EP2562378B1 - Strategie zum Betreiben eines getrennten Kühlmittelkreislaufs - Google Patents

Strategie zum Betreiben eines getrennten Kühlmittelkreislaufs Download PDF

Info

Publication number
EP2562378B1
EP2562378B1 EP11178430.2A EP11178430A EP2562378B1 EP 2562378 B1 EP2562378 B1 EP 2562378B1 EP 11178430 A EP11178430 A EP 11178430A EP 2562378 B1 EP2562378 B1 EP 2562378B1
Authority
EP
European Patent Office
Prior art keywords
water jacket
coolant
cylinder head
line
thermostat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11178430.2A
Other languages
English (en)
French (fr)
Other versions
EP2562378A1 (de
Inventor
Bernd Brinkmann
Jan Mehring
Hans Günther Quix
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Priority to EP11178430.2A priority Critical patent/EP2562378B1/de
Priority to US13/591,076 priority patent/US8739745B2/en
Priority to RU2012135987/06A priority patent/RU2592155C2/ru
Priority to CN201210302833.4A priority patent/CN102953798B/zh
Publication of EP2562378A1 publication Critical patent/EP2562378A1/de
Application granted granted Critical
Publication of EP2562378B1 publication Critical patent/EP2562378B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/028Cooling cylinders and cylinder heads in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater

Definitions

  • the invention relates to a strategy for operating a separate coolant circuit of an internal combustion engine, wherein a cylinder head water jacket and an engine block water jacket is provided, wherein the separate coolant circuit comprises at least one pump, at least one radiator, at least one control element, at least one coolant outlet housing and at least one heater, and wherein the separate coolant circuit circulates a coolant.
  • the FR 2 860 833 A1 discloses a refrigeration cycle of an internal combustion engine having at least one cylinder head and a cylinder housing consisting of at least three cooling passages.
  • the circuit comprises heat exchange means, a drive means for a heat exchange medium and at least one control means for the flow of the heat exchange medium through the cylinder head, the cylinder housing or the heat exchange means on.
  • the refrigeration cycle has at least three independent passages for engine cooling, the first and second passages being disposed in the cylinder head and the third passage being disposed in the cylinder housing and the passages being independent of each other and including at least one inlet and one outlet, so as to allow independent flow of the heat exchange medium through each of the passages of the cylinder head and the cylinder housing.
  • the FR 2 860 833 A1 discloses that three control means are provided to control various circulations of the heat exchange medium can. Of the control means in each case an inlet side and an outlet side is arranged. The third control means is connected to the respective other two control means.
  • the US 5,385,123 discloses a separate refrigerant circuit with a single thermostat, which is arranged in one embodiment in an outlet line of the outlet side of a cylinder head to a pump, the line opens inlet side in the cylinder head. From the outlet branch a bypass and a block line branch off, which opens in the cylinder block. The bypass leads to the pump.
  • the thermostat is arranged in this embodiment in the branch of the three lines. During the warm-up phase, the thermostat closes the block line with the bypass fully open. When the thermostat is closed, the coolant flows through the bypass to the pump and from there into the cylinder head. As the coolant temperature rises, the thermostat gradually closes the bypass, so that the direct flow towards the pump is continuously reduced, and is completely interrupted when the bypass is fully closed. The coolant then flows from the cylinder head through the exhaust duct and the block duct into the cylinder block which is connected to a radiator and from there to the pump.
  • the EP 1 900 919 B1 or JP57176317 also deals with a split-cooling system.
  • an internal combustion engine having a refrigeration cycle having at least a first coolant channel and at least one second coolant channel disclosed in parallel with the first coolant channel is disclosed.
  • Control means are provided which provide manipulated variables for the individual control of the throttling means.
  • the DE 195 24 424 A1 relates to a liquid cooling of an internal combustion engine with a cooling liquid flow through a cooling liquid circuit in which a cooling liquid flowed through by the cooling chamber of the internal combustion engine, a cooler for the cooling liquid, a cooling liquid circulating pump and a thermostatically controlled valve is provided which at a low coolant temperature, the cooling liquid flow through the cooling space of the internal combustion engine at a low coolant temperature reduces the coolant flow through the radiator below the value of the coolant flow through the cooling chamber of the internal combustion engine.
  • a load sensor of the internal combustion engine which counteracts the reduction of the cooling liquid flow through the cooling space of the internal combustion engine at a high load of the internal combustion engine.
  • a heating heat exchanger connected to the cooling liquid circuit and an adjusting means may be provided which counteracts the reduction of the cooling liquid flow through the radiator when operating and / or increasing an operation of the heating heat exchanger.
  • the DE 102 61 070 A1 discloses a water jacket structure for a cylinder head and a cylinder block of an engine having a split cooling system adapted therein.
  • the water jackets for the cylinder head and the cylinder block are respectively and independently formed with an inlet shared between the cylinder head and the cylinder block. Its cross-sectional area is reduced to the inside, wherein positions of two outlets are shifted to the cylinder head.
  • KR 1020040033579 A discloses a split-cooling system, wherein a thermostat housing is designed as a single object and at a rear End of the internal combustion engine is arranged.
  • the DE 102 19 481 A1 is concerned with an internal combustion engine with a cylinder crankcase and a cylinder head, with a cooling water circuit with a cylinder head between an inlet opening and an outlet opening extending formed first water jacket and a separately thereof in the cylinder crankcase between an inlet opening and an outlet opening extending second cooling water channel and with a in the Cooling water circuit arranged, common cooling water pump.
  • a third cooling water channel connects the outlet opening of the first cooling water channel formed in the cylinder head with the inlet opening of the cooling water pump.
  • a fourth cooling water channel connects the outlet opening of the cooling water pump to the inlet opening of the second cooling water channel formed in the cylinder crankcase for passing the cooling water from the first into the second cooling water channel.
  • DE 196 28 542 A1 deals with a split-cooling system, wherein the cylinder head or the cylinder heads are cooled by a cooling water circuit, which runs only through the cylinder head and in which a cooling water pump is inserted.
  • the DE 34 40 504 C2 with the split-cooling system or separate coolant circuits for a cylinder block and the engine block.
  • the EP 0 816 651 B1 addresses the problem of providing a device which can reduce the heat-up time of an exhaust line and at the same time quickly raise and maintain the temperature of the walls of the engine block at a low load to a sufficient value, in any case to improve the operating conditions of the engine in all operating conditions .
  • the EP 0 816 651 B1 a device for the internal combustion engine, which has a cylinder block and a cylinder head, whose walls for defining a first part and a second thereof different part, and the same through these walls separate cooling circuit are designed.
  • the EP 1 239 129 A2 deals with a simple cooling system for cooling the internal combustion engine.
  • the arranged on the outlet housing control is formed of a thermostat and a separate proportional valve, wherein the thermostat is fluidically connected in parallel to the proportional valve, and wherein the proportional valve is a block water line to block water jacket, a heating line to the heater and a radiator line to the radiator and wherein the thermostat has a connection line to the radiator.
  • the coolant from the cylinder head water jacket can be passed directly into the block water jacket, being dispensed with a hitherto conventional bypass line.
  • the engine block water jacket thus assumes the function of the previous bypass line, namely bypassing the radiator, so that the coolant z. B. is not unnecessarily cooled in the warm-up phase of the internal combustion engine. This leads to higher material and oil temperatures, which reduces friction and thermal losses.
  • the advantageous embodiment of the coolant circuit according to the invention combines the advantages of the separate coolant circuit (rapid warm-up), whereby the fuel consumption and the generation of harmful emissions are significantly reduced, but also the life of the internal combustion engine is extended or increased.
  • the coolant circuit advantageously has an opposing coolant flow in the two separate cooling regions (cylinder head water jacket / block water jacket).
  • the refrigerant flows from the inlet side to the outlet side, which is known per se.
  • the block water jacket however, the coolant is supplied to the side, which corresponds to the outlet side of the cylinder head water jacket.
  • the coolant flows in the block water jacket, based on the flow direction in the cylinder head water jacket so almost inverted from the outlet side to the inlet side.
  • the block water jacket has no flow contact, or coolant to the cylinder head water jacket, of course, small leakage quantities can not be excluded, as mentioned in the introduction.
  • This means in the context of the invention that coolant from the block water jacket does not enter directly into the cylinder head water jacket, and both water jackets are quasi connected in series, but are flowed through in opposite directions.
  • a pump line connects the pump to the inlet side of the cylinder head water jacket.
  • the coolant can thus get out of the cylinder head water jacket in the outlet housing.
  • the heating return flows in front of the pump in a radiator return, which opens into the pump.
  • the leading from the block water jacket return water pipe also opens in the radiator return also upstream of the pump.
  • a thermostatically-conducting connecting pipe advantageously flows in the cylinder head water pipe upstream of the radiator.
  • Other components of the coolant circuit can be provided.
  • a ventilation device can be provided, which communicates with the heating line and the radiator, and whose return line also opens upstream of the pump in the radiator return.
  • the thermostat which acts as a partial load thermostat, connected via the connecting line to the radiator, wherein the connecting line preferably upstream of the radiator but downstream of the proportional valve in the radiator line opens, the engine block water jacket conveniently, the radiator opens all around directly in the radiator return.
  • Target is when the control, so the proportional valve and the thermostat depending on operating modes of the engine such.
  • B. of a warm-up phase of the internal combustion engine and a "warm" internal combustion engine are switchable, wherein the two components are still switchable depending on the presence of a partial load or a high load of the internal combustion engine. In this respect, quasi four modes of operation, which influence the control characteristics.
  • the path of the proportional valve to the heater line opens continuously until it is fully open.
  • the no-flow strategy of the cylinder head water jacket is abandoned, a partial flow of the coolant flows from the outlet housing via the proportional valve in the heating line.
  • the path to the block water pipe is still closed, so that the coolant flow in the block water jacket has an amount of zero.
  • the coolant flow in the cylinder head water jacket is rather low, which benefits an improved warm-up behavior. Nevertheless, the heater can heat the vehicle cabin sufficiently.
  • the path to the heater line is fully open, the path to the block water line opens continuously.
  • a small flow of coolant is now made possible by the now-flow strategy.
  • the path to the radiator line is still closed.
  • the path to the heater line is still fully open.
  • the path to the block water line is controlled via the proportional valve so that the block temperature can be adjusted to a high amount, for example to above 105 ° C, preferably to about 115 ° C.
  • the thermostat also closes the path to the connecting line when the coolant temperature in the outlet housing or in the cylinder head water jacket below z. B. 100 ° C or preferably below 105 ° C.
  • control components can now be controlled depending on the operating state "operating engine and part load".
  • the path to the heating line is opened, the path to the block water pipe is regulated, so that the block water temperature to a high amount of z. B. 115 ° C einregelbar.
  • the thermostat opens to the connecting line. The coolant flow in the cylinder head water jacket is thus further increased. Characterized in that now an additional portion of the cylinder head coolant flow is passed over the main radiator, the temperature in the cylinder head water jacket is light, preferably adjustable below the opening temperature.
  • the coolant flow is advantageously by means of Thermostats (opening temperature eg 100 ° C) controlled together with the proportional valve when the internal combustion engine has its operating temperature and is operated at partial load.
  • the thermostat is thus preferably designed as a partial load thermostat, and only opens in partial load operation when the temperature in the cylinder head water jacket or in the outlet housing has an amount above the opening temperature.
  • the internal combustion engine can thus be operated independently in both areas with elevated temperature.
  • the path of the proportional valve to the radiator line can be opened if necessary, if z. B. the internal combustion engine is operated at a higher load.
  • the proportional valve opens the line to the main cooler to the temperature of the cylinder head water jacket on z. B. 85 ° C to regulate.
  • the partial load thermostat is then closed because the opening temperature is not reached.
  • the branch to the water jacket is then fully open. It is preferably provided to regulate the path so that the coolant temperature in the block water jacket is low, for example, is controlled to an amount of 90 ° C, since the cylinder block at higher load of the internal combustion engine has a higher cooling demand.
  • the part-load thermostat In the case of a malfunction of the proportional valve and thus an insufficient coolant flow to the main cooler, the part-load thermostat also has a protective function. In this case, as the coolant temperature rises above the opening temperature, the part load thermostat would open and direct coolant to the main radiator. The partial load thermostat can thus also act as a safety thermostat, as excessive overheating is avoided by opening to the radiator.
  • Another operating state or operating mode is when the internal combustion engine is operated in the warm-up phase at high load.
  • the path to the heating line is completely open, whereby the path to the block water line can also be regulated via the proportional valve.
  • the coolant flow in the cylinder head water jacket is controlled via the proportional valve, whereby a temperature of 85 ° C can be controlled in the cylinder head water jacket.
  • Another mode is when the internal combustion engine has its operating temperature and is operated under high load or full load.
  • the path to the heating line can be closed. This is useful if z. B. at high outside temperatures, the largest cooling capacity to be generated.
  • the path to the block water line can be controlled via the proportional valve. It is preferably provided to regulate the path so that the coolant temperature in the block water jacket is low, for example, regulated to an amount of 90 ° C, since the cylinder block at high load or at full load of the engine high cooling needs.
  • the coolant flow in the cylinder head water jacket is controlled via the proportional valve, whereby a temperature of 85 ° C can be controlled in the cylinder head water jacket. Accordingly, the partial load thermostat will not open at all because the temperature is below its opening temperature. If the temperature still rises above the opening temperature, of course, opens the thermostat and takes over its protective function by coolant is passed in addition to the radiator.
  • Targeting in the sense of the invention is therefore when the control or the two components proportional valve and part load thermostat are controlled depending on the mode, which is conceivable with respect to the proportional valve by means of a control unit.
  • the control strategy can also be stored in the central control unit of the internal combustion engine or of the motor vehicle.
  • the entire internal combustion engine that is to say the block water jacket but also the head water jacket
  • the cabin heater can be powered by the appropriate path of the Proportional valve is opened.
  • the no-flow strategy of the headwater jacket is given up, but maintained beneficial in the block water jacket.
  • the coolant inlet temperature to the block is also increased by about 3 to 5 K, since the feed from the output of the cylinder head circuit.
  • the block temperature ie the material temperature itself, can also be increased, since the temperature is controlled by means of the partial load thermostat, and a reduced flow of coolant through the block water jacket can be generated.
  • a variable operating temperature is adjustable depending on the above-mentioned modes. The temperature can even be raised up to 115 ° C at partial load, when this temperature is exceeded, the part-load thermostat opens, thus increasing the flow of refrigerant and transferring part of it through the radiator.
  • the coolant flow through the heater is variable during the warm-up phase.
  • the coolant flow in the block water jacket is opposite to the coolant flow in the cylinder head water jacket.
  • the fact that quasi-warmed coolant exiting from the cylinder head is also supplied to the block water jacket is advantageous with regard to the thermal management of the cylinder block, since inter alia frictional losses can be reduced.
  • the thermostat can be advantageously designed as a single-acting thermostat, which opens at relatively high temperatures, so increased coolant temperatures in particular Cylinder head water jacket to allow, in other deviating modes, the cylinder head coolant temperature is reduced, that is variable.
  • a separate coolant circuit 1 is in the FIG. 1 shown.
  • the separate coolant circuit 1 has both a cylinder head water jacket 2 and an engine block water jacket 3, a pump 4, a radiator 6, a control element 7, a coolant outlet housing 8 and a heater 9. Furthermore, the coolant circuit 1 may have a degassing device 11.
  • the cylinder head water jacket 2 is separated from the block water jacket 3, so that there is a separate coolant circuit 1 in which a coolant circulates.
  • the flow direction of the coolant is marked with corresponding arrows.
  • the arranged on the outlet housing 8 control 7 is formed of a thermostat 12 and a proportional valve 13 separate therefrom, wherein the thermostat 12 is arranged parallel to the proportional valve 13, and wherein the proportional valve a block water line 14 to the block water jacket 3, a heating line 16 to the heater 9 and a radiator line 17 to the radiator 6, and wherein the thermostat 12 has a connection line 18 to the radiator.
  • a pump line 19 connects the pump 4 to the inlet side 21 of the cylinder head water jacket 2.
  • the coolant can thus pass from the cylinder head water jacket 2 into the outlet housing 8.
  • the heating return 22 opens in front of the pump 4 in a radiator return 23, which opens into the pump 4.
  • the leading from the block water jacket 3 return water line 24 also opens into the radiator return 23 also upstream of the pump 4.
  • the leading from the thermostat 12 connecting line 18, however, opens advantageously in the radiator line 17 upstream of the radiator 6.
  • the vent is connected to the heating line 16 and the radiator 6 in connection, wherein the return line 26 also opens upstream of the pump 4 in the radiator return 23.
  • the aim of the invention is that can be dispensed with a bypass line.
  • the function of the bypass line takes over virtually the engine block water jacket 3. This is coolant, depending on operating modes of the internal combustion engine, supplied from the cylinder head water jacket 2 outflowing. It can be seen that the coolant flow in the block water jacket 3 is opposite to the coolant flow in the cylinder head water jacket 2.
  • the coolant is supplied to the block water jacket 3, based on the flow direction in the cylinder head water jacket 2 outlet side.
  • the coolant flows through the block water jacket 3 in opposite directions to the flow direction in the cylinder head water jacket 2 and, based on the flow of coolant in the cylinder head water jacket 2 on the inlet side, and flows into the radiator return 23rd
  • the coolant temperature can be controlled or controlled by means of the proportional valve depending on operating modes.
  • the coolant temperature in the cylinder head water jacket 2 is controlled by means of the thermostat 12.
  • the thermostat 12 may have an opening temperature of 100 ° C or even 115 ° C or an amount therebetween, so that the coolant temperature in the cylinder head water jacket is adjustable to this increased amount.
  • Thermostat does not open at these low temperatures, so that the coolant temperature is controlled solely by the proportional valve.
  • the modes of operation and the temperature control have already been described above, and become the preferred embodiment in their entirety.
  • FIG. 2 merely shows by way of example a diagram in which the coolant flows are represented by the heater (line 27), by the engine block water jacket (line 28) and by the radiator (line 29). On the vertical axis, the flow rate in I / min is plotted. On the horizontal, the opening of the proportional valve 13 is plotted in%.
  • the flow rate in all lines and the two water jackets 2 and 3 has a magnitude of zero (no-flow strategy).
  • coolant is increasingly flowing to the heater 9.
  • the coolant flows in the engine block water jacket 3 and in the cooler 6 are ZERO (no-flow strategy in the block).
  • the proportional valve 13 opens the heating line continuously until the path is fully opened. This corresponds to a total opening degree of up to 30% of the proportional valve 13.
  • a third phase 33 the no-flow strategy is also abandoned in the block water jacket.
  • the proportional valve opens this path continuously.
  • the path to the radiator 6 is closed before. This is possible in partial load operation, so that the temperature control in the cylinder head water jacket takes place only via the partial load thermostat 12.
  • the flow rate in the engine block water jacket 3 increases from 0 up to 40 l / min, in which phase the flow through the heater decreases from 25 l / min to about 20 l / min.
  • the proportional valve is open approx. 50%, ie the path to the water jacket and to the heating is open. In partial load operation, it is quite sufficient to control the temperature in the cylinder head water jacket only on the part load thermostat and on a high level. When this "limit temperature" is reached, the part-load thermostat opens to the radiator.
  • the cylinder head coolant temperature is controlled in a fourth phase 34 to an amount of about 85 ° C.
  • the proportional valve 13 opens the path to the radiator continuously, so that it is flowed through with up to 120 / min.
  • the path to the heater can be closed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

  • Die Erfindung betrifft eine Strategie zum Betreiben eines getrennten Kühlmittelkreislaufs eines Verbrennungsmotors, wobei ein Zylinderkopfwassermantel und ein Motorblockwassermantel vorgesehen ist, wobei der getrennte Kühlmittelkreislauf zumindest eine Pumpe, zumindest einen Kühler, zumindest ein Steuerelement, zumindest ein Kühlmittelauslaßgehäuse und zumindest eine Heizung aufweist, und wobei in dem getrennten Kühlmittelkreislauf ein Kühlmittel zirkuliert.
  • Bekannt ist, daß es zweckmäßig ist, den Motorblock und den Zylinderkopf des Verbrennungsmotors jeweils getrennt oder wenigstens überwiegend getrennt voneinander mit einem Kühlmittel eines Kühlmittelkreislaufs durchströmen zu lassen. Auf diese Weise können der Zylinderkopf, der thermisch vor allem mit der Brennraumwand, der Ansaugluftführung und der Abgasabführung gekoppelt ist und der Motorblock, der thermisch vor allem mit den Reibstellen gekoppelt ist, unterschiedlich gekühlt werden. Durch dieses so genannte "Split-Cooling-System" (getrennter Kühlmittelkreislauf) soll erreicht werden, daß in der Warmlaufphase des Verbrennungsmotors der Zylinderkopf gekühlt wird, wobei der Motorblock zunächst noch nicht gekühlt werden soll, so daß der Motorblock schneller auf die erforderliche Betriebstemperatur geführt werden kann, d. h. unter getrenntem Kühlkreislauf sind nicht zwei Kühlkreisläufe zu verstehen, sondern es ist ein Kühlkreislauf für eine Brennkraftmaschine gemeint, bei der der Wassermantel des Zylinderkopfes von dem Wassermantel des Zylinderblocks durch geeignete Mittel separiert ist. Bei manchen Konstruktionsformen können allerdings auch kleine Leckagen vom Zylinderkopfwassermantel zum Zylinderblockwassermantel vorgesehen sein, wobei die Leckagemengen so gering sind, daß man trotzdem von einem getrennten Kühlkreislauf sprechen kann.
  • Die FR 2 860 833 A1 offenbart einen Kühlkreislauf eines Verbrennungsmotors mit mindestens einem Zylinderkopf und einem Zylindergehäuse bestehend aus mindestens drei Kühldurchlässen. Der Kreislauf weist Wärmeaustauschmittel, ein Antriebsmittel für ein Wärmeaustauschmedium und mindestens ein Steuermittel für den Durchfluß des Wärmeaustauschmediums durch den Zylinderkopf, das Zylindergehäuse oder die Wärmeaustauschmittel auf. Der Kühlkreislauf hat mindestens drei unabhängige Durchlässe für die Motorkühlung, wobei der erste und der zweite Durchlaß in dem Zylinderkopf angeordnet sind und der dritte Durchlaß im Zylindergehäuse angeordnet ist und wobei die Durchlässe voneinander unabhängig sind und mindestens einen Einlaß und einen Auslaß umfassen, so dass sie einen unabhängigen Durchfluß des Wärmeaustauschmediums durch jeden der Durchlässe des Zylinderkopfs und des Zylindergehäuses ermöglichen. Die FR 2 860 833 A1 offenbart, dass drei Steuermittel vorgesehen sind, um verschiedene Umwälzungen des Wärmeaustauschmediums regeln zu können. Von den Steuermitteln ist jeweils eines Einlaßseitig und eines Auslaßseitig angeordnet. Das dritte Steuermittel ist mit den jeweils anderen beiden Steuermitteln verbunden.
  • Die US 5,385,123 offenbart einen getrennten Kühlmittelkreislauf mit einem einzigen Thermostat, das in einer Ausgestaltung in einer Auslaßleitung der Auslaßseite eines Zylinderkopfes zu einer Pumpe angeordnet ist, deren Leitung einlaßseitig im Zylinderkopf mündet. Von der Auslaßleitung zweigen ein Bypaß und eine Blockleitung ab, die im Zylinderblock mündet. Der Bypaß führt zur Pumpe. Das Thermostat ist bei dieser Ausgestaltung im Abzweig der drei Leitungen angeordnet. Während der Aufwärmphase verschließt das Thermostat die Blockleitung, wobei der Bypaß vollständig geöffnet ist. Das Kühlmittel strömt bei geschlossenem Thermostat durch den Bypaß zur Pumpe und von dort in den Zylinderkopf. Mit ansteigender Kühlmitteltemperatur schließt das Thermostat sukzessive den Bypaß, so dass die direkte Strömung in Richtung zur Pumpe fortlaufend reduziert wird, und bei vollständig geschlossenem Bypaß vollständig unterbrochen ist. Das Kühlmittel strömt dann aus dem Zylinderkopf durch die Auslaßleitung und die Blockleitung in den Zylinderblock der mit einem Kühler verbunden ist und von dort zur Pumpe.
  • Die EP 1 900 919 B1 oder JP57176317 befaßt sich ebenfalls mit einem Split-Cooling-System.
  • In der DE 103 42 935 A1 z. B. ist eine Verbrennungskraftmaschine mit einem Kühlkreislauf mit wenigstens einem ersten Kühlmittelkanal und wenigstens einem zweiten Kühlmittelkanal offenbart, der parallel mit dem ersten Kühlmittelkanal verbunden ist. Weiter weist die Verbrennungskraftmaschine den Kühlmittelkanälen zugeordnete Drosselungsmittel für die Beeinflussung des die Kühlmittelkanäle passierenden Kühlmittelstroms auf, sowie eine mechanisch antreibbare Kühlmittelpumpe für die Umwälzung des Kühlmittels durch die Kühlmittelkanäle. Es sind Steuermittel vorgesehen, die Stellgrößen für die individuelle Steuerung der Drosselungsmittel bereitstellen.
  • Die DE 195 24 424 A1 betrifft eine Flüssigkeitskühlung einer Brennkraftmaschine mit einem Kühlflüssigkeitsstrom durch einen Kühlflüssigkeitskreislauf, in dem ein von der Kühlflüssigkeit durchströmter Kühlraum der Brennkraftmaschine, ein Kühler für die Kühlflüssigkeit, eine die Kühlflüssigkeit umwälzende Pumpe und ein thermostatisch kontrolliertes Ventil vorgesehen ist, das bei einer niedrigen Kühlflüssigkeitstemperatur den Kühlflüssigkeitsstrom durch den Kühlraum der Brennkraftmaschine bei einer niedrigen Kühlflüssigkeitstemperatur den Kühlflüssigkeitsstrom durch den Kühler unterhalb des Wertes des Kühlflüssigkeitsstroms durch den Kühlraum der Brennkraftmaschine reduziert. Es kann aber auch ein Lastsensor der Brennkraftmaschine vorgesehen sein, der bei einer hohen Last der Brennkraftmaschine der Reduzierung des Kühlflüssigkeitsstroms durch den Kühlraum der Brennkraftmaschine entgegenwirkt. Zudem können ein mit dem Kühlflüssigkeitskreislauf verbundener Heizungswärmetauscher und ein Stellmittel vorgesehen sein, das bei einer in Betriebnahme und/oder Steigerung einer Betriebsamkeit des Heizungswärmetauschers der Reduzierung des Kühlflüssigkeitsstromes durch den Kühler entgegenwirkt.
  • Die DE 102 61 070 A1 offenbart eine Wasserummantelungsstruktur für einen Zylinderkopf und einen Zylinderblock eines Motors mit einem darin angepaßten, geteilten Kühlsystem. Die Wasserummantelungen für den Zylinderkopf und den Zylinderblock sind jeweilig und unabhängig voneinander geformt, wobei ein Einlaß zwischen dem Zylinderkopf und dem Zylinderblock geteilt ist. Dessen Querschnittsfläche ist nach innen gelangend reduziert, wobei Positionen von zwei Auslässen zu dem Zylinderkopf verschoben sind.
  • Auch in der KR 1020040033579 A ist ein Split-Cooling-System offenbart, wobei ein Thermostatgehäuse als einzelner Gegenstand ausgestaltet ist und an einem hinteren Ende des Verbrennungsmotors angeordnet ist. In der DE 101 27 219 A1 ist eine Kühlanlage für einen Verbrennungsmotor mit wenigstens zwei Zylinderreihen, insbesondere für einen V-Motor offenbart.
  • Die DE 102 19 481 A1 beschäftigt sich mit einem Verbrennungsmotor mit einem Zylinderkurbelgehäuse und einem Zylinderkopf, mit einem Kühlwasserkreislauf mit einem im Zylinderkopf zwischen einer Zutrittsöffnung und einer Austrittsöffnung erstreckend ausgebildeten ersten Kühlwassermantel und mit einem hiervon getrennt in Zylinderkurbelgehäuse zwischen einer Zutrittsöffnung und einer Austrittsöffnung erstreckend ausgebildeten zweiten Kühlwasserkanal und mit einer im Kühlwasserkreislauf angeordneten, gemeinsamen Kühlwasserpumpe. Ein dritter Kühlwasserkanal verbindet die Austrittsöffnung des ersten im Zylinderkopf ausgebildeten Kühlwasserkanals mit der Zutrittsöffnung der Kühlwasserpumpe. Ein vierter Kühlwasserkanal verbindet die Austrittsöffnung der Kühlwasserpumpe mit der Zutrittsöffnung des zweiten im Zylinderkurbelgehäuse ausgebildeten Kühlwasserkanals zur Weiterleitung des Kühlwassers aus dem ersten in den zweiten Kühlwasserkanal.
  • Auch die DE 196 28 542 A1 beschäftigt sich mit einem Split-Cooling-System, wobei der Zylinderkopf bzw. die Zylinderköpfe durch einen Kühlwasserkreislauf gekühlt sind, der nur durch den Zylinderkopf verläuft und in dem eine Kühlwasserpumpe eingefügt ist.
  • Ebenso beschäftigt sich die DE 34 40 504 C2 mit dem Split-Cooling-System bzw. getrennten Kühlmittelkreisläufen für einen Zylinderblock und den Motorblock.
  • Die EP 0 816 651 B1 beschäftigt sich mit dem Problem, eine Vorrichtung anzugeben, welche die Aufheizzeit einer Auspuffleitung verringern und gleichzeitig die Temperatur der Wände des Motorblocks bei geringer Last auf einen ausreichenden Wert schnell ansteigen lassen und halten kann, wobei jedenfalls die Betriebsbedingungen des Motors in allen Betriebszuständen verbessert werden sollen. Zu diesem Zweck offenbart die EP 0 816 651 B1 eine Vorrichtung für den Verbrennungsmotor, welcher einen Zylinderblock und einen Zylinderkopf aufweist, deren Wände zum Begrenzen eines ersten Teils und eines zweiten, davon unterschiedlichen Teils, und desselben durch diese Wände getrennten Kühlkreislauf gestaltet sind.
  • Die EP 1 239 129 A2 beschäftigt sich mit einem einfachen Kühlsystem zur Kühlung des Verbrennungsmotors.
  • Im Stand der Technik sind die Vorteile und Ausgestaltungskonzepte von getrennten Kühlkreisläufen (Split-Cooling-System) im Vergleich zu einem konventionellen Kühlmittelkreislauf seit langer Zeit bekannt. Nachteilig ist, dass die Kühlmittelströmungsaufteilung zwischen dem Zylinderkopf und dem Motorblockwassermantel in beiden Phasen (Thermostat geschlossen unterhalb 90°C, Thermostat geöffnet oberhalb 90°C) fixiert ist, was zu einer unnötigen hohen Wärmeabgabe und einer geringen Aufwärmung des Motorblocks und des Ölfilms entlang der Laufbuchsen führt. Bekannt ist auch, dass aus dem Thermostaten ein Bypaß abzweigt, welcher den Kühler bzw. den hauptkühler umgeht, so dass Kühlmittel an den Kühler vorbei strömen kann, so dass dieses nicht unnötig gekühlt wird, was in der Warmlaufphase vorteilhaft ist. Für den Bypaß muß jedoch Bauraum belegt werden, welcher im Motorraum äußerst gering bemessen ist.
  • Von daher liegt der Erfindung die Aufgabe zugrunde, eine Strategie zum Betreiben eines getrennten Kühlmittelkreislaufs der eingangs genannten Art mit einfachen Mitteln zu verbessern.
  • Erfindungsgemäß gelingt die Lösung der Aufgabe durch eine Strategie mit den Merkmalen des Anspruchs 1.
  • Zweckmäßig ist, wenn das an dem Auslaßgehäuse angeordnete Steuerelement aus einem Thermostaten und einem davon getrennten Proportionalventil gebildet ist, wobei das Thermostat strömungstechnisch parallel zum Proportionalventil geschaltet ist, und wobei das Proportionalventil eine Blockwasserleitung zum Blockwassermantel, eine Heizungsleitung zur Heizung und eine Kühlerleitung zu dem Kühler aufweist, und wobei das Thermostat eine Verbindungsleitung zum Kühler aufweist.
  • Vorteilhaft ist, dass das Kühlmittel aus dem Zylinderkopfwassermantel direkt in den Blockwassermantel geleitet werden kann, wobei auf eine bisher übliche Bypaßleitung verzichtet wird. Der Motorblockwassermantel übernimmt so die Funktion der bisherigen Bypaßleitung, nämlich das Umgehen des Kühlers, so dass das Kühlmittel z. B. in der Warmlaufphase des Verbrennungsmotors nicht unnötig gekühlt wird. Dies führt zu höheren Werkstoff- als auch Öltemperaturen, wodurch die Reibung und die thermischen Verluste reduziert werden. Die vorteilhafte Ausführung des erfindungsgemäßen Kühlmittelkreislaufs kombiniert die Vorteile des getrennten Kühlmittelkreislaufs (schnelles Aufwärmen), wodurch der Kraftstoffverbrauch und die Entstehung schädlicher Emissionen erheblich verringert werden, wodurch aber auch die Lebensdauer des Verbrennungsmotors verlängert bzw. erhöht wird.
  • Der Kühlmittelkreislauf weist vorteilhaft eine gegenläufige Kühlmittelströmung in den beiden getrennten Kühlbereichen (Zylinderkopfwassermantel/Blockwassermantel) auf. In dem Zylinderkopfwassermantel strömt das Kühlmittel von der Einlaßseite zur Auslaßseite, was an sich bekannt ist. Dem Blockwassermantel dagegen wird das Kühlmittel an der Seite zugeführt, welcher der Auslaßseite des Zylinderkopfwassermantels entspricht. Das Kühlmittel strömt im Blockwassermantel, bezogen auf die Strömungsrichtung im Zylinderkopfwassermantel also quasi umgekehrt von der Auslaßseite zur Einlaßseite. Selbstverständlich hat der Blockwassermantel keinen Strömungskontakt, bzw. Kühlmittelübergang zum Zylinderkopfwassermantel, wobei natürlich kleine Leckagemengen nicht ausgeschlossen werden können, wie einleitend erwähnt. Das bedeutet im Sinne der Erfindung, dass Kühlmittel aus dem Blockwassermantel nicht direkt in den Zylinderkopfwassermantel tritt, und beide Wassermäntel quasi in Reihe geschaltet sind, aber gegenläufig durchströmt werden.
  • Zweckmäßig im Sinne der Erfindung ist, wenn eine Pumpenleitung die Pumpe mit der Eingangseite des Zylinderkopfwassermantels verbindet. Das Kühlmittel kann so aus dem Zylinderkopfwassermantel in das Auslaßgehäuse gelangen. Aus dem Proportionalventil zweigt die Heizungsleitung ab, welche zur Heizung führt. Der Heizungsrücklauf mündet vor der Pumpe in einem Kühlerrücklauf, welcher in der Pumpe mündet. Die aus dem Blockwassermantel führende Rückwasserleitung mündet ebenso in dem Kühlerrücklauf ebenfalls stromauf der Pumpe. Die aus dem Thermostaten führende Verbindungsleitung mündet dagegen vorteilhaft in der Zylinderkopfwasserleitung stromauf des Kühlers. Weitere Komponenten des Kühlmittelkreislaufes können vorgesehen werden. Beispielsweise kann eine Entlüftungseinrichtung vorgesehen werden, welche mit der Heizungsleitung und dem Kühler in Verbindung steht, und deren Rücklaufleitung ebenfalls stromauf der Pumpe in dem Kühlerrücklauf mündet.
  • Zweckmäßigerweise ist das Thermostat, welches als Teillastthermostat fungiert, über die Verbindungsleitung mit dem Kühler verbunden, wobei die Verbindungsleitung bevorzugt stromauf des Kühlers aber stromab des Proportionalventils in der Kühlerleitung mündet, wobei der Motorblockwassermantel günstiger weise den Kühler umlaufend direkt in dem Kühlerrücklauf mündet.
  • Zielführend ist, wenn das Steuerelement, also das Proportionalventil und das Thermostat abhängig Betriebsarten des Verbrennungsmotors wie z. B. von einer Warmlaufphase des Verbrennungsmotors und einem "warmen" Verbrennungsmotor schaltbar sind, wobei die beiden Komponenten noch abhängig von dem Vorliegen einer Teillast oder einer Hochlast des Verbrennungsmotors schaltbar sind. Insofern ergeben sich quasi vier Betriebsarten, welche die Steuercharakteristik beeinflussen.
  • Bei einer Warmlaufphase des in Teillast betriebenen Verbrennungsmotors sind alle Pfade des Proportionalventils, also der Pfad zur Blockwasserleitung, der Pfad zur Heizungsleitung und der Pfad zur Kühlerleitung des Proportionalventils als auch das Thermostat zur Verbindungsleitung geschlossen. In diesem Zustand weist der getrennte Kühlmittelkreislauf quasi einen Null-Strömungsbetrag, sowohl im Blockwassermantel als auch im Kopfwassermantel auf. Die Kühlmitteltemperatur hat einen Betrag von weniger als 60°C.
  • Weist die Kühlmitteltemperatur einen Betrag von mehr als 60°C und weniger als 75°C auf, öffnet der Pfad des Proportionalventils zur Heizungsleitung stufenlos, bis dieser vollständig geöffnet ist. Die no-flow Strategie des Zylinderkopfwassermantels ist aufgegeben, ein Teilstrom des Kühlmittels strömt aus dem Auslaßgehäuse über das Proportionalventil in die Heizungsleitung. Der Pfad zur Blockwasserleitung ist immer noch verschlossen, so dass die Kühlmittelströmung im Blockwassermantel einen Betrag von Null aufweist. Durch den Zylinderkopfwassermantel strömt lediglich der Betrag, welcher auch durch die Heizungsleitung strömen kann. Insofern ist die Kühlmittelströmung im Zylinderkopfwassermantel eher gering, was einem verbesserten Warmlaufverhalten zugute kommt. Gleichwohl kann die Heizung die Fahrzeugkabine genügend erwärmen.
  • Weist die Kühlmitteltemperatur einen Betrag von 75°C und weniger als 85°C auf, ist der Pfad zur Heizungsleitung vollständig geöffnet, wobei der Pfad zur Blockwasserleitung stufenlos öffnet. Im Blockwassermantel wird nun, unter Aufgabe der now-flow-Strategie eine geringe Kühlmittelströmung ermöglicht. Der Pfad zur Kühlerleitung ist noch verschlossen.
  • Weist die Kühlmitteltemperatur einen Betrag von mehr als 85°C und weniger als 100°C auf, ist der Pfad zur Heizungsleitung nach wie vor vollständig geöffnet. Der Pfad zur Blockwasserleitung dagegen wird über das Proportionalventil so gesteuert, dass die Blocktemperatur auf einen hohen Betrag, beispielsweise auf über 105°C, bevorzugt auf ca. 115°C einregelbar ist. Das Thermostat verschließt weiterhin den Pfad zur Verbindungsleitung, wenn die Kühlmitteltemperatur im Auslaßgehäuse bzw. Im Zylinderkopfwassermantel unterhalb von z. B. 100°C bzw. bevorzugt unterhalb 105°C liegt.
  • Ist die Warmlaufphase beendet können die Steuerkomponenten nunmehr abhängig von dem Betriebszustand "betriebswarmer Motor und Teillast" gesteuert werden.
  • Bei dieser Betriebsart, also bei einem warmen, unter Teillast betriebenen Verbrennungsmotors ist der Pfad zur Heizungsleitung geöffnet, der Pfad zur Blockwasserleitung wird geregelt, so dass die Blockwassertemperatur auf einen hohen Betrag von z. B. 115°C einregelbar ist. Weist das Kühlmittel im Zylinderkopfwassermantel bzw. im Auslaßgehäuse einen Betrag von mehr als 100°C auf, öffnet das Thermostat zur Verbindungsleitung. Die Kühlmittelströmung im Zylinderkopfwassermantel wird so weiter erhöht. Dadurch, dass nun ein zusätzlicher Teil der Zylinderkopfkühlmittelströmung über den Hauptkühler geführt wird, ist die Temperatur im Zylinderkopfwassermantel leicht, bevorzugt unter die Öffnungstemperatur regelbar. Die Kühlmittelströmung wird vorteilhaft mittels des Thermostaten (Öffnungstemperatur z. B. 100°C) zusammen mit dem Proportionalventil gesteuert, wenn der Verbrennungsmotor seine Betriebstemperatur aufweist und in Teillast betrieben wird. Das Thermostat ist also bevorzugt als Teillastthermostat ausgeführt, und öffnet nur im Teillastbetrieb wenn die Temperatur im Zylinderkopfwassermantel bzw. Im Auslaßgehäuse einen Betrag oberhalb dessen Öffnungstemperatur aufweist.
  • Im Teillastbetrieb kann der Verbrennungsmotor also in beiden Bereichen unabhängig mit erhöhter Temperatur betrieben werden.
  • Selbstverständlich kann der Pfad des Proportionalventils zur Kühlerleitung bei Bedarf geöffnet werden, wenn z. B. der Verbrennungsmotor mit höherer Last betrieben wird. Dazu öffnet das Proportionalventil die Leitung zum Hauptkühler, um die Temperatur des Zylinderkopfwassermantels auf z. B. 85°C zu regeln. Das Teillastthermostat ist dann geschlossen, da die Öffnungstemperatur nicht erreicht wird. Der Abzweig zum Blockwassermantel ist dann voll geöffnet. Bevorzugt ist vorgesehen, den Pfad so zu regeln, dass die Kühlmitteltemperatur im Blockwassermantel gering ist, beispielsweise auf einen Betrag von 90°C geregelt wird, da der Zylinderblock bei höherer Last des Verbrennungsmotors einen höheren Kühlungsbedarf hat.
  • Im Falle einer Funktionsstörung des Proportionalventils und damit einer nicht ausreichenden Kühlmittelströmung zum Hauptkühler, hat das Teillastthermostat auch eine Schutzfunktion. In diesem Fall würde das Teillastthermostat bei einer Erhöhung der Kühlmitteltemperatur oberhalb der Öffnungstemperatur öffnen und Kühlmittel zum Hauptkühler leiten. Das Teillastthermostat kann somit auch als Sicherheitsthermostat fungieren, da eine überhöhte Überhitzung durch Öffnen zum Kühler vermieden wird.
  • Ein weiterer Betriebszustand bzw. Betriebsart liegt vor, wenn der Verbrennungsmotor in der Warmlaufphase mit hoher Last betrieben wird. Bei dieser Betriebsart ist vorteilhaft vorgesehen, dass der Pfad zur Heizungsleitung vollständig geöffnet ist, wobei auch der Pfad zur Blockwasserleitung über das Proportionalventil regelbar ist. Bevorzugt ist vorgesehen, den Pfad so zu regeln, dass die Kühlmitteltemperatur im Blockwassermantel gering ist, beispielsweise auf einen Betrag von 90°C geregelt wird, da der Zylinderblock bei Vollast des Verbrennungsmotors hoher Kühlung bedarf. Die Kühlmittelströmung im Zylinderkopfwassermantel wird über das Proportionalventil geregelt, wobei im Zylinderkopfwassermantel eine Temperatur von 85°C einregelbar ist.
  • Eine weitere Betriebsart liegt vor, wenn der Verbrennungsmotor seine Betriebstemperatur aufweist und unter hoher Last bzw. Vollast betrieben wird. Bei dieser Betriebsart kann der Pfad zur Heizungsleitung geschlossen werden. Dies ist dann sinnvoll, wenn z. B. bei hohen Außentemperaturen die größte Kühlleistung generiert werden soll. Der Pfad zur Blockwasserleitung ist über das Proportionalventil regelbar. Bevorzugt ist vorgesehen, den Pfad so zu regeln, dass die Kühlmitteltemperatur im Blockwassermantel gering ist, beispielsweise auf einen Betrag von 90°C geregelt wird, da der Zylinderblock bei hoher Last bzw. bei Vollast des Verbrennungsmotors hoher Kühlung bedarf. Die Kühlmittelströmung im Zylinderkopfwassermantel wird über das Proportionalventil geregelt, wobei im Zylinderkopfwassermantel eine Temperatur von 85°C einregelbar ist. Das Teillastthermostat wird demnach gar nicht öffnen, da die Temperatur unterhalb seiner Öffnungstemperatur liegt. Sollte die Temperatur dennoch über die Öffnungstemperatur steigen, öffnet das Thermostat selbstverständlich und übernimmt seine Schutzfunktion, indem Kühlmittel zusätzlich zum Kühler geleitet wird.
  • Zielführend im Sinne der Erfindung ist also, wenn das Steuerelement bzw. die beiden Komponenten Proportionalventil und Teillastthermostat abhängig von der Betriebsart gesteuert werden, was bezüglich des Proportionalventils mittels eines Steuergerätes denkbar ist. Selbstverständlich kann die Steuerstrategie auch in dem zentralen Steuergerät des Verbrennungsmotors bzw. des Kraftfahrzeugs abgelegt sein.
  • Mit dem erfindungsgemäßen Kühlmittelkreislauf kann so der gesamte Verbrennungsmotor, also der Blockwassermantel aber auch der Kopfwassermantel, wenn auch nur kurzzeitig, so doch ausreichend lange mit der no-flow-Strategie betrieben werden. Trotz der Trennung der beiden Kühlmittelmäntel voneinander, kann die Kabinenheizung versorgt werden, indem der entsprechende Pfad des Proportionalventils geöffnet wird. Die no-flow-Strategie des Kopfwassermantels wird dabei aufgegeben, im Blockwassermantel aber vorteilhaft aufrechterhalten.
  • Die Kühlmitteleingangstemperatur zum Block wird zudem um ca. 3 bis 5 K angehoben, da die Speisung vom Ausgang des Zylinderkopfkreislaufs erfolgt. Weiter kann die Blocktemperatur, also die Materialtemperatur selbst ebenfalls angehoben werden, da die Temperatur mittels des Teillastthermostaten gesteuert wird, und eine reduzierte Kühlmittelströmung durch den Blockwassermantel generierbar ist. Zielführend ist auch, dass im Zylinderkopfwassermantel eine variable Betriebstemperatur je nach den oben genannten Betriebsarten einstellbar ist. Die Temperatur kann bei Teillast sogar auf bis zu 115°C angehoben werden, wobei bei überschreiten dieser Temperatur das Teillastthermostat öffnet, und so die Kühlmittelströmung vom Betrag her erhöht und einen Teil davon über den Kühler führt. Auch die Kühlmittelströmung durch die Heizung ist während der Warmlaufphase variabel. Insbesondere zielführend ist, dass die Kühlmittelströmung im Blockwassermantel gegenläufig zur Kühlmittelströmung im Zylinderkopfwassermantel ist. Auch die Tatsache, dass aus dem Zylinderkopf austretendes, quasi aufgewärmtes Kühlmittel dem Blockwassermantel zugeführt wird ist vorteilhaft hinsichtlich des Wärmemanagements des Zylinderblocks, da unter anderem Reibungsverluste reduzierbar sind.
  • Zweckmäßig im Sinne der Erfindung ist allerdings auch, dass lediglich ein Teilstrom des den Zylinderkopfwassermantels durchströmenden Kühlmittels über das Proportionalventil in den Blockwassermantel strömt. Dies ist vorteilhaft, da die notwendige Kühlleistung des Zylinderblocks nur etwa 30 bis 50% der Kühlleistung des Zylinderkopfes entspricht. Durch eine Regelung des Kühlmittelstromes kann so die Zylinderblocktemperatur variiert werden. Die Tatsache, dass nicht der gesamte Kühlmittelstrom über den Kühler geleitet wird, kann kompensiert werden, indem der Heizungskreislauf geschlossen wird, da die maximale Kühlleistung am Fahrzeugkühler nur bei hohen Außentemperaturen bereitgestellt werden muß. Die Kabinenheizung ist dann inaktiv. Dies führt zu einer Änderung der Druckverhältnisse und damit zu höherer Strömung durch den Hauptkühler.
  • Durch die erfindungsgemäße Ausgestaltung des getrennten Kühlmittelkreislaufes, bei dem das Thermostat den Kühlmittelfluß durch den Kühler nur bei Teillast des Verbrennungsmotors oder zu Schutzzwecken ermöglicht kann das Thermostat vorteilhaft als einfach wirkendes Thermostat ausgeführt sein, welches bei relativ hohen Temperaturen öffnet, um so erhöhte Kühlmitteltemperaturen insbesondere im Zylinderkopfwassermantel zu ermöglichen, wobei in anderen davon abweichenden Betriebsarten die Zylinderkopfkühlmitteltemperatur reduzierbar, also variabel ist.
  • Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen und der folgenden Figurenbeschreibung offenbart. Es zeigen
  • Fig. 1
    eine Prinzipskizze eines getrennten Kühlmittelkreislaufes gemäß der Erfindung, und
    Fig. 2
    ein Diagramm zur beispielhaften Steuerung des Steuerelementes.
  • Ein getrennter Kühlmittelkreislauf 1 ist in der Figur 1 dargestellt. Der getrennte Kühlmittelkreislauf 1 weist sowohl einen Zylinderkopfwassermantel 2 und einen Motorblockwassermantel 3, eine Pumpe 4, einen Kühler 6, ein Steuerelement 7, ein Kühlmittelauslaßgehäuse 8 und eine Heizung 9 auf. Weiter kann der Kühlmittelkreislauf 1 eine Entgasungsvorrichtung 11 aufweisen.
  • Der Zylinderkopfwassermantel 2 ist von dem Blockwassermantel 3 getrennt, so dass ein getrennter Kühlmittelkreislauf 1 vorliegt, in welchem ein Kühlmittel zirkuliert. Die Strömungsrichtung des Kühlmittels ist mit entsprechenden Pfeilen gekennzeichnet.
  • Das an den Auslaßgehäuse 8 angeordnete Steuerelement 7 ist aus einem Thermostaten 12 und einem davon getrennten Proportionalventil 13 gebildet, wobei das Thermostat 12 parallel zum Proportionalventil 13 angeordnet ist, und wobei das Proportionalventil eine Blockwasserleitung 14 zum Blockwassermantel 3, eine Heizungsleitung 16 zur Heizung 9 und eine Kühlerleitung 17 zu dem Kühler 6 aufweist, und wobei das Thermostat 12 eine Verbindungsleitung 18 zum Kühler aufweist.
  • Eine Pumpenleitung 19 verbindet die Pumpe 4 mit der Eingangseite 21 des Zylinderkopfwassermantels 2. Das Kühlmittel kann so aus dem Zylinderkopfwassermantel 2 in das Auslaßgehäuse 8 gelangen. Der Heizungsrücklauf 22 mündet vor der Pumpe 4 in einem Kühlerrücklauf 23, welcher in der Pumpe 4 mündet. Die aus dem Blockwassermantel 3 führende Rückwasserleitung 24 mündet ebenso in dem Kühlerrücklauf 23 ebenfalls stromauf der Pumpe 4. Die aus dem Thermostaten 12 führende Verbindungsleitung 18 mündet dagegen vorteilhaft in der Kühlerleitung 17 stromauf des Kühlers 6. Die Entlüftungseinrichtung steht mit der Heizungsleitung 16 und dem Kühler 6 in Verbindung, wobei deren Rücklaufleitung 26 ebenfalls stromauf der Pumpe 4 in dem Kühlerrücklauf 23 mündet.
  • Zielführend bei der Erfindung ist, dass auf eine Bypaßleitung verzichtet werden kann. Die Funktion der Bypaßleitung übernimmt quasi der Motorblockwassermantel 3. Diesem wird Kühlmittel, abhängig von Betriebsarten des Verbrennungsmotors, aus dem Zylinderkopfwassermantel 2 ausströmend zugeleitet. Ersichtlich ist, dass die Kühlmittelströmung im Blockwassermantel 3 gegenläufig zur Kuhlmittelströmung im Zylinderkopfwassermantel 2 ist.
  • Das Kühlmittel wird dem Blockwassermantel 3, bezogen auf die Strömungsrichtung in Zylinderkopfwassermantel 2 auslaßseitig zugeführt. Das Kühlmittel durchströmt den Blockwassermantel 3 gegenläufig zur Strömungsrichtung im Zylinderkopfwassermantel 2 und tritt, bezogen auf die Kühlmittelströmung im Zylinderkopfwassermantel 2 einlaßseitig aus, und mündet in dem Kühlerrücklauf 23.
  • Die Kühlmitteltemperatur ist so mittels des Proportionalventils abhängig von Betriebsarten regelbar bzw. steuerbar. Bei Teillastbetrieb des Verbrennungsmotors wird die Kühlmitteltemperatur im Zylinderkopfwassermantel 2 mittels des Thermostaten 12 geregelt. Beispielsweise kann das Thermostat 12 eine Öffnungstemperatur von 100°C oder gar von 115°C bzw. einen Betrag dazwischen haben, so dass die Kühlmitteltemperatur im Zylinderkopfwassermantel auf diesen erhöhten Betrag einstellbar ist. Bei Vollast des Verbrennungsmotors ist es vorteilhafter, die Kühlmitteltemperatur im Zylinderkopfwassermantel auf ca. 85°C, und im Blockwassermantel eine geringe Temperatur von ca. 90°C einzustellen. Das Thermostat öffnet bei diesen geringen Temperaturen gar nicht, so dass die Kühlmitteltemperatur einzig über das Proportionalventil gesteuert wird. Die Betriebsarten und die Temperatursteuerung sind bereits oben beschrieben, und werden vollumfänglich zum bevorzugten Ausführungsbeispiel.
  • Figur 2 zeigt lediglich beispielhaft ein Diagramm bei welchem die Kühlmittelströmungen durch die Heizung (Linie 27), durch den Motorblockwassermantel (Linie 28) und durch den Kühler (Linie 29) dargestellt sind. Auf der Hochachse ist die Strömungsrate in I/min aufgetragen. Auf der horizontalen ist die Öffnung des Proportionalventils 13 in % aufgetragen.
  • In einer ersten Phase 31 weist die Strömungsrate in allen Leitungen und den beiden Wassermänteln 2 und 3 einen Betrag von Null auf (no-flow-Strategie).
  • In einer zweiten Phase 32 strömt zunehmend Kühlmittel zur Heizung 9. Die Kühlmittelströmungen im Motorblockwassermantel 3 und im Kühler 6 sind NULL (No-flow-Strategie im Block). Im Zylinderkopfwassermantel ist eine geringe Kühlmittelströmung vorhanden. Das Proportionalventil 13 öffnet die Heizungsleitung stufenlos bis der Pfad vollständig geöffnet ist. Dies entspricht einem Gesamtöffnungsgrad von bis zu 30 % des Proportionalventils 13.
  • In einer dritten Phase 33 ist die no-flow Strategie auch im Blockwassermantel aufgegeben. Das Proportionalventil öffnet diesen Pfad stufenlos. Der Pfad zum Kühler 6 ist nach vor verschlossen. Dies ist im Teillastbetrieb möglich, so dass die Temperatursteuerung im Zylinderkopfwassermantel einzig über das Teillastthermostat 12 erfolgt.
  • Wie erkennbar steigt die Strömungsrate im Motorblockwassermantel 3 von 0 auf bis zu 40 l/min an, wobei in dieser Phase die Strömung durch die Heizung von 25 l/min auf etwa 20l/min abnimmt. Am Ende der dritten Phase ist das Proportionalventil ca. 50% geöffnet, also der Pfad zum Blockwassermantel und zur Heizung ist geöffnet. Im Teillastbetrieb ist es völlig ausreichend, die Temperatur im Zylinderkopfwassermantel einzig über das Teillastthermostat zu regeln und auf einen hohen Betrag einzuregeln. Ist diese "Grenztemperatur" erreicht, öffnet das Teillastthermostat zum Kühler.
  • Wird nun erkannt, dass keine Teillast des Verbrennungsmotors mehr vorliegt, sondern Volllast, wird die Zylinderkopfkühlmitteltemperatur in einer vierten Phase 34 auf einen Betrag von ca. 85°C geregelt. Das Proportionalventil 13 öffnet den Pfad zum Kühler stufenlos, so dass dieser mit bis zu 120/min durchströmt wird. Der Pfad zur Heizung kann geschlossen werden.
  • Die genannten Werte für die Grenztemperaturen und für die Kühlmittelströmungsraten des Proportionalventils sind natürlich lediglich exemplarisch zu verstehen und dienen lediglich als beispielhafte Richtwerte welche keinesfalls einschränkend sein sollen. Vielmehr sollten diese Werte während der Motorentwicklung ermittelt aber nicht endgültig festgelegt werden.
  • Der Ausdruck "im Wesentlichen" bzw. "etwa" oder "ca." bedeutet im Sinne der Erfindung Abweichungen vom jeweils exakten Wert um +/- 10%, bevorzugt um +/-5% und/oder Abweichungen in Form von für die Funktion unbedeutenden Änderungen. Die technischen Begriffe "Teillast" und "Vollast" sind in der Fachwelt ebenso einschlägig bekannt wie die Begriffe "Warmlaufphase" und "betriebswarm".

Claims (7)

  1. Strategie zum Betreiben eines getrennten Kühlmittelkreislaufs (1) eines Verbrennungsmotors, wobei ein Zylinderkopfwassermantel (2) und ein Motorblockwassermantel (3) vorgesehen ist, wobei der getrennte Kühlmittelkreislauf (1) eine Pumpe (4), einen Kühler (6), ein Steuerelement (7), ein Auslaßgehäuse (8) und eine Heizung (9) aufweist, und wobei in dem getrennten Kühlmittelkreislauf (1) ein Kühlmittel zirkuliert,
    wobei
    das Steuerelement (7) aus einem Thermostaten (12) und einem davon getrennten Proportionalventil (13) gebildet ist, welche an dem Auslaßgehäuse (8) parallel geschaltet angeordnet sind, wobei Kühlmittel das Proportionalventil (13) passierend über eine Blockwasserleitung (14) zum Motorblockwassermantel (3), über eine Heizungsleitung (16) zur Heizung (9) und über eine Kühlerleitung (17) zum Kühler (6) geleitet wird, wobei Kühlmittel das Thermostat (12) passierend über eine Verbindungsleitung (18) zum Kühler (6) geleitet wird, wobei das Thermostat (12) und das Proportionalventil (13) unabhängig voneinander aber abhängig von Betriebsarten (31, 32, 33, 34) eines Verbrennungsmotors eine Kühlmittelströmung durch die jeweilige Leitung (14, 16, 17, 18) bewirken.
  2. Strategie nach Anspruch 1,
    umfassend
    das Feststellen einer Warmlaufphase des Verbrennungsmotors unter Teillast desselben, wobei zunächst alle Pfade des Proportionalventils (13) aber auch des Thermostaten (12) geschlossen sind, so dass sowohl im Blockwassermantel als auch im Zylinderkopfwassermantel eine Kühlmitteströmung mit dem Betrag NULL vorliegt.
  3. Strategie nach Anspruch 1 oder 2,
    umfassend
    das Feststellen einer Warmlaufphase des Verbrennungsmotors unter Teillast desselben, wobei der Pfad des Proportionalventils (13) zur Heizungsleitung (16) öffnet, die anderen Pfade des Proportionalventils (13) aber auch des Thermostaten (12) geschlossen sind, so dass im Blockwassermantel eine Kühlmitteströmung mit dem Betrag NULL, und im Zylinderkopfwassermantel (2) eine Kühlmittelströmung vorliegt.
  4. Strategie nach einem der vorhergehenden Ansprüche,
    umfassend
    das Feststellen einer Warmlaufphase des Verbrennungsmotors unter Teillast desselben, wobei der Pfad des Proportionalventils (13) zur Heizungsleitung (16) geöffnet ist, und der Pfad zur Blockwasserleitung (14) öffnet, so dass Kühlmittel aus dem Zylinderkopf austretend in den Blockwassermantel (3) eintritt, wobei der andere Pfad des Proportionalventils (13) aber auch des Thermostaten (12) geschlossen ist, so dass sowohl im Blockwassermantel (3) als auch im Zylinderkopfwassermantel (2) eine Kühlmittelströmung vorliegt.
  5. Strategie nach einem der vorhergehenden Ansprüche,
    umfassend
    das Feststellen eines betriebswarmen Verbrennungsmotors, welcher unter Teillast betrieben wird, wobei der Pfad zur Heizungsleitung geöffnet ist, und der Pfad zur Blockwasserleitung (14) so geregelt wird, dass im Blockwassermantel (3) eine erhöhte Temperatur von etwa 115°C eingeregelt wird, wobei das Thermostat (12) öffnet wenn seine Grenztemperatur von beispielsweise 100°C überschritten wird, so dass die Kühlmitteströmung im Zylinderkopfwassermantel (2) so erhöht wird, das Kühlmittel aber auch durch den Kühler (6) strömt.
  6. Strategie nach einem der vorhergehenden Ansprüche,
    umfassend
    das Feststellen eines warmlaufenden Verbrennungsmotors, welcher unter Vollast betrieben wird, wobei der Pfad zur Heizungsleitung (16) vollständig geöffnet ist, und der Pfad zur Blockwasserleitung (14) so geregelt wird, dass im Blockwassermantel (3) eine Temperatur von etwa 90°C eingeregelt wird.
  7. Strategie nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß
    das Feststellen eines betriebswarmen Verbrennungsmotors, welcher unter Vollast betrieben wird, wobei der Pfad zur Heizungsleitung (16) geschlossen ist, und wobei der Pfad zur Blockwasserleitung (14) in seiner Strömungsrate über das Proportionalventil (13) so regelbar ist, dass im Blockwassermantel (3) eine Temperatur von etwa 90°C eingeregelt wird, wobei im Zylinderkopfwassermantel (2) eine Temperatur von etwa 85°C einregelbar ist.
EP11178430.2A 2011-08-23 2011-08-23 Strategie zum Betreiben eines getrennten Kühlmittelkreislaufs Active EP2562378B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11178430.2A EP2562378B1 (de) 2011-08-23 2011-08-23 Strategie zum Betreiben eines getrennten Kühlmittelkreislaufs
US13/591,076 US8739745B2 (en) 2011-08-23 2012-08-21 Cooling system and method
RU2012135987/06A RU2592155C2 (ru) 2011-08-23 2012-08-22 Способ работы разделенного контура охлаждающей жидкости
CN201210302833.4A CN102953798B (zh) 2011-08-23 2012-08-23 冷却***和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11178430.2A EP2562378B1 (de) 2011-08-23 2011-08-23 Strategie zum Betreiben eines getrennten Kühlmittelkreislaufs

Publications (2)

Publication Number Publication Date
EP2562378A1 EP2562378A1 (de) 2013-02-27
EP2562378B1 true EP2562378B1 (de) 2015-10-14

Family

ID=44681044

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11178430.2A Active EP2562378B1 (de) 2011-08-23 2011-08-23 Strategie zum Betreiben eines getrennten Kühlmittelkreislaufs

Country Status (2)

Country Link
EP (1) EP2562378B1 (de)
RU (1) RU2592155C2 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9140176B2 (en) 2013-01-29 2015-09-22 Ford Global Technologies, Llc Coolant circuit with head and block coolant jackets connected in series
DE102014219252A1 (de) * 2014-09-24 2016-04-07 Volkswagen Aktiengesellschaft Brennkraftmaschine
DE102018104099A1 (de) * 2018-02-23 2019-08-29 Volkswagen Aktiengesellschaft Brennkraftmaschine und Kraftfahrzeug
CN111396186B (zh) * 2020-04-16 2023-08-08 昆明云内动力股份有限公司 一种发动机分体式冷却***和方法
JP2022175421A (ja) * 2021-05-13 2022-11-25 マツダ株式会社 エンジンシステム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176317A (en) * 1981-04-23 1982-10-29 Toyota Motor Corp Cooling equipment for engine
JPS60113017A (ja) 1983-11-25 1985-06-19 Toyota Motor Corp 二系統冷却式内燃機関の冷却ファンの運転制御方法
SU1684533A1 (ru) * 1985-04-15 1991-10-15 Центральный научно-исследовательский дизельный институт Система охлаждени двигател внутреннего сгорани
IT1187952B (it) * 1986-02-20 1987-12-23 Fiat Auto Spa Circuito di raffreddamento per motori a combustione interna
US5385123A (en) 1993-10-08 1995-01-31 Evans; John W. Segregated cooling chambers for aqueous reverse-flow engine cooling systems
DE19524424A1 (de) 1994-07-21 1996-01-25 Volkswagen Ag Kühlmittelkreislauf
FR2750164B1 (fr) 1996-06-24 1998-09-11 Peugeot Dispositif de refroidissement d'un moteur a combustion interne
DE19628542A1 (de) 1996-07-16 1998-01-22 Juergen Dipl Ing Naegeler Kühlsystem für einen Verbrennungsmotor
RU2182238C2 (ru) * 2000-02-29 2002-05-10 Открытое акционерное общество "Ставровский завод автотракторного оборудования" Система охлаждения двигателя внутреннего сгорания
DE60223188T2 (de) 2001-03-06 2008-02-14 Calsonic Kansei Corp. Kühlungssystem für eine wassergekühlte Brennkraftmaschine und Steuerverfahren dafür
DE10127219A1 (de) 2001-05-23 2002-11-28 Behr Thermot Tronik Gmbh Kühlanlage für einen Verbrennungsmotor
DE10219481A1 (de) 2002-04-30 2003-11-20 Audi Ag Verbrennungsmotor mit einem Zylinderkurbelgehäuse, mit einem Zylinderkopf und miteinem Kühlwasserkreislauf und Verfahren zum getrennten Kühlen des Zylinderkurbelgehäuses und des Zylinderkopfs, mit einem Kühlwasserkreislauf und einer gemeinsamen Kühlwasserpumpe
ITTO20020853A1 (it) * 2002-10-02 2004-04-03 Mark Iv Systemes Moteurs Sa Circuito di raffredamento di un motore a combustione interna per un
KR20040033579A (ko) 2002-10-15 2004-04-28 현대자동차주식회사 분리 냉각 시스템이 적용되는 엔진의 서머 스탯
KR100656594B1 (ko) 2002-10-24 2006-12-11 현대자동차주식회사 분리 냉각 시스템이 적용되는 엔진의 실린더 헤드와실린더 블럭용 워터 자켓의 구조
DE10342935B4 (de) 2003-09-17 2015-04-30 Robert Bosch Gmbh Verbrennungskraftmaschine mit einem Kühlkreislauf
FR2860833B1 (fr) 2003-10-08 2007-06-01 Peugeot Citroen Automobiles Sa Circuit de refroidissement d'un moteur a combustion interne constitue d'au moins trois passages de refroidissement
EP1900919B1 (de) 2006-09-13 2011-03-02 Ford Global Technologies, LLC Kühlmittelkreislauf

Also Published As

Publication number Publication date
RU2592155C2 (ru) 2016-07-20
EP2562378A1 (de) 2013-02-27
RU2012135987A (ru) 2014-02-27

Similar Documents

Publication Publication Date Title
EP2562379B1 (de) Kühlmittelkreislauf
EP1900919B1 (de) Kühlmittelkreislauf
EP2876274B1 (de) Brennkraftmaschine
DE102014215074B4 (de) Temperieranordnung für Getriebeöl eines Kraftfahrzeugs sowie Verfahren zum Temperieren von Getriebeöl eines Kraftfahrzeugs
DE102010002082B4 (de) Separat gekühlter Abgassammler zur Aufrechterhaltung einer No-Flow Strategie des Zylinderblockkühlmittelmantels
DE102012200005B4 (de) Verfahren zum Betreiben eines Kühlmittelkreislaufs
DE112011105266B4 (de) Fluidsteuersystem für einen Kühlkreislauf eines Verbrennungsmotors
DE102008035955B4 (de) Kühlstrategie
DE102014201717A1 (de) Brennkraftmaschine mit flüssigkeitsgekühltem Zylinderkopf und Zylinderblock und Verfahren zur Steuerung der Kühlung einer derartigen Brennkraftmaschine
DE102014200054A1 (de) Flüssigkeitsgekühlte Brennkraftmaschine mit flüssigkeitsgekühltem Zylinderkopf und flüssigkeitsgekühltem Zylinderblock
EP2562378B1 (de) Strategie zum Betreiben eines getrennten Kühlmittelkreislaufs
DE102014201167A1 (de) Wärmemanagementsystem für eine Verbrennungskraftmaschine
DE102014106725A1 (de) Antriebsstrangkühlsystem mit kühl- und heizmodi für wärmetauscher
DE10311188B4 (de) Verfahren und Vorrichtung zur bedarfsgerechten Kühlung von Verbrennungskraftmaschinen unter Verwendung eines Bypassventils und mindestens einer Wärmesenke
DE102015201238B3 (de) Verfahren zum Betrieb einer Brennkraftmaschine mit Split-Kühlsystem und Zylinderabschaltung
DE102018110234B4 (de) Kühlvorrichtung für einen Verbrennungsmotor
DE102015201240B4 (de) Split-Kühlsystem sowie Brennkraftmaschine mit einem Split-Kühlsystem und entsprechend ausgestattetes Fahrzeug
DE102015201246A1 (de) Regelmittel zur Steuerung der Kühlmittelströme eines Split-Kühlsystems
DE102015201242B4 (de) Regelmittel zur Steuerung der Kühlmittelströme eines Split-Kühlsystems
WO2017005438A1 (de) Kühlmittelkreislauf für flüssigkeitsgekühlte getriebe
DE202015100582U1 (de) Regelmittel zur Steuerung der Kühlmittelströme eines Split Kühlsystems
DE102012019091A1 (de) Kurbelgehäuse für eine Verbrennungskraftmaschine sowie Verbrennungskraftmaschine mit einem solchen Kurbelgehäuse
DE202015100577U1 (de) Regelmittel zur Steuerung der Kühlmittelströme eines Split Kühlsystems
DE102013203476A1 (de) Brennkraftmaschine mit flüssigkeitsgekühltem Zylinderkopf und flüssigkeitsgekühltem Zylinderblock und Verfahren zur Steuerung der Kühlung einer derartigen Brennkraftmaschine
DE102004058869B4 (de) Verfahren und Vorrichtung zur Heißkühlung von Verbrennungskraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130827

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F01P 7/14 20060101AFI20150522BHEP

Ipc: F01P 7/16 20060101ALI20150522BHEP

Ipc: F01P 3/02 20060101ALN20150522BHEP

INTG Intention to grant announced

Effective date: 20150624

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 755281

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011008083

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151014

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160114

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160214

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160115

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160215

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011008083

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

26N No opposition filed

Effective date: 20160715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160823

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 755281

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190717

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190728

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20200812

Year of fee payment: 10

Ref country code: RO

Payment date: 20200727

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210823

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230711

Year of fee payment: 13