EP2530065A2 - High performance active material for an infra-red decoy which emits spectral radiation upon combustion - Google Patents

High performance active material for an infra-red decoy which emits spectral radiation upon combustion Download PDF

Info

Publication number
EP2530065A2
EP2530065A2 EP12004098A EP12004098A EP2530065A2 EP 2530065 A2 EP2530065 A2 EP 2530065A2 EP 12004098 A EP12004098 A EP 12004098A EP 12004098 A EP12004098 A EP 12004098A EP 2530065 A2 EP2530065 A2 EP 2530065A2
Authority
EP
European Patent Office
Prior art keywords
fuel
active mass
performance active
substance
oxidizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12004098A
Other languages
German (de)
French (fr)
Other versions
EP2530065A3 (en
EP2530065B1 (en
Inventor
Arno Dr. Hahma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl Defence GmbH and Co KG
Original Assignee
Diehl BGT Defence GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl BGT Defence GmbH and Co KG filed Critical Diehl BGT Defence GmbH and Co KG
Publication of EP2530065A2 publication Critical patent/EP2530065A2/en
Publication of EP2530065A3 publication Critical patent/EP2530065A3/en
Application granted granted Critical
Publication of EP2530065B1 publication Critical patent/EP2530065B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06CDETONATING OR PRIMING DEVICES; FUSES; CHEMICAL LIGHTERS; PYROPHORIC COMPOSITIONS
    • C06C15/00Pyrophoric compositions; Flints

Definitions

  • the invention relates to a high-performance active mass for a spectrally radiating pyrotechnic infrared light target during combustion.
  • a pyrotechnic infrared light emission target that emits spectrally during burn-up emits predominantly radiation with a wavelength of 3.5 to 4.6 ⁇ m during firing, d. H. a radiation in the so-called B-band, and only to a lesser extent radiation in the range of a wavelength of 1.8 to 2.6 microns, the so-called A-band.
  • the A-band and B-band are the wavelengths detected by conventional seekers.
  • Known spectrally radiating active compositions for black body radiators contain nitrocellulose or ammonium perchlorate or potassium perchlorate and a binder, such as hydroxyl-terminated polybutadiene.
  • Active compounds with ammonium perchlorate are very sensitive mechanically and thermally and thus do not fulfill the criteria of insensitive ammunition. Splinter impact, fire and slow heating can trigger a violent explosion with these active masses.
  • the practically achievable density of these active compositions is at most about 1500 kg / m 3 , so that relatively little of them can be accommodated in a decoy of a given caliber.
  • Another disadvantage of such active compositions is that ammonium perchlorate is only very limited compatibility with other chemicals and / or materials. This leads on the one hand to security problems and on the other hand that a variety of effective Anfeuerungs accounts, z. B. on the basis of black powder, magnesium or zirconium, can not be used because they would be too sensitive in combination with ammonium perchlorate.
  • ammonium perchlorate-containing active compositions Another disadvantage of ammonium perchlorate-containing active compositions is that their radiant power during combustion is relatively low and beyond very much radiant power is lost as a function of airspeed. As a result, a large amount of the effective mass must be used for the simulation of an aircraft flying at more than 150 m / s in order to generate sufficient radiant power. In practice, this means that such decoy targets must have a relatively large caliber and thereby the amount that can be transported in a given ammunition space is small due to the space requirements of the ammunition.
  • Nitrocellulose-containing active materials are also not insensitive and can easily explode. Furthermore, it is disadvantageous that such active compounds burn only at low wind speed and their radiant power during combustion is not high. To ensure the burning in the wind complex devices are required, which reduce due to their space requirements effectively in a decoy to be transported effective mass.
  • the density of a nitrocellulose-containing active material is also at most about 1500 kg / m 3 .
  • a major disadvantage of such an active mass is that the ignition requires a strong ignition pulse, which causes a strong, often not spectral lightning. This flash can tell a seeker that it is just a fake target in the burn-off effective mass.
  • the object of the present invention is to provide an active mass which emits spectrally when burning with high radiation power, d. H. Radiation emitted in the B-band, which is far more intense, than the radiation emitted during the burn in the A-band radiation. Furthermore, the active mass should be relatively insensitive, but can still ignite quickly and easily and have a relatively low loss of radiant power during combustion with increasing velocity of the surrounding air.
  • a high-performance active mass for a pyrotechnic infrared light target that emits spectrally when burned.
  • the high performance active mass includes a fuel, an oxidizer, a binder and a carbon-containing material.
  • the fuel and the oxidizing agent are chosen so that the oxidizing agent, the fuel after its ignition in an exothermic primary reaction to form a Temperature of at least 1000 K can oxidize.
  • Combustion temperatures are known for a large number of known combinations of a fuel and an oxidizer. As far as the resulting temperature is not known, it can be estimated from known combustion temperatures and / or determined without great effort by measuring the combustion.
  • the substance is chosen so that the substance is pyrolyzed endothermically by the liberated in the primary reaction heat and thereby releases in air, especially with non-sooting flame, combustible gas.
  • Candidate substances are known to the expert in large numbers. In particular, natural products, such as wood or lignite, come into consideration. For the selection of such a substance, the expertise of the skilled person is sufficient. If there is any doubt about a high-probability substance, it is sufficient to carry out a single experiment to determine whether the substance is pyrolyzed by the release of a gas flammable in air. The fuel is not so much reducing that resulting CO 2 can be reduced to carbon.
  • the substance and its proportion of the high-performance active material are chosen so that the temperature of the high-performance active mass does not exceed 2000 K after the ignition because of the heat extraction by the endothermic pyrolysis.
  • the selection of a substance from the substances considered under the above conditions and its proportion of the active mass only requires the implementation of a very limited number of routine experiments.
  • the results of the routine experiments such as the measured temperature of the high performance active mass after ignition thereof, can be estimated before carrying out the experiments on the basis of known quantities of the substance, such as the specific heat requirement for its pyrolysis.
  • a more precise indication of the features according to the invention is not possible without undue limitation of the invention. However, for the average skilled person, the choice specified by the features does not present a problem.
  • the carbon may be contained in the substance elementally or in the form of at least one carbon atom in a molecule comprised by the substance.
  • the redox potential of the fuel is at least as high as the redox potential of carbon, ie the fuel is at most as much reducing as carbon.
  • the redox potential may also be slightly lower, reducing CO 2 to CO, since CO in the air immediately burns to CO 2 , producing a large flame that increases performance and space effect. This means that the free enthalpy of a reaction of the fuel with CO at the resulting temperature is greater than or equal to 0, a reaction of the fuel with CO at the given conditions therefore does not take place voluntarily. Forming CO 2 , which produces a strong radiation in the desired B-band, can not be reduced to carbon.
  • the radiant power of the burning-off high-performance active mass according to the invention exceeds in some cases more than three times the radiant power of conventional ammonium perchlorate-containing active masses and can under conditions of use, i. H. at high speed of the surrounding air, even exceed the radiant power of the blackbody radiator MTV in B-band.
  • the fuel can also contain carbon. At least the material nature of the substance and the fuel can be identical. However, with identical material properties, the substance may be in another form, for example as a compressed product in a loose bed of fuel. Even if the fuel and the substance have an identical nature, a part of them may serve as a fuel and the remainder as a substance, if the amount of the oxidizing agent is sufficient only for the oxidation of the fuel serving part. The rest is pyrolyzed as a substance. The substance and the fuel may also have a different material nature.
  • the oxygen balance of a high-performance active material according to the invention is generally negative and yet avoiding the formation of soot avoids intensive radiation in the A-band, which is otherwise customary in the case of oxygen sub-balanced active compositions.
  • a feature of the high performance active mass of the invention is that the primary reaction produces a temperature which is reduced by the endothermic pyrolysis. There is a spatial separation of the primary reaction and the reaction of the gas with the atmospheric oxygen.
  • the gas produced during the pyrolysis increases an emerging flame, which may consist of a primary flame formed by the primary reaction and a secondary flame formed by the reaction of the gas with atmospheric oxygen.
  • primary flame is meant a flame in which no reaction with the atmospheric oxygen takes place, d. H. an anaerobic flame.
  • secondary flame is meant a flame in which a reaction with oxygen takes place, i. H. an aerobic flame.
  • the released combustible gas ignites immediately when in contact with the air, as it is heated by the primary reaction to a temperature above the ignition temperature. The result is a secondary flame with similar properties as a flame from a jet engine, which is also formed by combustible gases that burn in the air.
  • the spectrum of the secondary flame is similar to the spectrum of a kerosene flame. Due to the spatial separation of the secondary flame from the surface of the high-performance active mass, this surface is not or at least not significantly heated by the secondary flame, thereby avoiding a shift in the wavelength of the radiation emitted by the high-performance active mass from the B-band to the A-band.
  • the atmospheric oxygen serves as a further oxidant.
  • less oxidizing agent is required and the performance of the high-performance active material according to the invention and the volume of gas which can be generated therefrom are considerably increased in relation to their mass compared to the previously known pyrotechnic active compositions which radiate spectrally during combustion.
  • Previous attempts to increase the radiant power of such active compositions were always based on changes in the fuel contained therein and the oxidant contained therein or on a change in the ratio of fuel to oxidant. The experiments always resulted in the generation of a higher temperature and thus in a shift of the wavelength of the emitted radiation towards the A-band.
  • the high-performance active material according to the invention does not have to contain ammonium perchlorate, the high-performance active mass can be made so insensitive that it can be classified as insensitive ammunition.
  • Another advantage of the high-performance active material according to the invention is that it can be composed of very inexpensive components.
  • the high performance resin can be bound with almost any binder. When pressing the high-performance active mass neither curing resins, as HTPB (hydroxyl-terminated polybutadiene) nor solvents, for example, for dissolving nitrocellulose, are used. The production and processing of the high-performance active mass is thereby significantly simplified and helps to keep their costs low.
  • a larger volume of gas can be generated with the high-performance active mass according to the invention than with known spectrally radiating active masses because the high-performance active mass according to the invention contains less oxidizing agent and co-uses the atmospheric oxygen for the oxidation.
  • the essential advantage of the high-performance active mass according to the invention is that the radiation spectrum of the burning and moving high-performance active mass very accurately simulates the spectrum of a moving jet engine.
  • the fuel may elemental carbon, z.
  • powders of these substances, or an alloy of these substances include.
  • the reaction products of the fuel with the oxidant should not be volatile because volatile reaction products cause a very hot flame and thus the emission of blackbody radiation.
  • the fuel is chosen so that it leaves a solid, that is neither volatile nor liquid, reaction product after the primary reaction.
  • reaction product may be, for example, ashes.
  • the release of this reaction product during combustion of the high-performance active mass results in a spectral spatial effect.
  • a solid residue, d. H. a solid reaction product leaving fuel are known in the art in large numbers.
  • the oxidizing agent may comprise a perchlorate, chlorate, oxide, sulfate, nitrate, dinitramine, nitrite, peroxide, dinitromethanoate, especially sodium, potassium or ammonium dinitromethanoate, a nitro compound, a nitrate ester, hexogen, octogen, nitrocellulose or nitropenta.
  • the material pyrolyzed by the heat released during the primary reaction can be sugar, wood, in particular in the form of wood flour or sawdust, cereal flour, in particular wheat flour, lignite, peat, cellulose, starch, tobacco, an oxalate, in particular calcium oxalate, a formate, in particular magnesium formate, an acetate, in particular calcium acetate, a propionate, in particular calcium propionate, Polyethylene glycol, polyoxymethylene, polyamide, especially nylon® , urea, hexamethylenetetramine, trioxane, paraformaldehyde, nitrocellulose, hexogen, octogen, dinitromethanoate, especially sodium, potassium or ammonium dinitromethanoate, or nitropenta.
  • the fuel, oxidizer and material may be selected from groups comprising identical organic compounds, depending on how each of the other constituents of the high performance active mass is selected. So z.
  • hexogen in combination with a perchlorate may be a fuel, whereas it is an oxidizing agent when a metal is used as a fuel. Hexogen can also serve as a material to be pyrolyzed during combustion, for example when perchlorate forms the oxidant and a metal forms the fuel.
  • the fuel is not sulfur, but sulfur is included in the high performance active mass.
  • the sulfur can prevent a primary flame resulting from the primary reaction from being blown out at high wind speeds.
  • the fuel, the oxidizing agent and the substance and the amount of the fuel, the oxidizing agent and the substance are chosen so that when burned the high performance active mass in air, the ratio between the specific power of the emitted radiation in the wavelength range of 1.8 to 2 , 6 microns to the specific power of the emitted radiation in the wavelength range of 3.5 to 4.6 microns at most 1: 3, in particular at most 1: 5, in particular at most 1:10.
  • the smaller the temperature that reaches the high-performance active mass after ignition the smaller the said ratio.
  • the selection and the quantity determination here only requires the execution of routine experiments.
  • the person skilled in the art can quickly determine in which direction he must change a quantitative ratio in order to reach the correct range of the ratio between the two powers specified here.
  • the fuel, the oxidizing agent and the substance and the amounts of the fuel, the oxidizing agent and the substance are chosen so that the temperature of the high-performance active mass after their ignition 1770 K, in particular 1270 K, in particular 970 K, does not exceed. If the temperature does not exceed 970 K, the wavelength of the emitted radiation is almost exclusively in the B-band and only to a very small extent in the A-band.
  • the substance is selected such that the gas which can be released therefrom by pyrolysis is a gas, which burns in the air with a maximum flame temperature below 2000K.
  • the flame temperatures for a large number of pyrolysis-releasable gases are known from the literature, the temperature can also be easily determined by measurement. The selection of such substances, whose gases released by pyrolysis have a maximum flame temperature below 2000 K, does not exceed the usual reasonable effort of routine experiments in this field.
  • the binder is chosen so that it does not cause soot formation during combustion of the high-performance active mass.
  • Such binders are known to the person skilled in the art. As far as it is not known for a candidate binder, if it produces soot during burning, a simple experiment to clarify this question is sufficient. Soot formation would lead to a stronger radiation in the region of the A-band which is not desired here.
  • the binder may be, for. B. to act polychloroprene.
  • IPDI isophorone diisocyanate
  • the sulfur promotes the primary reaction at high wind speeds by preventing the primary flame from being blown out.
  • the high-performance active mass generates a spectral space effect of approx. 30 m at burn-up speeds of 75 m / s and 150 m / s.
  • material Type weight miscellaneous Brown coal Heating professional finely ground, grain size ⁇ 100 ⁇ m 32.0
  • TMD 1712 potassium nitrate finely ground, grain size ⁇ 10 ⁇ m 53.0 boron Grain size ⁇ 1 ⁇ m 4.0 sulfur finely powdered 8.0 chloroprene Macroplast 3.0
  • this effective mass reaches 86% of the MTV power in the B channel and has a higher spectral ratio than the lignite active materials.
  • TMD stands for the theoretical mean density of the total effective mass in kg / m 3 .
  • % MTV indicates the measured power as a percentage of the power measured for the MTV standard.

Landscapes

  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Air Bags (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

High performance active material comprises a fuel, an oxidizing agent, a binder and a substance containing carbon, where: the fuel and the oxidizing agent are selected such the oxidizing agent is oxidized to the fuel after its ignition in an exothermic primary reaction under the formation of a temperature of at least 1000 K; and the substance is selected such that the substance is endothermally pyrolyzed by the heat released during the primary reaction and releases flammable gas in air. High performance active material comprises a fuel, an oxidizing agent, a binder and a substance containing carbon, where: the fuel and the oxidizing agent are selected such that the oxidizing agent is oxidized to the fuel after its ignition in an exothermic primary reaction under the formation of a temperature of at least 1000 K; the substance is selected such that the substance is endothermally pyrolyzed by the heat released during the primary reaction and releases flammable gas in air; the redox potential of the fuel is at least as high as the redox potential of carbon; and the substance and its proportion are selected on the high-performance active material so that the temperature of the high performance active material does not exceed 2000 K after its ignition due to the heat extraction by pyrolysis, which takes place endothermally.

Description

Die Erfindung betrifft eine Hochleistungswirkmasse für ein beim Abbrand spektral strahlendes pyrotechnisches Infrarotscheinziel. Ein beim Abbrand spektral strahlendes pyrotechnisches Infrarotscheinziel emittiert beim Abbrand überwiegend Strahlung einer Wellenlänge von 3,5 bis 4,6 µm, d. h. eine Strahlung im sogenannten B-Band, und nur zu einem geringeren Teil Strahlung im Bereich einer Wellenlänge von 1,8 bis 2,6 µm, dem sogenannten A-Band. Das A-Band und das B-Band sind die Wellenlängen, die von herkömmlichen Suchköpfen erfasst werden. Bekannte spektral strahlende Wirkmassen für Schwarzkörperstrahler enthalten Nitrozellulose oder Ammoniumperchlorat oder Kaliumperchlorat und ein Bindemittel, wie Hydroxyl-terminiertes Polybutadien.The invention relates to a high-performance active mass for a spectrally radiating pyrotechnic infrared light target during combustion. A pyrotechnic infrared light emission target that emits spectrally during burn-up emits predominantly radiation with a wavelength of 3.5 to 4.6 μm during firing, d. H. a radiation in the so-called B-band, and only to a lesser extent radiation in the range of a wavelength of 1.8 to 2.6 microns, the so-called A-band. The A-band and B-band are the wavelengths detected by conventional seekers. Known spectrally radiating active compositions for black body radiators contain nitrocellulose or ammonium perchlorate or potassium perchlorate and a binder, such as hydroxyl-terminated polybutadiene.

Wirkmassen mit Ammoniumperchlorat sind mechanisch und thermisch sehr empfindlich und erfüllen damit nicht die Kriterien einer insensitiven Munition. Splitterschlag, Brand und langsames Erhitzen können bei diesen Wirkmassen eine heftige Explosion auslösen. Die praktisch erreichbare Dichte dieser Wirkmassen beträgt maximal ca. 1500 kg/m3, so dass verhältnismäßig wenig davon in einem Scheinziel eines gegebenen Kalibers untergebracht werden kann. Ein weiterer Nachteil derartiger Wirkmassen besteht darin, dass Ammoniumperchlorat nur sehr eingeschränkt mit anderen Chemikalien und/oder Materialien verträglich ist. Dies führt einerseits zu Sicherheitsproblemen und andererseits dazu, dass eine Vielzahl wirksamer Anfeuerungssätze, z. B. auf Basis von Schwarzpulver, Magnesium oder Zirkonium, nicht verwendet werden können, weil diese in Kombination mit Ammoniumperchlorat, zu empfindlich wären. Ein weiterer Nachteil Ammoniumperchlorat enthaltender Wirkmassen besteht darin, dass deren Strahlungsleistung beim Abbrand verhältnismäßig gering ist und darüber hinaus sehr viel Strahlungsleistung als Funktion der Luftgeschwindigkeit verloren geht. Dadurch muss für die Simulation eines mit mehr als 150 m/s fliegenden Flugzeugs eine große Menge der Wirkmasse eingesetzt werden, um eine ausreichende Strahlungsleistung zu erzeugen. In der Praxis bedeutet dies, dass derartige Scheinziele ein verhältnismäßig großes Kaliber haben müssen und dadurch die in einem gegebenen Munitionsraum transportierbare Menge auf Grund des Platzbedarfs der Munition gering ist.Active compounds with ammonium perchlorate are very sensitive mechanically and thermally and thus do not fulfill the criteria of insensitive ammunition. Splinter impact, fire and slow heating can trigger a violent explosion with these active masses. The practically achievable density of these active compositions is at most about 1500 kg / m 3 , so that relatively little of them can be accommodated in a decoy of a given caliber. Another disadvantage of such active compositions is that ammonium perchlorate is only very limited compatibility with other chemicals and / or materials. This leads on the one hand to security problems and on the other hand that a variety of effective Anfeuerungssätze, z. B. on the basis of black powder, magnesium or zirconium, can not be used because they would be too sensitive in combination with ammonium perchlorate. Another disadvantage of ammonium perchlorate-containing active compositions is that their radiant power during combustion is relatively low and beyond very much radiant power is lost as a function of airspeed. As a result, a large amount of the effective mass must be used for the simulation of an aircraft flying at more than 150 m / s in order to generate sufficient radiant power. In practice, this means that such decoy targets must have a relatively large caliber and thereby the amount that can be transported in a given ammunition space is small due to the space requirements of the ammunition.

Nitrozellulose enthaltende Wirkmassen sind ebenfalls nicht insensitiv und können leicht explodieren. Weiterhin ist es nachteilig, dass solche Wirkmassen an sich nur bei geringer Windgeschwindigkeit brennen und deren Strahlungsleistung beim Abbrand nicht hoch ist. Zur Sicherstellung des Abbrands im Wind sind aufwändige Vorrichtungen erforderlich, die auf Grund ihres Platzbedarfs die effektiv in einem Scheinziel zu transportierende Wirkmasse verringern. Die Dichte einer Nitrozellulose enthaltenden Wirkmasse beträgt ebenfalls maximal etwa 1500 kg/m3. Ein wesentlicher Nachteil einer derartigen Wirkmasse besteht darin, dass deren Zündung einen starken Zündimpuls erfordert, der einen starken, oft nicht spektralen Blitz verursacht. Dieser Blitz kann einem Suchkopf verraten, dass es sich bei der abbrennenden Wirkmasse nur um ein Scheinziel handelt.Nitrocellulose-containing active materials are also not insensitive and can easily explode. Furthermore, it is disadvantageous that such active compounds burn only at low wind speed and their radiant power during combustion is not high. To ensure the burning in the wind complex devices are required, which reduce due to their space requirements effectively in a decoy to be transported effective mass. The density of a nitrocellulose-containing active material is also at most about 1500 kg / m 3 . A major disadvantage of such an active mass is that the ignition requires a strong ignition pulse, which causes a strong, often not spectral lightning. This flash can tell a seeker that it is just a fake target in the burn-off effective mass.

Aufgabe der vorliegenden Erfindung ist es, eine Wirkmasse bereitzustellen, die beim Abbrand mit hoher Strahlungsleistung spektral strahlt, d. h. Strahlung im B-Band emittiert, die weit intensiver ist, als die beim Abbrand im A-Band emittierte Strahlung. Weiterhin soll die Wirkmasse verhältnismäßig insensitiv sein, sich aber dennoch schnell und leicht zünden lassen und beim Abbrand mit zunehmender Geschwindigkeit der umgebenden Luft einen verhältnismäßig geringen Verlust an Strahlungsleistung aufweisen.The object of the present invention is to provide an active mass which emits spectrally when burning with high radiation power, d. H. Radiation emitted in the B-band, which is far more intense, than the radiation emitted during the burn in the A-band radiation. Furthermore, the active mass should be relatively insensitive, but can still ignite quickly and easily and have a relatively low loss of radiant power during combustion with increasing velocity of the surrounding air.

Die Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Zweckmäßige Ausgestaltungen der Erfindung ergeben sich aus den Merkmalen der Ansprüche 2 bis 13.The object is solved by the features of claim 1. Advantageous embodiments of the invention will become apparent from the features of claims 2 to 13.

Erfindungsgemäß ist eine Hochleistungswirkmasse für ein beim Abbrand spektral strahlendes pyrotechnisches Infrarotscheinziel vorgesehen. Die Hochleistungswirkmasse umfasst einen Brennstoff, ein Oxidationsmittel, ein Bindemittel und einen Kohlenstoff enthaltenden Stoff. Dabei sind der Brennstoff und das Oxidationsmittel so gewählt, dass das Oxidationsmittel den Brennstoff nach dessen Zündung in einer exothermen Primärreaktion unter Entstehung einer Temperatur von mindestens 1000 K oxidieren kann. Für eine große Zahl bekannter Kombinationen aus einem Brennstoff und einem Oxidationsmittel sind Verbrennungstemperaturen bekannt. Soweit die entstehende Temperatur nicht bekannt ist, kann sie aus bekannten Verbrennungstemperaturen abgeschätzt und/oder ohne großen Aufwand durch Messung bei der Verbrennung ermittelt werden. Weiterhin ist der Stoff so gewählt, dass der Stoff durch die bei der Primärreaktion freiwerdende Wärme endotherm pyrolysiert wird und dabei an Luft, insbesondere mit nicht rußender Flamme, brennbares Gas freisetzt. Infrage kommende Stoffe sind dem Fachmann in großer Zahl bekannt. Insbesondere Naturstoffe, wie Holz oder Braunkohle, kommen dafür in Betracht. Für die Auswahl eines derartigen Stoffs ist das Fachwissen des Fachmanns ausreichend. Besteht bei einem mit hoher Wahrscheinlichkeit infrage kommenden Stoff Zweifel, ist die Durchführung eines einzigen Experiments ausreichend, um festzustellen, ob der Stoff bei der freiwerdenden Wärme unter Freisetzung eines an Luft brennbaren Gases pyrolysiert wird. Der Brennstoff ist nicht so stark reduzierend, dass entstehendes CO2 zu Kohlenstoff reduziert werden kann. Der Stoff und dessen Mengenanteil an der Hochleistungswirkmasse sind so gewählt, dass die Temperatur der Hochleistungswirkmasse nach deren Zündung wegen des Wärmeentzugs durch die endotherm erfolgende Pyrolyse 2000 K nicht übersteigt. Die Auswahl eines Stoffs aus den gemäß der obigen Bedingungen infrage kommenden Stoffe und dessen Mengenanteil an der Wirkmasse erfordert lediglich die Durchführung einer sehr begrenzten Zahl von Routineexperimenten. Die Ergebnisse der Routineexperimente, wie bspw. der gemessenen Temperatur der Hochleistungswirkmasse nach deren Zündung, können vor Durchführung der Experimente anhand bekannter Größen des Stoffs, wie etwa des spezifischen Wärmebedarfs für dessen Pyrolyse, abgeschätzt werden. Eine präzisere Angabe der erfindungsgemäßen Merkmale ist ohne unbillige Einschränkung der Erfindung nicht möglich. Für den Durchschnittsfachmann stellt die durch die Merkmale spezifizierte Auswahl jedoch kein Problem dar.According to the invention, a high-performance active mass is provided for a pyrotechnic infrared light target that emits spectrally when burned. The high performance active mass includes a fuel, an oxidizer, a binder and a carbon-containing material. In this case, the fuel and the oxidizing agent are chosen so that the oxidizing agent, the fuel after its ignition in an exothermic primary reaction to form a Temperature of at least 1000 K can oxidize. Combustion temperatures are known for a large number of known combinations of a fuel and an oxidizer. As far as the resulting temperature is not known, it can be estimated from known combustion temperatures and / or determined without great effort by measuring the combustion. Furthermore, the substance is chosen so that the substance is pyrolyzed endothermically by the liberated in the primary reaction heat and thereby releases in air, especially with non-sooting flame, combustible gas. Candidate substances are known to the expert in large numbers. In particular, natural products, such as wood or lignite, come into consideration. For the selection of such a substance, the expertise of the skilled person is sufficient. If there is any doubt about a high-probability substance, it is sufficient to carry out a single experiment to determine whether the substance is pyrolyzed by the release of a gas flammable in air. The fuel is not so much reducing that resulting CO 2 can be reduced to carbon. The substance and its proportion of the high-performance active material are chosen so that the temperature of the high-performance active mass does not exceed 2000 K after the ignition because of the heat extraction by the endothermic pyrolysis. The selection of a substance from the substances considered under the above conditions and its proportion of the active mass only requires the implementation of a very limited number of routine experiments. The results of the routine experiments, such as the measured temperature of the high performance active mass after ignition thereof, can be estimated before carrying out the experiments on the basis of known quantities of the substance, such as the specific heat requirement for its pyrolysis. A more precise indication of the features according to the invention is not possible without undue limitation of the invention. However, for the average skilled person, the choice specified by the features does not present a problem.

Der Kohlenstoff kann in dem Stoff elementar oder in Form mindestens eines Kohlenstoffatoms in einem vom Stoff umfassten Molekül enthalten sein. Das Redoxpotential des Brennstoffs ist mindestens so hoch wie das Redoxpotential von Kohlenstoff, d. h. der Brennstoff ist höchstens so stark reduzierend wie Kohlenstoff. Das Redoxpotential darf jedoch auch etwas niedriger sein, so dass CO2 zu CO reduziert wird, da CO in der Luft sofort zu CO2 verbrennt, wobei eine große Flamme entsteht, die die Leistung und den Raumeffekt erhöht. Das bedeutet, dass die freie Enthalpie einer Reaktion des Brennstoffs mit CO bei der entstehenden Temperatur größer oder gleich 0 ist, eine Reaktion des Brennstoffs mit CO bei den gegebenen Bedingungen also nicht freiwillig abläuft. Entstehendes CO2, welches eine starke Strahlung im gewünschten B-Band erzeugt, kann nicht zu Kohlenstoff reduziert werden.The carbon may be contained in the substance elementally or in the form of at least one carbon atom in a molecule comprised by the substance. The redox potential of the fuel is at least as high as the redox potential of carbon, ie the fuel is at most as much reducing as carbon. However, the redox potential may also be slightly lower, reducing CO 2 to CO, since CO in the air immediately burns to CO 2 , producing a large flame that increases performance and space effect. This means that the free enthalpy of a reaction of the fuel with CO at the resulting temperature is greater than or equal to 0, a reaction of the fuel with CO at the given conditions therefore does not take place voluntarily. Forming CO 2 , which produces a strong radiation in the desired B-band, can not be reduced to carbon.

Durch das Vermeiden der Entstehung elementaren Kohlenstoffs entsteht kein Ruß und dadurch auch wenig Schwarzkörperstrahlung, d. h. Strahlung mit einem hohen Anteil an Strahlung im A-Band und einem niedrigen Anteil an Strahlung im B-Band. Dadurch resultiert aus dem Kohlenstoff enthaltenden Stoff eine starke Emission von Strahlung im B-Band.By avoiding the formation of elemental carbon no soot and thus little blackbody radiation, d. H. Radiation with a high proportion of radiation in the A band and a low proportion of radiation in the B band. This results in a strong emission of radiation in the B band from the carbon-containing substance.

Die Strahlungsleistung der abbrennenden erfindungsgemäßen Hochleistungswirkmasse übersteigt die Strahlungsleistung herkömmlicher Ammoniumperchlorat enthaltender Wirkmassen teilweise um mehr als das Dreifache und kann unter Einsatzbedingungen, d. h. bei hoher Geschwindigkeit der umgebenden Luft, sogar die Strahlungsleistung des Schwarzkörperstrahlers MTV im B-Band übersteigen.The radiant power of the burning-off high-performance active mass according to the invention exceeds in some cases more than three times the radiant power of conventional ammonium perchlorate-containing active masses and can under conditions of use, i. H. at high speed of the surrounding air, even exceed the radiant power of the blackbody radiator MTV in B-band.

Der Brennstoff kann ebenfalls Kohlenstoff enthalten. Zumindest die stoffliche Beschaffenheit des Stoffs und des Brennstoffs können identisch sein. Bei identischer stofflicher Beschaffenheit kann der Stoff jedoch in einer anderen Form, beispielsweise als Komprimat in einer losen Schüttung des Brennstoffs, vorliegen. Selbst wenn der Brennstoff und der Stoff eine identische Beschaffenheit aufweisen, kann ein Teil davon als Brennstoff und der Rest als Stoff dienen, wenn die Menge des Oxidationsmittels nur für die Oxidation des als Brennstoff dienenden Teils ausreicht. Der Rest wird als Stoff pyrolysiert. Der Stoff und der Brennstoff können auch eine unterschiedliche stoffliche Beschaffenheit aufweisen.The fuel can also contain carbon. At least the material nature of the substance and the fuel can be identical. However, with identical material properties, the substance may be in another form, for example as a compressed product in a loose bed of fuel. Even if the fuel and the substance have an identical nature, a part of them may serve as a fuel and the remainder as a substance, if the amount of the oxidizing agent is sufficient only for the oxidation of the fuel serving part. The rest is pyrolyzed as a substance. The substance and the fuel may also have a different material nature.

Die Sauerstoffbilanz einer erfindungsgemäßen Hochleistungswirkmasse ist im Allgemeinen negativ und dennoch wird durch die Vermeidung der Entstehung von Ruß eine intensive Strahlung im A-Band vermieden, die ansonsten bei sauerstoffunterbilanzierten Wirkmassen üblich ist. Ein Merkmal der erfindungsgemäßen Hochleistungswirkmasse besteht darin, dass die Primärreaktion eine Temperatur erzeugt, die durch die endotherme Pyrolyse reduziert wird. Es findet eine räumliche Trennung der Primärreaktion und der Reaktion des Gases mit dem Luftsauerstoff statt.The oxygen balance of a high-performance active material according to the invention is generally negative and yet avoiding the formation of soot avoids intensive radiation in the A-band, which is otherwise customary in the case of oxygen sub-balanced active compositions. A feature of the high performance active mass of the invention is that the primary reaction produces a temperature which is reduced by the endothermic pyrolysis. There is a spatial separation of the primary reaction and the reaction of the gas with the atmospheric oxygen.

Das bei der Pyrolyse entstehende Gas vergrößert eine entstehende Flamme, die aus einer von der Primärreaktion gebildeten Primärflamme und einer von der Reaktion des Gases mit Luftsauerstoff gebildeten Sekundärflamme bestehen kann. Unter Primärflamme wird eine Flamme verstanden, in der keine Reaktion mit dem Luftsauerstoff erfolgt, d. h. eine anaerobe Flamme. Unter Sekundärflamme wird eine Flamme verstanden, in der eine Reaktion mit Sauerstoff erfolgt, d. h. eine aerobe Flamme. Das freigesetzte brennbare Gas entzündet sich sofort, wenn es mit der Luft in Kontakt kommt, da es durch die Primärreaktion auf eine Temperatur oberhalb der Anzündtemperatur erhitzt wird. Dabei entsteht eine Sekundärflamme mit ähnlichen Eigenschaften wie eine Flamme aus einem Düsentriebwerk, die ebenfalls von brennbaren Gasen gebildet wird, die in der Luft brennen. Das Spektrum der Sekundärflamme ist ähnlich dem Spektrum einer Kerosinflamme. Durch die räumliche Trennung der Sekundärflamme von der Oberfläche der Hochleistungswirkmasse wird diese Oberfläche nicht oder zumindest nicht wesentlich von der Sekundärflamme erwärmt und dadurch eine Verschiebung der Wellenlänge der von der Hochleistungswirkmasse emittierten Strahlung vom B-Band hin zum A-Band vermieden.The gas produced during the pyrolysis increases an emerging flame, which may consist of a primary flame formed by the primary reaction and a secondary flame formed by the reaction of the gas with atmospheric oxygen. By primary flame is meant a flame in which no reaction with the atmospheric oxygen takes place, d. H. an anaerobic flame. By secondary flame is meant a flame in which a reaction with oxygen takes place, i. H. an aerobic flame. The released combustible gas ignites immediately when in contact with the air, as it is heated by the primary reaction to a temperature above the ignition temperature. The result is a secondary flame with similar properties as a flame from a jet engine, which is also formed by combustible gases that burn in the air. The spectrum of the secondary flame is similar to the spectrum of a kerosene flame. Due to the spatial separation of the secondary flame from the surface of the high-performance active mass, this surface is not or at least not significantly heated by the secondary flame, thereby avoiding a shift in the wavelength of the radiation emitted by the high-performance active mass from the B-band to the A-band.

Beim Verbrennen des entstehenden Gases an der Luft dient der Luftsauerstoff als weiteres Oxidationsmittel. Dadurch wird weniger Oxidationsmittel benötigt und die Leistung der erfindungsgemäßen Hochleistungswirkmasse und das daraus erzeugbare Gasvolumen sind im Verhältnis zu ihrer Masse erheblich gegenüber den bisher bekannten, beim Abbrand spektral strahlenden pyrotechnischen Wirkmassen gesteigert. Bisherige Versuche zur Steigerung der Strahlungsleistung derartiger Wirkmassen beruhten stets auf Änderung des darin enthaltenen Brennstoffs und des darin enthaltenen Oxidationsmittels bzw. auf einer Änderung des Mengenverhältnisses von Brennstoff zu Oxidationsmittel. Die Versuche resultierten immer in der Erzeugung einer höheren Temperatur und damit in einer Verschiebung der Wellenlänge der emittierten Strahlung hin zum A-Band.When the resulting gas is burned in the air, the atmospheric oxygen serves as a further oxidant. As a result, less oxidizing agent is required and the performance of the high-performance active material according to the invention and the volume of gas which can be generated therefrom are considerably increased in relation to their mass compared to the previously known pyrotechnic active compositions which radiate spectrally during combustion. Previous attempts to increase the radiant power of such active compositions were always based on changes in the fuel contained therein and the oxidant contained therein or on a change in the ratio of fuel to oxidant. The experiments always resulted in the generation of a higher temperature and thus in a shift of the wavelength of the emitted radiation towards the A-band.

Dadurch, dass die erfindungsgemäße Hochleistungswirkmasse kein Ammoniumperchlorat enthalten muss, kann die Hochleistungswirkmasse so unempfindlich gestaltet werden, dass diese als insensitive Munition klassifiziert werden kann. Ein weiterer Vorteil der erfindungsgemäßen Hochleistungswirkmasse besteht darin, dass diese aus sehr kostengünstigen Bestandteilen zusammengesetzt werden kann. Die Hochleistungswirkmasse kann mit nahezu jedem Bindemittel gebunden werden. Beim Pressen der Hochleistungswirkmasse müssen weder härtende Harze, wie HTPB (Hydroxyl-terminiertes Polybutadien) noch Lösemittel, beispielsweise zum Lösen von Nitrozellulose, verwendet werden. Die Herstellung und Verarbeitung der Hochleistungswirkmasse ist dadurch deutlich vereinfacht und trägt dazu bei, deren Kosten gering zu halten.Due to the fact that the high-performance active material according to the invention does not have to contain ammonium perchlorate, the high-performance active mass can be made so insensitive that it can be classified as insensitive ammunition. Another advantage of the high-performance active material according to the invention is that it can be composed of very inexpensive components. The high performance resin can be bound with almost any binder. When pressing the high-performance active mass neither curing resins, as HTPB (hydroxyl-terminated polybutadiene) nor solvents, for example, for dissolving nitrocellulose, are used. The production and processing of the high-performance active mass is thereby significantly simplified and helps to keep their costs low.

Pro Masseeinheit kann mit der erfindungsgemäßen Hochleistungswirkmasse ein größeres Gasvolumen erzeugt werden, als mit bekannten spektral strahlenden Wirkmassen, weil die erfindungsgemäße Hochleistungswirkmasse weniger Oxidationsmittel enthält und den Luftsauerstoff zur Oxidation mitverwendet. Der wesentliche Vorteil der erfindungsgemäßen Hochleistungswirkmasse besteht darin, dass das Strahlungsspektrum der abbrennenden und sich bewegenden Hochleistungswirkmasse sehr genau das Spektrum eines sich bewegenden Düsentriebwerks nachbildet.Per unit of mass, a larger volume of gas can be generated with the high-performance active mass according to the invention than with known spectrally radiating active masses because the high-performance active mass according to the invention contains less oxidizing agent and co-uses the atmospheric oxygen for the oxidation. The essential advantage of the high-performance active mass according to the invention is that the radiation spectrum of the burning and moving high-performance active mass very accurately simulates the spectrum of a moving jet engine.

Der Brennstoff kann elementaren Kohlenstoff, z. B. in Form von Grafit, Bor, Silizium, Schwefel, Antimon, Eisen, Mangan, Kobalt oder Nickel oder eine Mischung, z. B. aus Pulvern dieser Stoffe, oder eine Legierungen dieser Stoffe, umfassen. Die Reaktionsprodukte des Brennstoffs mit dem Oxidationsmittel sollten nicht flüchtig sein, da flüchtige Reaktionsprodukte eine sehr heiße Flamme und damit die Emission von Schwarzkörperstrahlung bewirken.The fuel may elemental carbon, z. Example in the form of graphite, boron, silicon, sulfur, antimony, iron, manganese, cobalt or nickel or a mixture, for. As powders of these substances, or an alloy of these substances include. The reaction products of the fuel with the oxidant should not be volatile because volatile reaction products cause a very hot flame and thus the emission of blackbody radiation.

Vorzugsweise ist der Brennstoff so gewählt, dass er nach der Primärreaktion ein festes, also weder flüchtiges noch flüssiges, Reaktionsprodukt hinterlässt. Dabei kann es sich beispielsweise um Asche handeln. Durch das Freisetzen dieses Reaktionsprodukts beim Abbrand der Hochleistungswirkmasse entsteht ein spektraler Raumeffekt. Nach der Primärreaktion einen festen Rückstand, d. h. ein festes Reaktionsprodukt hinterlassende Brennstoffe sind dem Fachmann in großer Anzahl bekannt. Das Oxidationsmittel kann ein Perchlorat, Chlorat, Oxid, Sulfat, Nitrat, Dinitramin, Nitrit, Peroxid, Dinitromethanat, insbesondere Natrium-, Kalium- oder Ammoniumdinitromethanat, eine Nitroverbindung, einen Nitratester, Hexogen, Oktogen, Nitrozellulose oder Nitropenta umfassen.Preferably, the fuel is chosen so that it leaves a solid, that is neither volatile nor liquid, reaction product after the primary reaction. These may be, for example, ashes. The release of this reaction product during combustion of the high-performance active mass results in a spectral spatial effect. After the primary reaction, a solid residue, d. H. a solid reaction product leaving fuel are known in the art in large numbers. The oxidizing agent may comprise a perchlorate, chlorate, oxide, sulfate, nitrate, dinitramine, nitrite, peroxide, dinitromethanoate, especially sodium, potassium or ammonium dinitromethanoate, a nitro compound, a nitrate ester, hexogen, octogen, nitrocellulose or nitropenta.

Der durch die bei der Primärreaktion freiwerdende Wärme pyrolysierte Stoff kann Zucker, Holz, insbesondere in Form von Holzmehl oder Sägespänen, Getreidemehl, insbesondere Weizenmehl, Braunkohle, Torf, Zellulose, Stärke, Tabak, ein Oxalat, insbesondere Calciumoxalat, ein Formiat, insbesondere Magnesiumformiat, ein Acetat, insbesondere Calciumacetat, ein Propionat, insbesondere Calciumpropionat, Polyethylenglycol, Polyoxymethylen, Polyamid, insbesondere Nylon®, Harnstoff, Hexamethylentetramin, Trioxan, Paraformaldehyd, Nitrozellulose, Hexogen, Oktogen, Dinitromethanat, insbesondere Natrium-, Kalium- oder Ammoniumdinitromethanat, oder Nitropenta umfassen. Der Brennstoff, das Oxidationsmittel und der Stoff können, je nachdem, wie die jeweils anderen Bestandteile der Hochleistungswirkmasse gewählt sind, aus Gruppen ausgewählt sein, die identische organische Verbindungen umfassen. So kann z. B. Hexogen in Kombination mit einem Perchlorat ein Brennstoff sein, dagegen ist es ein Oxidationsmittel, wenn ein Metall als Brennstoff dient. Hexogen kann auch als beim Abbrand zu pyrolysierender Stoff dienen, beispielsweise wenn Perchlorat das Oxidationsmittel und ein Metall den Brennstoff bildet.The material pyrolyzed by the heat released during the primary reaction can be sugar, wood, in particular in the form of wood flour or sawdust, cereal flour, in particular wheat flour, lignite, peat, cellulose, starch, tobacco, an oxalate, in particular calcium oxalate, a formate, in particular magnesium formate, an acetate, in particular calcium acetate, a propionate, in particular calcium propionate, Polyethylene glycol, polyoxymethylene, polyamide, especially nylon® , urea, hexamethylenetetramine, trioxane, paraformaldehyde, nitrocellulose, hexogen, octogen, dinitromethanoate, especially sodium, potassium or ammonium dinitromethanoate, or nitropenta. The fuel, oxidizer and material may be selected from groups comprising identical organic compounds, depending on how each of the other constituents of the high performance active mass is selected. So z. For example, hexogen in combination with a perchlorate may be a fuel, whereas it is an oxidizing agent when a metal is used as a fuel. Hexogen can also serve as a material to be pyrolyzed during combustion, for example when perchlorate forms the oxidant and a metal forms the fuel.

Vorzugsweise handelt es sich bei dem Brennstoff nicht um Schwefel, wobei jedoch Schwefel in der Hochleistungswirkmasse enthalten ist. Der Schwefel kann verhindern, dass eine bei der Primärreaktion entstehende Primärflamme bei hoher Windgeschwindigkeit ausgeblasen wird.Preferably, the fuel is not sulfur, but sulfur is included in the high performance active mass. The sulfur can prevent a primary flame resulting from the primary reaction from being blown out at high wind speeds.

Vorzugsweise sind der Brennstoff, das Oxidationsmittel und der Stoff und die Menge des Brennstoffs, des Oxidationsmittels und des Stoffs so gewählt, dass bei einem Abbrand der Hochleistungswirkmasse an der Luft das Verhältnis zwischen der spezifischen Leistung der emittierten Strahlung im Wellenlängenbereich von 1,8 bis 2,6 µm zur spezifischen Leistung der emittierten Strahlung im Wellenlängenbereich von 3,5 bis 4,6 µm höchstens 1:3, insbesondere höchstens 1:5, insbesondere höchstens 1:10, beträgt. Dabei ist das genannte Verhältnis umso kleiner, je geringer die Temperatur ist, die die Hochleistungswirkmasse nach deren Zündung erreicht. Die Auswahl und die Mengenermittlung erfordert hier lediglich die Durchführung von Routineexperimenten. Da hier nur zwei Parameter gemessen werden müssen, nämlich die Leistung der Strahlung in den beiden Wellenlängenbereichen, kann der Fachmann schnell ermitteln, in welche Richtung er ein Mengenverhältnis ändern muss, um in den richtigen Bereich des Verhältnisses zwischen den beiden hier spezifizierten Leistungen zu gelangen. Vorzugsweise sind der Brennstoff, das Oxidationsmittel und der Stoff und die Mengen des Brennstoffs, des Oxidationsmittels und des Stoffs so gewählt, dass die Temperatur der Hochleistungswirkmasse nach deren Zündung 1770 K, insbesondere 1270 K, insbesondere 970 K, nicht übersteigt. Wenn die Temperatur 970 K nicht übersteigt, liegt die Wellenlänge der emittierten Strahlung fast ausschließlich im B-Band und nur zu einem ganz geringen Anteil im A-Band. Für eine intensive Strahlung im B-Band und wenig Strahlung im A-Band ist es weiterhin vorteilhaft, wenn der Stoff so gewählt ist, dass das daraus durch Pyrolyse freisetzbare Gas ein Gas ist, welches an der Luft mit einer maximalen Flammentemperatur unterhalb von 2000 K verbrennt. Abgesehen davon, dass die Flammentemperaturen für eine große Zahl von durch Pyrolyse freisetzbaren Gasen aus der Literatur bekannt sind, lässt sich die Temperatur auch ohne Weiteres durch Messung bestimmen. Die Auswahl solcher Stoffe, deren durch Pyrolyse freigesetzte Gase eine maximale Flammentemperatur unterhalb von 2000 K aufweisen, übersteigt nicht den in diesem Fachgebiet üblichen zumutbaren Aufwand von Routineexperimenten.Preferably, the fuel, the oxidizing agent and the substance and the amount of the fuel, the oxidizing agent and the substance are chosen so that when burned the high performance active mass in air, the ratio between the specific power of the emitted radiation in the wavelength range of 1.8 to 2 , 6 microns to the specific power of the emitted radiation in the wavelength range of 3.5 to 4.6 microns at most 1: 3, in particular at most 1: 5, in particular at most 1:10. In this case, the smaller the temperature that reaches the high-performance active mass after ignition, the smaller the said ratio. The selection and the quantity determination here only requires the execution of routine experiments. Since only two parameters have to be measured here, namely the power of the radiation in the two wavelength ranges, the person skilled in the art can quickly determine in which direction he must change a quantitative ratio in order to reach the correct range of the ratio between the two powers specified here. Preferably, the fuel, the oxidizing agent and the substance and the amounts of the fuel, the oxidizing agent and the substance are chosen so that the temperature of the high-performance active mass after their ignition 1770 K, in particular 1270 K, in particular 970 K, does not exceed. If the temperature does not exceed 970 K, the wavelength of the emitted radiation is almost exclusively in the B-band and only to a very small extent in the A-band. For intensive radiation in the B-band and low radiation in the A-band, it is furthermore advantageous if the substance is selected such that the gas which can be released therefrom by pyrolysis is a gas, which burns in the air with a maximum flame temperature below 2000K. Apart from the fact that the flame temperatures for a large number of pyrolysis-releasable gases are known from the literature, the temperature can also be easily determined by measurement. The selection of such substances, whose gases released by pyrolysis have a maximum flame temperature below 2000 K, does not exceed the usual reasonable effort of routine experiments in this field.

Vorzugsweise ist das Bindemittel so gewählt, dass es beim Abbrand der Hochleistungswirkmasse keine Rußbildung bewirkt. Derartige Bindemittel sind dem Fachmann bekannt. Soweit es für ein infrage kommendes Bindemittel nicht bekannt ist, ob es beim Abbrand Ruß erzeugt, genügt ein einfaches Experiment zur Klärung dieser Frage. Rußbildung würde zu einer hier nicht gewünschten stärkeren Strahlung im Bereich des A-Bands führen. Bei dem Bindemittel kann es sich z. B. um Polychloropren handeln.Preferably, the binder is chosen so that it does not cause soot formation during combustion of the high-performance active mass. Such binders are known to the person skilled in the art. As far as it is not known for a candidate binder, if it produces soot during burning, a simple experiment to clarify this question is sufficient. Soot formation would lead to a stronger radiation in the region of the A-band which is not desired here. The binder may be, for. B. to act polychloroprene.

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.The invention will be explained in more detail by means of exemplary embodiments.

Aus sämtlichen der im Folgenden angegebenen Zusammensetzungen wurden jeweils 5 Tabletten mit ca. 21 mm Durchmesser und einem Gewicht von 10 g bei einem Pressdruck von 1500 bar gepresst. Die Tabletten wurden abgebrannt und deren Leistung in Form von Strahlungsleistung mit einem Radiometer gemessen und für atmosphärische Dämpfung korrigiert. Die spezifische Leistung wurde im Verhältnis zur Leistung von Tabletten aus MTV (Magnesium-Teflon-Viton) als Standard bestimmt. Die Energie wurde jeweils in Joule/(g/sr) im B-Band im Standversuch, d. h. ohne Wind, gemessen. Zusätzlich wurden die Leistungen der als Scheinziele mit einem Kaliber von 36 mm ausgebildeten abbrennenden Wirkmassen auf einem Schlitten mit einer Geschwindigkeit von 75 m/s und 150 m/s dynamisch gemessen. Dabei wurden jeweils zwischen 120 und 170 g Wirkmasse eingesetzt.From all of the compositions indicated below, in each case 5 tablets with a diameter of approximately 21 mm and a weight of 10 g were pressed at a pressure of 1500 bar. The tablets were burned off and their power measured in the form of radiant power with a radiometer and corrected for atmospheric attenuation. The specific power was determined in relation to the performance of MTV tablets (Magnesium Teflon-Viton) as standard. The energy was measured in joules / (g / sr) in the B-band in a steady state test, ie without wind. In addition, the performance of the 36 mm dummy targets with their burning properties was dynamically measured on a slide at a speed of 75 m / s and 150 m / s. In each case between 120 and 170 g of active material were used.

Alle Daten sind, soweit nicht anders angegeben, in fünf parallelen Messreihen jeweils im Vergleich zu MTV mit dem Radiometer in einem Abstand von 1 m gemessen worden.Unless otherwise stated, all data were measured in five parallel series of measurements in each case in comparison to MTV with the radiometer at a distance of 1 m.

MTV-Standard: Stoff Typ Gewichtsprozent Sonstiges Magnesiumpulver LNR 61 60,0 TMD=1893 Teflonpulver Hoechst TF 9202 23,0 Viton 3M Fluorel FC-2175 12,0 Grafit (als Gleitmittel) Merck 5,0 MTV Standard: material Type weight miscellaneous magnesium powder LNR 61 60.0 TMD = 1893 Teflon powder Hoechst TF 9202 23.0 Viton 3M Fluorel FC-2175 12.0 Graphite (as lubricant) Merck 5.0

Beispiel 1example 1

Wirkmasse nach dem Stand der Technik auf Basis von Ammoniumperchlorat: Stoff Typ Gewichtsprozent Sonstiges Ammoniumperchlorat Körnung < 200 µm 86,98 TMD=1702 HTPB Sartomer R45HT-M M=2800 12,10 IPDI Hüls 0,91 Eisenacetonylacetat 0,02 Active material according to the prior art based on ammonium perchlorate: material Type weight miscellaneous ammonium perchlorate Grain size <200 μm 86.98 TMD = 1702 HTPB Sartomer R45HT-M M = 2800 12.10 IPDI sleeve 0.91 iron acetonyl 0.02

"IPDI" steht für Isophorondiisocyanat"IPDI" stands for isophorone diisocyanate

Beispiel 2Example 2

Weitere Wirkmasse nach dem Stand der Technik auf Basis von Ammoniumperchlorat: Stoff Typ Gewichtsprozent Sonstiges Ammoniumperchlorat Körnung < 50 µm 85,50 TMD=1678 HTPB Sartomer R45HT-M M=2800 13,47 IPDI Hüls 1,01 Eisenacetonylacetat 0,02 Further active material according to the prior art based on ammonium perchlorate: material Type weight miscellaneous ammonium perchlorate Grain size <50 μm 85.50 TMD = 1678 HTPB Sartomer R45HT-M M = 2800 13.47 IPDI sleeve 1.01 iron acetonyl 0.02

Beispiel 3Example 3

Erfindungsgemäße Hochleistungswirkmasse mit Bor als Brennstoff, Kaliumnitrat als Oxidationsmittel und Braunkohle als zu pyrolysierenden Stoff:High-performance active composition according to the invention with boron as fuel, potassium nitrate as oxidizing agent and lignite as material to be pyrolyzed:

Der Schwefel unterstützt die Primärreaktion bei hoher Windgeschwindigkeit, indem er dabei verhindert, dass die Primärflamme ausgeblasen wird. Die Hochleistungswirkmasse erzeugt beim Abbrand bei Geschwindigkeiten von 75 m/s und 150 m/s einen ca. 30 m langen spektralen Raumeffekt. Stoff Typ Gewichtsprozent Sonstiges Braunkohle Heizprofi, fein gemahlen, Körnung < 100 µm 32,0 TMD=1712 Kaliumnitrat fein gemahlen, Körnung < 10 µm 53,0 Bor Körnung < 1 µm 4,0 Schwefel fein gepulvert 8,0 Chloropren Macroplast 3,0 The sulfur promotes the primary reaction at high wind speeds by preventing the primary flame from being blown out. The high-performance active mass generates a spectral space effect of approx. 30 m at burn-up speeds of 75 m / s and 150 m / s. material Type weight miscellaneous Brown coal Heating professional, finely ground, grain size <100 μm 32.0 TMD = 1712 potassium nitrate finely ground, grain size <10 μm 53.0 boron Grain size <1 μm 4.0 sulfur finely powdered 8.0 chloroprene Macroplast 3.0

Beispiel 4Example 4

Weitere erfindungsgemäße Hochleistungswirkmasse mit Silizium als Brennstoff und ansonsten denselben Komponenten wie die Hochleistungswirkmasse gemäß Beispiel 3:Further inventive high-performance active mass with silicon as fuel and otherwise the same components as the high-performance active material according to Example 3:

Die Hochleistungswirkmasse erzeugt beim Abbrand bei Geschwindigkeiten von 75 m/s und 150 m/s jeweils einen ca. 30 m langen Raumeffekt. Stoff Typ Gewichtsprozent Sonstiges Braunkohle Heizprofi, fein gemahlen, Körnung < 100 µm 30,0 TMD=1735 Kaliumnitrat fein gemahlen, Körnung < 10 µm 51,0 Silizium fein, Körnung < 30 µm 8,0 Schwefel fein gepulvert 8,0 Chloropren Macroplast 3,0 When burned at speeds of 75 m / s and 150 m / s, the high-performance active mass generates a room effect of approx. 30 m each. material Type weight miscellaneous Brown coal Heating professional, finely ground, grain size <100 μm 30.0 TMD = 1735 potassium nitrate finely ground, grain size <10 μm 51.0 silicon fine, grain size <30 μm 8.0 sulfur finely powdered 8.0 chloroprene Macroplast 3.0

Beispiel 5Example 5

Weitere erfindungsgemäße Hochleistungswirkmasse:Further high-performance active mass according to the invention:

Die Primärreaktion erfolgt zwischen Natriumnitrat als Oxidationsmittel und Braunkohle als Brennstoff. Dabei nicht umgesetzte Braunkohle dient als zu pyrolysierender Stoff. Stoff Typ Gewichtsprozent Sonstiges Braunkohle Heizprofi, fein gemahlen, Körnung <100 µm 33,0 TMD=1750 Natriumnitrat fein gemahlen, Körnung < 10 µm 56,0 Schwefel fein gepulvert 8,0 Chloropren Macroplast 3,0 The primary reaction takes place between sodium nitrate as the oxidizing agent and lignite as the fuel. Unreacted lignite serves as a substance to be pyrolyzed. material Type weight miscellaneous Brown coal Heating professional, finely ground, grain size <100 μm 33.0 TMD = 1750 sodium nitrate finely ground, grain size <10 μm 56.0 sulfur finely powdered 8.0 chloroprene Macroplast 3.0

Beispiel 6Example 6

Weitere erfindungsgemäße Wirkmasse:Further active composition according to the invention:

Diese Wirkmasse erreicht bei 0 m/s Wind 86 % der MTV-Leistung im B-Kanal und weist ein höheres Spektralverhältnis als die Braunkohlewirkmassen auf. Stoff Typ Gewichtsprozent Sonstiges Holzmehl Eichenstaub aus Dielenfußboden-Feinschliff mit Walzenschleifer, Körnung 100 30,0 TMD=1406 Kaliumnitrat fein gemahlen, Körnung (d50) < 10 µm 51,0 Silizium fein, Körnung < 30 µm 8,0 Schwefel fein gepulvert 8,0 Polychloropren Macroplast 3,0 At 0 m / s of wind, this effective mass reaches 86% of the MTV power in the B channel and has a higher spectral ratio than the lignite active materials. material Type weight miscellaneous wood flour Oak dust from floorboard fine sanding with roll grinder, grain size 100 30.0 TMD = 1406 potassium nitrate finely ground, grain size (d 50 ) <10 μm 51.0 silicon fine, grain size <30 μm 8.0 sulfur finely powdered 8.0 polychloroprene Macroplast 3.0

"TMD" steht jeweils für die theoretische mittlere Dichte der gesamten Wirkmasse in kg/m3."TMD" stands for the theoretical mean density of the total effective mass in kg / m 3 .

Im Folgenden sind die mit den obigen Wirkmassen beim Abbrand erzielten relativen Leistungsdaten angegeben. "% MTV" gibt dabei die gemessene Leistung als Prozent der für den MTV-Standard gemessenen Leistung an.
1. Strahlungsmessungen im Labor ohne Wind: Satz % MTV (B-Kanal) Standard MTV 100 Beispiel 1 19 Beispiel 2 29 Beispiel 3 84 Beispiel 4 82 Beispiel 5 87 2. Strahlungsmessung unter dynamischen Bedingungen bei 75 m/s Luftgeschwindigkeit: Satz % MTV (B-Kanal) Standard MTV 100 Beispiel 1 49 Beispiel 2 75 Beispiel 3 137 Beispiel 4 166 3. Strahlungsmessungen unter dynamischen Bedingungen bei 150 m/s Luftgeschwindigkeit: Satz % MTV (B-Kanal) Standard MTV 100 Beispiel 1 17 Beispiel 2 57 Beispiel 3 149 Beispiel 4 131
The relative performance data obtained with the above effective masses during burnup are given below. "% MTV" indicates the measured power as a percentage of the power measured for the MTV standard.
1. Radiation measurements in the laboratory without wind: sentence % MTV (B channel) Standard MTV 100 example 1 19 Example 2 29 Example 3 84 Example 4 82 Example 5 87 2. Radiation measurement under dynamic conditions at 75 m / s air velocity: sentence % MTV (B channel) Standard MTV 100 example 1 49 Example 2 75 Example 3 137 Example 4 166 3. Radiation measurements under dynamic conditions at 150 m / s air velocity: sentence % MTV (B channel) Standard MTV 100 example 1 17 Example 2 57 Example 3 149 Example 4 131

Alle Ergebnisse der Messung unter dynamischen Bedingungen sind jeweils ein Durchschnitt von 3 Parallelversuchen, welche mit Scheinzielen aus den jeweils angegebenen Wirkmassen mit einem Kaliber von 36 mm durchgeführt wurden.All results of the measurement under dynamic conditions are in each case an average of 3 parallel experiments, which were carried out with decoupling targets from the respectively indicated active masses with a caliber of 36 mm.

Claims (13)

Hochleistungswirkmasse für ein beim Abbrand spektral strahlendes pyrotechnisches Infrarotscheinziel, umfassend einen Brennstoff, ein Oxidationsmittel, ein Bindemittel und einen Kohlenstoff enthaltenden Stoff, wobei der Brennstoff und das Oxidationsmittel so gewählt sind, dass das Oxidationsmittel den Brennstoff nach dessen Zündung in einer exothermen Primärreaktion unter Entstehung einer Temperatur von mindestens 1000 K oxidieren kann, wobei der Stoff so gewählt ist, dass der Stoff durch die bei der Primärreaktion freiwerdende Wärme endotherm pyrolysiert wird und dabei an Luft brennbares Gas freisetzt, wobei der Brennstoff nicht so stark reduzierend ist, dass entstehendes CO2 zu Kohlenstoff reduziert werden kann, wobei der Stoff und dessen Mengenanteil an der Hochleistungswirkmasse so gewählt sind, dass die Temperatur der Hochleistungswirkmasse nach deren Zündung wegen des Wärmeentzugs durch die endotherm erfolgende Pyrolyse 2000 K nicht übersteigt.A high-performance active mass for a pyrotechnic infrared light emission spectrally emitting during firing, comprising a fuel, an oxidizing agent, a binder and a carbon-containing substance, wherein the fuel and the oxidizing agent are selected such that the oxidizing agent in an exothermic primary reaction after ignition of the fuel Temperature of at least 1000 K can be oxidized, wherein the substance is selected so that the substance is pyrolyzed endothermically by the liberated in the primary reaction heat while releasing combustible gas in air, the fuel is not so strong reducing that the resulting CO 2 to Carbon can be reduced, wherein the substance and its proportion of the high-performance active mass are chosen so that the temperature of the high-performance active mass after ignition does not exceed 2000 K because of the heat extraction by the endothermic pyrolysis. Hochleistungswirkmasse nach Anspruch 1,
wobei der Brennstoff Kohlenstoff enthält.
High-performance active mass according to claim 1,
wherein the fuel contains carbon.
Hochleistungswirkmasse nach Anspruch 2,
wobei zumindest die stoffliche Beschaffenheit des Stoffs und des Brennstoffs identisch sind.
High-performance active mass according to claim 2,
wherein at least the material nature of the substance and the fuel are identical.
Hochleistungswirkmasse nach einem der vorhergehenden Ansprüche,
wobei der Brennstoff elementaren Kohlenstoff, Bor, Silizium, Schwefel, Antimon, Eisen, Mangan, Kobalt oder Nickel oder eine Mischung oder Legierung dieser Stoffe umfasst.
High-performance active mass according to one of the preceding claims,
wherein the fuel comprises elemental carbon, boron, silicon, sulfur, antimony, iron, manganese, cobalt or nickel or a mixture or alloy of these substances.
Hochleistungswirkmasse nach einem der vorhergehenden Ansprüche,
wobei der Brennstoff so gewählt ist, dass er nach der Primärreaktion ein festes Reaktionsprodukt hinterlässt.
High-performance active mass according to one of the preceding claims,
wherein the fuel is selected to leave a solid reaction product after the primary reaction.
Hochleistungswirkmasse nach einem der vorhergehenden Ansprüche,
wobei das Oxidationsmittel ein Perchlorat, Chlorat, Oxid, Sulfat, Nitrat, Dinitramin, Nitrit, Peroxid, Dinitromethanat, insbesondere Natrium-, Kalium- oder Ammoniumdinitromethanat, eine Nitroverbindung, einen Nitratester, Hexogen, Oktogen, Nitrocellulose oder Nitropenta umfasst.
High-performance active mass according to one of the preceding claims,
wherein the oxidizing agent comprises a perchlorate, chlorate, oxide, sulfate, nitrate, dinitramine, nitrite, peroxide, dinitromethanoate, especially sodium, potassium or ammonium dinitromethanoate, a nitro compound, a nitrate ester, hexogen, octogen, nitrocellulose or nitropenta.
Hochleistungswirkmasse nach einem der vorhergehenden Ansprüche,
wobei der Stoff Zucker, Holz, insbesondere in Form von Holzmehl oder Sägespänen, Getreidemehl, insbesondere Weizenmehl, Braunkohle, Torf, Cellulose, Stärke, Tabak, ein Oxalt, insbesondere Calciumoxalat, ein Formiat, insbesondere Magnesiumformiat, ein Acetat, insbesondere Calciumacetat, ein Propionat, insbesondere Calciumpropionat, Polyethylenglycol, Polyoxymethylen, Polyamid, Harnstoff, Hexamethylentetramin, Trioxan, Paraformaldehyd, Nitrocellulose, Hexogen, Oktogen, Dinitromethanat, insbesondere Natrium-, Kalium- oder Ammoniumdinitromethanat, oder Nitropenta umfasst.
High-performance active mass according to one of the preceding claims,
wherein the substance is sugar, wood, in particular in the form of wood flour or sawdust, cereal flour, in particular wheat flour, brown coal, peat, cellulose, starch, tobacco, an oxal, in particular calcium oxalate, a formate, in particular magnesium formate, an acetate, in particular calcium acetate, a propionate , in particular calcium propionate, polyethylene glycol, polyoxymethylene, polyamide, urea, hexamethylenetetramine, trioxane, paraformaldehyde, nitrocellulose, hexogen, octogen, dinitromethanoate, in particular sodium, potassium or ammonium dinitromethanoate, or nitropenta.
Hochleistungswirkmasse nach einem der vorhergehenden Ansprüche,
wobei der Brennstoff nicht Schwefel ist, jedoch Schwefel in der Hochleistungswirkmasse enthalten ist.
High-performance active mass according to one of the preceding claims,
wherein the fuel is not sulfur, but sulfur is contained in the high-performance active mass.
Hochleistungswirkmasse nach einem der vorhergehenden Ansprüche,
wobei der Brennstoff, das Oxidationsmittel und der Stoff und die Mengen des Brennstoffs, des Oxidationsmittels und des Stoffs so gewählt sind, dass bei einem Abbrand der Hochleistungswirkmasse an der Luft das Verhältnis zwischen der spezifischen Leistung der emittierten Strahlung im Wellenlängenbereich von 1,8 bis 2,6 µm zur spezifischen Leistung der emittierten Strahlung im Wellenlängenbereich von 3,5 bis 4,6 µm höchstens 1:3, insbesondere höchstens 1:5, insbesondere höchstens 1:10, beträgt.
High-performance active mass according to one of the preceding claims,
wherein the fuel, the oxidizing agent and the substance and the amounts of the fuel, the oxidizing agent and the substance are chosen so that when burned the high performance active mass in air, the ratio between the specific power of the emitted radiation in the wavelength range of 1.8 to 2 , 6 microns to the specific power of the emitted radiation in the wavelength range of 3.5 to 4.6 microns at most 1: 3, in particular at most 1: 5, in particular at most 1:10.
Hochleistungswirkmasse nach einem der vorhergehenden Ansprüche,
wobei der Brennstoff, das Oxidationsmittel und der Stoff und die Mengen des Brennstoffs, des Oxidationsmittels und des Stoffs so gewählt sind, dass die Temperatur der Hochleistungswirkmasse nach deren Zündung 1770 K, insbesondere 1270 K, insbesondere 970 K, nicht übersteigt.
High-performance active mass according to one of the preceding claims,
wherein the fuel, the oxidizing agent and the substance and the amounts of the fuel, the oxidizing agent and the substance are chosen so that the temperature of the high-performance active mass after their ignition 1770 K, in particular 1270 K, in particular 970 K, does not exceed.
Hochleistungswirkmasse nach einem der vorhergehenden Ansprüche,
wobei der Stoff so gewählt ist, dass das daraus durch Pyrolyse freisetzbare Gas ein Gas ist, welches an der Luft mit einer maximalen Flammentemperatur unterhalb von 2000 K verbrennt.
High-performance active mass according to one of the preceding claims,
wherein the material is selected such that the gas releasable therefrom by pyrolysis is a gas which burns in air with a maximum flame temperature below 2000K.
Hochleistungswirkmasse nach einem der vorhergehenden Ansprüche,
wobei das Bindemittel so gewählt ist, dass es beim Abbrand der Hochleistungswirkmasse keine Rußbildung bewirkt.
High-performance active mass according to one of the preceding claims,
wherein the binder is chosen so that it does not cause soot formation during combustion of the high-performance active mass.
Hochleistungswirkmasse nach Anspruch 12,
wobei das Bindemittel Polychloropren ist.
High-performance active mass according to claim 12,
wherein the binder is polychloroprene.
EP12004098.5A 2011-06-03 2012-05-26 High performance active material for an infra-red decoy which emits spectral radiation upon combustion Active EP2530065B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011103482A DE102011103482A1 (en) 2011-06-03 2011-06-03 High-performance active mass for a spectrally radiating infrared light target during burn-up

Publications (3)

Publication Number Publication Date
EP2530065A2 true EP2530065A2 (en) 2012-12-05
EP2530065A3 EP2530065A3 (en) 2017-08-30
EP2530065B1 EP2530065B1 (en) 2021-07-28

Family

ID=46275668

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12004098.5A Active EP2530065B1 (en) 2011-06-03 2012-05-26 High performance active material for an infra-red decoy which emits spectral radiation upon combustion

Country Status (4)

Country Link
EP (1) EP2530065B1 (en)
DE (1) DE102011103482A1 (en)
IL (1) IL219821A0 (en)
ZA (1) ZA201203972B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103304497A (en) * 2013-06-05 2013-09-18 西南科技大学 Method for synthetizing cyclotrimethylenetrinitramine employing magnesium-nitrate-assisted direct nitration process
AU2013257394B2 (en) * 2012-11-28 2017-09-28 Diehl Defence Gmbh & Co. Kg Use of dinitromethane salt

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE532043A (en) * 1953-09-25
DE2614196A1 (en) * 1976-04-02 1977-10-13 Dynamit Nobel Ag INFRARED RADIATOR
DE4013516A1 (en) * 1990-04-27 1991-10-31 Piepenbrock Pyrotechnik Gmbh SEA MARKERS FOR EMERGENCY PROCEDURE OF SHIP AIRCRAFT
US5472533A (en) * 1994-09-22 1995-12-05 Alliant Techsystems Inc. Spectrally balanced infrared flare pyrotechnic composition
US5834680A (en) * 1995-09-22 1998-11-10 Cordant Technologies Inc. Black body decoy flare compositions for thrusted applications and methods of use
US6427599B1 (en) * 1997-08-29 2002-08-06 Bae Systems Integrated Defense Solutions Inc. Pyrotechnic compositions and uses therefore
GB9802454D0 (en) * 1998-01-28 2000-12-20 Secr Defence Infra-red emitting decoy flare
DE10355507A1 (en) * 2003-11-27 2005-06-30 Diehl Bgt Defence Gmbh & Co. Kg Pyrotechnic set for generating IR radiation
DE102008063907B4 (en) * 2008-12-19 2011-04-21 Weco Pyrotechnische Fabrik Gmbh Pyrotechnic body with titanium and its use
DE102010053813A1 (en) * 2010-12-08 2012-06-14 Diehl Bgt Defence Gmbh & Co. Kg High-performance active mass for pyrotechnic infrared light targets
DE102010053694A1 (en) * 2010-12-08 2012-06-14 Diehl Bgt Defence Gmbh & Co. Kg Pyrotechnic decoy target for infrared targets

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013257394B2 (en) * 2012-11-28 2017-09-28 Diehl Defence Gmbh & Co. Kg Use of dinitromethane salt
CN103304497A (en) * 2013-06-05 2013-09-18 西南科技大学 Method for synthetizing cyclotrimethylenetrinitramine employing magnesium-nitrate-assisted direct nitration process
CN103304497B (en) * 2013-06-05 2016-05-11 西南科技大学 The method of the synthetic RDX of the auxiliary direct nitre solution of a kind of magnesium nitrate

Also Published As

Publication number Publication date
EP2530065A3 (en) 2017-08-30
DE102011103482A1 (en) 2012-12-06
IL219821A0 (en) 2012-10-31
EP2530065B1 (en) 2021-07-28
ZA201203972B (en) 2013-02-27

Similar Documents

Publication Publication Date Title
DE69010180T2 (en) Improved composition for initial charge.
DE3326884C2 (en) Process for masking visible and infrared radiation and mist ammunition to carry out this process
CN106397075B (en) A kind of firecrackers safety firing cable composition
DE102009041366A1 (en) Missile with a pyrotechnic set
DE69015784T2 (en) EXPLOSIVE AND FUEL COMPOSITION.
Sabatini et al. High‐Nitrogen‐based pyrotechnics: development of perchlorate‐free green‐light illuminants for military and civilian applications
CN103214322A (en) Sulfur-smoke-free powder composition and preparation method thereof
DE60011109T2 (en) NON-TOXIC AND NON-CORROSIVE INITIAL MIXTURE
EP2463259B1 (en) High-efficiency active mass for pyrotechnical infra-red decoys
EP2468700B1 (en) Pyrotechnic decoy material for infra-red decoys
EP2530065B1 (en) High performance active material for an infra-red decoy which emits spectral radiation upon combustion
DE3243425C2 (en)
EP2530064B1 (en) Active material for an infra-red decoy with area effect which emits spectral radiation upon combustion
EP2698362B1 (en) Material for a spectral decoy flare which burns the material
DE102012016452B4 (en) Active mass for a spectrally radiant decay target with an additive during combustion of the active mass
DE884170C (en) Gas Generating Charge
WO2012072198A2 (en) Perchlorate-free pyrotechnic mixture
EP1090895B1 (en) Pyrotechnical charge for generating infrared radiation
WO2000066517A1 (en) Ignition mixture
EP2592060B1 (en) Use of zirconium or a mixture containing zirconium
EP2602239B1 (en) Active material for an infra-red decoy with area effect which emits mainly spectral radiation upon combustion
DE102019111722B3 (en) Pyrotechnic active mass for infrared targets
CH685940A5 (en) Perkussionszundsatz for handguns, process for its preparation and its use.
DE19900110A1 (en) Desensitized nitroamine-containing propellent suitable for heterogeneous charges
DE102010053812A1 (en) Pyrotechnic mock target active mass useful for infrared mock target, comprises a first particle comprising a first fuel, a second particle comprising the first or a second fuel, an oxidant for the first fuel and a binder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DIEHL DEFENCE GMBH & CO. KG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: C06C 15/00 20060101AFI20170721BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180228

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181218

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210225

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1414626

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012016846

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211028

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211129

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211028

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012016846

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1414626

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230526

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230525

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230719

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240521

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240602

Year of fee payment: 13