausgekleidet, die axiale Abschnitte der Außenwand des Heißgaskanals bilden. Diese sind üblicherweise über Verhakungselemente am Leitschaufelträger befestigt, so dass die Gesamtheit der Ringsegmente in Umfangsrichtung ebenso wie der Leitschaufelträger eine hohlkegelförmige oder hohlzylindrische Struktur bilden.
  • Die Bauteile der Gasturbine können sich durch unterschiedliche thermische Ausdehnung in unterschiedlichen Betriebszuständen verformen, was einen direkten Einfluss auf die Größe der Radialspalte zwischen Laufschaufeln und Außenwand des Heißgaskanals hat. Diese Radialspalte sind beim An- und Abfahren der Turbine anders dimensioniert als im regulären Betrieb. Bei der Konstruktion der Gasturbine sind Bauteile wie Leitschaufelträger oder Außenwand stets so zu dimensionieren, dass die Radialspalte ausreichend groß gehalten sind, um in keinem Betriebszustand Beschädigungen der Gasturbine entstehen zu lassen. Eine entsprechend vergleichsweise großzügige Auslegung der Radialspalte führt jedoch zu erheblichen Einbußen im Wirkungsgrad.
  • Um diesem Problem zu begegnen, schlägt die JP 2005-042612 vor, den Leitschaufelträger kühlbar auszugestalten, auszugestalten, wodurch die thermisch bedingte Deformation vermieden werden soll. Nach der JP 54-081409 soll dieses Problem mit mehreren Gasentnahmekammern gelöst werden, was zu einer vergleichmäßigten Steifigkeit von oberem und unterem Gehäuseteil führt.
  • Der Erfindung liegt daher die Aufgabe zugrunde, eine Gasturbine anzugeben, welche bei Erhaltung der größtmöglichen betrieblichen Sicherheit und Lebensdauer einen besonders hohen Wirkungsgrad ermöglicht.
  • Diese Aufgabe wird erfindungsgemäß gelöst, indem die Verhakungselemente zumindest eines der Ringsegmente der Eingangs genannten Gasturbine geometrisch derart angepasst sind, dass im Außerbetriebszustand bei einem Schnitt senkrecht zur Maschinenachse die den Heißgaspfad begrenzende Außenwand eine im Wesentlichen ellipsenförmige Querschnittskontur aufweist.
  • Die Erfindung geht dabei von der Überlegung aus, dass ein besonders hoher Wirkungsgrad durch eine Reduzierung der Radialspalte im regulären Betrieb, d. h. beispielsweise Volllastbetrieb der Gasturbine möglich wäre. Bisher war eine vergleichsweise große Auslegung der Radialspalte insbesondere deshalb erforderlich, weil sich die Turbine in unterschiedlichen Betriebszuständen unterschiedlich verformt. Insbesondere tritt dabei eine Ovalisierung der zylindrisch oder konisch geformten Bauteile der Gasturbine auf, der bei der Bemessung der Radialspalte Rechnung getragen werden muss. Um eine Reduzierung der Radialspalte bei der Konstruktion der Gasturbine zu ermöglichen, sollte daher die Ovalisierung im Betrieb der Gasturbine möglichst gering gehalten werden. Dies sollte durch eine entsprechend angepasste Querschnittskontur der hohlkegelförmig oder hohlzylindrisch ausgebildeten Bauteile der Gasturbine im Außerbetriebszustand, d. h. bei auf Raumtemperatur abgekühlter Gasturbine erzielt werden. Diese Querschnittskontur sollte derart gestaltet sein, dass die bei nach der Montage der Gasturbine, bei Raumtemperatur vorhandene Querschnittskontur durch im Betriebszustand auftretende thermische Verformungen zu einer dann kreisrunden Querschnittskontur führt. Dies ist erreichbar, indem die Verhakungselemente zumindest eines der Ringsegmente geometrisch derart angepasst sind, dass im Außerbetriebszustand bei einem Schnitt senkrecht zur Maschinenachse die den Heißgaspfad begrenzende Außenwand eine im Wesentlichen ellipsenförmige Querschnittskontur aufweist. Die thermischen Dehnungen sollen demnach nicht, wie beim Stand der Technik JP 2005-042612 und JP 54-081409 , unterdrückt werden.
  • Es ist relativ einfach, die eingangs beschriebenen Ringsegmente, mit denen der Heißgaspfad außerhalb der Laufschaufeln ausgekleidet ist, entsprechend zu fertigen. Die Ringsegmente bilden im axialen Abschnitt der Laufschaufeln in Umfangsrichtung die Außenwand des Heißgaspfades, welche gemeinsam somit das den Laufschaufeln am nächsten liegende hohlkegelförmige oder hohlzylindrische Bauteil der Gasturbine bilden. Daher weist der zur Maschinenachse senkrechte Querschnitt der die Außenwand des Heißgaspfades bildenden Ringsegmente die beschriebene ellipsenförmige Querschnittskontur im Außerbetriebszustand auf.
  • Die im axialen Abschnitt der Laufschaufeln die Außenwand des Heißgaspfades bildenden Ringsegmente sind dabei üblicherweise im Leitschaufelträger über Verhakungselemente eingehakt. Da der Leitschaufelträger ein relativ massives Bauteil ist, welches eine vergleichsweise starke Verformung im Betrieb aufweist, wird die von allen Ringsegmenten gebildete Querschnittskontur im Betriebszustand häufig durch die Befestigung oder Verspannung der Ringsegmente im Leitschaufelträger und dessen Verformung im Betrieb bestimmt. Es ist daher nicht unbedingt nötig, die kalte Kontur der aus Ringsegmenten bestehenden Außenwand selbst in Ellipsenform zu fertigen, da sich sowieso die von den Kontaktstellen an den Verhakungselementen erzwungene Verformung einstellt. Der Ausgleich der Ovalisierung des Leitschaufelträgers kann daher erreicht werden, indem vorteilhafterweise nur die einzelnen Verhakungselemente der Ringsegmente derart angepasst sind, dass die Außenwand eine im Wesentlichen ellipsenförmige Querschnittskontur aufweist. Da es sich bei diesen Ringsegmenten um austauschbare Serviceteile handelt, ermöglicht dies einerseits eine Nachrüstung bestehender Gasturbinen, andererseits einen Ausgleich von Fertigungsfehlern bei Leitschaufelträgern und weiterhin eine besonders einfache Anpassung an veränderte Fahrweisen inklusive veränderter anderer Maßnahmen zur Reduzierung der Radialspalte.
  • In vorteilhafter Ausgestaltung ist die bei der Herstellung der hohlkegelförmig oder hohlzylindrisch ausgebildeten Bauteile der Gasturbine die Länge der Haupt- und Nebenachse der ellipsenförmigen Querschnittskontur jeweils derart gewählt, dass das jeweilige Bauteil durch seine thermische Verformung im Betriebszustand eine im Wesentlichen kreisförmige Querschnittskontur aufweist. Dies kann beispielsweise durch Einbringung einer zur im Betrieb erwarteten um 90 Grad versetzten Ovalisierung geschehen. Die elliptische Form dieser Bauteile ist somit derart gewählt, dass die Verformungen im Betriebszustand genau so ausgeglichen werden, dass im Betrieb ein kreisförmiger Querschnitt entsteht und somit über den gesamten Umfang der Gasturbine gleiche Radialspalte vorliegen, d. h., die Radialspalte über den Umfang keine Varianz mehr aufweisen. Dadurch können bereits bei der Konstruktion die Radialspalte entsprechend eng bemessen werden, was einen höheren Wirkungsgrad der Gasturbine zur Folge hat.
  • Vorteilhafterweise sind die Verhakungselemente in ihrer radialen Länge angepasst und/oder zur Veränderung der radialen Lage der Verhakungselemente in einer entsprechenden Haltenut des Leitschaufelträgers Beilagen angeordnet. Diese liegen dann zwischen den Haken der Verhakungselemente und der Haltenut und führen somit entlang des Umfangs gesehen zu unterschiedlich radialen Lagen von Ringsegmenten. De Facto können somit entweder entlang des Umfangs verteilt Ringsegmente mit unterschiedlich langen radialen Verhakungen im Leitschaufelträger vorgesehen sein, oder die Verhakungselemente der Ringsegmente entlang eines Umfangs sind identisch, wobei dann zur Veränderung der radialen Position der Ringsegmente entlang des Umfangs unterschiedlich dicke Beilagen für die entsprechenden Verhakungen verwendet werden.
  • Durch die erläuterte ellipsenförmige Ausgestaltung der hohlkegelförmigen oder hohlzylindrischen Bauteile der Gasturbine im Außerbetriebszustand kann für den Betriebszustand eine im Wesentlichen kreisförmige Form erreicht werden, zudem kann die jetzt im Außerbetriebszustand vorliegende elliptische Form bei der Auslegung der Radialspalte und Konstruktion der Gasturbine weiter berücksichtigt werden. Diesem Problem lässt sich begegnen, indem eine mit den beschriebenen gegenoval gefertigten Bauteilen ausgestattete Gasturbine vorteilhafterweise eine Lagereinrichtung der Turbinenwelle aufweist, welche derart ausgelegt ist, dass die Turbinenwelle entlang der Turbinenachse verschiebbar ist. Dadurch kann im kalten Betriebszustand die Turbinenwelle in Heißgasflussrichtung verschoben werden, so dass sich bei einer hohlkegelförmigen Form der Außenwand mit Vergrößerung des Radius in Richtung des Heißgasflusses im kalten Außerbetriebszustand eine Vergrößerung der Radialspalte einstellt und somit im kalten Zustand (z. B. beim Anfahren der Gasturbine) die noch vorhandene Gegenovalisierung keine Beschränkung für die im warmen Zustand erzielbaren Radialspalte darstellt. Dadurch ist ein noch größerer Wirkungsgrad der Gasturbine erreichbar.
  • Vorteilhafterweise kommt eine derartige Gasturbine in einer Gas- und Dampfturbinenanlage zum Einsatz.
  • Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch eine gezielte Ausbildung der hohlkegelförmigen oder hohlzylindrischen Bauteile einer Gasturbine derart, dass diese im Außerbetriebszustand eine im Wesentlichen ellipsenförmige Querschnittkontur aufweisen, ein besonders hoher Wirkungsgrad der Gasturbine durch eine Reduzierung der Radialspalte erreicht wird. Durch eine ellipsenförmige Fertigung, bei der die im Kaltzustand eingebrachte Ovalisierung um 90° gegenüber der im Betrieb auftretenden Ovalisierung verdreht ist, wird die bisherige elliptische Verformung beispielsweise der Außenwand des ringförmigen Heißgaskanals oder die Innenwand des Leitschaufelträgers im Betriebszustand verringert oder vermieden. Durch die Vergleichmäßigung der Radialspalte am Umfang werden Strömungsverluste reduziert und damit der Wirkungsgrad der Maschine verbessert. Zusätzlich lassen sich die Kaltspalte im Neubau reduzieren, da der Betrag der Ovalisierung nicht mehr bei der Spaltgenerierung vorgehalten werden muss.
  • Die Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen:
  • FIG 1
    einen Halbschnitt durch eine Gasturbine,
    FIG 2
    einen Querschnitt durch den Leitschaufelträger einer Gasturbine nach dem Stand der Technik, und
    FIG 3
    einen Querschnitt durch den Leitschaufelträger einer Gasturbine mit eingebrachter Ellipsenform im Außerbetriebszustand.
  • Gleiche Teile sind in allen Figuren mit denselben Bezugszeichen versehen.
  • Die Gasturbine 1 gemäß FIG 1 weist einen Verdichter 2 für Verbrennungsluft, eine Brennkammer 4 sowie eine Turbineneinheit 6 zum Antrieb des Verdichters 2 und eines nicht dargestellten Generators oder einer Arbeitsmaschine auf. Dazu sind die Turbineneinheit 6 und der Verdichter 2 auf einer gemeinsamen, auch als Turbinenläufer bezeichneten Turbinenwelle 8 angeordnet, mit der auch der Generator bzw. die Arbeitsmaschine verbunden ist, und die um ihre Turbinenachse 9 drehbar gelagert ist. Die in der Art einer Ringbrennkammer ausgeführte Brennkammer 4 ist mit einer Anzahl von Brennern 10 zur Verbrennung eines flüssigen oder gasförmigen Brennstoffs bestückt.
  • Die Turbineneinheit 6 weist eine Anzahl von mit der Turbinenwelle 8 verbundenen, rotierbaren Laufschaufeln 12 auf. Die Laufschaufeln 12 sind kranzförmig an der Turbinenwelle 8 angeordnet und bilden somit eine Anzahl von Laufschaufelreihen. Weiterhin umfasst die Turbineneinheit 6 eine Anzahl von feststehenden Leitschaufeln 14, die ebenfalls kranzförmig unter der Bildung von Leitschaufelreihen an einem Leitschaufelträger 16 der Turbineneinheit 6 befestigt sind. Die Laufschaufeln 12 dienen dabei zum Antrieb der Turbinenwelle 8 durch Impulsübertrag vom die Turbineneinheit 6 durchströmenden Arbeitsmedium M. Die Leitschaufeln 14 dienen hingegen zur Strömungsführung des Arbeitsmediums M zwischen jeweils zwei in Strömungsrichtung des Arbeitsmediums M gesehen aufeinander folgenden Laufschaufelreihen oder Laufschaufelkränzen. Ein aufeinander folgendes Paar aus einem Kranz von Leitschaufeln 14 oder einer Leitschaufelreihe und aus einem Kranz von Laufschaufeln 12 oder einer Laufschaufelreihe wird dabei auch als Turbinenstufe bezeichnet.
  • Jede Leitschaufel 14 weist eine Plattform 18 auf, die zur Fixierung der jeweiligen Leitschaufel 14 an einem Leitschaufelträger 16 der Turbineneinheit 6 als Wandelement angeordnet ist. Die Plattform 18 ist dabei ein thermisch vergleichsweise stark belastetes Bauteil, das die äußere Begrenzung eines Heißgaskanals für das die Turbineneinheit 6 durchströmende Arbeitsmedium M bildet. Jede Laufschaufel 12 ist in analoger Weise über eine auch als Schaufelfuß bezeichnete Plattform 19 an der Turbinenwelle 8 befestigt.
  • Zwischen den beabstandet voneinander angeordneten Plattformen 18 der Leitschaufeln 14 zweier benachbarter Leitschaufelreihen sind jeweils Ringsegmente 21 an einem Leitschaufelträger 16 der Turbineneinheit 6 angeordnet. Die innere Oberfläche jedes Ringsegments 21 ist dabei ebenfalls dem heißen, die Turbineneinheit 6 durchströmenden Arbeitsmedium M ausgesetzt und begrenzt demnach nach außen den ringförmigen Heißgaspfad als dessen Außenwand. In radialer Richtung ist die Außenwand vom äußeren Ende der ihr gegenüber liegenden Laufschaufeln 12 durch einen Radialspalt beabstandet. Die zwischen benachbarten Leitschaufelreihen angeordneten Ringsegmente 21 dienen dabei insbesondere als Abdeckelemente, die den Leitschaufelträger 16 oder andere Gehäuse-Einbauteile vor einer thermischen Überbeanspruchung durch das die Turbine 6 durchströmende heiße Arbeitsmedium M schützen.
  • Die Brennkammer 4 ist im Ausführungsbeispiel als so genannte Ringbrennkammer ausgestaltet, bei der eine Vielzahl von in Umfangsrichtung um die Turbinenwelle 8 herum angeordneten Brennern 10 in einen gemeinsamen Brennkammerraum münden. Dazu ist die Brennkammer 4 in ihrer Gesamtheit als ringförmige Struktur ausgestaltet, die um die Turbinenwelle 8 herum positioniert ist.
  • FIG 2 und FIG 3 zeigen nun schematisch den Leitschaufelträger 16 der Gasturbine 1 in einem Querschnitt senkrecht zur Turbinenachse 9 einmal links im Außerbetriebszustand, d. h. bei kalter Gasturbine 1, und rechts in Betriebszustand, d. h. auf Betriebstemperatur. Im Außerbetriebszustand hat demnach der Leitschaufelträger 16 eine Materialtemperatur entsprechend zur Umgebungstemperatur der Gasturbine. Die Betriebstemperatur dagegen liegt wesentlich höher; jenseits von 100°C. Der Leitschaufelträger 16 ist dabei zusammengesetzt aus einem oberen Segment 24 und einem unteren Segment 26. Die beiden Segmente 24, 26 sind über Flansche 28 miteinander verbunden und bilden an ihrer Verbindungsstelle jeweils eine Verbindungsfuge 30.
  • Durch die hohen Betriebstemperaturen der Gasturbine 1 stellt sich im Betriebszustand - wie rechts in der FIG 2 dargestellt - eine Verformung des Leitschaufelträgers 16 nach dem Stand der Technik dergestalt ein, dass sich der Abstand zwischen den Scheiteln 32 des jeweils oberen und unteren Teils 24, 26 vergrößert. Der Querschnitt des Leitschaufelträgers 16 verformt sich dabei zu einer stehenden Ellipse. Eine kreisrunde Kontur ist zum Vergleich in gestrichelter Linienart gezeigt.
  • Diese Verformung kann nun durch eine gezielt eingebrachte ellipsenförmige Ausgestaltung des Querschnitts des Leitschaufelträgers 16 im kalten Außerbetriebszustand ausgeglichen werden, wie in FIG 3 dargestellt. Im Außerbetriebszustand ist der Abstand zwischen den Scheiteln 32 des oberen und unteren Segments 24, 26 verkürzt, so dass der Querschnitt im Außerbetriebszustand eine liegende Ellipse nachformt, was in FIG 3 links dargestellt ist. Durch die thermisch bedingte Ausdehnung und Vergrößerung des Abstandes zwischen den Scheiteln 32 im Betriebszustand, wie rechts dargestellt, ergibt sich dann eine im Wesentlichen kreisförmige Form des Leitschaufelträgers 16, wie in FIG 3 rechts dargestellt.
  • Um im Außerbetriebszustand keine Einschränkungen durch die eingebrachte Ovalisierung hinsichtlich der Radialspalte entstehen zu lassen, ist die Turbinenwelle 8 entlang der Turbinenachse 9 verschiebbar. Im kalten Zustand, wenn also eine elliptische Form des Heißgaskanals vorliegt, kann dann die Turbinenwelle 8 in Richtung der Heißgasflussrichtung verschoben werden. Durch die Kegelform des Heißgaskanals stellt sich dadurch eine Vergrößerung der Radialspalte ein. Wenn sich dann im Betriebszustand ein kreisförmiger Querschnitt durch thermische Verformung einstellt, wird die Turbinenwelle 8 in umgekehrter Richtung verschoben, um die Radialspalte zu optimieren.
  • Alternativ können auch die Ringsegmente 21 durch eine entsprechend eingebrachte Ovalisierung so ausgestaltet sein, dass der Heißgaskanal im Betrieb einen kreisförmigen Querschnitt erhält. Dazu können die Verhakungselemente zur Befestigung der Ringsegmente 21 am Leitschaufelträger 16 unterschiedlich lang sein, d. h. für unterschiedliche Umfangspositionen unterschiedlich lang sein, oder Beilagen zwischen Haken und Haltenut am Leitschaufelträger 16 eingebracht werden, die die radiale Lage der betreffenden Ringsegmente 21 mit gleichlangen Verhakungselementen beeinflussen. Die zur Maschinenachse senkrechte Querschnittskontur der aus den Ringsegmenten 21 gebildeten radial äußeren Außenwand des ringförmigen Heißgaskanals wird nämlich über die durch die Verhakungselemente der Ringsegmente weitergegebene Verformung des Leitschaufelträgers 16 weitgehend bestimmt. Demnach kann in FIG 2 und FIG 3 anstelle von Leitschaufelträgern 16 auch eine - dann flanschlose - Außenwand des Heißgaspfades einer Gasturbine verstanden sein.
  • Durch eine derartige ellipsenartige Ausformung des Leitschaufelträgers 16 oder der aus Ringsegmenten bestehenden Außenwand des Heißgaskanals der Gasturbine 1 kann die Ovalisierung im Betriebszustand vermieden werden. Dadurch lassen sich bei der Konstruktion der Gasturbine 1 die Radialspalte entsprechend kleiner auslegen, was insgesamt einen wesentlich höheren Wirkungsgrad der Gasturbine 1 ohne Einbußen hinsichtlich der betrieblichen Sicherheit zur Folge hat.

Claims (5)

  1. Gasturbine (1) mit einem im Wesentlichen hohlkegelförmig oder hohlzylindrisch ausgebildeten, sich entlang einer Maschinenachse erstreckenden Leitschaufelträger (16) und einer in Umfangs- und/oder axialer Richtung in Ringsegmente (21) segmentierten, im Wesentlichen hohlkegelförmig oder hohlzylindrisch ausgebildeten Außenwand eines ringförmigen Heißgaspfades, deren Ringsegmente (21) mittels einer Anzahl von Verhakungselementen an der Innenseite des Leitschaufelträgers (16) befestigt sind,
    dadurch gekennzeichnet, dass
    die Verhakungselemente zumindest eines der Ringsegmente (21) geometrisch derart angepasst sind, dass im Außerbetriebszustand bei einem Schnitt senkrecht zur Maschinenachse die den Heißgaspfad begrenzende Außenwand eine im Wesentlichen ellipsenförmige Querschnittskontur aufweist.
  2. Gasturbine (1) nach Anspruch 1,
    bei der die Länge der Haupt- und Nebenachse der ellipsenförmigen Querschnittskontur jeweils derart gewählt sind, dass die Außenwand nach der im Betriebszustand auftretenden thermischen Verformung eine im Wesentlichen kreisförmige Querschnittskontur aufweist.
  3. Gasturbine (1) nach Anspruch 1 oder 2,
    bei der die Verhakungselemente in ihrer radialen Länge angepasst sind und/oder für unterschiedliche radiale Positionen der Verhakungselemente in einer Haltenut des Leitschaufelträgers (16) Beilagen angeordnet sind.
  4. Gasturbine (1) nach einem der Ansprüche 1 bis 3,
    die eine Turbinenwelle (8) mit einer Anzahl von zu Laufschaufelreihen gruppierten, umlaufend angeordneten Laufschaufeln (12) und eine Lagereinrichtung der Turbinenwelle (8) umfasst, welche derart ausgelegt ist, dass die Turbinenwelle (8) entlang der Turbinenachse (9) verschiebbar ist.
  5. Gas- und Dampfturbinenanlage mit einer Gasturbine (1) nach einem der Ansprüche 1 bis 4.
EP09827201.6A 2008-11-19 2009-09-15 Gasturbine und zugehörige Gas- bzw. Dampfturbinenanlage Not-in-force EP2347101B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL09827201T PL2347101T3 (pl) 2008-11-19 2009-09-15 Turbina gazowa i odpowiednia przemysłowa instalacja turbiny gazowej lub parowej
EP09827201.6A EP2347101B1 (de) 2008-11-19 2009-09-15 Gasturbine und zugehörige Gas- bzw. Dampfturbinenanlage

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08020190A EP2189630A1 (de) 2008-11-19 2008-11-19 Gasturbine, Leitschaufelträger für eine solche Gasturbine und Gas- bzw. Dampfturbinenanlage mit einer solchen Gasturbine
PCT/EP2009/061936 WO2010057698A1 (de) 2008-11-19 2009-09-15 Gasturbine
EP09827201.6A EP2347101B1 (de) 2008-11-19 2009-09-15 Gasturbine und zugehörige Gas- bzw. Dampfturbinenanlage

Publications (2)

Publication Number Publication Date
EP2347101A1 EP2347101A1 (de) 2011-07-27
EP2347101B1 true EP2347101B1 (de) 2013-07-03

Family

ID=40532518

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08020190A Withdrawn EP2189630A1 (de) 2008-11-19 2008-11-19 Gasturbine, Leitschaufelträger für eine solche Gasturbine und Gas- bzw. Dampfturbinenanlage mit einer solchen Gasturbine
EP09827201.6A Not-in-force EP2347101B1 (de) 2008-11-19 2009-09-15 Gasturbine und zugehörige Gas- bzw. Dampfturbinenanlage

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP08020190A Withdrawn EP2189630A1 (de) 2008-11-19 2008-11-19 Gasturbine, Leitschaufelträger für eine solche Gasturbine und Gas- bzw. Dampfturbinenanlage mit einer solchen Gasturbine

Country Status (7)

Country Link
US (1) US9074490B2 (de)
EP (2) EP2189630A1 (de)
JP (1) JP5281167B2 (de)
CN (1) CN102216570B (de)
ES (1) ES2426099T3 (de)
PL (1) PL2347101T3 (de)
WO (1) WO2010057698A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8506245B2 (en) * 2010-07-08 2013-08-13 General Electric Company Steam turbine shell
JP5738127B2 (ja) * 2011-09-01 2015-06-17 三菱日立パワーシステムズ株式会社 蒸気タービン
EP3078448B1 (de) * 2015-04-10 2018-07-11 Rolls-Royce Deutschland Ltd & Co KG Verfahren zur bearbeitung eines gehäuses für eine turbomaschine.
ES2865387T3 (es) * 2017-08-04 2021-10-15 MTU Aero Engines AG Segmento de paletas guía para una turbina
KR102062594B1 (ko) * 2018-05-11 2020-01-06 두산중공업 주식회사 베인 캐리어, 이를 포함하는 압축기 및 가스 터빈

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3169748A (en) * 1962-12-06 1965-02-16 Westinghouse Electric Corp Turbine apparatus
JPS5481409A (en) * 1977-12-12 1979-06-28 Hitachi Ltd Turbine casing
US4426191A (en) * 1980-05-16 1984-01-17 United Technologies Corporation Flow directing assembly for a gas turbine engine
JPS58160502A (ja) 1982-03-19 1983-09-24 Toshiba Corp コンバインドサイクルプラントの起動方法
JPS62126225A (ja) 1985-11-25 1987-06-08 Hitachi Ltd タ−ビン過給機のタ−ビンケ−ス
US5063661A (en) * 1990-07-05 1991-11-12 The United States Of America As Represented By The Secretary Of The Air Force Method of fabricating a split compressor case
US5605438A (en) * 1995-12-29 1997-02-25 General Electric Co. Casing distortion control for rotating machinery
CN1212323A (zh) * 1998-05-13 1999-03-31 韩凤琳 热流涡轮机
EP1131537B1 (de) 1998-11-11 2004-10-06 Siemens Aktiengesellschaft Verfahren zum betrieb einer strömungsmaschine
DE59909395D1 (de) * 1999-01-20 2004-06-09 Alstom Technology Ltd Baden Gehäuse für eine Dampf- oder eine Gasturbine
US6409471B1 (en) 2001-02-16 2002-06-25 General Electric Company Shroud assembly and method of machining same
DE60218045T2 (de) * 2001-07-06 2007-06-06 R & D Dynamics Corp., Bloomfield Hydrodynamische folien-gleitringdichtung
GB2383380B (en) * 2001-12-19 2005-05-25 Rolls Royce Plc Rotor assemblies for gas turbine engines
US6691019B2 (en) * 2001-12-21 2004-02-10 General Electric Company Method and system for controlling distortion of turbine case due to thermal variations
US6715297B1 (en) * 2002-09-20 2004-04-06 General Electric Company Methods and apparatus for supporting high temperature ducting
US6811315B2 (en) * 2002-12-18 2004-11-02 Pratt & Whitney Canada Corp. Compliant support for increased load capacity axial thrust bearing
JP2005042612A (ja) * 2003-07-22 2005-02-17 Ishikawajima Harima Heavy Ind Co Ltd ケーシング及びケーシングの変形防止システム並びにその方法
US7255929B2 (en) * 2003-12-12 2007-08-14 General Electric Company Use of spray coatings to achieve non-uniform seal clearances in turbomachinery
DE102004058487A1 (de) * 2004-12-04 2006-06-14 Mtu Aero Engines Gmbh Gasturbine
US7374396B2 (en) * 2005-02-28 2008-05-20 General Electric Company Bolt-on radial bleed manifold
US7681601B2 (en) * 2005-08-24 2010-03-23 Alstom Technology Ltd. Inner casing of a rotating thermal machine
US8801370B2 (en) * 2006-10-12 2014-08-12 General Electric Company Turbine case impingement cooling for heavy duty gas turbines
US8128353B2 (en) * 2008-09-30 2012-03-06 General Electric Company Method and apparatus for matching the thermal mass and stiffness of bolted split rings

Also Published As

Publication number Publication date
US9074490B2 (en) 2015-07-07
CN102216570A (zh) 2011-10-12
JP5281167B2 (ja) 2013-09-04
JP2012508843A (ja) 2012-04-12
ES2426099T3 (es) 2013-10-21
EP2347101A1 (de) 2011-07-27
US20110280721A1 (en) 2011-11-17
WO2010057698A1 (de) 2010-05-27
CN102216570B (zh) 2014-03-05
PL2347101T3 (pl) 2013-12-31
EP2189630A1 (de) 2010-05-26

Similar Documents

Publication Publication Date Title
EP2342427B1 (de) Axial segmentierter leitschaufelträger für eine gasturbine
EP0991850B1 (de) Turbinenwelle einer dampfturbine mit interner kühlung sowie verfahren zur kühlung einer turbinenwelle
EP2342425B1 (de) Gasturbine mit sicherungsplatte zwischen schaufelfuss und scheibe
EP3153667B1 (de) Sicherungsvorrichtung zur axialen sicherung einer laufschaufel und rotorvorrichtung mit einer derartigen sicherungsvorrichtung
EP2344723B1 (de) Gasturbine mit dichtplatten an der turbinenscheibe
EP2347101B1 (de) Gasturbine und zugehörige Gas- bzw. Dampfturbinenanlage
EP2211023A1 (de) Leitschaufelsystem für eine Strömungsmaschine mit segmentiertem Leitschaufelträger
EP1653049B1 (de) Leitschaufelring einer Strömungsmaschine und zugehöriges Modifikationsverfahren
EP2411631B1 (de) Dichtplatte und Laufschaufelsystem
EP2206885A1 (de) Gasturbine
EP2347100B1 (de) Gasturbine mit kühleinsatz
WO2009109430A1 (de) Dichtungsanordnung und gasturbine
EP1731715A1 (de) Übergangsbereich zwischen einer Brennkammer und einer Turbineneinheit
EP2196628A1 (de) Leitschaufelträger
EP2823154A1 (de) Eine in eine hohle, gekühlte turbinenschaufel einsetzbare kühlmittelüberbrückungsleitung für eine gasturbine
EP2218882A1 (de) Leitschaufelträgersystem
EP1398569A1 (de) Gasturbine
EP2324208A1 (de) Turbinenleitschaufelträger für eine gasturbine und verfahren zum betrieb einer gasturbine
EP2194236A1 (de) Turbinengehäuse
EP2218880A1 (de) Aktives Spaltkontrollsystem für Gasturbinen
EP2352909B1 (de) Leitschaufelträger
EP1895094B1 (de) Drallgekühlte Rotor-Schweissnaht
EP2184449A1 (de) Leitschaufelträger, und Gasturbine und Gas- bzw. Dampfturbinenanlage mit solchem Leitschaufelträger
WO2010023036A1 (de) Leitschaufelträger für eine gasturbine
EP2236761A1 (de) Leitschaufelträger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110421

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 619914

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009007514

Country of ref document: DE

Effective date: 20130822

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2426099

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20131021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131103

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131003

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131004

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140404

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140530

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009007514

Country of ref document: DE

Effective date: 20140404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130915

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130915

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090915

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160914

Year of fee payment: 8

Ref country code: NL

Payment date: 20160905

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160809

Year of fee payment: 8

Ref country code: PL

Payment date: 20160823

Year of fee payment: 8

Ref country code: CZ

Payment date: 20160914

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20161202

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20161021

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170915

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20171001

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 619914

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170915

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170915

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170915

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180926

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181119

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009007514

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190915