EP2697495A1 - Verfahren und vorrichtung zum betreiben eines piezoaktors - Google Patents

Verfahren und vorrichtung zum betreiben eines piezoaktors

Info

Publication number
EP2697495A1
EP2697495A1 EP12709870.5A EP12709870A EP2697495A1 EP 2697495 A1 EP2697495 A1 EP 2697495A1 EP 12709870 A EP12709870 A EP 12709870A EP 2697495 A1 EP2697495 A1 EP 2697495A1
Authority
EP
European Patent Office
Prior art keywords
piezoelectric actuator
temperature
actuated
passive
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12709870.5A
Other languages
English (en)
French (fr)
Inventor
Guido Porten
Jan-Mathias Meng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2697495A1 publication Critical patent/EP2697495A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/0075Electrical details, e.g. drive or control circuits or methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D41/2096Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • F02D41/247Behaviour for small quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2065Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control being related to the coil temperature

Definitions

  • the invention relates generally to a method for operating a piezoelectric actuator.
  • the invention further relates to a device for operating a piezoelectric actuator.
  • the invention relates to an internal combustion engine with such a device.
  • piezoelectric actuators there are numerous technical applications, such as. As a piezoelectric actuator for controlling the position of valve needles of injectors in
  • piezoelectric actuators are formed by a piezoceramic, which expands due to the piezoelectric effect when applying an electrical voltage or application of a charge.
  • a problem with the use of piezoceramics was previously that piezoceramics have a certain sensitivity to temperature fluctuations. In practice, frequent temperature changes to piezoelectric actuators affect their effectiveness to the effect that over time the Aktorhub is reduced. A reduction in Aktorhubes affects when using the piezoelectric actuator in injectors in one
  • the object of the invention is to provide a method and an apparatus for
  • the method is used to operate a piezoelectric actuator, which can be actuated by means of a drive signal, in particular a drive voltage.
  • the drive signal may also be an electrical drive current or an electrical drive charge.
  • the piezoelectric actuator can be operated in a passive and in an active operating mode. In this case, the piezoelectric actuator is actuated, provided that it is in a passive mode. In other words, that means that the piezoactuator is operated solely for the purpose above
  • the term "passive mode of the piezoelectric actuator” an operating mode of the piezoelectric actuator to understand in which the piezoelectric actuator is in an idle state, so the functional actuation is not requested (that is, there is no drive signal to the piezoelectric actuator or but there is a constant drive signal on the piezo actuator). Accordingly, in the wording of this application, the term “active operating mode of the piezoelectric actuator” is to be understood as meaning an operating mode of the piezoelectric actuator in which the piezoelectric actuator is functionally actuated.
  • the piezoelectric actuator is actuated, provided that the piezoelectric actuator for a predetermined period of time in the passive
  • a temperature in the region of the piezoelectric actuator is determined in a variant of the method according to the invention and determines a change in the determined temperature.
  • the piezoelectric actuator is actuated by the drive signal, provided that the temperature change exceeds a predefined value.
  • the temperature is a metrologically relatively easily and accurately detectable size, which is why the temperature is measured in one embodiment of the method according to the invention.
  • the temperature is calculated using a model.
  • the model-based calculation has the advantage that measured values can be used by sensors that are already present in the vehicle anyway. Since the thermal cycling especially in the passive mode (also referred to as "passive operation") particularly disadvantageous to the properties of
  • Piezoceramic effect is regularly checked in a variant of the method according to the invention, whether the piezoelectric actuator is in the passive mode.
  • the predefined value is formed by a temperature difference.
  • the temperature difference between a first value of the temperature at a first time and a second value of the temperature at a second time is a metrologically easily determinable measure of the thermal stress of the piezoelectric actuator.
  • the predefined value in a variant of the invention Upon a change in the temperature profile in the region of the piezoelectric actuator, a thermal stress of the piezoactuator that is proportional to the rate of temperature change occurs, which leads to unacceptable inaccuracies in the injection quantity during prolonged use of the piezoactuator in injection valves -as described above. Therefore, the predefined value in a variant of the invention
  • Process is formed by a rate of temperature change (defined, for example, as a time derivative of temperature).
  • the piezoactuator is actuated if one or more temperature changes are or will be detected.
  • the invention further relates to an apparatus for operating a piezoelectric actuator, which is actuated by means of a drive signal, having means for detecting whether the piezoelectric actuator is operated in an active or a passive mode, and with a control device (24) which is adapted to Actuate piezoelectric actuator (12) by means of the drive signal, if the piezoelectric actuator is in passive operation.
  • An advantage achieved by the invention is that it provides an effective measure to prevent a threatening reduction in the life of the piezoelectric actuator.
  • Fig. 1 shows a block diagram of an injection valve according to the invention.
  • FIG. 1 is a block diagram illustrating an exemplary one
  • Internal combustion engine arranged piezoelectric actuator 12 is for controlling the position of a valve needle 18 of the injection valve 10 in a fuel injection system
  • the piezoelectric actuator 12 acts in the activated state indirectly via a arranged between the piezoelectric actuator 12 and the nozzle 14 valve member 16 on the valve needle 18. It is of course also conceivable that the valve needle 18 is actuated directly by piezoelectric actuator 12.
  • the piezoelectric actuator 12 is driven by a signal which is an electrical current signal, an electrical voltage signal or an electrical signal
  • the arrangement 10 furthermore has a temperature determination device 22 with which a temperature at the piezoactuator 12 is determined via a model.
  • An evaluation / control device 24 checks whether a change of the of
  • Temperature determination device 22 detected temperature at the piezoelectric actuator 12 is within a setpoint range or exceeds a predefined setpoint.
  • the evaluation / control device 24 is also capable of detecting different operating modes of the piezoelectric actuator 12. This will be data that is the current
  • Operating state of the piezoelectric actuator 12 relate, via a data line 26 to the
  • the evaluation / control device 24 is in particular capable of recognizing a passive operation of the piezoactuator 12 by evaluating the data.
  • the piezoactuator 12 can be operated in an active mode and in a passive mode.
  • the active mode is a mode in which the piezoelectric actuator is operated regularly or permanently functionally.
  • the passive mode is an operating mode in which the piezo actuator is in an idle state, in which no functional actuation is requested. In this state, the piezoelectric actuator is therefore not operated and not moved. Due to a number of possible
  • Temperature influences can be: An excessively high temperature value which is above a critical temperature value, a temperature change, a unique one
  • Temperature change or a number of temperature cycles or temperature changes.
  • the piezoelectric actuator 12 generally shows the mechanical property, with passive
  • Combustion engines with selective operation with liquid fuel and gas, in particular LPG or natural gas, can the above problem in pure
  • Actuation is carried out without functional actuation request only to prevent the above-mentioned disadvantages.
  • a predetermined condition may exist, for example, in a certain number of temperature cycles or temperature changes.
  • the piezoelectric actuator 12 can also be operated after a predetermined time without consideration or temperature
  • the evaluation / control device 24 is designed to actuate and actuate the piezoelectric actuator 12, provided that a passive operation of the piezoelectric actuator 12 is detected and at the same time the temperature change deviates from the setpoint range or exceeds the predefined setpoint value or a predefined time has elapsed.
  • an electrical current 20 the time profile of which has a defined profile, is passed through the piezoactuator 12.
  • By energizing an extension of the piezoelectric actuator 12 is changed and thereby the valve element 16 and ultimately also the valve needle 18 is actuated.
  • pressure differences between a seat of the valve needle 18 and the upper part of the valve needle 18, which have the opening of the valve needle 18 result.
  • FIG. 2 shows a flowchart of the method according to the invention for operating the
  • Piezoactuator 12 The inventive method is started in a start step 28. After the start, it is first checked in a mode check step 30, whether the piezoelectric actuator 12 is in a passive mode. If the check result in the mode check step 30 is negative (i.e., the piezo actuator 12 is not in the passive mode), the process in the finishing step 32 is ended.
  • Temperature change test step 34 is checked if a temperature change at Piezoelectric actuator 12 is within a predetermined target range or whether the change in temperature exceeds a predefined setpoint.
  • T1 and T2 are two temperature values which were determined at different times. The reasonable time interval between the two measurements depends on the concomitant circumstances, such as the absolute temperature or the profile of the time course of the temperature, and should be selected by the skilled worker so that meaningful results are achieved.
  • Temperature change checking step 34 may be further checked whether a
  • Temperature change or a predefined number of temperature changes were detected.
  • Temperature change from the setpoint range deviates or exceeds the setpoint or there is a temperature change or a predetermined number of temperature changes. If the test result in the temperature change check step 34 is positive, the process continues with the drive step 36. In the control step 36, the piezoactuator 12 is actuated. The actuation of the piezoactuator 12 can take place in addition to primary fuel injection (division of the fuel of a cylinder) or as a substitute for primary fuel injection.
  • the invention is basically driven by all piezoelectric actuators

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben eines Piezoaktors (12), der mittels eines Ansteuersignais betätigbar ist. Der Piezoaktor ist in einer passiven und in einer aktiven Betriebsart betreibbar. Der Piezoaktor (12) wird ohne funktionsgemäße Betätigungsanforderung betätigt, sofern sich der Piezoaktor (12) in einer passiven Betriebsart befindet.

Description

Beschreibung Titel
Verfahren und Vorrichtung zum Betreiben eines Piezoaktors
Die Erfindung betrifft allgemein ein Verfahren zum Betreiben eines Piezoaktors. Die Erfindung betrifft ferner eine Vorrichtung zum Betreiben eines Piezoaktors. Die Erfindung betrifft schließlich eine Verbrennungskraftmaschine mit einer derartigen Vorrichtung.
Stand der Technik
Für Piezoaktoren gibt es zahlreiche technische Anwendungen, wie bspw. als Piezoaktor zum Steuern der Position von Ventilnadeln von Einspritzventilen in
Kraftstoffeinspritzsystemen. Die Grundkörper bekannter Piezoaktoren werden durch eine Piezokeramik gebildet, die sich aufgrund des piezoelektrischen Effekts beim Anlegen einer elektrischen Spannung bzw. Aufbringung einer Ladung ausdehnt. Ein Problem beim Einsatz von Piezokeramiken lag bisher darin, dass Piezokeramiken eine gewisse Empfindlichkeit gegenüber Temperaturschwankungen aufweisen. In der Praxis beeinflussen häufige Temperaturwechsel an Piezoaktoren deren Wirkungsfähigkeit dahingehend, dass mit der Zeit der Aktorhub verringert wird. Eine Verringerung des Aktorhubes wirkt sich beim Einsatz des Piezoaktors in Einspritzventilen in einer
Verschiebung des Schließ- und Öffnungszeitpunkts der Ventilnadel und damit letztlich in einer fehlerhaften Einspritzmenge aus.
Die DE 10 2004 018 21 1 A1 beschreibt einen Piezoaktor, der ein Ventilelement einer Kraftstoff-Einspritzvorrichtung betätigt. Es wird geprüft, ob der Wunsch des Anlassens der Verbrennungskraftmaschine besteht und bei positivem Prüfungsergebnis eine
Polarisierung des Piezoaktors angefordert.
Offenbarung der Erfindung
Die Aufgabe der Erfindung besteht darin, ein Verfahren und eine Vorrichtung zum
Betreiben eines Piezoaktors bereitzustellen, wodurch eine mit geringem apparativem Aufwand praktikable Lösung zur Erhöhung der Robustheit und zur Verlängerung der Lebensdauer von Piezoaktoren geschaffen wird.
Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 und durch eine Vorrichtung mit den Merkmalen des Anspruchs 10 gelöst.
Vorteile der Erfindung
Das Verfahren dient dem Betreiben eines Piezoaktors, der mittels eines Ansteuersignais, insbesondere einer Ansteuerspannung betätigbar ist. Das Ansteuersignal kann auch ein elektrischer Ansteuerstrom oder eine elektrische Ansteuerladung sein. Der Piezoaktor ist in einer passiven und in einer aktiven Betriebsart betreibbar. Dabei wird der Piezoaktor betätigt, sofern er sich in einer passiven Betriebsart befindet. Das heißt mit anderen Worten, dass der Piezoaktor allein zu dem Zweck betätigt wird, um die oben
beschriebenen, in einer passiven Betriebsart des Piezoaktors auftretenden nachteiligen Effekte zu unterbinden. Im Wortlaut dieser Anmeldung ist unter dem Begriff "passive Betriebsart des Piezoaktors" eine Betriebsart des Piezoaktors zu verstehen, in der sich der Piezoaktor in einem Ruhezustand befindet, also die funktionsmäßige Betätigung nicht angefordert wird (das heißt, es liegt kein Ansteuersignal am Piezoaktor an oder aber es liegt ein konstantes Ansteuersignal am Piezoaktor an). Entsprechend ist im Wortlaut dieser Anmeldung unter dem Begriff „aktive Betriebsart des Piezoaktors" eine Betriebsart des Piezoaktors zu verstehen, in der der Piezoaktor funktionsgemäß betätigt wird.
Bei einer Ausführungsvariante des erfindungsgemäßen Verfahrens wird der Piezoaktor betätigt, sofern sich der Piezoaktor für eine vorbestimmte Zeitdauer in der passiven
Betriebsart befindet. Damit kann die maximale Dauer einer Passiv-Betriebs-Phase begrenzt werden, um so die Zeit, in der die zuvor beschriebenen nachteiligen Effekte auftreten, möglichst gering zu halten. Um bei passivem Betrieb der Piezoeinspntzventile deren Hubfähigkeit über Alterung und
Laufzeit sicherzustellen, wird bei einer Ausführungsvariante des erfindungsgemäßen Verfahrens eine Temperatur im Bereich des Piezoaktors ermittelt und eine Änderung der ermittelten Temperatur bestimmt. Dabei wird der Piezoaktor durch das Ansteuersignal betätigt, sofern die Temperaturänderung einen vordefinierten Wert überschreitet. Die Temperatur ist eine messtechnisch relativ leicht und genau erfassbare Größe, weshalb die Temperatur bei einer Ausgestaltung des erfindungsgemäßen Verfahrens gemessen wird. Bei einer anderen Ausgestaltung des erfindungsgemäßen Verfahrens wird die Temperatur anhand eines Modells berechnet. Die modellbasierte Berechnung hat den Vorteil, dass Messwerte von Sensoren verwendet werden können, die ohnehin bereits im Fahrzeug vorhanden sind. Da sich die Temperaturwechselbeanspruchung gerade in der passiven Betriebsart (auch als„Passivbetrieb" bezeichnet) besonders nachteilig auf die Eigenschaften der
Piezokeramik auswirkt, wird bei einer Ausführungsvariante des erfindungsgemäßen Verfahrens regelmäßig geprüft, ob sich der Piezoaktor in der passiven Betriebsart befindet.
Gemäß einer Ausgestaltung des erfindungsgemäßen Verfahrens ist der vordefinierte Wert durch eine Temperaturdifferenz gebildet. Die Temperaturdifferenz zwischen einem ersten Wert der Temperatur zu einem ersten Zeitpunkt und einem zweiten Wert der Temperatur zu einem zweiten Zeitpunkt ist ein messtechnisch leicht ermittelbares Maß für die thermische Beanspruchung des Piezoaktors.
Bei einer Änderung des Temperaturverlaufs im Bereich des Piezoaktors tritt eine zur Temperaturänderungsgeschwindigkeit proportionale thermische Beanspruchung des Piezoaktors auf, die bei längerem Einsatz des Piezoaktors in Einspritzventilen -wie oben beschrieben- zu unannehmbaren Ungenauigkeiten in der Einspritzmenge führt. Deshalb ist der vordefinierte Wert bei einer Ausführungsvariante des erfindungsgemäßen
Verfahrens durch eine Temperaturänderungsgeschwindigkeit (definiert z.B. als zeitliche Ableitung der Temperatur) gebildet. Bei einer Ausführungsvariante des erfindungsgemäßen Verfahrens wird der Piezoaktor betätigt, sofern ein oder mehrere Temperaturwechsel erfasst wird oder werden.
Dadurch wird ein Verlust des Hubvermögens über die Laufzeit des Piezoaktors verhindert oder wenigstens verringert. Die Erfindung betrifft ferner eine Vorrichtung zum Betreiben eines Piezoaktors, der mittels eines Ansteuersignais betätigbar ist, mit Mitteln zum Erfassen, ob der Piezoaktor in einer aktiven oder einer passiven Betriebsart betrieben wird, und mit einer Steuereinrichtung (24), die dazu ausgebildet ist, den Piezoaktor (12) mittels des Ansteuersignais zu betätigen, sofern sich der Piezoaktor im passiven Betrieb befindet.
Hinsichtlich der Vorteile der Vorrichtung wird auf das zuvor beschriebene
erfindungsgemäße Verfahren hingewiesen, das mittels der Vorrichtung durchgeführt werden kann, wobei sich die vorab beschriebenen Vorteile ergeben. Es versteht sich, dass die Merkmale, Eigenschaften und Vorteile des erfindungsgemäßen Verfahrens auch entsprechend auf die erfindungsgemäße Vorrichtung zutreffen bzw. anwendbar sind.
Ein mit der Erfindung hauptsächlich erzielter Vorteil besteht darin, dass sie eine wirksame Maßnahme aufzeigt, einer drohenden Verringerung der Lebensdauer des Piezoaktors vorzubeugen.
Kurze Beschreibung der Zeichnungen
Fig. 1 zeigt ein Blockdiagramm eines erfindungsgemäßen Einspritzventils; und
Fig. 2 zeigt ein Flussdiagramm eines erfindungsgemäßen Verfahrens. Ausführungsformen der Erfindung Fig. 1 zeigt ein Blockdiagramm zur Veranschaulichung einer beispielhaften
Funktionsweise eines erfindungsgemäßen Einspritzventils 10. Dabei sind in stark schematisierter Darstellung die für die Ausführung der Erfindung wesentlichen
Komponenten des Einspritzventils 10 dargestellt. Ein innerhalb einer
Verbrennungskraftmaschine angeordneter Piezoaktor 12 ist zum Steuern der Position einer Ventilnadel 18 des Einspritzventils 10 in einem Kraftstoffeinspritzsystem
ausgebildet. Der Piezoaktor 12 wirkt in angesteuertem Zustand indirekt über ein zwischen dem Piezoaktor 12 und der Düse 14 angeordnetes Ventilelement 16 auf die Ventilnadel 18. Es ist selbstverständlich auch denkbar, dass die Ventilnadel 18 direkt von Piezoaktor 12 betätigt wird. Der Piezoaktor 12 wird von einem Signal angesteuert, das ein elektrisches Stromsignal, ein elektrisches Spannungssignal oder ein elektrisches
Ladungssignal sein kann. Die Anordnung 10 weist ferner eine Temperaturermittlungseinrichtung 22 auf, mit der eine Temperatur am Piezoaktor 12 über ein Modell ermittelt wird. Eine Auswerte/Steuer-Einrichtung 24 prüft, ob eine Änderung der von der
Temperaturermittlungseinrichtung 22 ermittelten Temperatur am Piezoaktor 12 innerhalb eines Sollwertebereiches liegt bzw. einen vordefinierten Sollwert überschreitet. Die Auswerte/Steuer-Einrichtung 24 ist darüber hinaus fähig, unterschiedliche Betriebsarten des Piezoaktors 12 zu erkennen. Hierzu werden Daten, die den gegenwärtigen
Betriebszustand des Piezoaktors 12 betreffen, über eine Datenleitung 26 an die
Auswerte/Steuer-Einrichtung 24 übertragen und von dieser zur Ermittlung der
gegenwärtigen Betriebsart ausgewertet. Die Auswerte/Steuer-Einrichtung 24 ist insbesondere fähig, durch die Auswertung der Daten einen Passivbetrieb des Piezoaktors 12 zu erkennen.
Der Piezoaktor 12 kann in einer aktiven Betriebsart und in einer passiven Betriebsart betrieben werden. Die aktive Betriebsart ist dabei eine Betriebsart, in der der Piezoaktor regelmäßig oder dauerhaft funktionsgemäß betätigt wird. Die passive Betriebsart ist dabei eine Betriebsart, in der der Piezoaktor sich in einem Ruhezustand befindet, in dem keine funktionsgemäße Betätigung angefordert wird. In diesem Zustand wird der Piezoaktor demnach nicht betätigt und nicht bewegt. Aufgrund einer Reihe von möglichen
Temperatureinflüssen kann es insbesondere, wenn der Piezoaktor in der passiven Betriebsart betrieben wird, zum Verlust an Hubvermögen kommen. Solche
Temperatureinflüsse können sein: Ein übermäßig hoher Temperaturwert, der über einem kritischen Temperaturwert liegt, eine Temperaturänderung, ein einmaliger
Temperaturwechsel, oder eine Anzahl von Temperaturzyklen bzw. Temperaturwechseln.
Bei Brennkraftmaschinen mit einer dualen Kraftstoffeinspritzvorrichtung, bei dem die Direkteinspritzung in den Brennraum mit einem ersten Einspritzventil mit vergleichsweise hohem Druck und eine Saugrohreinspritzung in den Luftansaugkanal mit einem zweiten
Einspritzventil mit verhältnismäßig geringem Druck erfolgt, können die Vorteile beider Einspritzarten durch einen entsprechenden Betriebsartenwechsel genutzt werden.
Der Piezoaktor 12 zeigt generell die mechanische Eigenschaft, bei passiver
Temperaturwechselbeanspruchung an Hubvermögen zu verlieren. Bei
Verbrennungskraftmaschinen mit wahlweisem Betrieb mit flüssigem Kraftstoff und Gas, insbesondere Autogas oder Erdgas, kann das zuvor genannte Problem im reinen
Gasbetrieb bzw. im Betrieb über Saugrohreinspritzung der Verbrennungskraftmaschine auftreten. Deshalb erfolgt eine Betätigung des Piezoaktors 12 in einem derartigen passiven Betrieb z.B. regelmäßig oder unter vorbestimmten Bedingungen. Diese
Betätigung erfolgt ohne funktionsgemäße Betätigungsanforderung lediglich, um die oben genannten Nachteile zu verhindern. Eine vorbestimmte Bedingung kann zum Beispiel in einer bestimmten Anzahl Temperaturzyklen bzw. Temperaturwechseln bestehen. Der Piezoaktor 12 kann auch nach einer vorbestimmten Zeit ohne Berücksichtigung oder Temperatur betätigt werden
Hierzu ist die Auswerte/Steuer-Einrichtung 24 ausgebildet, um den Piezoaktor 12 anzusteuern und zu betätigen, sofern ein Passivbetrieb des Piezoaktors 12 erkannt ist und zugleich die Temperaturänderung vom Sollwertebereich abweicht bzw. den vordefinierten Sollwert überschreitet oder eine vordefinierte Zeit verstrichen ist. Zur Ansteuerung des Piezoaktors 12 wird ein elektrischer Strom 20, dessen zeitlicher Verlauf ein definiertes Profil aufweist, durch den Piezoaktor 12 geleitet. Durch das Bestromen wird eine Ausdehnung des Piezoaktors 12 verändert und dadurch das Ventilelement 16 und letztlich auch die Ventilnadel 18 betätigt. Durch das Betätigen der Ventilnadel 18 entstehen Druckunterschiede zwischen einem Sitz der Ventilnadel 18 und dem oberen Teil der Ventilnadel 18, die das Öffnen der Ventilnadel 18 zur Folge haben. Dadurch kann im passiven Betrieb eine Veränderung des Hubvermögens verhindert werden. Figur 2 zeigt ein Flussdiagramm des erfindungsgemäßen Verfahrens zum Betreiben des
Piezoaktors 12. Das erfindungsgemäße Verfahren wird in einem Startschritt 28 gestartet. Nach dem Start wird zunächst in einem Betriebsartprüfungsschritt 30 geprüft, ob sich der Piezoaktor 12 in einem Passivbetrieb befindet. Bei negativem Prüfungsergebnis im Betriebsartprüfungsschritt 30 (d.h. der Piezoaktor 12 befindet sich nicht im Passivbetrieb) wird das Verfahren im Beendigungsschritt 32 beendet.
Bei einem positiven Prüfungsergebnis des Betriebsartprüfungsschritts 30, das heißt, wenn festgestellt wurde, dass sich der Piezoaktor 12 im Passivbetrieb befindet, geht das Verfahren zum Temperaturänderungsprüfungsschritt 34 über. Im
Temperaturänderungsprüfungsschritt 34 wird geprüft, ob eine Temperaturänderung am Piezoaktor 12 innerhalb eines vorbestimmten Sollbereichs liegt bzw. ob die Temperaturänderung einen vordefinierten Sollwert überschreitet.
Bei dem Sollwert kann es sich um eine Temperaturdifferenz delta T= T1-T2 handeln. Dabei sind T1 und T2 zwei Temperaturwerte, die zu unterschiedlichen Zeitpunkten ermittelt wurden. Der sinnvolle zeitliche Abstand zwischen beiden Messungen hängt von den Begleitumständen, wie der absoluten Temperatur oder dem Profil des zeitlichen Verlaufs der Temperatur ab, und ist vom Fachmann so zu wählen, dass aussagekräftige Ergebnisse erzielt werden.
Bei dem Sollwert kann es sich auch um eine Temperaturänderungsgeschwindigkeit (dT/dt = zeitliche Ableitung der Temperatur) handeln. Bei dem
Temperaturänderungsprüfungsschritt 34 kann ferner geprüft werden, ob ein
Temperaturwechsel oder eine vordefinierte Anzahl von Temperaturwechseln erfasst wurden.
Bei negativem Prüfungsergebnis im Temperaturänderungsprüfungsschritt 34 wird die Prüfung der Temperaturänderung periodisch so lange wiederholt, bis die
Temperaturänderung vom Sollwertebereich abweicht bzw. den Sollwert überschreitet oder ein Temperaturwechsel bzw. eine vorbestimmte Anzahl von Temperaturwechseln vorliegt. Bei positivem Prüfungsergebnis im Temperaturänderungsprüfungsschritt 34 wird das Verfahren mit dem Ansteuerungsschritt 36 fortgesetzt. Im Ansteuerungsschritt 36 erfolgt eine Ansteuerung des Piezoaktors 12. Die Ansteuerung des Piezoaktors 12 kann zusätzlich zu primärer Kraftstoffeinspritzung (Aufteilung des Kraftstoffs eines Zylinders) oder als Ersatz zu primärer Kraftstoffeinspritzung erfolgen.
Obwohl die Erfindung oben am Beispiel eines Piezoaktors in einem Einspritzventil beschrieben wurde, ist sie keineswegs auf dieses Anwendungsgebiet beschränkt.
Sondern die Erfindung ist vielmehr grundsätzlich auf alle Piezoaktorangesteuerte
Stellglieder anwendbar, wie zum Beispiel auf einen Piezoaktor für die
Nockenwellenhubverstellung.

Claims

Ansprüche 1. Verfahren zum Betreiben eines Piezoaktors (12), der mittels eines Ansteuersignais betätigbar ist, wobei der Piezoaktor (12) in einer aktiven und in einer passiven Betriebsart betreibbar ist, wobei der Piezoaktor in der aktiven Betriebsart funktionsgemäß betätigt wird und sich in der passiven Betriebsart in einem Ruhezustand befindet, dadurch gekennzeichnet, dass der Piezoaktor (12) in der passiven Betriebsart ohne
funktionsgemäße Betätigungsanforderung betätigt wird.
2. Verfahren nach Anspruch 1 , wobei der Piezoaktor (12) betätigt wird, sofern sich der Piezoaktor (12) für eine vorbestimmte Zeitdauer in der passiven Betriebsart befindet.
3. Verfahren nach einem der Ansprüche 1 oder 2, wobei eine Temperatur im Bereich des Piezoaktors (12) ermittelt und eine Änderung der ermittelten Temperatur bestimmt wird, und wobei der Piezoaktor (12) durch das Ansteuersignal betätigt wird, sofern die
Temperaturänderung einen vordefinierten Wert überschreitet.
4. Verfahren nach Anspruch 3, wobei die Temperatur mit Temperaturerfassungsmitteln erfasst wird.
5. Verfahren nach Anspruch 3 wobei die Temperatur anhand eines Modells berechnet wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, wobei regelmäßig geprüft wird, ob sich der Piezoaktor (12) in der passiven Betriebsart befindet.
7 Verfahren nach einem der Ansprüche 1 bis 6, wobei der vordefinierte Wert durch eine Temperaturdifferenz gebildet ist.
8 Verfahren nach einem der Ansprüche 1 bis 7, wobei der vordefinierte Wert durch eine Temperaturänderungsgeschwindigkeit gebildet ist.
9. Verfahren nach einem der Ansprüche 1 bis 8, wobei der Piezoaktor (12) betätigt wird, sofern ein oder mehrere Temperaturwechsel erfasst wird oder werden.
10. Vorrichtung zum Betreiben eines Piezoaktors (12), der mittels eines Ansteuersignais betätigbar ist, mit:- Mitteln zum Erfassen, ob der Piezoaktor (12) in einer aktiven oder einer passiven Betriebsart betrieben wird, und mit
einer Steuereinrichtung (24), die dazu ausgebildet ist, das Verfahren nach einem der Ansprüche 1 bis 9 auszuführen.
1 1. Verbrennungskraftmaschine mit einem Einspritzventil, einem Piezoaktor (12) und einer Vorrichtung nach Anspruch 10.
EP12709870.5A 2011-04-14 2012-03-16 Verfahren und vorrichtung zum betreiben eines piezoaktors Withdrawn EP2697495A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011007359.0A DE102011007359B4 (de) 2011-04-14 2011-04-14 Verfahren und Vorrichtung zum Betreiben eines Piezoaktors
PCT/EP2012/054639 WO2012139851A1 (de) 2011-04-14 2012-03-16 Verfahren und vorrichtung zum betreiben eines piezoaktors

Publications (1)

Publication Number Publication Date
EP2697495A1 true EP2697495A1 (de) 2014-02-19

Family

ID=45872961

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12709870.5A Withdrawn EP2697495A1 (de) 2011-04-14 2012-03-16 Verfahren und vorrichtung zum betreiben eines piezoaktors

Country Status (7)

Country Link
US (1) US9438137B2 (de)
EP (1) EP2697495A1 (de)
JP (1) JP2014519298A (de)
KR (1) KR20140024319A (de)
CN (1) CN103492695A (de)
DE (1) DE102011007359B4 (de)
WO (1) WO2012139851A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3792988A1 (de) * 2019-09-10 2021-03-17 poLight ASA Vorwärtskopplungsbestimmung eines steuersignals für einen piezoaktor

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6198165A (ja) * 1984-10-17 1986-05-16 Nippon Soken Inc 圧電アクチユエ−タ制御装置
JPS6350080A (ja) * 1986-08-20 1988-03-02 Toyota Motor Corp 圧電アクチユエ−タの制御装置
DE19945618B4 (de) 1999-09-23 2017-06-08 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung eines Kraftstoffzumeßsystems einer Brennkraftmaschine
DE10254844A1 (de) 2002-11-25 2004-06-03 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betrieb eines Einspritzsystems einer Brennkraftmaschine
US20070235555A1 (en) * 2006-04-11 2007-10-11 Helf Thomas A Electronic aerosol device
DE102004018211A1 (de) 2004-04-15 2005-11-10 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE102005036956A1 (de) 2005-08-05 2007-02-08 Robert Bosch Gmbh Kalibrierung eines Einspritzventils im Betrieb
DE602007000848D1 (de) * 2006-01-20 2009-05-20 Delphi Tech Inc Verbesserte piezoelektrische Aktoren
DE102006023470A1 (de) * 2006-05-18 2007-11-22 Siemens Ag Common-Rail-Einspritzsystem
JP4853201B2 (ja) 2006-09-27 2012-01-11 株式会社デンソー インジェクタ駆動装置及びインジェクタ駆動システム
DE102007014329A1 (de) * 2007-03-26 2008-10-02 Robert Bosch Gmbh Verfahren zum Erfassen einer elektrischen Potentialdifferenz an einer piezoelektrischen Aktoreinheit und Schaltungsanordnung zur Durchführung des Verfahrens
DE102007042994A1 (de) * 2007-09-10 2009-03-12 Robert Bosch Gmbh Verfahren zum Beurteilen einer Funktionsweise eines Einspritzventils bei Anlegen einer Ansteuerspannung und entsprechende Auswertevorrichtung
DE602007007212D1 (de) * 2007-09-14 2010-07-29 Delphi Tech Holding Sarl Einspritzsteuerungssystem
JP2009086119A (ja) 2007-09-28 2009-04-23 Epson Imaging Devices Corp 実装構造体、電気光学装置及び電子機器
US20090209945A1 (en) * 2008-01-18 2009-08-20 Neurosystec Corporation Valveless impedance pump drug delivery systems
JP2009261069A (ja) * 2008-04-14 2009-11-05 Toyota Industries Corp 振動アクチュエータ及びその制御方法ならびにロボットハンド

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012139851A1 *

Also Published As

Publication number Publication date
US9438137B2 (en) 2016-09-06
KR20140024319A (ko) 2014-02-28
JP2014519298A (ja) 2014-08-07
CN103492695A (zh) 2014-01-01
DE102011007359B4 (de) 2019-08-01
DE102011007359A1 (de) 2012-10-18
WO2012139851A1 (de) 2012-10-18
US20140125257A1 (en) 2014-05-08

Similar Documents

Publication Publication Date Title
DE102006047181B4 (de) Kraftstoffeinspritzsystem, das zum Gewährleisten einer verbesserten Zuverlässigkeit zum Diagnostizieren eines Ventils ausgelegt ist
EP1815120B1 (de) Verfahren und vorrichtung zur leckageprüfung eines kraftstoffeinspritzventils einer brennkraftmaschine
DE102015203246B4 (de) Verfahren und system zum charakterisieren einer kraftstoffkanaleinspritzdüse
EP2478200B1 (de) Verfahren und vorrichtung zum bestimmen einer bewegung eines nadels eines einspritzventils
DE102014100489B4 (de) Kraftstoffeinspritzvorrichtung
EP2758650B1 (de) Verfahren zur beurteilung eines einspritzverhaltens wenigstens eines einspritz-ventils einer brennkraftmaschine und betriebsverfahren für brennkraftmaschine
DE102011004613A1 (de) Verfahren zur Überwachung des Zustandes eines Piezoinjektors eines Kraftstoffeinspritzsystems
DE102012111162A1 (de) Kraftstoffdrucksensor-Diagnosevorrichtung
DE102011005283A1 (de) Verfahren zur Erkennung fehlerhafter Komponenten eines elektronisch geregelten Kraftstoffeinspritzsystems eines Verbrennungsmotors
EP3033513A1 (de) Verfahren zur injektorindividuellen diagnose einer kraftstoff-einspritzeinrichtung und brennkraftmaschine mit einer kraftstoff-einspritzeinrichtung
DE102007008201B3 (de) Verfahren zur Regelung einer Einspritzmenge eines Injektors einer Brennkraftmaschine
EP1618291B1 (de) Verfahren zum betreiben eines hydraulischen aktors, insbesondere eines gaswechselventils einer brennkraftmaschine
EP2635783A1 (de) Verfahren zum betreiben eines magnetischen schaltgliedes
DE102017220912B3 (de) Verfahren und Vorrichtung zur Ermittlung des Öffnungszeitpunktes des Servoventils eines Piezoinjektors
WO2008022951A1 (de) Verfahren zur leerhubsteuerung einer kraftstoffeinspritzvorrichtung
EP2443333A1 (de) Bestimmung der abhebeverzögerung eines magnetventils
DE102014209298B4 (de) Kraftstoffeinspritzeigenschaftserfassungssystem
EP0886056B1 (de) Verfahren und Vorrichtung zur überwachung eines Kraftstoffzumesssystems
EP1167729B2 (de) Piezoelektrischer Aktor eines Einspritzventils
EP2076667B1 (de) Verfahren und vorrichtung zur überwachung eines kraftstoffeinspritzsystems
DE102011007359B4 (de) Verfahren und Vorrichtung zum Betreiben eines Piezoaktors
DE10309720A1 (de) Verfahren und Vorrichtung zur mengendriftkompensierenden Steuerung von Injektoren eines Kraftstoffzumesssystems einer Brennkraftmaschine
DE102010040253A1 (de) Verfahren zur Überwachung des Zustandes eines Piezoinjektors eines Kraftstoffeinspritzsystems
DE102015217776A1 (de) Verfahren zur Erkennung einer Schädigung einer Düsennadel eines Kraftstoffinjektors oder des Düsennadelsitzes
DE102011005773A1 (de) Verfahren und Vorrichtung zum Steuern eines Einspritzventils zum Zumessen von Kraftstoff für eine Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171003