EP2598902A1 - Procédé et dispositif pour estimer la capacité d'au moins une unité de batterie d'une batterie rechargeable - Google Patents

Procédé et dispositif pour estimer la capacité d'au moins une unité de batterie d'une batterie rechargeable

Info

Publication number
EP2598902A1
EP2598902A1 EP11738651.6A EP11738651A EP2598902A1 EP 2598902 A1 EP2598902 A1 EP 2598902A1 EP 11738651 A EP11738651 A EP 11738651A EP 2598902 A1 EP2598902 A1 EP 2598902A1
Authority
EP
European Patent Office
Prior art keywords
state
battery unit
charge
battery
soc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11738651.6A
Other languages
German (de)
English (en)
Inventor
Arpad Imre
Alexander Schmidt
Matthias Bitzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2598902A1 publication Critical patent/EP2598902A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a method for estimating the state of charge of at least one battery unit of a rechargeable battery and at least one of the aging state of this battery unit descriptive size of the battery unit at a selectable operating point by means of a model, in particular mathematical model of the battery or at least the battery unit, wherein first estimates the state of charge becomes.
  • the invention further relates to an arrangement for estimating the state of charge of at least one battery unit of a rechargeable battery and at least one of the aging state of this battery unit descriptive size of the battery unit at a selectable operating point, with the battery unit and an implemented in a computing device of the arrangement model, in particular mathematical model Battery or at least the battery unit, wherein a first state estimator first estimates the state of charge by means of the model.
  • hybrid drive concepts or purely electric drive concepts are currently being developed.
  • the operation of electrical machines in motor and generator operation of such drive concepts requires at least one electrical energy storage such as a rechargeable battery in the vehicle. Due to their high energy density compared to other battery systems, lithium-ion cells are favored for mobile and stationary storage of electrical energy, ie electrical energy storage.
  • the input / output behavior of the battery or its battery units is determined by mathematical models under certain load profiles, that is, corresponding charge and discharge currents. ⁇
  • the method according to the invention with the features mentioned in claim 1 offers the advantage that the estimation of the variable describing the aging state of the battery unit is an instant (instantaneous) and independent of the load case determination of this variable.
  • variable describing the aging state is a current charge capacity C ak t of the battery unit that consists of the load current I B of the battery unit at the operating point and the reciprocal of the time derivative of the previously estimated state of charge of the battery unit is estimated.
  • the charge aging state SOH Q is defined, ie where Co is the capacity of the new cell and C a kt that of the aged cell at the time considered.
  • this method can be used to estimate the state of charge of a storage unit of any electrical (energy) storage device and at least one variable describing the aging state of this storage unit.
  • the electrical memory is in particular said rechargeable battery, ie an accumulator or an element which stores electrical energy by means of electrochemical processes, or a purely capacitive memory, preferably a memory or double-layer capacitor.
  • the battery unit may be a single battery cell, an array of parallel and / or serially connected battery cells or the entire battery.
  • the battery unit is a battery cell.
  • the performance of each individual battery cell is preferably estimated separately.
  • a further of the variables describing the aging state of the current internal resistance Ri, Dc, B, akt the battery unit which is estimated from a determined overpotential Uov and the load current l B of the battery unit at the operating point.
  • An operating point is defined by the currently required load Current I B , the current state of charge (SOC) of the battery unit, and the temperature of environment T TM and temperature T of the battery unit itself.
  • q3 is a parameter known from an offline parameterization which is characteristic of the particular battery unit.
  • the overpotential Uov of the battery unit is estimated from the load current I B of the battery unit at the operating point, the time derivative of the determined temperature T and a function describing the heat transfer function f (T) of the battery unit.
  • the current internal resistance Ri, Dc, B, act can be determined as further variables describing the state of aging.
  • the overpotential Uov occurring at a specific load current can also be used as a measure of the performance.
  • the corresponding power aging state SOH P is defined as
  • UOVA B C BB) i B ⁇ dT / dt + k2-f (T)).
  • K2 is another battery type-specific constant.
  • Q1, q2 are two further parameters, which are estimated in the course of an offline parameterization.
  • the battery model describes the following quantities and functional relationships:
  • the estimation of the state of charge SOC is carried out by means of a state estimator.
  • this state estimator is a state estimator according to Kalman or a condition observer according to Luenberger.
  • the approach of Kaiman is based on a
  • State space modeling which explicitly distinguishes between the dynamics of the system state and the process of its measurement.
  • the state vector of a system is often understood to be the smallest set of determinants describing the system with sufficient accuracy and represented in the framework of modeling in the form of a multi-dimensional vector with corresponding dynamic equations, the so-called state space model.
  • the approach of Luenberger as well as the approach of Kalman is based on a comparison of the output variables of the state estimator with those of the controlled system. Here, the difference between the measured value of the track and the estimated output of the observer is attributed to the model.
  • the correction term also called feedback gain, can be determined according to Kalman by means of a stochastic approach on the assumption of measurement and process noise or according to Luenberger by means of a deterministic approach.
  • the basic rule structure is identical in both cases. So that can the observer / state estimator compensates for disturbances as well as measurement and process noise, or model uncertainties, and the state vector of the model converges to that of the path.
  • the arrangement according to the invention with the features mentioned in claim 9 offers the advantage that the estimation of the variable describing the aging state, consisting of the capacity aging state SOH Q and the power aging state SOHp, the battery unit an instantaneous and independent of the load case determination of this size is.
  • the quantity describing the capacity aging state SOHQ has the current charge capacity C a kt of the battery unit and the arrangement has an aging state estimator (SOH estimator) which is set up in such a way that this charge capacity Uakt BUS is the load current l B of the battery unit Operating point, a battery type specific constant and the reciprocal of the time derivative of the previously estimated state of charge SOC estimate the battery unit.
  • SOH estimator aging state estimator
  • variable describing the power aging state SOHp is the actual internal resistance Ri, Dc, B, act or
  • Overpotential U OV, B of the battery unit is.
  • the aging state estimator is further configured to estimate the overpotential Uov of the battery unit from the load current I B of the battery unit at the operating point, the time derivative of the determined temperature T and a function describing the heat transfer function f (T) of the battery unit.
  • the current internal resistance Ri, Dc, B, act can be determined as further variables describing the state of aging.
  • the overpotential Uov occurring at a specific load current can also be used as a measure of the performance.
  • both the state estimator and the aging state estimator are implemented in the computing device of the device.
  • the state estimator is a state estimator according to Kalman or a condition observer according to Luenberger.
  • one is preferably a state variable filter.
  • the state scientist also operates according to another method, for example the "untranslated transformation” method, i. as Unscented Cayman Filter (UKF).
  • UEF Unscented Cayman Filter
  • FIG. 1 shows a schematic representation of an arrangement for estimating the state of charge and the state of aging of a rechargeable battery in accordance with a preferred embodiment of the invention
  • the arrangement 10 has, in addition to the battery unit 12, also a computing device 16 a state estimator 18 and an aging state estimator (SOH estimator) 20 are implemented.
  • the state estimator 18 is typically configured as a charge state estimator (SOC estimator).
  • the aging state estimator 20 is connected downstream of the state estimator 18.
  • the state estimator 18 includes a model of the battery unit 12, which at least relates to the following sizes: the (physical) state of charge SOC, the overpotential UOV under load as a function of internal resistance R, DC, B and load current I, the temperature T of the battery unit and the rest potential U 0 as a function of the state of charge SOC.
  • the input quantity of the battery unit 12 and the associated model 22 is the load current I.
  • the corresponding outputs y [TU k i] T of the battery unit 12 and model 22 are compared by means of a comparator 24 and the comparison result via the feedback gain (correction term) 26 to the model 22 fed as another input value. This results in a closed loop.
  • the output variables of the state estimator are (i) the temperature T and (ii) the terminal voltage U K i_-
  • the SOC as an internal state variable, the output variable temperature T and the overpotential Uov (according to the above formula for estimating the overpotential Uov) become the aging - Estimator 20 supplied.
  • the quantities state of charge SOC and temperature T are derived in terms of time by means of a (time-discrete) differentiator 28. The results of these time derivatives of state of charge SOC and temperature T become - as well as the overvoltage Uov - within the aging state estimator 20 of a device
  • This device 30 for inverting the model and, if appropriate, for carrying out a load squares method (LSQ). This device 30 then determines the variables C akt and / or Ri, DC , B, which describe the aging state SOH of the battery unit 12.
  • the capacitance C and the internal resistance R I, DC is introduced by way of example.
  • the latter considers the purely ohmic contribution of various effects that lead to the voltage drop of the terminal voltage U K i_ of the cell under load. Since with Li-ion cells for safety reasons always the upper and lower break-off voltage must be maintained, the voltage drop resulting from R i D c is characteristic for the performance of the battery 14.
  • the overpotential U 0 occurring for a given load current can also be used for the Consideration of performance.
  • the capacity aging state SOH Q defined, ie where Co is the capacity of the new cell and C a kt that of the aged cell at the time considered.
  • the power aging state SOH P is defined as
  • the memory model (accumulator model) 22 can be considered as follows:
  • the constants k1 and k2 are two battery type-specific constants
  • the function f (T) is a function describing the removal of heat (for example, by free convection, radiation, heat conduction).
  • C is the capacity
  • Ri oc is the internal resistance of the rechargeable battery. Since the temperature T can be measured directly, the observation task is trivial.
  • the state estimator 18 SOC estimate in FIG. 1 of u, y1, and y2 determines the (internal) quantities SOC and T.
  • the parameter pair ⁇ C a kt, Ri.Dc.akt ⁇ can be uniquely determined from the available information.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

L'invention concerne un procédé d'estimation de l'état de charge (SOC) d'au moins une unité de batterie (12) d'une batterie rechargeable (14) et d'au moins une grandeur (Cakt, Ri,DC,B,akt) de l'unité de batterie qui décrit le niveau de vieillissement (SOH) de cette unité de batterie dans un point de fonctionnement pouvant être sélectionné au moyen d'un modèle (22), notamment d'un modèle mathématique de la batterie (14) ou de ladite unité de batterie (12). Selon l'invention, l'état de charge (SOC) est tout d'abord estimé et la grandeur qui décrit le niveau de vieillissement (SOH) est une capacité de charge réelle (Cakt) de l'unité de batterie (12), laquelle est estimée à partir du courant de charge (lB) de l'unité de batterie au point de fonctionnement et de l'inverse de la dérivée dans le temps de l'état de charge (SOC) estimé précédemment de l'unité de batterie (12). L'invention concerne également un arrangement (10) correspondant pour estimer l'état de charge d'une unité de batterie (12) d'une batterie rechargeable (14).
EP11738651.6A 2010-07-29 2011-07-04 Procédé et dispositif pour estimer la capacité d'au moins une unité de batterie d'une batterie rechargeable Withdrawn EP2598902A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010038646A DE102010038646A1 (de) 2010-07-29 2010-07-29 Verfahren und Anordnung zum Abschätzen der Leistungsfähigkeit mindestens einer Batterieeinheit einer wiederaufladbaren Batterie
PCT/EP2011/061233 WO2012013453A1 (fr) 2010-07-29 2011-07-04 Procédé et dispositif pour estimer la capacité d'au moins une unité de batterie d'une batterie rechargeable

Publications (1)

Publication Number Publication Date
EP2598902A1 true EP2598902A1 (fr) 2013-06-05

Family

ID=44629418

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11738651.6A Withdrawn EP2598902A1 (fr) 2010-07-29 2011-07-04 Procédé et dispositif pour estimer la capacité d'au moins une unité de batterie d'une batterie rechargeable

Country Status (7)

Country Link
US (1) US20130185007A1 (fr)
EP (1) EP2598902A1 (fr)
JP (1) JP5709994B2 (fr)
KR (1) KR20130097709A (fr)
CN (1) CN103003710A (fr)
DE (1) DE102010038646A1 (fr)
WO (1) WO2012013453A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106093778A (zh) * 2016-05-30 2016-11-09 浙江南都电源动力股份有限公司 电池状态预测方法及***

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749588B (zh) * 2012-06-20 2015-03-11 南京航空航天大学 基于蓄电池soc和soh的故障诊断方法
DE102012013739A1 (de) * 2012-07-12 2014-05-15 Sew-Eurodrive Gmbh & Co Kg Verfahren zur Bestimmung von Kenngrößen eines Energiespeichers und Energiespeichersystem
AT512003A3 (de) * 2013-01-23 2014-05-15 Avl List Gmbh Verfahren zur Ermittlung eines regelungstechnischen Beobachters für den SoC
FR3003038B1 (fr) * 2013-03-06 2016-08-19 Ifp Energies Now Procede de determination de la capacite residuelle d'une batterie
CN103323781B (zh) * 2013-05-29 2015-08-05 西安交通大学 动力电池组在线参数检测***及soc估计方法
FR3010797B1 (fr) * 2013-09-18 2015-10-02 Renault Sa Procede d'estimation du vieillissement d'une cellule de batterie d'accumulateurs
CN103901294A (zh) * 2014-01-02 2014-07-02 智慧城市***服务(中国)有限公司 超级电容器组荷电状态检测的方法及装置
DE102014200645A1 (de) * 2014-01-16 2015-07-16 Robert Bosch Gmbh Verfahren zum Batteriemanagement und Batteriemanagementsystem
DE102014202617A1 (de) * 2014-02-13 2015-08-13 Robert Bosch Gmbh Verfahren und Vorrichtung zum Messen eines Batteriezellenstromes
CN106199432B (zh) 2015-05-29 2021-06-22 Fev有限责任公司 确定可再充电电池老化状态的方法及可再充电电池***
US10156626B2 (en) * 2015-08-19 2018-12-18 General Electric Company Systems and methods to sample current measurements in energy storage devices
CN105093131A (zh) * 2015-09-28 2015-11-25 哈尔滨工业大学 一种用于磷酸铁锂电池梯次利用的电池健康特征参数提取方法
KR101866073B1 (ko) * 2016-10-19 2018-06-08 현대자동차주식회사 배터리 soh 추정 방법
US10474113B2 (en) * 2017-03-09 2019-11-12 General Electric Company Power generation system control through adaptive learning
JP2018169284A (ja) * 2017-03-30 2018-11-01 日立オートモティブシステムズ株式会社 蓄電池制御装置および制御方法
DE102017209674A1 (de) * 2017-06-08 2018-12-13 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betrieb eines elektrischen Energiespeichersystems sowie elektrisches Energiespeichersystem mit der Vorrichtung und entsprechende Verwendung
KR102516361B1 (ko) 2017-12-07 2023-03-31 삼성전자주식회사 배터리 충전 방법 및 장치
AT521643B1 (de) * 2018-08-31 2020-09-15 Avl List Gmbh Verfahren und Batteriemanagementsystem zum Ermitteln eines Gesundheitszustandes einer Sekundärbatterie
CN111624493B (zh) * 2019-02-28 2022-03-22 北京新能源汽车股份有限公司 一种确定电池健康状态soh的方法、装置及检测设备
DE102019210212A1 (de) * 2019-07-10 2021-01-14 Audi Ag Verfahren zum Schätzen eines jeweiligen Parameterwerts mehrerer Modellparameter eines Modells eines Geräts, sowie Batteriesystem und Kraftfahrzeug
CN111220920B (zh) * 2019-11-22 2023-04-25 国网浙江省电力有限公司台州供电公司 基于h∞无迹卡尔曼滤波算法的退役锂离子电池荷电状态计算方法
KR20210064931A (ko) 2019-11-26 2021-06-03 주식회사 엘지에너지솔루션 배터리 상태 진단 장치 및 방법
DE102020212236A1 (de) * 2020-09-29 2022-03-31 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zum Betreiben eines Systems zum Bereitstellen von Alterungszuständen von elektrischen Energiespeichern für eine Vielzahl von Geräten mithilfe von maschinellen Lernverfahren
DE102020215244B4 (de) 2020-12-02 2022-12-22 Volkswagen Aktiengesellschaft Vorrichtung zur Überwachung von Batteriezellen eines Batteriestranges im Lastbetrieb
DE102021118000A1 (de) * 2021-07-13 2023-01-19 Audi Aktiengesellschaft Verfahren zum Bestimmen von Alterungsprozessen einer Batterieanordnung sowie Computerprogrammprodukt und computerlesbarer Datenträger
CN117388721A (zh) * 2022-07-04 2024-01-12 蔚来汽车科技(安徽)有限公司 电池***、用于其的soh估算方法和存储介质

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10056969A1 (de) * 2000-11-17 2002-05-23 Bosch Gmbh Robert Verfahren und Anordnung zur Bestimmung des Ladezustandes einer Batterie
DE10106508A1 (de) 2001-02-13 2002-08-29 Bosch Gmbh Robert Verfahren und Anordnung zur Bestimmung der Leistungsfähigkeit einer Batterie
DE10134065A1 (de) * 2001-07-13 2003-01-23 Vb Autobatterie Gmbh Verfahren zur Vorhersage der elektrischen Belastbarkeit eines elektrochemischen Energiespeichers
US7199557B2 (en) * 2003-07-01 2007-04-03 Eaton Power Quality Company Apparatus, methods and computer program products for estimation of battery reserve life using adaptively modified state of health indicator-based reserve life models
DE102004035858A1 (de) * 2004-07-23 2006-02-16 Robert Bosch Gmbh Zustands- und Parameterschätzer mit Integral- und Differentialanteil für elektrische Energiespeicher
US8103485B2 (en) * 2004-11-11 2012-01-24 Lg Chem, Ltd. State and parameter estimation for an electrochemical cell
JP4910300B2 (ja) * 2005-04-08 2012-04-04 日産自動車株式会社 二次電池の満充電容量推定装置
KR100756837B1 (ko) * 2005-06-30 2007-09-07 주식회사 엘지화학 배터리 상태 추정 방법 및 장치
DE112006002500A5 (de) * 2005-10-28 2008-06-26 Temic Automotive Electric Motors Gmbh Verfahren und Vorrichtung zur Bestimmung eines Alterungszustands einer Batterie
KR100804698B1 (ko) * 2006-06-26 2008-02-18 삼성에스디아이 주식회사 배터리 soc 추정 방법 및 이를 이용하는 배터리 관리시스템 및 구동 방법
FR2917178B1 (fr) * 2007-06-07 2009-09-04 Peugeot Citroen Automobiles Sa Systeme et procede de determination de la perte de capacite et de l'energie d'une batterie.
US7928735B2 (en) * 2007-07-23 2011-04-19 Yung-Sheng Huang Battery performance monitor
JP4459997B2 (ja) * 2007-11-06 2010-04-28 株式会社日本自動車部品総合研究所 車載バッテリの状態推定装置、内燃機関の自動停止始動装置、及び内燃機関の自動停止始動システム
JP5348987B2 (ja) * 2008-09-27 2013-11-20 三洋電機株式会社 電池の劣化度の検出方法
DE102009000782A1 (de) * 2008-12-04 2010-06-10 Robert Bosch Gmbh Verfahren zur Bestimmung des Ladezustands einer sekundären Interkalationszelle einer wiedereaufladbaren Batterie

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012013453A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106093778A (zh) * 2016-05-30 2016-11-09 浙江南都电源动力股份有限公司 电池状态预测方法及***
CN106093778B (zh) * 2016-05-30 2018-12-04 浙江南都电源动力股份有限公司 电池状态预测方法及***

Also Published As

Publication number Publication date
DE102010038646A1 (de) 2012-02-02
JP5709994B2 (ja) 2015-04-30
WO2012013453A1 (fr) 2012-02-02
KR20130097709A (ko) 2013-09-03
US20130185007A1 (en) 2013-07-18
JP2013538343A (ja) 2013-10-10
CN103003710A (zh) 2013-03-27

Similar Documents

Publication Publication Date Title
EP2598902A1 (fr) Procédé et dispositif pour estimer la capacité d'au moins une unité de batterie d'une batterie rechargeable
DE102008050022B4 (de) Dynamisch adaptives Verfahren zum Ermitteln des Ladezustands einer Batterie
EP2487499B1 (fr) Temps réel capable simulation de pile à batterie
EP1590679B1 (fr) Estimateur de variables d'etat et de parametres comprenant plusieurs modeles partiels pour un accumulateur d'energie electrique
EP2488885B1 (fr) Procédé pour déterminer et/ou prédire la capacité maximale d'une batterie
EP1505402B1 (fr) Procédé pour la prédiction des charactéristiques électriques d'une batterie de stockage électrochimique
DE102014103803A1 (de) Batteriezustandsschätzer, der ein elektrochemisches Festkörperkonzentrationsmodell mit einem empirischen Ersatzschaltungsmodell kombiniert
DE102005062148B4 (de) Verfahren zum Ermitteln des Betriebszustands eines Energiespeichers für elektrische Energie
DE102014217128A1 (de) Schätzung der batterieleistungsfähigkeit beim fahrzeugstart
DE102015103561A1 (de) Frequenzbasierte schätzung von batteriemodellparametern
WO2015058947A1 (fr) Procédé permettant de déterminer la capacité d'un élément de batterie
EP2619604A1 (fr) Procédé pour vérifier le mode de fonctionnement correct d'un détecteur de courant
DE102014118824A1 (de) Verfahren zum Kumulieren eines Batterieverschleißes
EP2856186A1 (fr) Procédé et dispositif pour déterminer la capacité réelle d'une batterie
WO2012171730A2 (fr) Procédé d'estimation de grandeurs d'état d'un accumulateur d'énergie électrique
WO2009065656A1 (fr) Détermination de la capacité d'accumulateurs d'énergie électrique
WO2011160890A1 (fr) Procédé permettant d'établir au moins un état d'une pluralité d'éléments de batterie, programme informatique, batterie et véhicule automobile
DE102012010487A1 (de) Verfahren und Vorrichtung zum Bewerten eines Alterungszustands einer Batterie
EP2710391A2 (fr) Procédé et dispositif permettant de déterminer un paramètre d'état d'une batterie
DE102005031254A1 (de) Verfahren zur Erkennung vorgebbarer Größen eines elektrischen Speichers
DE102008004368A1 (de) Verfahren zur Bestimmung einer zur Verfügung stehenden Leistung, elektrischen Arbeit und/oder Ladungsmenge eines elektrischen Speichers und entsprechende Vorrichtung
DE102013106083B4 (de) Verfahren und Vorrichtung zum Bestimmen eines Parameters eines Modells einer technischen Einrichtung
DE102009054547B4 (de) Ermittlung des Innenwiderstands einer Batteriezelle einer Traktionsbatterie
DE102019133921A1 (de) Verfahren, Vorrichtung, System, Elektrofahrzeug, Computerprogramm und Speichermedium zum Laden oder Entladen einer Zelle eines elektrischen Energiespeichers
DE102018206030A1 (de) Verfahren zum Laden einer elektrischen Energiespeichereinheit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160202