EP2530064B1 - Active material for an infra-red decoy with area effect which emits spectral radiation upon combustion - Google Patents

Active material for an infra-red decoy with area effect which emits spectral radiation upon combustion Download PDF

Info

Publication number
EP2530064B1
EP2530064B1 EP12004096.9A EP12004096A EP2530064B1 EP 2530064 B1 EP2530064 B1 EP 2530064B1 EP 12004096 A EP12004096 A EP 12004096A EP 2530064 B1 EP2530064 B1 EP 2530064B1
Authority
EP
European Patent Office
Prior art keywords
active mass
fuel
substance
active
dinitromethanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12004096.9A
Other languages
German (de)
French (fr)
Other versions
EP2530064A3 (en
EP2530064A2 (en
Inventor
Arno Dr. Hahma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl Defence GmbH and Co KG
Original Assignee
Diehl Defence GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl Defence GmbH and Co KG filed Critical Diehl Defence GmbH and Co KG
Publication of EP2530064A2 publication Critical patent/EP2530064A2/en
Publication of EP2530064A3 publication Critical patent/EP2530064A3/en
Application granted granted Critical
Publication of EP2530064B1 publication Critical patent/EP2530064B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06CDETONATING OR PRIMING DEVICES; FUSES; CHEMICAL LIGHTERS; PYROPHORIC COMPOSITIONS
    • C06C15/00Pyrophoric compositions; Flints

Definitions

  • the invention relates to an active mass for a spectrally radiating pyrotechnic infrared light target with spatial effect during combustion.
  • a pyrotechnic infrared light emission target that emits spectrally during burn-up emits predominantly radiation with a wavelength of 3.5 to 4.6 ⁇ m during burnup, d. H. a radiation in the so-called B-band, and only to a lesser extent radiation in the range of a wavelength of 1.8 to 2.6 microns, the so-called A-band.
  • the A-band and B-band are the wavelengths detected by conventional seekers.
  • Known spectrally radiating active compositions for black body radiators contain nitrocellulose or ammonium perchlorate or potassium perchlorate and a binder, such as hydroxyl-terminated polybutadiene.
  • Active compounds with ammonium perchlorate are very sensitive mechanically and thermally and thus do not fulfill the criteria of insensitive ammunition. Splinter impact, fire and slow heating can trigger a violent explosion with these active masses.
  • the practically achievable density of these active compositions is at most about 1500 kg / m 3 , so that relatively little of them can be accommodated in a decoy of a given caliber.
  • Another disadvantage of such active compositions is that ammonium perchlorate is only very limited compatibility with other chemicals and / or materials. This leads on the one hand to security problems and on the other hand that a variety of effective Anfeuerungs accounts, z. B. on the basis of black powder, magnesium or zirconium, can not be used because they would be too sensitive in combination with ammonium perchlorate.
  • ammonium perchlorate-containing active compositions Another disadvantage of ammonium perchlorate-containing active compositions is that their radiant power during combustion is relatively low and beyond a lot of radiant power is lost as a function of air velocity. As a result, a large amount of the effective mass must be used for the simulation of an aircraft flying at more than 150 m / s in order to generate sufficient radiant power. In practice, this means that such decoy targets must have a relatively large caliber and thereby the amount that can be transported in a given ammunition space is small due to the space requirements of the ammunition.
  • Nitrocellulose-containing active materials are also not insensitive and can easily explode. Furthermore, it is disadvantageous that such active masses burn only at low wind speed and to ensure the burning in the wind consuming devices are required, which reduce due to their space requirements effectively in a decoy to be transported effective mass.
  • the density of a nitrocellulose-containing active material is also at most about 1500 kg / m 3 .
  • a major disadvantage of such an active mass is that the ignition requires a strong ignition pulse, which causes a strong, often not spectral lightning. This flash can tell a seeker that it is just a fake target in the burn-off effective mass.
  • a pyrotechnic composition for generating IR radiation which contains, as a high-energy fuel, an aliphatic, olefinic or aromatic cyano compound and an inorganic oxidizing agent.
  • the object of the present invention is to provide an active mass which emits spectrally when burned with high radiation power, ie emits radiation in the B band, which is far more intense than the radiation emitted during the burnup in the A band. Furthermore, the burning active mass to a fast movement in the air have strong spatial effect, which emulates the exhaust jet of a fast-moving aircraft.
  • an active mass for a spectrally radiating pyrotechnic infrared light target with spatial effect during the burnup.
  • the active material comprises a fuel, an oxidizing agent, a binder and a carbon-containing substance.
  • the fuel and the oxidizing agent are chosen so that the oxidizing agent can oxidize the fuel after its ignition in an exothermic primary reaction to form a temperature of at least 1000 K.
  • Combustion temperatures are known for a large number of known combinations of a fuel and an oxidizer. As far as the resulting temperature is not known, it can be estimated from known combustion temperatures and / or determined without great effort by measuring the combustion.
  • the substance is chosen so that the substance is pyrolyzed endothermically by the liberated in the primary reaction heat and thereby releases in air, especially with non-sooting flame, combustible gas.
  • Candidate substances are known to the expert in large numbers. In particular, natural products, such as wood or lignite, come into consideration. For the selection of such a substance, the expertise of the skilled person is sufficient. If there is any doubt about a high-probability substance, it is sufficient to carry out a single experiment to determine whether the substance is pyrolyzed by the release of a gas flammable in air. The fuel is not so much reducing that resulting CO 2 can be reduced to carbon.
  • the substance and its proportion of the active material are chosen so that the temperature of the active material does not exceed 2000 K after ignition because of the heat extraction by the endothermic pyrolysis.
  • the active mass is composed so that dissolve solid constituents of the active material in their combustion.
  • the carbon may be contained in the substance elementally or in the form of at least one carbon atom in a molecule comprised by the substance.
  • the redox potential of the fuel is at least as high as the redox potential of carbon, ie the fuel is at most as much reducing as carbon.
  • the redox potential may also be slightly lower, so that CO 2 is reduced to CO, since CO in the air immediately burns to CO 2 , producing a large flame, which increases the performance and the space effect. This means that the free enthalpy of a reaction of the fuel with CO at the resulting temperature is greater than or equal to 0, so a reaction of the fuel with CO in the given conditions does not run voluntarily.
  • Forming CO 2 which produces a strong radiation in the desired B-band, can not be reduced to carbon.
  • elemental carbon no soot and thus little black body radiation, ie radiation with a high proportion of radiation in the A band and a low proportion of radiation in the B band. This results in a strong emission of radiation in the B-band from the carbon-containing substance.
  • the fuel according to the invention also contains carbon. At least the material nature of the substance and the fuel can be identical. However, with identical material properties, the substance may be in another form, for example as a compressed product in a loose bed of fuel. Even if the fuel and the substance have an identical nature, a part of them may serve as a fuel and the remainder as a substance, if the amount of the oxidizing agent is sufficient only for the oxidation of the fuel serving part. The rest is pyrolyzed as a substance. The substance and the fuel may also have a different material nature.
  • the oxygen balance of an active material according to the invention is generally negative, yet avoiding the formation of soot avoids intense radiation in the A band, which is otherwise customary in the case of oxygen sublimated active compositions.
  • a feature of the active material according to the invention is that the primary reaction produces a temperature which is determined by the endothermic pyrolysis is reduced. There is a spatial separation of the primary reaction and the reaction of the gas with the atmospheric oxygen.
  • the gas produced during the pyrolysis increases an emerging flame, which may consist of a primary flame formed by the primary reaction and a secondary flame formed by the reaction of the gas with atmospheric oxygen.
  • primary flame is meant a flame in which no reaction with the atmospheric oxygen takes place, d. H. an anaerobic flame.
  • secondary flame is meant a flame in which a reaction with oxygen takes place, i. H. an aerobic flame.
  • the released combustible gas ignites immediately when in contact with the air, as it is heated by the primary reaction to a temperature above the ignition temperature. The result is a secondary flame with similar properties as a flame from a jet engine, which is also formed by combustible gases that burn in the air.
  • the spectrum of the secondary flame is similar to the spectrum of a kerosene flame. Due to the spatial separation of the secondary flame from the surface of the active mass, this surface is not or at least not significantly heated by the secondary flame, thereby avoiding a shift in the wavelength emitted by the active mass radiation from the B-band to the A-band.
  • the solid constituents of the active material which dissolve from the active material during combustion can consist of slag formed during combustion. You can also consist of a composite of the effective mass solving active particles.
  • the slag does not form as a melt but as a loose ash, because it is finely distributed in the air and afterglowing on its trajectory with the emission of radiation in the B-band. This creates a strong spectral dynamic spatial effect. This is particularly effective if the resulting ash particles still carry a portion of the active mass with it, because thereby the temperature of the dissolved solid component is maintained longer by the continuous primary reaction. This enhances the spatial effect and emits strong radiation in the B-band.
  • the atmospheric oxygen serves as a further oxidant.
  • less oxidizing agent is required and the power of the active material according to the invention and the volume of gas which can be generated therefrom are considerably increased in relation to their mass compared with the previously known pyrotechnic active compositions which radiate spectrally when they burn off.
  • Previous attempts to increase the radiant power of such active compositions were always based on changes in the fuel contained therein and the oxidant contained therein or on a change in the ratio of fuel to oxidant. The experiments always resulted in the generation of a higher temperature and thus in a shift of the wavelength of the emitted radiation towards the A-band.
  • the active material according to the invention does not have to contain any ammonium perchlorate, the active material can be made so insensitive that it can be classified as insensitive ammunition.
  • Another advantage of the active material according to the invention is that it can be composed of very inexpensive components.
  • the active material can be bound with virtually any binder.
  • curing resins such as HTPB (hydroxyl-terminated polybutadiene) nor solvents, for example for dissolving nitrocellulose, must be used.
  • the production and processing the active mass is thereby significantly simplified and helps to keep their costs low.
  • Per unit mass can be generated with the active compound of the invention, a larger volume of gas than with known spectrally radiating active compositions, because the active material according to the invention contains less oxidizing agent and concomitantly uses the atmospheric oxygen for oxidation.
  • the main advantage of the effective mass according to the invention is that the radiation spectrum of the burning and moving active mass and the resulting significant spectral spatial effect very closely simulate the spectrum and the spatial effect of a moving jet engine and the hot exhaust plume discharged therefrom.
  • the active material contains inert constituents, in particular sand or a, in particular at 2000 K resistant metal oxide, in particular alumina, zirconium oxide, magnesium oxide, titanium dioxide or iron oxide, the solid constituents which dissolve in the combustion of the active material of the active material, the inert constituents include.
  • inert in this context means that the components react up to a temperature of 2000 K neither with the oxidizing agent nor with the atmospheric oxygen. However, the components are made to glow by the heat generated by the primary flame and thereby emit radiation, especially in the B-band.
  • the fuel according to the invention comprises carbon, preferably elemental carbon, for. B. in the form of graphite, furthermore according to the invention boron, silicon, sulfur, antimony, iron, manganese, cobalt or nickel or a mixture, for. B. from powders of these substances, or alloys of these substances.
  • the reaction products of the fuel with the oxidant should not be volatile because volatile reaction products cause a very hot flame and thus the emission of blackbody radiation.
  • the fuel is chosen so that it leaves a solid, that is neither volatile nor liquid, reaction product after the primary reaction.
  • reaction product may be, for example, ashes.
  • a solid residue ie a solid reaction product leaving fuel are in the art in large numbers known.
  • the oxidizing agent comprises a perchlorate, chlorate, oxide, sulfate, nitrate, dinitramine, nitrite, peroxide, dinitromethanoate, preferably in particular sodium, potassium or ammonium dinitromethanoate, furthermore a nitro compound, a nitrate ester, hexogen, octogen, nitrocellulose or nitropenta.
  • the material pyrolyzed by the heat released in the primary reaction comprises sugar, wood, preferably in particular wood flour or sawdust, furthermore cereal flour, preferably wheat flour, furthermore lignite, peat, cellulose, starch, tobacco, an oxalate, preferably in particular Calcium oxalate, furthermore according to the invention a formate, preferably in particular magnesium formate, furthermore according to the invention an acetate, preferably in particular calcium acetate, furthermore according to the invention a propionate, preferably in particular calcium propionate, furthermore polyethyleneglycol, polyoxymethylene, polyamide, preferably in particular nylon®, furthermore urea, hexamethylenetetramine, trioxane according to the invention Paraformaldehyde, nitrocellulose, hexogen, octogen, dinitromethanoate, preferably in particular sodium, potassium or ammonium dinitromethanoate, or furthermore nitrite according to the invention openta.
  • the fuel, oxidizing agent and substance may be selected from groups comprising identical organic compounds, depending on how the other constituents of the active mass are selected. So z.
  • hexogen in combination with a perchlorate may be a fuel, whereas it is an oxidizing agent when a metal is used as a fuel. Hexogen can also serve as a material to be pyrolyzed during combustion, for example when perchlorate forms the oxidant and a metal forms the fuel.
  • the fuel is not sulfur, but sulfur is included in the active material.
  • the sulfur can prevent a primary flame resulting from the primary reaction from being blown out at high wind speeds.
  • the fuel, the oxidizing agent and the substance and the amount of the fuel, the oxidizing agent and the substance are chosen so that when burning the active material in the air, the ratio between the specific power of the emitted radiation in the wavelength range of 1.8 to 2 , 6 microns to the specific power of the emitted radiation in the wavelength range of 3.5 to 4.6 microns at most 1: 3, in particular at most 1: 5, in particular at most 1:10.
  • the said ratio is smaller, the lower the temperature is that reaches the active mass after its ignition.
  • the selection and the quantity determination here only requires the execution of routine experiments. Since only two parameters have to be measured here, namely the power of the radiation in the two wavelength ranges, the person skilled in the art can quickly determine in which direction he must change a quantitative ratio in order to reach the correct range of the ratio between the two powers specified here.
  • the fuel, the oxidizing agent and the substance and the amounts of the fuel, the oxidizing agent and the substance are chosen so that the temperature of the active mass after their ignition 1770 K, in particular 1270 K, in particular 970 K, does not exceed. If the temperature does not exceed 970 K, the wavelength of the emitted radiation is almost exclusively in the B-band and only to a very small extent in the A-band.
  • the binder is chosen so that it does not cause soot formation during combustion of the active material.
  • Such binders are known to the person skilled in the art. As far as it is not known for a candidate binder, if it produces soot during burning, a simple experiment to clarify this question is sufficient. Soot formation would lead to a stronger radiation in the region of the A-band which is not desired here.
  • the binder may be, for. B. to act polychloroprene.
  • Example 1 (This example 1 is not part of the invention, but only an example that facilitates the understanding of the invention)
  • IPDI isophorone diisocyanate
  • Example 2 (This example 2 is not part of the invention, but only an example that facilitates the understanding of the invention)
  • Active mass according to the invention with boron as fuel, potassium nitrate as oxidizing agent and lignite as material to be pyrolyzed The sulfur promotes the primary reaction at high wind speeds by preventing the primary flame from being blown out.
  • material Type weight miscellaneous Brown coal Heating professional, finely ground, 32.0 TMD 1712 Grain size ⁇ 100 ⁇ m potassium nitrate finely ground, 53.0 Grain size ⁇ 10 ⁇ m boron Grain size ⁇ 1 ⁇ m 4.0 sulfur finely powdered 8.0 chloroprene Macroplast 3.0
  • TMD stands for the theoretical mean density of the total effective mass in kg / m 3 .
  • % MTV indicates the measured power as a percentage of the power measured for the MTV standard.
  • Fig. 1 shows the burning active mass according to Example 2, which was moved at a speed of 75 m / s and was taken at a distance of 500 m with an infrared sensitive in the range of 3 to 5 microns infrared video camera. The decoy appears as a bright spot and has no spatial effect.
  • Fig. 2 shows an active mass according to Example 4, which was moved at a speed of 75 m / s and has also been taken at a distance of 500 m with the above-mentioned camera.
  • the burning decoy is much brighter than the one in Fig. 1 shown decoy and has a very strong spatial effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Air Bags (AREA)

Description

Die Erfindung betrifft eine Wirkmasse für ein beim Abbrand spektral strahlendes pyrotechnisches Infrarotscheinziel mit Raumwirkung. Ein beim Abbrand spektral strahlendes pyrotechnisches Infrarotscheinziel emittiert beim Abbrand überwiegend Strahlung einer Wellenlänge von 3,5 bis 4,6 µm, d. h. eine Strahlung im sogenannten B-Band, und nur zu einem geringeren Teil Strahlung im Bereich einer Wellenlänge von 1,8 bis 2,6 µm, dem sogenannten A-Band. Das A-Band und das B-Band sind die Wellenlängen, die von herkömmlichen Suchköpfen erfasst werden. Bekannte spektral strahlende Wirkmassen für Schwarzkörperstrahler enthalten Nitrozellulose oder Ammoniumperchlorat oder Kaliumperchlorat und ein Bindemittel, wie Hydroxyl-terminiertes Polybutadien.The invention relates to an active mass for a spectrally radiating pyrotechnic infrared light target with spatial effect during combustion. A pyrotechnic infrared light emission target that emits spectrally during burn-up emits predominantly radiation with a wavelength of 3.5 to 4.6 μm during burnup, d. H. a radiation in the so-called B-band, and only to a lesser extent radiation in the range of a wavelength of 1.8 to 2.6 microns, the so-called A-band. The A-band and B-band are the wavelengths detected by conventional seekers. Known spectrally radiating active compositions for black body radiators contain nitrocellulose or ammonium perchlorate or potassium perchlorate and a binder, such as hydroxyl-terminated polybutadiene.

Wirkmassen mit Ammoniumperchlorat sind mechanisch und thermisch sehr empfindlich und erfüllen damit nicht die Kriterien einer insensitiven Munition. Splitterschlag, Brand und langsames Erhitzen können bei diesen Wirkmassen eine heftige Explosion auslösen. Die praktisch erreichbare Dichte dieser Wirkmassen beträgt maximal ca. 1500 kg/m3, so dass verhältnismäßig wenig davon in einem Scheinziel eines gegebenen Kalibers untergebracht werden kann. Ein weiterer Nachteil derartiger Wirkmassen besteht darin, dass Ammoniumperchlorat nur sehr eingeschränkt mit anderen Chemikalien und/oder Materialien verträglich ist. Dies führt einerseits zu Sicherheitsproblemen und andererseits dazu, dass eine Vielzahl wirksamer Anfeuerungssätze, z. B. auf Basis von Schwarzpulver, Magnesium oder Zirkonium, nicht verwendet werden können, weil diese in Kombination mit Ammoniumperchlorat, zu empfindlich wären. Ein weiterer Nachteil Ammoniumperchlorat enthaltender Wirkmassen besteht darin, dass deren Strahlungsleistung beim Abbrand verhältnismäßig gering ist und darüber hinaus sehr viel Strahlungsleistung als Funktion der Luftgeschwindigkeit verloren geht. Dadurch muss für die Simulation eines mit mehr als 150 m/s fliegenden Flugzeugs eine große Menge der Wirkmasse eingesetzt werden, um eine ausreichende Strahlungsleistung zu erzeugen. In der Praxis bedeutet dies, dass derartige Scheinziele ein verhältnismäßig großes Kaliber haben müssen und dadurch die in einem gegebenen Munitionsraum transportierbare Menge auf Grund des Platzbedarfs der Munition gering ist.Active compounds with ammonium perchlorate are very sensitive mechanically and thermally and thus do not fulfill the criteria of insensitive ammunition. Splinter impact, fire and slow heating can trigger a violent explosion with these active masses. The practically achievable density of these active compositions is at most about 1500 kg / m 3 , so that relatively little of them can be accommodated in a decoy of a given caliber. Another disadvantage of such active compositions is that ammonium perchlorate is only very limited compatibility with other chemicals and / or materials. This leads on the one hand to security problems and on the other hand that a variety of effective Anfeuerungssätze, z. B. on the basis of black powder, magnesium or zirconium, can not be used because they would be too sensitive in combination with ammonium perchlorate. Another disadvantage of ammonium perchlorate-containing active compositions is that their radiant power during combustion is relatively low and beyond a lot of radiant power is lost as a function of air velocity. As a result, a large amount of the effective mass must be used for the simulation of an aircraft flying at more than 150 m / s in order to generate sufficient radiant power. In practice, this means that such decoy targets must have a relatively large caliber and thereby the amount that can be transported in a given ammunition space is small due to the space requirements of the ammunition.

Nitrozellulose enthaltende Wirkmassen sind ebenfalls nicht insensitiv und können leicht explodieren. Weiterhin ist es nachteilig, dass solche Wirkmassen an sich nur bei geringer Windgeschwindigkeit brennen und zur Sicherstellung des Abbrands im Wind aufwändige Vorrichtungen erforderlich sind, die auf Grund ihres Platzbedarfs die effektiv in einem Scheinziel zu transportierende Wirkmasse verringern. Die Dichte einer Nitrozellulose enthaltenden Wirkmasse beträgt ebenfalls maximal etwa 1500 kg/m3. Ein wesentlicher Nachteil einer derartigen Wirkmasse besteht darin, dass deren Zündung einen starken Zündimpuls erfordert, der einen starken, oft nicht spektralen Blitz verursacht. Dieser Blitz kann einem Suchkopf verraten, dass es sich bei der abbrennenden Wirkmasse nur um ein Scheinziel handelt.Nitrocellulose-containing active materials are also not insensitive and can easily explode. Furthermore, it is disadvantageous that such active masses burn only at low wind speed and to ensure the burning in the wind consuming devices are required, which reduce due to their space requirements effectively in a decoy to be transported effective mass. The density of a nitrocellulose-containing active material is also at most about 1500 kg / m 3 . A major disadvantage of such an active mass is that the ignition requires a strong ignition pulse, which causes a strong, often not spectral lightning. This flash can tell a seeker that it is just a fake target in the burn-off effective mass.

Keine der genannten Wirkmassen weist eine Raumwirkung auf, d. h. beim Abbrand einer sich bewegenden Wirkmasse erscheint diese für einen im B-Band sensitiven IR-Sensor als punktförmige Strahlenquelle und nicht wie ein Düsentriebwerk eines Flugzeugs mit Abgasfahne als punktförmige Strahlenquelle mit einem langen Schweif. Ein Raumeffekt kann zwar durch den Einsatz von rotem Phosphor in Wirkmassen erreicht werden, dieser Effekt ist jedoch stationär und ermöglicht es nicht, einem bildauflösenden Suchkopf ein fliegendes Düsenflugzeug vorzutäuschen, wenn sich das Scheinziel in der Luft so schnell wie ein Düsenflugzeug bewegt.None of the active substances mentioned has a spatial effect, i. H. when burned a moving active mass this appears for a B-band sensitive IR sensor as a point-like radiation source and not like a jet engine of an aircraft with exhaust plume as a point-like radiation source with a long tail. Although a space effect can be achieved by the use of red phosphorus in active masses, this effect is stationary and does not make it possible to simulate a flying jet aircraft to an image-resolving seeker when the decoy in the air moves as fast as a jet.

Aus der US 5 472 533 A ist eine Wirkmasse für ein pyrotechnisches Infrarotscheinziel bekannt, welche dafür ausgelegt ist, einen Zwei-Farben-Infrarotsuchkopf einer Rakete zu täuschen.From the US 5,472,533 A For example, an active mass for a pyrotechnic infrared light target is known which is designed to deceive a two-color infrared seeker head of a rocket.

Aus der GB 2 354 060 A ist ein beim Abbrand spektral strahlendes pyrotechnisches Infrarotscheinziel bekannt, welches zwei Wirkmassen mit unterschiedlich langen Brenndauern beinhaltet.From the GB 2 354 060 A a spectrally radiating pyrotechnic infrared light target is known during burnup, which includes two active materials with different lengths of burning time.

Aus der EP 1 541 539 A2 ist ein pyrotechnischer Satz zur Erzeugung von IR-Strahlung bekannt, der als hochenergetischen Brennstoff eine aliphatische, olefinische oder aromatische Cyanverbindung und ein anorganisches Oxidationsmittel enthält.From the EP 1 541 539 A2 For example, a pyrotechnic composition for generating IR radiation is known, which contains, as a high-energy fuel, an aliphatic, olefinic or aromatic cyano compound and an inorganic oxidizing agent.

Aufgabe der vorliegenden Erfindung ist es, eine Wirkmasse bereitzustellen, die beim Abbrand mit hoher Strahlungsleistung spektral strahlt, d. h. Strahlung im B-Band emittiert, die weit intensiver ist, als die beim Abbrand im A-Band emittierte Strahlung. Weiterhin soll die abbrennende Wirkmasse bei schneller Bewegung in der Luft eine starke Raumwirkung aufweisen, die den Abgasstrahl eines sich schnell bewegenden Flugzeugs nachbildet.The object of the present invention is to provide an active mass which emits spectrally when burned with high radiation power, ie emits radiation in the B band, which is far more intense than the radiation emitted during the burnup in the A band. Furthermore, the burning active mass to a fast movement in the air have strong spatial effect, which emulates the exhaust jet of a fast-moving aircraft.

Die Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Zweckmäßige Ausgestaltungen der Erfindung ergeben sich aus den Merkmalen der Ansprüche 2 bis 9.The object is solved by the features of claim 1. Advantageous embodiments of the invention will become apparent from the features of claims 2 to 9.

Erfindungsgemäß ist eine Wirkmasse für ein beim Abbrand spektral strahlendes pyrotechnisches Infrarotscheinziel mit Raumwirkung vorgesehen. Die Wirkmasse umfasst einen Brennstoff, ein Oxidationsmittel, ein Bindemittel und einen Kohlenstoff enthaltenden Stoff. Dabei sind der Brennstoff und das Oxidationsmittel so gewählt, dass das Oxidationsmittel den Brennstoff nach dessen Zündung in einer exothermen Primärreaktion unter Entstehung einer Temperatur von mindestens 1000 K oxidieren kann. Für eine große Zahl bekannter Kombinationen aus einem Brennstoff und einem Oxidationsmittel sind Verbrennungstemperaturen bekannt. Soweit die entstehende Temperatur nicht bekannt ist, kann sie aus bekannten Verbrennungstemperaturen abgeschätzt und/oder ohne großen Aufwand durch Messung bei der Verbrennung ermittelt werden. Weiterhin ist der Stoff so gewählt, dass der Stoff durch die bei der Primärreaktion freiwerdende Wärme endotherm pyrolysiert wird und dabei an Luft, insbesondere mit nicht rußender Flamme, brennbares Gas freisetzt. Infrage kommende Stoffe sind dem Fachmann in großer Zahl bekannt. Insbesondere Naturstoffe, wie Holz oder Braunkohle, kommen dafür in Betracht. Für die Auswahl eines derartigen Stoffs ist das Fachwissen des Fachmanns ausreichend. Besteht bei einem mit hoher Wahrscheinlichkeit infrage kommenden Stoff Zweifel, ist die Durchführung eines einzigen Experiments ausreichend, um festzustellen, ob der Stoff bei der freiwerdenden Wärme unter Freisetzung eines an Luft brennbaren Gases pyrolysiert wird. Der Brennstoff ist nicht so stark reduzierend, dass entstehendes CO2 zu Kohlenstoff reduziert werden kann. Der Stoff und dessen Mengenanteil an der Wirkmasse sind so gewählt, dass die Temperatur der Wirkmasse nach deren Zündung wegen des Wärmeentzugs durch die endotherm erfolgende Pyrolyse 2000 K nicht übersteigt. Die Wirkmasse ist dabei so zusammengesetzt, dass sich bei deren Abbrand feste Bestandteile von der Wirkmasse lösen. Die Auswahl eines Stoffs aus den gemäß den obigen Bedingungen infrage kommenden Stoffe und dessen Mengenanteil an der Wirkmasse erfordert lediglich die Durchführung einer sehr begrenzten Zahl von Routineexperimenten. Die Ergebnisse der Routineexperimente, wie bspw. der gemessenen Temperatur der Wirkmasse nach deren Zündung, können vor Durchführung der Experimente anhand bekannter Größen des Stoffs, wie etwa des spezifischen Wärmebedarfs für dessen Pyrolyse, abgeschätzt werden. Eine präzisere Angabe der erfindungsgemäßen Merkmale ist ohne unbillige Einschränkung der Erfindung nicht möglich. Für den Durchschnittsfachmann stellt die durch die Merkmale spezifizierte Auswahl jedoch kein Problem dar.According to the invention, an active mass is provided for a spectrally radiating pyrotechnic infrared light target with spatial effect during the burnup. The active material comprises a fuel, an oxidizing agent, a binder and a carbon-containing substance. The fuel and the oxidizing agent are chosen so that the oxidizing agent can oxidize the fuel after its ignition in an exothermic primary reaction to form a temperature of at least 1000 K. Combustion temperatures are known for a large number of known combinations of a fuel and an oxidizer. As far as the resulting temperature is not known, it can be estimated from known combustion temperatures and / or determined without great effort by measuring the combustion. Furthermore, the substance is chosen so that the substance is pyrolyzed endothermically by the liberated in the primary reaction heat and thereby releases in air, especially with non-sooting flame, combustible gas. Candidate substances are known to the expert in large numbers. In particular, natural products, such as wood or lignite, come into consideration. For the selection of such a substance, the expertise of the skilled person is sufficient. If there is any doubt about a high-probability substance, it is sufficient to carry out a single experiment to determine whether the substance is pyrolyzed by the release of a gas flammable in air. The fuel is not so much reducing that resulting CO 2 can be reduced to carbon. The substance and its proportion of the active material are chosen so that the temperature of the active material does not exceed 2000 K after ignition because of the heat extraction by the endothermic pyrolysis. The active mass is composed so that dissolve solid constituents of the active material in their combustion. The selection of a substance from the substances in question according to the above conditions and its proportion of the active material requires only a very limited number of routine experiments. The results of the routine experiments, such as the measured temperature of the active mass after its ignition, may be determined prior to carrying out the experiments using known quantities of the substance, such as the specific heat demand for its pyrolysis, estimated. A more precise indication of the features according to the invention is not possible without undue limitation of the invention. However, for the average skilled person, the choice specified by the features does not present a problem.

Der Kohlenstoff kann in dem Stoff elementar oder in Form mindestens eines Kohlenstoffatoms in einem vom Stoff umfassten Molekül enthalten sein. Das Redoxpotential des Brennstoffs ist mindestens so hoch wie das Redoxpotential von Kohlenstoff, d. h. der Brennstoff ist höchstens so stark reduzierend wie Kohlenstoff. Das Redoxpotential darf jedoch auch etwas niedriger sein, so dass CO2 zu CO reduziert wird, da CO in der Luft sofort zu CO2 verbrennt, wobei eine große Flamme entsteht, die die Leistung und den Raumeffekt erhöht. Das bedeutet, dass die freie Enthalpie einer Reaktion des Brennstoffs mit CO bei der entstehenden Temperatur größer oder gleich 0 ist, eine Reaktion des Brennstoffs mit CO bei den gegebenen Bedingungen also nicht freiwillig abläuft. Entstehendes CO2, welches eine starke Strahlung im gewünschten B-Band erzeugt, kann nicht zu Kohlenstoff reduziert werden. Durch das Vermeiden der Entstehung elementaren Kohlenstoffs entsteht kein Ruß und dadurch auch wenig Schwarzkörperstrahlung, d. h. Strahlung mit einem hohen Anteil an Strahlung im A-Band und einem niedrigen Anteil an Strahlung im B-Band. Dadurch resultiert aus dem Kohlenstoff enthaltenden Stoff eine starke Emission von Strahlung im B-Band.The carbon may be contained in the substance elementally or in the form of at least one carbon atom in a molecule comprised by the substance. The redox potential of the fuel is at least as high as the redox potential of carbon, ie the fuel is at most as much reducing as carbon. However, the redox potential may also be slightly lower, so that CO 2 is reduced to CO, since CO in the air immediately burns to CO 2 , producing a large flame, which increases the performance and the space effect. This means that the free enthalpy of a reaction of the fuel with CO at the resulting temperature is greater than or equal to 0, so a reaction of the fuel with CO in the given conditions does not run voluntarily. Forming CO 2 , which produces a strong radiation in the desired B-band, can not be reduced to carbon. By avoiding the formation of elemental carbon no soot and thus little black body radiation, ie radiation with a high proportion of radiation in the A band and a low proportion of radiation in the B band. This results in a strong emission of radiation in the B-band from the carbon-containing substance.

Der Brennstoff enthält erfindungsgemäß ebenfalls Kohlenstoff. Zumindest die stoffliche Beschaffenheit des Stoffs und des Brennstoffs können identisch sein. Bei identischer stofflicher Beschaffenheit kann der Stoff jedoch in einer anderen Form, beispielsweise als Komprimat in einer losen Schüttung des Brennstoffs, vorliegen. Selbst wenn der Brennstoff und der Stoff eine identische Beschaffenheit aufweisen, kann ein Teil davon als Brennstoff und der Rest als Stoff dienen, wenn die Menge des Oxidationsmittels nur für die Oxidation des als Brennstoff dienenden Teils ausreicht. Der Rest wird als Stoff pyrolysiert. Der Stoff und der Brennstoff können auch eine unterschiedliche stoffliche Beschaffenheit aufweisen.The fuel according to the invention also contains carbon. At least the material nature of the substance and the fuel can be identical. However, with identical material properties, the substance may be in another form, for example as a compressed product in a loose bed of fuel. Even if the fuel and the substance have an identical nature, a part of them may serve as a fuel and the remainder as a substance, if the amount of the oxidizing agent is sufficient only for the oxidation of the fuel serving part. The rest is pyrolyzed as a substance. The substance and the fuel may also have a different material nature.

Die Sauerstoffbilanz einer erfindungsgemäßen Wirkmasse ist im Allgemeinen negativ und dennoch wird durch die Vermeidung der Entstehung von Ruß eine intensive Strahlung im A-Band vermieden, die ansonsten bei sauerstoffunterbilanzierten Wirkmassen üblich ist. Ein Merkmal der erfindungsgemäßen Wirkmasse besteht darin, dass die Primärreaktion eine Temperatur erzeugt, die durch die endotherme Pyrolyse reduziert wird. Es findet eine räumliche Trennung der Primärreaktion und der Reaktion des Gases mit dem Luftsauerstoff statt.The oxygen balance of an active material according to the invention is generally negative, yet avoiding the formation of soot avoids intense radiation in the A band, which is otherwise customary in the case of oxygen sublimated active compositions. A feature of the active material according to the invention is that the primary reaction produces a temperature which is determined by the endothermic pyrolysis is reduced. There is a spatial separation of the primary reaction and the reaction of the gas with the atmospheric oxygen.

Das bei der Pyrolyse entstehende Gas vergrößert eine entstehende Flamme, die aus einer von der Primärreaktion gebildeten Primärflamme und einer von der Reaktion des Gases mit Luftsauerstoff gebildeten Sekundärflamme bestehen kann. Unter Primärflamme wird eine Flamme verstanden, in der keine Reaktion mit dem Luftsauerstoff erfolgt, d. h. eine anaerobe Flamme. Unter Sekundärflamme wird eine Flamme verstanden, in der eine Reaktion mit Sauerstoff erfolgt, d. h. eine aerobe Flamme. Das freigesetzte brennbare Gas entzündet sich sofort, wenn es mit der Luft in Kontakt kommt, da es durch die Primärreaktion auf eine Temperatur oberhalb der Anzündtemperatur erhitzt wird. Dabei entsteht eine Sekundärflamme mit ähnlichen Eigenschaften wie eine Flamme aus einem Düsentriebwerk, die ebenfalls von brennbaren Gasen gebildet wird, die in der Luft brennen. Das Spektrum der Sekundärflamme ist ähnlich dem Spektrum einer Kerosinflamme. Durch die räumliche Trennung der Sekundärflamme von der Oberfläche der Wirkmasse wird diese Oberfläche nicht oder zumindest nicht wesentlich von der Sekundärflamme erwärmt und dadurch eine Verschiebung der Wellenlänge der von der Wirkmasse emittierten Strahlung vom B-Band hin zum A-Band vermieden.The gas produced during the pyrolysis increases an emerging flame, which may consist of a primary flame formed by the primary reaction and a secondary flame formed by the reaction of the gas with atmospheric oxygen. By primary flame is meant a flame in which no reaction with the atmospheric oxygen takes place, d. H. an anaerobic flame. By secondary flame is meant a flame in which a reaction with oxygen takes place, i. H. an aerobic flame. The released combustible gas ignites immediately when in contact with the air, as it is heated by the primary reaction to a temperature above the ignition temperature. The result is a secondary flame with similar properties as a flame from a jet engine, which is also formed by combustible gases that burn in the air. The spectrum of the secondary flame is similar to the spectrum of a kerosene flame. Due to the spatial separation of the secondary flame from the surface of the active mass, this surface is not or at least not significantly heated by the secondary flame, thereby avoiding a shift in the wavelength emitted by the active mass radiation from the B-band to the A-band.

Die sich von der Wirkmasse beim Abbrand lösenden festen Bestandteile der Wirkmasse können aus beim Abbrand gebildeter Schlacke bestehen. Sie können auch aus sich von einem Verbund der Wirkmasse lösenden Wirkmasseteilchen bestehen. Dazu kann die Wirkmasse z. B. in Form von Presslingen vorliegen, die in eine homogene Matrize weniger stark gebundener oder weniger stark verdichteter Wirkmasse eingebettet sind. Wie stark die Wirkmasse gebunden ist, hängt von der Menge, darin enthaltenen Bindemittels ab.The solid constituents of the active material which dissolve from the active material during combustion can consist of slag formed during combustion. You can also consist of a composite of the effective mass solving active particles. For this purpose, the active mass z. B. in the form of compacts, which are embedded in a homogeneous matrix less strongly bonded or less highly compressed active mass. How strong the active material is bound depends on the amount of binder contained therein.

Bisher wurde angenommen, dass beim Abbrand spektral strahlende Wirkmassen keinesfalls feste Bestandteile in der Flamme haben sollen, da diese sonst zu glühen beginnen und Schwarzkörperstrahlung emittieren und dadurch das Spektralverhältnis in Richtung des A-Bands verschieben. Der Erfinder der vorliegenden Anmeldung hat jedoch festgestellt, dass dies nur dann der Fall ist, wenn der Feststoff so lange in der Flamme verbleibt, dass er dort stark erhitzt wird oder die Flamme so heiß ist, dass die durch die glühenden Teilchen erzeugte Schwarzkörperstrahlung viel Energie im A-Band aufweist (Ist die Primärflamme aber genügend kalt, kann sie die Teilchen nicht zu heiß erhitzen, wobei das Strahlungsmaximum der Schwarzkörperstrahlung innerhalb des B-Bandes liegt). Bei der erfindungsgemäßen Wirkmasse wird dies jedoch dadurch verhindert, dass sich die festen Bestandteile von der Wirkmasse lösen und dadurch relativ wenig erwärmt werden und einen relativ hohen Anteil an Strahlung im B-Band emittieren. Bisher wurde auch angenommen, dass Wirkmassen, bei denen sich Bestandteile lösen, mechanisch instabil seien. Erfindungsgemäß lösen sich die Bestandteile der Wirkmasse jedoch erst beim Abbrand. Die mechanische Stabilität der Wirkmasse vor dem Abbrand ist dadurch zumindest nicht wesentlich beeinflusst.So far, it has been assumed that spectrally radiating active masses are unlikely to have solid components in the flame during burnup since they otherwise begin to glow and emit blackbody radiation and thereby shift the spectral ratio in the direction of the A-band. However, the inventor of the present application has found that this is the case only if the solid remains in the flame for so long that it is strongly heated there or the flame is so hot that the blackbody radiation generated by the glowing particles is high in energy in the A-band has (if the primary flame but sufficiently cold, they can not heat the particles too hot, with the maximum radiation of the black body radiation within of the B-band). In the case of the active material according to the invention, however, this is prevented by the fact that the solid constituents are released from the active mass and are therefore heated relatively little and emit a relatively high proportion of radiation in the B band. So far, it has also been assumed that active compounds in which components dissolve are mechanically unstable. According to the invention, however, the constituents of the active mass only dissolve during combustion. The mechanical stability of the active mass before burning is thereby at least not significantly affected.

Besonders vorteilhaft ist es, wenn die Schlacke nicht als Schmelze, sondern als lockere Asche entsteht, weil diese in der Luft fein verteilt wird und auf ihrer Flugbahn unter Emission von Strahlung im B-Band nachglüht. Dabei entsteht ein starker spektraler dynamischer Raumeffekt. Ganz besonders effektiv ist dies, wenn entstehende Ascheteilchen noch einen Teil der Wirkmasse mit sich tragen, weil dadurch die Temperatur des gelösten festen Bestandteils durch die fortlaufende Primärreaktion länger aufrechterhalten bleibt. Dadurch wird der Raumeffekt verstärkt und starke Strahlung im B-Band emittiert.It is particularly advantageous if the slag does not form as a melt but as a loose ash, because it is finely distributed in the air and afterglowing on its trajectory with the emission of radiation in the B-band. This creates a strong spectral dynamic spatial effect. This is particularly effective if the resulting ash particles still carry a portion of the active mass with it, because thereby the temperature of the dissolved solid component is maintained longer by the continuous primary reaction. This enhances the spatial effect and emits strong radiation in the B-band.

Beim Verbrennen des entstehenden Gases an der Luft dient der Luftsauerstoff als weiteres Oxidationsmittel. Dadurch wird weniger Oxidationsmittel benötigt und die Leistung der erfindungsgemäßen Wirkmasse und das daraus erzeugbare Gasvolumen sind im Verhältnis zu ihrer Masse erheblich gegenüber den bisher bekannten, beim Abbrand spektral strahlenden pyrotechnischen Wirkmassen gesteigert. Bisherige Versuche zur Steigerung der Strahlungsleistung derartiger Wirkmassen beruhten stets auf Änderung des darin enthaltenen Brennstoffs und des darin enthaltenen Oxidationsmittels bzw. auf einer Änderung des Mengenverhältnisses von Brennstoff zu Oxidationsmittel. Die Versuche resultierten immer in der Erzeugung einer höheren Temperatur und damit in einer Verschiebung der Wellenlänge der emittierten Strahlung hin zum A-Band.When the resulting gas is burned in the air, the atmospheric oxygen serves as a further oxidant. As a result, less oxidizing agent is required and the power of the active material according to the invention and the volume of gas which can be generated therefrom are considerably increased in relation to their mass compared with the previously known pyrotechnic active compositions which radiate spectrally when they burn off. Previous attempts to increase the radiant power of such active compositions were always based on changes in the fuel contained therein and the oxidant contained therein or on a change in the ratio of fuel to oxidant. The experiments always resulted in the generation of a higher temperature and thus in a shift of the wavelength of the emitted radiation towards the A-band.

Dadurch, dass die erfindungsgemäße Wirkmasse kein Ammoniumperchlorat enthalten muss, kann die Wirkmasse so unempfindlich gestaltet werden, dass diese als insensitive Munition klassifiziert werden kann. Ein weiterer Vorteil der erfindungsgemäßen Wirkmasse besteht darin, dass diese aus sehr kostengünstigen Bestandteilen zusammengesetzt werden kann. Die Wirkmasse kann mit nahezu jedem Bindemittel gebunden werden. Beim Pressen der Wirkmasse müssen weder härtende Harze, wie HTPB (Hydroxyl-terminiertes Polybutadien) noch Lösemittel, beispielsweise zum Lösen von Nitrozellulose, verwendet werden. Die Herstellung und Verarbeitung der Wirkmasse ist dadurch deutlich vereinfacht und trägt dazu bei, deren Kosten gering zu halten.Due to the fact that the active material according to the invention does not have to contain any ammonium perchlorate, the active material can be made so insensitive that it can be classified as insensitive ammunition. Another advantage of the active material according to the invention is that it can be composed of very inexpensive components. The active material can be bound with virtually any binder. When pressing the active material, neither curing resins, such as HTPB (hydroxyl-terminated polybutadiene) nor solvents, for example for dissolving nitrocellulose, must be used. The production and processing the active mass is thereby significantly simplified and helps to keep their costs low.

Pro Masseeinheit kann mit der erfindungsgemäßen Wirkmasse ein größeres Gasvolumen erzeugt werden, als mit bekannten spektral strahlenden Wirkmassen, weil die erfindungsgemäße Wirkmasse weniger Oxidationsmittel enthält und den Luftsauerstoff zur Oxidation mitverwendet. Der wesentliche Vorteil der erfindungsgemäßen Wirkmasse besteht darin, dass das Strahlungsspektrum der abbrennenden und sich bewegenden Wirkmasse und die dadurch bewirkte erhebliche spektrale Raumwirkung sehr genau das Spektrum und die Raumwirkung eines sich bewegenden Düsentriebwerks und der daraus ausgestoßenen heißen Abgasfahne nachbilden.Per unit mass can be generated with the active compound of the invention, a larger volume of gas than with known spectrally radiating active compositions, because the active material according to the invention contains less oxidizing agent and concomitantly uses the atmospheric oxygen for oxidation. The main advantage of the effective mass according to the invention is that the radiation spectrum of the burning and moving active mass and the resulting significant spectral spatial effect very closely simulate the spectrum and the spatial effect of a moving jet engine and the hot exhaust plume discharged therefrom.

Vorzugsweise enthält die Wirkmasse inerte Bestandteile, insbesondere Sand oder ein, insbesondere bei 2000 K beständiges, Metalloxid, insbesondere Aluminiumoxid, Zirkoniumoxid, Magnesiumoxid, Titandioxid oder Eisenoxid, wobei die festen Bestandteile, die sich beim Abbrand der Wirkmasse von der Wirkmasse lösen, die inerten Bestandteile umfassen. "Inert" bedeutet in diesem Zusammenhang, dass die Bestandteile bis zu einer Temperatur von 2000 K weder mit dem Oxidationsmittel noch mit dem Luftsauerstoff reagieren. Die Bestandteile werden jedoch durch die von der Primärflamme erzeugte Wärme zum Glühen gebracht und emittieren dadurch Strahlung, vor allem im B-Band.Preferably, the active material contains inert constituents, in particular sand or a, in particular at 2000 K resistant metal oxide, in particular alumina, zirconium oxide, magnesium oxide, titanium dioxide or iron oxide, the solid constituents which dissolve in the combustion of the active material of the active material, the inert constituents include. "Inert" in this context means that the components react up to a temperature of 2000 K neither with the oxidizing agent nor with the atmospheric oxygen. However, the components are made to glow by the heat generated by the primary flame and thereby emit radiation, especially in the B-band.

Der Brennstoff umfasst erfindungsgemäß Kohlenstoff, vorzugsweise elementaren Kohlenstoff, z. B. in Form von Grafit, weiterhin erfindungsgemäß Bor, Silizium, Schwefel, Antimon, Eisen, Mangan, Kobalt oder Nickel oder eine Mischung, z. B. aus Pulvern dieser Stoffe, oder Legierungen dieser Stoffe. Die Reaktionsprodukte des Brennstoffs mit dem Oxidationsmittel sollten nicht flüchtig sein, da flüchtige Reaktionsprodukte eine sehr heiße Flamme und damit die Emission von Schwarzkörperstrahlung bewirken.The fuel according to the invention comprises carbon, preferably elemental carbon, for. B. in the form of graphite, furthermore according to the invention boron, silicon, sulfur, antimony, iron, manganese, cobalt or nickel or a mixture, for. B. from powders of these substances, or alloys of these substances. The reaction products of the fuel with the oxidant should not be volatile because volatile reaction products cause a very hot flame and thus the emission of blackbody radiation.

Vorzugsweise ist der Brennstoff so gewählt, dass er nach der Primärreaktion ein festes, also weder flüchtiges noch flüssiges, Reaktionsprodukt hinterlässt. Dabei kann es sich beispielsweise um Asche handeln. Durch das Freisetzen dieses Reaktionsprodukts beim Abbrand der Wirkmasse wird der spektrale Raumeffekt verstärkt. Nach der Primärreaktion einen festen Rückstand, d. h. ein festes Reaktionsprodukt hinterlassende Brennstoffe sind dem Fachmann in großer Anzahl bekannt. Das Oxidationsmittel umfasst erfindungsgemäß ein Perchlorat, Chlorat, Oxid, Sulfat, Nitrat, Dinitramin, Nitrit, Peroxid, Dinitromethanat, vorzugsweise insbesondere Natrium-, Kalium- oder Ammoniumdinitromethanat, weiterhin erfindungsgemäß eine Nitroverbindung, einen Nitratester, Hexogen, Oktogen, Nitrozellulose oder Nitropenta.Preferably, the fuel is chosen so that it leaves a solid, that is neither volatile nor liquid, reaction product after the primary reaction. These may be, for example, ashes. By releasing this reaction product during combustion of the active mass of the spectral space effect is amplified. After the primary reaction, a solid residue, ie a solid reaction product leaving fuel are in the art in large numbers known. According to the invention, the oxidizing agent comprises a perchlorate, chlorate, oxide, sulfate, nitrate, dinitramine, nitrite, peroxide, dinitromethanoate, preferably in particular sodium, potassium or ammonium dinitromethanoate, furthermore a nitro compound, a nitrate ester, hexogen, octogen, nitrocellulose or nitropenta.

Der durch die bei der Primärreaktion freiwerdende Wärme pyrolysierte Stoff umfasst erfindungsgemäß Zucker, Holz, vorzugsweise insbesondere in Form von Holzmehl oder Sägespänen, weiterhin erfindungsgemäß Getreidemehl, vorzugsweise insbesondere Weizenmehl, weiterhin erfindungsgemäß Braunkohle, Torf, Zellulose, Stärke, Tabak, ein Oxalat, vorzugsweise insbesondere Calciumoxalat, weiterhin erfindungsgemäß ein Formiat, vorzugsweise insbesondere Magnesiumformiat, weiterhin erfindungsgemäß ein Acetat, vorzugsweise insbesondere Calciumacetat, weiterhin erfindungsgemäß ein Propionat, vorzugsweise insbesondere Calciumpropionat, weiterhin erfindungsgemäß Polyethylenglycol, Polyoxymethylen, Polyamid, vorzugsweise insbesondere Nylon®, weiterhin erfindungsgemäß Harnstoff, Hexamethylentetramin, Trioxan, Paraformaldehyd, Nitrozellulose, Hexogen, Oktogen, Dinitromethanat, vorzugsweise insbesondere Natrium-, Kalium- oder Ammoniumdinitromethanat, oder weiterhin erfindungsgemäß Nitropenta. Der Brennstoff, das Oxidationsmittel und der Stoff können, je nachdem, wie die jeweils anderen Bestandteile der Wirkmasse gewählt sind, aus Gruppen ausgewählt sein, die identische organische Verbindungen umfassen. So kann z. B. Hexogen in Kombination mit einem Perchlorat ein Brennstoff sein, dagegen ist es ein Oxidationsmittel, wenn ein Metall als Brennstoff dient. Hexogen kann auch als beim Abbrand zu pyrolysierender Stoff dienen, beispielsweise wenn Perchlorat das Oxidationsmittel und ein Metall den Brennstoff bildet.According to the invention, the material pyrolyzed by the heat released in the primary reaction comprises sugar, wood, preferably in particular wood flour or sawdust, furthermore cereal flour, preferably wheat flour, furthermore lignite, peat, cellulose, starch, tobacco, an oxalate, preferably in particular Calcium oxalate, furthermore according to the invention a formate, preferably in particular magnesium formate, furthermore according to the invention an acetate, preferably in particular calcium acetate, furthermore according to the invention a propionate, preferably in particular calcium propionate, furthermore polyethyleneglycol, polyoxymethylene, polyamide, preferably in particular nylon®, furthermore urea, hexamethylenetetramine, trioxane according to the invention Paraformaldehyde, nitrocellulose, hexogen, octogen, dinitromethanoate, preferably in particular sodium, potassium or ammonium dinitromethanoate, or furthermore nitrite according to the invention openta. The fuel, oxidizing agent and substance may be selected from groups comprising identical organic compounds, depending on how the other constituents of the active mass are selected. So z. For example, hexogen in combination with a perchlorate may be a fuel, whereas it is an oxidizing agent when a metal is used as a fuel. Hexogen can also serve as a material to be pyrolyzed during combustion, for example when perchlorate forms the oxidant and a metal forms the fuel.

Erfindungsgemäß handelt es sich bei dem Brennstoff nicht um Schwefel, wobei jedoch Schwefel in der Wirkmasse enthalten ist. Der Schwefel kann verhindern, dass eine bei der Primärreaktion entstehende Primärflamme bei hoher Windgeschwindigkeit ausgeblasen wird.According to the invention, the fuel is not sulfur, but sulfur is included in the active material. The sulfur can prevent a primary flame resulting from the primary reaction from being blown out at high wind speeds.

Vorzugsweise sind der Brennstoff, das Oxidationsmittel und der Stoff und die Menge des Brennstoffs, des Oxidationsmittels und des Stoffs so gewählt, dass bei einem Abbrand der Wirkmasse an der Luft das Verhältnis zwischen der spezifischen Leistung der emittierten Strahlung im Wellenlängenbereich von 1,8 bis 2,6 µm zur spezifischen Leistung der emittierten Strahlung im Wellenlängenbereich von 3,5 bis 4,6 µm höchstens 1:3, insbesondere höchstens 1:5, insbesondere höchstens 1:10, beträgt.Preferably, the fuel, the oxidizing agent and the substance and the amount of the fuel, the oxidizing agent and the substance are chosen so that when burning the active material in the air, the ratio between the specific power of the emitted radiation in the wavelength range of 1.8 to 2 , 6 microns to the specific power of the emitted radiation in the wavelength range of 3.5 to 4.6 microns at most 1: 3, in particular at most 1: 5, in particular at most 1:10.

Dabei ist das genannte Verhältnis umso kleiner, je geringer die Temperatur ist, die die Wirkmasse nach deren Zündung erreicht. Die Auswahl und die Mengenermittlung erfordert hier lediglich die Durchführung von Routineexperimenten. Da hier nur zwei Parameter gemessen werden müssen, nämlich die Leistung der Strahlung in den beiden Wellenlängenbereichen, kann der Fachmann schnell ermitteln, in welche Richtung er ein Mengenverhältnis ändern muss, um in den richtigen Bereich des Verhältnisses zwischen den beiden hier spezifizierten Leistungen zu gelangen. Vorzugsweise sind der Brennstoff, das Oxidationsmittel und der Stoff und die Mengen des Brennstoffs, des Oxidationsmittels und des Stoffs so gewählt, dass die Temperatur der Wirkmasse nach deren Zündung 1770 K, insbesondere 1270 K, insbesondere 970 K, nicht übersteigt. Wenn die Temperatur 970 K nicht übersteigt, liegt die Wellenlänge der emittierten Strahlung fast ausschließlich im B-Band und nur zu einem ganz geringen Anteil im A-Band.In this case, the said ratio is smaller, the lower the temperature is that reaches the active mass after its ignition. The selection and the quantity determination here only requires the execution of routine experiments. Since only two parameters have to be measured here, namely the power of the radiation in the two wavelength ranges, the person skilled in the art can quickly determine in which direction he must change a quantitative ratio in order to reach the correct range of the ratio between the two powers specified here. Preferably, the fuel, the oxidizing agent and the substance and the amounts of the fuel, the oxidizing agent and the substance are chosen so that the temperature of the active mass after their ignition 1770 K, in particular 1270 K, in particular 970 K, does not exceed. If the temperature does not exceed 970 K, the wavelength of the emitted radiation is almost exclusively in the B-band and only to a very small extent in the A-band.

Vorzugsweise ist das Bindemittel so gewählt, dass es beim Abbrand der Wirkmasse keine Rußbildung bewirkt. Derartige Bindemittel sind dem Fachmann bekannt. Soweit es für ein infrage kommendes Bindemittel nicht bekannt ist, ob es beim Abbrand Ruß erzeugt, genügt ein einfaches Experiment zur Klärung dieser Frage. Rußbildung würde zu einer hier nicht gewünschten stärkeren Strahlung im Bereich des A-Bands führen. Bei dem Bindemittel kann es sich z. B. um Polychloropren handeln.Preferably, the binder is chosen so that it does not cause soot formation during combustion of the active material. Such binders are known to the person skilled in the art. As far as it is not known for a candidate binder, if it produces soot during burning, a simple experiment to clarify this question is sufficient. Soot formation would lead to a stronger radiation in the region of the A-band which is not desired here. The binder may be, for. B. to act polychloroprene.

Nachfolgend wird die Erfindung anhand von Zeichnungen und Ausführungsbeispielen näher erläutert. Es zeigen:

Fig. 1
ein mit einer für Aufnahmen im Wellenlängenbereich von 3 bis 5 µm ausgelegten Infrarotkamera aufgenommenes abbrennendes 36 mm-Scheinziel aus einer Wirkmasse gemäß dem Stand der Technik (nachfolgendes Beispiel Nr. 2) und
Fig. 2
ein mit derselben Kamera aufgenommenes 36 mm-Scheinziel aus einer erfindungsgemäßen Wirkmasse (nachfolgendes Beispiel Nr. 4).
The invention will be explained in more detail with reference to drawings and exemplary embodiments. Show it:
Fig. 1
a burned-down 36 mm decoy target made of an active compound according to the prior art (Example 2 below) and recorded with an infrared camera designed for exposures in the wavelength range of 3 to 5 μm
Fig. 2
a recorded with the same camera 36 mm decoy target of an active material according to the invention (Example No. 4 below).

Aus sämtlichen der im Folgenden angegebenen Zusammensetzungen wurden jeweils 5 Tabletten mit ca. 21 mm Durchmesser und einem Gewicht von 10 g bei einem Pressdruck von 1500 bar gepresst. Die Tabletten wurden abgebrannt und deren Leistung in Form von Strahlungsleistung mit einem Radiometer gemessen und für atmosphärische Dämpfung korrigiert. Die spezifische Leistung wurde im Verhältnis zur Leistung von Tabletten aus MTV (Magnesium-Teflon-Viton) als Standard bestimmt. Die Energie wurde jeweils in Joule/(g/sr) im B-Band im Standversuch, d. h. ohne Wind, gemessen. Zusätzlich wurden die Leistungen der als Scheinziele mit einem Kaliber von 36 mm ausgebildeten abbrennenden Wirkmassen auf einem Schlitten mit einer Geschwindigkeit von 75 m/s und 150 m/s dynamisch gemessen. Dabei wurden jeweils zwischen 120 und 170 g Wirkmasse eingesetzt.From all of the compositions indicated below, in each case 5 tablets with a diameter of approximately 21 mm and a weight of 10 g were pressed at a pressure of 1500 bar. The tablets were burned off and their power measured in the form of radiant power with a radiometer and corrected for atmospheric attenuation. The specific performance was in relation to Performance of tablets from MTV (Magnesium Teflon-Viton) determined as standard. The energy was measured in joules / (g / sr) in the B-band in a steady state test, ie without wind. In addition, the performance of the 36 mm dummy targets with their burning properties was dynamically measured on a slide at a speed of 75 m / s and 150 m / s. In each case between 120 and 170 g of active material were used.

Alle Daten sind, soweit nicht anders angegeben, in fünf parallelen Messreihen jeweils im Vergleich zu MTV mit dem Radiometer in einem Abstand von 1 m gemessen worden.Unless otherwise stated, all data were measured in five parallel series of measurements in each case in comparison to MTV with the radiometer at a distance of 1 m.

MTV-Standard (Stand der Technik):MTV standard (prior art):

Stoffmaterial TypType Gewichtsprozentweight Sonstigesmiscellaneous Magnesiumpulvermagnesium powder LNR 61LNR 61 60,060.0 TMD=1893TMD = 1893 TeflonpulverTeflon powder Hoechst TF 9202Hoechst TF 9202 23,023.0 VitonViton 3M Fluorel FC-21753M Fluorel FC-2175 12,012.0 Grafitgraphite MerckMerck 5,05.0 (als Gleitmittel)(as lubricant)

Beispiel 1 (Dieses Beispiel 1 ist nicht Teil der Erfindung, sondern lediglich ein Beispiel, das das Verständnis der Erfindung erleichtert)Example 1 (This example 1 is not part of the invention, but only an example that facilitates the understanding of the invention)

Wirkmasse nach dem Stand der Technik auf Basis von Ammoniumperchlorat: Stoff Typ Gewichtsprozent Sonstiges Ammoniumperchlorat Körnung < 200 µm 86,98 TMD=1702 HTPB Sartomer R45HT-M M=2800 12,10 IPDI Hüls 0,91 Eisenacetonylacetat 0,02 Active material according to the prior art based on ammonium perchlorate: material Type weight miscellaneous ammonium perchlorate Grain size <200 μm 86.98 TMD = 1702 HTPB Sartomer R45HT-M M = 2800 12.10 IPDI sleeve 0.91 iron acetonyl 0.02

"IPDI" steht für Isophorondiisocyanat"IPDI" stands for isophorone diisocyanate Beispiel 2 (Dieses Beispiel 2 ist nicht Teil der Erfindung, sondern lediglich ein Beispiel, das das Verständnis der Erfindung erleichtert)Example 2 (This example 2 is not part of the invention, but only an example that facilitates the understanding of the invention)

Weitere Wirkmasse nach dem Stand der Technik auf Basis von Ammoniumperchlorat: Stoff Typ Gewichtsprozent Sonstiges Ammoniumperchlorat Körnung < 50 µm 85,50 TMD=1678 HTPB Sartomer R45HT-M M=2800 13,47 IPDI Hüls 1,01 Eisenacetonylacetat 0,02 Further active material according to the prior art based on ammonium perchlorate: material Type weight miscellaneous ammonium perchlorate Grain size <50 μm 85.50 TMD = 1678 HTPB Sartomer R45HT-M M = 2800 13.47 IPDI sleeve 1.01 iron acetonyl 0.02

Beispiel 3Example 3

Erfindungsgemäße Wirkmasse mit Bor als Brennstoff, Kaliumnitrat als Oxidationsmittel und Braunkohle als zu pyrolysierenden Stoff:
Der Schwefel unterstützt die Primärreaktion bei hoher Windgeschwindigkeit, indem er dabei verhindert, dass die Primärflamme ausgeblasen wird. Die Wirkmasse erzeugt beim Abbrand bei Geschwindigkeiten von 75 m/s und 150 m/s einen ca. 30 m langen spektralen Raumeffekt. Stoff Typ Gewichtsprozent Sonstiges Braunkohle Heizprofi, fein gemahlen, 32,0 TMD=1712 Körnung < 100 µm Kaliumnitrat fein gemahlen, 53,0 Körnung < 10 µm Bor Körnung < 1 µm 4,0 Schwefel fein gepulvert 8,0 Chloropren Macroplast 3,0
Active mass according to the invention with boron as fuel, potassium nitrate as oxidizing agent and lignite as material to be pyrolyzed:
The sulfur promotes the primary reaction at high wind speeds by preventing the primary flame from being blown out. The active mass produced during burning at speeds of 75 m / s and 150 m / s about a 30 m long spectral space effect. material Type weight miscellaneous Brown coal Heating professional, finely ground, 32.0 TMD = 1712 Grain size <100 μm potassium nitrate finely ground, 53.0 Grain size <10 μm boron Grain size <1 μm 4.0 sulfur finely powdered 8.0 chloroprene Macroplast 3.0

Beispiel 4Example 4

Weitere erfindungsgemäße Wirkmasse mit Silizium als Brennstoff und ansonsten denselben Komponenten wie die Wirkmasse gemäß Beispiel 3:
Die Wirkmasse erzeugt beim Abbrand bei Geschwindigkeiten von 75 m/s und 150 m/s jeweils einen ca. 30 m langen Raumeffekt. Stoff Typ Gewichtsprozent Sonstiges Braunkohle Heizprofi, fein gemahlen, 30,0 TMD=1735 Körnung < 100 µm Kaliumnitrat fein gemahlen, 51,0 Körnung < 10 µm Silizium fein, Körnung < 30 µm 8,0 Schwefel fein gepulvert 8,0 Chloropren Macroplast 3,0
Further active composition according to the invention with silicon as fuel and otherwise the same components as the active material according to Example 3:
The active mass generates during combustion at speeds of 75 m / s and 150 m / s each have a 30 m long space effect. material Type weight miscellaneous Brown coal Heating professional, finely ground, 30.0 TMD = 1735 Grain size <100 μm potassium nitrate finely ground, 51.0 Grain size <10 μm silicon fine, grain size <30 μm 8.0 sulfur finely powdered 8.0 chloroprene Macroplast 3.0

Beispiel 5Example 5

Weitere erfindungsgemäße Wirkmasse:
Die Primärreaktion erfolgt zwischen Natriumnitrat als Oxidationsmittel und Braunkohle als Brennstoff. Dabei nicht umgesetzte Braunkohle dient als zu pyrolysierender Stoff. Stoff Typ Gewichtsprozent Sonstiges Braunkohle Heizprofi, fein gemahlen, Körnung <100 µm 33,0 TMD=1750 Natriumnitrat fein gemahlen, Körnung < 10 µm 56,0 Schwefel fein gepulvert 8,0 Chloropren Macroplast 3,0
Further active composition according to the invention:
The primary reaction takes place between sodium nitrate as the oxidizing agent and lignite as the fuel. Unreacted lignite serves as a substance to be pyrolyzed. material Type weight miscellaneous Brown coal Heating professional, finely ground, grain size <100 μm 33.0 TMD = 1750 sodium nitrate finely ground, grain size <10 μm 56.0 sulfur finely powdered 8.0 chloroprene Macroplast 3.0

Beispiel 6Example 6

Weitere erfindungsgemäße Wirkmasse:
Diese Wirkmasse erreicht bei 0 m/s Wind 86 % der MTV-Leistung im B-Kanal und weist ein höheres Spektralverhältnis als die Braunkohlewirkmassen auf. Stoff Typ Gewichtsprozent Sonstiges Holzmehl Eichenstaub aus Dielenfußboden-Feinschliff mit Walzenschleifer, Körnung 100 30,0 TMD=1406 Kaliumnitrat fein gemahlen, Körnung (d50) < 10 µm 51,0 Silizium fein, Körnung < 30 µm 8,0 Schwefel fein gepulvert 8,0 Polychloropren Macroplast 3,0
Further active composition according to the invention:
At 0 m / s of wind, this effective mass reaches 86% of the MTV power in the B channel and has a higher spectral ratio than the lignite active materials. material Type weight miscellaneous wood flour Oak dust from floorboard fine sanding with roll grinder, grain size 100 30.0 TMD = 1406 potassium nitrate finely ground, grain size (d 50 ) <10 μm 51.0 silicon fine, grain size <30 μm 8.0 sulfur finely powdered 8.0 polychloroprene Macroplast 3.0

"TMD" steht jeweils für die theoretische mittlere Dichte der gesamten Wirkmasse in kg/m3."TMD" stands for the theoretical mean density of the total effective mass in kg / m 3 .

Im Folgenden sind die mit den obigen Wirkmassen beim Abbrand erzielten relativen Leistungsdaten angegeben. "% MTV" gibt dabei die gemessene Leistung als Prozent der für den MTV-Standard gemessenen Leistung an.
1. Strahlungsmessungen im Labor ohne Wind: Satz % MTV (B-Kanal) Standard MTV (Stand der Technik) 100 Beispiel 1 (nicht Teil der Erfindung) 19 Beispiel 2 (nicht Teil der Erfindung) 29 Beispiel 3 84 Beispiel 4 82 Beispiel 5 87
2. Strahlungsmessung unter dynamischen Bedingungen bei 75 m/s Luftgeschwindigkeit: Satz % MTV (B-Kanal) Standard MTV (Stand der Technik) 100 Beispiel 1 (nicht Teil der Erfindung) 49 Beispiel 2 (nicht Teil der Erfindung) 75 Beispiel 3 137 Beispiel 4 166
3. Strahlungsmessungen unter dynamischen Bedingungen bei 150 m/s Luftgeschwindigkeit: Satz % MTV (B-Kanal) Standard MTV (Stand der Technik) 100 Beispiel 1 (nicht Teil der Erfindung) 17 Beispiel 2 (nicht Teil der Erfindung) 57 Beispiel 3 149 Beispiel 4 131
The relative performance data obtained with the above effective masses during burnup are given below. "% MTV" indicates the measured power as a percentage of the power measured for the MTV standard.
1. Radiation measurements in the laboratory without wind: sentence % MTV (B channel) Standard MTV (prior art) 100 Example 1 (not part of the invention) 19 Example 2 (not part of the invention) 29 Example 3 84 Example 4 82 Example 5 87
2. Radiation measurement under dynamic conditions at 75 m / s air velocity: sentence % MTV (B channel) Standard MTV (prior art) 100 Example 1 (not part of the invention) 49 Example 2 (not part of the invention) 75 Example 3 137 Example 4 166
3. Radiation measurements under dynamic conditions at 150 m / s air velocity: sentence % MTV (B channel) Standard MTV (prior art) 100 Example 1 (not part of the invention) 17 Example 2 (not part of the invention) 57 Example 3 149 Example 4 131

Alle Ergebnisse der Messung unter dynamischen Bedingungen sind jeweils ein Durchschnitt von 3 Parallelversuchen, welche mit Scheinzielen aus den jeweils angegebenen Wirkmassen mit einem Kaliber von 36 mm durchgeführt wurden.All results of the measurement under dynamic conditions are in each case an average of 3 parallel experiments, which were carried out with decoupling targets from the respectively indicated active masses with a caliber of 36 mm.

Fig. 1 zeigt die abbrennende Wirkmasse gemäß Beispiel 2, welche mit einer Geschwindigkeit von 75 m/s bewegt wurde und in einem Abstand von 500 m mit einer im Bereich von 3 bis 5 µm empfindlichen Infrarot-Videokamera aufgenommen wurde. Das Scheinziel erscheint dabei als heller Punkt und weist keinen Raumeffekt auf. Fig. 1 shows the burning active mass according to Example 2, which was moved at a speed of 75 m / s and was taken at a distance of 500 m with an infrared sensitive in the range of 3 to 5 microns infrared video camera. The decoy appears as a bright spot and has no spatial effect.

Fig. 2 zeigt eine Wirkmasse gemäß Beispiel 4, welche mit einer Geschwindigkeit von 75 m/s bewegt wurde und ebenfalls im Abstand von 500 m mit der oben genannten Kamera aufgenommen worden ist. Das abbrennende Scheinziel ist sehr viel heller als das in Fig. 1 gezeigte Scheinziel und weist einen sehr starken Raumeffekt auf. Fig. 2 shows an active mass according to Example 4, which was moved at a speed of 75 m / s and has also been taken at a distance of 500 m with the above-mentioned camera. The burning decoy is much brighter than the one in Fig. 1 shown decoy and has a very strong spatial effect.

Claims (9)

  1. Active mass for a pyrotechnic infra-red decoy with space effect that radiates spectrally on burn-up, comprising a fuel, an oxidizer, a binder and a carbon-containing substance, wherein the fuel and the oxidizer are selected such that the oxidizer is able to oxidize the fuel, after ignition thereof, in an exothermic primary reaction producing a temperature of at least 1000 K, wherein the substance is selected such that the substance, as a result of the heat liberated in the primary reaction, undergoes endothermic pyrolysis and, in so doing, releases gas which is combustible in air, wherein the reducing power of the fuel is not so strong that CO2 which forms can be reduced to carbon, wherein the substance and proportion thereof in the active mass are selected such that the temperature of the active mass after ignition thereof, owing to the withdrawal of the heat by the endothermic pyrolysis, does not exceed 2000 K, wherein the composition of the active mass is such that, during burn-up thereof, solid constituents part from the active mass, wherein the fuel includes carbon or comprises boron, silicon, antimony, iron, manganese, cobalt or nickel or a mixture or alloy of these substances, wherein the oxidizer comprises a perchlorate, chlorate, oxide, sulfate, nitrate, dinitramine, nitrite, peroxide, dinitromethanate, a nitro compound, a nitrate ester, hexogen, octogen, nitrocellulose or nitropenta, wherein the substance comprises sugar, wood, cereal flour, brown coal, peat, cellulose, starch, tobacco, an oxalate, a formate, an acetate, a propionate, polyethylene glycol, polyoxymethylene, polyamide, urea, hexamethylenetetramine, trioxane, paraformaldehyde, nitrocellulose, hexogen, octogen, dinitromethanate or nitropenta, and wherein, while the fuel is not sulfur, sulfur is included in the active mass.
  2. Active mass according to Claim 1,
    wherein the fuel comprises elemental carbon.
  3. Active mass according to either of the preceding claims,
    wherein the active mass includes inert constituents, more particularly sand or a metal oxide which is stable at 2000 K, more particularly aluminium oxide, zirconium oxide, magnesium oxide, titanium dioxide or iron oxide, and the solid constituents encompass the inert constituents.
  4. Active mass according to any of the preceding claims,
    wherein the fuel is selected such that after the primary reaction it leaves behind a solid reaction product.
  5. Active mass according to any of the preceding claims,
    wherein the dinitromethanate is sodium, potassium or ammonium dinitromethanate.
  6. Active mass according to any of the preceding claims,
    wherein the wood is present in the form of wood flour or sawn chips, the cereal flour is wheat flour, the oxalate is calcium oxalate, the formate is magnesium formate, the acetate is calcium acetate, the propionate is calcium propionate and the dinitromethanate is sodium, potassium or ammonium dinitromethanate.
  7. Active mass according to any of the preceding claims,
    wherein the fuel, the oxidizer and the substance, and the amounts of the fuel, the oxidizer and the substance, are selected such that the temperature of the active mass after ignition thereof does not exceed 1770 K, more particularly 1270 K, more particularly 970 K.
  8. Active mass according to any of the preceding claims,
    wherein the binder is selected such that it does not result in any soot being formed during burn-up of the active mass.
  9. Active mass according to Claim 8,
    wherein the binder is polychloroprene.
EP12004096.9A 2011-06-03 2012-05-26 Active material for an infra-red decoy with area effect which emits spectral radiation upon combustion Active EP2530064B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011103483A DE102011103483A1 (en) 2011-06-03 2011-06-03 Active mass for a spectrally radiating infrared light target with room effect during burnup

Publications (3)

Publication Number Publication Date
EP2530064A2 EP2530064A2 (en) 2012-12-05
EP2530064A3 EP2530064A3 (en) 2017-09-13
EP2530064B1 true EP2530064B1 (en) 2019-08-28

Family

ID=46275667

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12004096.9A Active EP2530064B1 (en) 2011-06-03 2012-05-26 Active material for an infra-red decoy with area effect which emits spectral radiation upon combustion

Country Status (2)

Country Link
EP (1) EP2530064B1 (en)
DE (1) DE102011103483A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012023549B4 (en) * 2012-11-28 2014-11-06 Diehl Bgt Defence Gmbh & Co. Kg Use of a dinitromethane salt

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE532043A (en) * 1953-09-25
DE2614196A1 (en) * 1976-04-02 1977-10-13 Dynamit Nobel Ag INFRARED RADIATOR
DE4013516A1 (en) * 1990-04-27 1991-10-31 Piepenbrock Pyrotechnik Gmbh SEA MARKERS FOR EMERGENCY PROCEDURE OF SHIP AIRCRAFT
GB9120803D0 (en) * 1991-10-01 1995-03-08 Secr Defence Pyrotechnic decoy flare
US5472533A (en) * 1994-09-22 1995-12-05 Alliant Techsystems Inc. Spectrally balanced infrared flare pyrotechnic composition
US5834680A (en) * 1995-09-22 1998-11-10 Cordant Technologies Inc. Black body decoy flare compositions for thrusted applications and methods of use
US6427599B1 (en) * 1997-08-29 2002-08-06 Bae Systems Integrated Defense Solutions Inc. Pyrotechnic compositions and uses therefore
GB9802454D0 (en) * 1998-01-28 2000-12-20 Secr Defence Infra-red emitting decoy flare
DE10355507A1 (en) * 2003-11-27 2005-06-30 Diehl Bgt Defence Gmbh & Co. Kg Pyrotechnic set for generating IR radiation
US7343861B1 (en) * 2005-05-31 2008-03-18 The United States Of America As Represented By The Secretary Of The Navy Device and method for producing an infrared emission at a given wavelength
DE102008063907B4 (en) * 2008-12-19 2011-04-21 Weco Pyrotechnische Fabrik Gmbh Pyrotechnic body with titanium and its use
DE102010053694A1 (en) * 2010-12-08 2012-06-14 Diehl Bgt Defence Gmbh & Co. Kg Pyrotechnic decoy target for infrared targets
DE102010053813A1 (en) * 2010-12-08 2012-06-14 Diehl Bgt Defence Gmbh & Co. Kg High-performance active mass for pyrotechnic infrared light targets

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102011103483A1 (en) 2012-12-06
EP2530064A3 (en) 2017-09-13
EP2530064A2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
DE3326884C2 (en) Process for masking visible and infrared radiation and mist ammunition to carry out this process
DE69010180T2 (en) Improved composition for initial charge.
US5834680A (en) Black body decoy flare compositions for thrusted applications and methods of use
DE102009041366A1 (en) Missile with a pyrotechnic set
EP2463259B1 (en) High-efficiency active mass for pyrotechnical infra-red decoys
DE60011109T2 (en) NON-TOXIC AND NON-CORROSIVE INITIAL MIXTURE
EP2468700B1 (en) Pyrotechnic decoy material for infra-red decoys
EP2530065B1 (en) High performance active material for an infra-red decoy which emits spectral radiation upon combustion
EP2530064B1 (en) Active material for an infra-red decoy with area effect which emits spectral radiation upon combustion
DE3243425C2 (en)
EP2698362B1 (en) Material for a spectral decoy flare which burns the material
US20090120545A1 (en) Infra-Red Decoy Flare
DE884170C (en) Gas Generating Charge
DE19964172B4 (en) Pyrotechnic set for generating IR radiation
EP2646400A2 (en) Perchlorate-free pyrotechnic mixture
DE102010053783A1 (en) High-performance active mass, useful for pyrotechnic infrared decoys, comprises a first fuel, a second fuel, an oxidizing agent and a binder, where oxidizing agent is capable of oxidizing first fuel after ignition in an exothermic reaction
EP2602239B1 (en) Active material for an infra-red decoy with area effect which emits mainly spectral radiation upon combustion
WO2000066517A1 (en) Ignition mixture
DE102019111722B3 (en) Pyrotechnic active mass for infrared targets
DE102010053812A1 (en) Pyrotechnic mock target active mass useful for infrared mock target, comprises a first particle comprising a first fuel, a second particle comprising the first or a second fuel, an oxidant for the first fuel and a binder
EP2695870B1 (en) Active pyrotechnic materials containing a combustion accelerating agent
DE102011116594B4 (en) Use of zirconium or a mixture containing zirconium
EP2360134A2 (en) Non-toxic, heavy metal-free zinc peroxide-containing IR tracer compositions and IR tracer projectiles containing same generating a dim visability IR trace
DE102007011662A1 (en) pyrotechnic active mass (I) for the production of IR radiation, useful in military field, comprises oxidizers of fluoro nitro formate and fluoronitramide of alkali- and alkaline earth metal and its derivatives
DE912312C (en) Gas Generating Charge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DIEHL DEFENCE GMBH & CO. KG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: C06C 15/00 20060101AFI20170810BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180312

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190103

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190412

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012015200

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1172214

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190828

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191230

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191128

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191228

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012015200

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1172214

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230526

Year of fee payment: 12

Ref country code: CH

Payment date: 20230605

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230524

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230719

Year of fee payment: 12