EP2304757B1 - Bimetallteil und damit ausgestattete temperaturabhängige schalter - Google Patents

Bimetallteil und damit ausgestattete temperaturabhängige schalter Download PDF

Info

Publication number
EP2304757B1
EP2304757B1 EP10724491.5A EP10724491A EP2304757B1 EP 2304757 B1 EP2304757 B1 EP 2304757B1 EP 10724491 A EP10724491 A EP 10724491A EP 2304757 B1 EP2304757 B1 EP 2304757B1
Authority
EP
European Patent Office
Prior art keywords
temperature
bimetal
bimetal part
region
inner region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10724491.5A
Other languages
English (en)
French (fr)
Other versions
EP2304757A1 (de
Inventor
Marcel P. Hofsaess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hofsaess Marcel P
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102009025221A external-priority patent/DE102009025221A1/de
Application filed by Individual filed Critical Individual
Priority to PL10724491T priority Critical patent/PL2304757T3/pl
Publication of EP2304757A1 publication Critical patent/EP2304757A1/de
Application granted granted Critical
Publication of EP2304757B1 publication Critical patent/EP2304757B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/12Contacts characterised by the manner in which co-operating contacts engage
    • H01H1/14Contacts characterised by the manner in which co-operating contacts engage by abutting
    • H01H1/24Contacts characterised by the manner in which co-operating contacts engage by abutting with resilient mounting
    • H01H1/26Contacts characterised by the manner in which co-operating contacts engage by abutting with resilient mounting with spring blade support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting
    • H01H2037/5463Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting the bimetallic snap element forming part of switched circuit

Definitions

  • the present invention relates to a bimetal part for use as an active switching element in a temperature-dependent switch and equipped with the bimetal temperature-dependent switch.
  • the GB 2 325 345 A as well as that US 1 668 973 A describe in each case such a bimetal part, which has at least one inner region and an outer region surrounding the at least one inner region, wherein inner and outer regions are formed integrally with each other in sections and mechanically separated from each other in sections, and wherein at least one contact surface is provided on the inner region ,
  • the known bimetal parts are formed as an approximately rectangular bimetallic spring with two outer webs and an inner web extending therebetween, wherein in the webs curved portions are provided, which cause the outer webs and the inner web each have different lengths.
  • a bimetal part is understood as meaning a multilayer active, sheet-metal component made of two, three or four components which are inseparably connected to one another and have different coefficients of expansion.
  • the connection of the individual layers of metals or metal alloys are cohesively or positively and are achieved for example by rolling.
  • Such bimetal parts are commercially available as sheets, see for example the company G. Rau GmbH & Co. KG, Kaiser-Friedrich-Str. 7, 75172 Pforzheim, as well as their corresponding Internet presence under www.rau-pforzheim.de.
  • the bimetallic part is part of a temperature-dependent switching mechanism which establishes or opens an electrically conductive connection as a function of its temperature between two fixed contact parts provided on the switch.
  • the bimetal is usually designed as a cantilever spring or as a loosely inserted disc.
  • the bimetal part as in the DE 198 16 807 A1 is designed as a bimetallic spring tongue, so it carries at its free end a movable contact part, which cooperates with a fixed contact part.
  • the fixed contact part is electrically connected to a first outer terminal, wherein a second outer terminal is electrically connected to the clamped end of the bimetallic spring tongue.
  • the bimetallic spring tongue closes the electrical circuit between the two outer terminals by pressing the movable contact part against the fixed contact part.
  • the bimetal tongue As the temperature of the bimetal tongue increases, it begins to stretch and deform in a creep until it finally reaches its open position umspringt in which it lifts the movable contact part of the fixed contact part. In this creep phase, the contact pressure decreases, which can lead to the formation of arcing, contact erosion and contact flutter.
  • the bimetallic part is designed as a bimetallic disc, it generally interacts with a spring snap-action disc which carries the movable contact part which cooperates with the fixed contact part in the manner described above.
  • the spring snap disc is supported by its edge on an electrode which is connected to the second external connection.
  • Such a switch is for example in the DE 21 21 802 A or the DE 196 09 310 A1 described.
  • the bimetallic disc Below its response temperature, the bimetallic disc is loosely inserted, so it is mechanically unloaded.
  • the contact pressure between the fixed and movable contact part and thus the electrical connection between the two outer terminals is provided via the spring snap disk.
  • the creep phase has no negative impact on the contact pressure.
  • the bimetal part itself is current-flowed, so that it heats up by the current flowing through the switch.
  • the known switch not only reacts to external temperature increases, it also responds to a high current flow.
  • the bimetal part In contrast, in the bimetal disc switch, the bimetal part always has no current, so it does not heat up due to the flowing current, so that such switches switch largely independent of current.
  • switches are known in which a bimetallic spring tongue cooperates with a Federschnappteil, which carries the flowing current, so that in these constructions, the bimetallic spring tongue itself carries no electricity.
  • switches are also known in which a bimetallic disc carries the movable contact part and thus current flows through it.
  • temperature-dependent switches with two external terminals are known, which are each connected to a fixed contact part, wherein an electrically conductive contact bridge is provided, which carries the flowing current when it rests against the fixed contact parts.
  • Such switches with contact bridge are eg in the DE 197 08 436 A1 described. They are intended for applications in which high rated currents flow through the switch, which would lead to a heavy load or self-heating of a live spring snap or bimetal part.
  • the contact bridge is supported by a Federschnappulation, which cooperates with a bimetallic disc. If the bimetal disc is below its response temperature, it is exposed without mechanical load in the switch, the spring snap disc presses the contact bridge against the fixed contact parts, so that the circuit is closed. When the temperature increases, the bimetallic disc snaps from its force-free closed position to its open position in which it works against the spring snap disc and lifts the contact bridge of the fixed contact parts.
  • the switches described so far are used to protect electrical equipment such as hair dryers, motors of alkaline pumps, irons, etc. from excessive temperature and possibly high current.
  • the known switches are connected with their external terminals in series in the supply circuit of the electrical equipment to be protected and also thermally coupled to the device to be protected.
  • the temperature-dependent switch opens the circuit and the protected device can cool down again.
  • the switching temperature is crucial for the provided by the switch safety function.
  • the switching temperature must have different values, which, however, must fluctuate only within narrow limits in order to provide the desired safety.
  • temperature-dependent switches with non-current-carrying bimetallic part are preferred because they have a more constant switching temperature.
  • the creep phase mentioned above is disadvantageous because, in the creep phase, the bimetallic part stretches unpredictably, as a result of which the contact pressure wears off. This can lead to unwanted contact flicker and thus undesirable contact erosion.
  • the switch variants with bimetallic disc and spring snap disc have the disadvantage that the bimetallic disc and the spring snap disc with respect to their mechanical and electrical properties each newly matched must be designed when designing switches with other transition temperatures or other allowable operating currents.
  • a bimetal part for a temperature-dependent switch which is formed as an elongated rectangle and is firmly clamped at its one narrow end, while it carries at its other narrow end a movable contact part, which cooperates with a fixed contact part such that when the switch is closed, the operating current of to be protected device flows through the bimetal and the two then in contact with each other contact parts.
  • the longitudinal sides of the bimetallic part are folded over so that the bimetal part is double-layered over approximately one quarter of its width on both longitudinal sides.
  • the upper layer of the double-layered longitudinal sides is removed by punching out rectangles which extend over approximately one quarter of the width of the bimetal part.
  • the lower layer single-layer side bars are formed, which define between them a central web in the upper position, which occupies half the width of the bimetallic part.
  • the side bars are shortened by V-shaped embossing, so that the middle bar protrudes.
  • the center bar bends opposite to the bend of the remaining bimetal part, thus snapping between the side bars. In this way, the temperature interval is to be reduced, within which the bimetal part snaps between its low temperature and its high temperature position.
  • the known bimetallic part is not exactly adjustable with respect to its transition temperature, wherein the transition temperature is not long-term stability because of the mechanical asymmetric loads.
  • bimetallic only as a cantilevered, current-carrying bimetallic spring can be used, which is associated with the disadvantages described above.
  • a similar bimetal part describes the US 2 249 837 A ,
  • the known bimetallic is formed in one layer as an elongated rectangle and is firmly clamped at its one narrow end, while it carries at its other narrow end a movable contact part, which cooperates with a fixed contact part such that when the switch is closed, the operating current of the device to be protected by the bimetal flows.
  • the bimetal part is divided by two longitudinal slots in a central web and two outer webs, wherein the webs at the narrow ends of the bimetallic integral with each other.
  • the bimetallic part is deformed by bending and heat treatment so that the central web is curved down more than the two outer webs.
  • the curvature of the central web is further adjusted as compared to the bending of the outer members, thereby changing the opening temperature of the bimetallic member-equipped temperature-dependent switch.
  • this known bimetallic is used only as a cantilevered, current-carrying bimetallic spring, which is associated with the disadvantages described above. Furthermore, the opening temperature must be adjusted by subsequent adjustments, which is also disadvantageous.
  • the present invention has the object, the bimetal mentioned above and the aforementioned temperature-dependent switch in such a way that the disadvantages encountered in the prior art are avoided, the mechanical design of the switch should be simple and inexpensive.
  • this object is achieved in the bimetallic part mentioned above in that the inner region and the outer region are provided with impressions in the form of cups (dimples) from different sides in such a way that their creep phases are suppressed, with the inner and outer regions being the same have mechanical properties.
  • the inventor of the present application has recognized that it is possible for bit metal parts, so to speak to provide an internal counterforce, in that the inner and the outer region deform oppositely in the region of the switching point. This is achieved by the opposing embossing as well as by the fact that inner and outer area are mechanically separated in sections, so that they There can move freely against each other there, on the other hand, but also in sections integrally formed with each other, so that they can not move against each other in the longitudinal or radial direction.
  • the bimetallic member may be firmly clamped to the outer portion at a plurality of locations so as to be limited in its longitudinal or radial extent.
  • the bimetal is designed as a whole symmetrical, resulting in favorable mechanical conditions and uniform mechanical loads.
  • the movements of the inner and outer area at the transition between high and low temperature position are not only in opposite directions, the paths to be traveled when bending through the areas are also the same size, which is due to the opposing imprint.
  • oppositely embossed is understood to mean that inner and outer regions are provided on different sides with indentations, also referred to as cups or dimples, whose openings thus lie on different sides of the bimetal part.
  • the new bimetallic part can be used in all switch designs mentioned at the beginning, the disclosures of DE 197 08 436 A1 . DE 21 21 802 A . DE 196 09 310 A1 and DE 198 16 807 A1 are therefore expressly made the subject of the present application.
  • the new bimetal part can be used without current or current flowing through, but it is not used as a cantilevered bimetallic spring, so it does not have the associated disadvantages.
  • the present invention also relates to a temperature-dependent switch with two external connections and a temperature-dependent switching mechanism which establishes or opens an electrically conductive connection as a function of its temperature between the two external terminals, wherein in the switching mechanism, the new bimetal is provided as an active switching element.
  • a major advantage of the new switch is that it can dispense with spring snap discs, so that the new switch can be constructed with few components and low overall height.
  • a further advantage is the fact that switches with different response temperatures and rated currents can now be of identical mechanical construction, only the respective bimetal part must be designed differently according to the transition temperatures and rated currents. A vote between a temperature-dependent switching bimetal and a spring snap as in the prior art is no longer required.
  • the bimetallic part is connected via its one area to one of the two external connections, and to its another area, preferably via a movable contact part, cooperates with a fixed contact part, which communicates with the other external connection.
  • the derailleur comprises a spring tongue which communicates at its fixed end with one of the two outer terminals and carries at its free end a movable contact part which cooperates with a fixed contact part which communicates with the other outer terminal, wherein upon reaching a switching temperature, the bimetal part cooperates with the spring tongue such that the movable contact part is lifted off the fixed contact part.
  • design variants with current-carrying bimetal have the further advantage that the contract pressure is applied by the bimetal, so that the switch is simple and built with low height.
  • the bimetallic part carries at its one area a contact bridge which cooperates with two fixed contact parts which are in each case in communication with one of the outer terminals.
  • the contact bridge can be supported directly by the bimetallic part, since it can ensure a permanently good contact pressure between the contact bridge and the stationary contacts because of the improved aging resistance, as long as the temperature remains below the response or Aufschnapptemperatur the bimetal.
  • the Federschnappulation previously used in the art is no longer required.
  • the bimetallic part may be formed as an approximately rectangular spring, which preferably comprises at least one extending in the longitudinal direction of the spring inner web and the outer region at least two extending in the longitudinal direction of the spring outer webs as the inner region, which receive the inner web between them and are separated by this over a respective longitudinally extending (L) gap, wherein more preferably, the inner web has comparable mechanical properties, such as the outer webs together.
  • the bimetal part is formed as a disc, wherein preferably the inner region is surrounded by a gap which is interrupted in sections, and further preferably the gap is serrated, meandering or undulating, wherein the inner region preferably has comparable mechanical properties like the outer area.
  • the inner region carries a movable contact part, which is preferably fixed in a form-locking or force-locking manner, and on which the at least one contact surface is formed, or carries a contact bridge with two contact surfaces, or if the contact surface is integrated in the one region ,
  • Both measures provide for a good electrical contact with a mating contact with which the contact surface cooperates.
  • the integrated contact surface influences the mechanical properties of the flexible bimetallic much lower than a positive or non-positively attached contact part.
  • the present invention also relates to a bimetal part for use as an active switching element in a temperature-dependent switch, with a flexible region in which a contact surface is integrated.
  • the bimetallic part can be constructed in a classical manner, so it does not have to have at least one inner region and an outer region surrounding the at least one inner region, the inner and outer regions being formed in sections and in sections mechanically separated from one another and embossed in opposite directions.
  • the contact surface preferably by plating or electroplating with a conductive material
  • the contact surface is adhesively bonded to one region, or the contact surface, preferably by rolling in of a conductive material, is positively connected to the one region.
  • the one area of the bimetallic part is provided with a contact area which makes it possible to electrically conduct and provide a low contact resistance to an adjacent contact area, without adversely affecting the flexibility of the bimetal part.
  • Fig. 1 shows a schematic plan view of a bimetal 10, which is formed in the present case as a rectangular spring 11.
  • the spring 11 is divided into an outer region 12 and an inner region 13.
  • the two areas 12 and 13 are partially formed integrally with each other. They are also partially separated by two longitudinally extending slots or slots 14 and 15 mechanically separated from each other so that an inner web 16 is formed, which is surrounded by two outer webs 17 and 18.
  • the slots or gaps 14, 15 are produced by punching, cutting or other suitable separation measures. Between two adjacent webs 16, 17; 16, 18 will thereby generate at least one such clearance, which allows these webs 16, 17, 18 to bend without mechanical interference by the respectively adjacent web 16, 17, 18. As long as this condition is met, the slots or gaps 14, 15 transverse to the longitudinal direction L can have a clear width between adjacent webs 16, 17, 18, which results from the separation method selected.
  • All three webs 16, 17, 18 are integrally connected to end regions 19, 20 of the sheet-metal part 11 which are opposite one another in the longitudinal direction L. In this way, the webs 17 and 18 and the end regions 19, 20 form the outer region 12, which completely surrounds the web 16, that is to say the inner region 13. The webs 16, 17, 18 can thus not shift in the longitudinal direction L against each other.
  • the inner region 13 into a plurality of mutually parallel inner webs 16, which are mechanically separated from each other by further gaps or slots parallel to the longitudinal direction L.
  • the bimetal part 10 is formed as a disc 22 which is circular in plan view in the illustrated embodiment.
  • the disc 22 may take other forms, for example, it may be made oval or elliptical.
  • the disc 22 also has an outer portion 12 surrounding an inner portion 13.
  • the two regions 12, 13 are mechanically separated from each other in sections by a gap 23 of circumferentially distributed V-shaped slots, so that the inner region 13 takes the form of a serrated star.
  • the V-shaped slots are interrupted at their tips 24, so that the inner and the outer region 13, 12 here in sections integrally merge into one another and are fixed in the radial direction R against each other.
  • V-shaped slots correspond in function to the slots or gaps 14, 15 in the spring 11 Fig. 1 and have also been produced by punching, cutting or other suitable separation measures. In this way, the inner region 13 and the outer region 12 can deform without being mechanically impeded in the region of the gap 23 by the region opposite to the respective slot.
  • V-shaped slots instead of the V-shaped slots, it is also possible to provide meandering or wave-shaped slots which are interrupted in sections in order to produce the one-piece connection between the inner and outer regions.
  • a region 21 is again indicated, in which a contact surface is integrated, as described below with reference to FIG Fig. 8 for an otherwise conventional bimetallic disc, ie without inner and outer region is explained.
  • the spring 11 and the disc 22 are punched out of a sheet of bimetal, whereby they get their outer shape and possibly already in this first operation with the slots 14, 15, 23 are provided.
  • the inner and outer regions 13, 12 are then embossed in such a way that their creep phases are suppressed, which was explained in the introduction.
  • One of these two punching operations can also be done during the first work.
  • both inner web 16 and outer webs 17 and 18 may have embossments on the top and bottom, just just with opposite arrangement and effect.
  • the inner and outer regions 12, 13 of the bimetal part are still in a plane when it is mechanically relaxed.
  • the bimetal part 10 when the bimetal part 10 is heating, the one area 12, 13 bends in one direction and the other at the same time in the other direction, when the transition temperature is exceeded. Due to the embossing and the choice of geometry while the creep phase is largely suppressed, so that the bending takes place abruptly and in opposite directions.
  • the bimetal part 10 Due to the selected geometry, the dimensions and a corresponding choice of material as well as the embossing, the bimetal part 10 thus contains its own abutment, as it were. This results in an internal force balance, so that it is possible to set a switching point, which is maintained very accurately, since the slow phases are efficiently suppressed.
  • the switching between the high and the low temperature position takes place abruptly and reproducibly over many switching cycles. Furthermore, the switching hysteresis is largely suppressed.
  • the bimetal part 10 can therefore absorb mechanical forces and conduct electricity over long periods of time without its properties changing as a result of aging processes.
  • the bimetal part 10 can thus be used in the two embodiments spring 11 and disc 22 as an active switching element in a temperature-dependent switch, as discussed in detail at the beginning.
  • the inner region 13 performs the switching function.
  • the bimetallic 10 is assigned a Federschnappteil that provides in the closed state of the switch for the contact pressure and possibly also the operating current of protective device leads.
  • the inner region 13 can thus directly carry a movable contact part or a contact bridge.
  • the properties of the new bimetallic part 10 can be used particularly effectively when the disc 22 is held immovably at its outer edge 25 or the spring 11 at its in the longitudinal direction L facing away from each other end faces 26, 27 relative to the switch.
  • the transition between the switch positions according to 3 and 4 occurs abruptly when exceeding or falling below the switching temperature, which is determined by material, geometry and embossing.
  • Fig. 5 is a schematic, sectional side view of a temperature-dependent switch 30 is shown, which is a first embodiment of the use of the bimetallic 10, which is formed in the present case as a spring 11, as an active switching element in a temperature-dependent switching mechanism.
  • the switch 30 comprises a pot-like lower part 31 made of conductive material, which is closed by a top 32 also conductive material.
  • the upper part 32 is placed with the interposition of an insulating layer 33 on a shoulder 34 of the lower part 31 and secured by a flanged edge 35 fixed to the lower part 31.
  • the lower part 31 has a circumferential side wall 36, on which the shoulder 34 is formed.
  • the spring 11 is supported in the in Fig. 5 shown closed position with its end faces 26 and 27, and thus with its outer region 12, acting on an electrode 37 as an inner bottom of the lower part 31 and is fixed by the side wall 36 in the longitudinal direction L.
  • the side wall 36 acts as an abutment in the sense of the abutment 28, 29 from 3 and 4 ,
  • the outer bridges, of which in Fig. 5 only the web 18 can be seen are bent downwardly, the inner web 16 is bent upward, thereby pressing a movable contact member 38 supported by it against a fixed contact part 39 which is arranged on the upper part 32.
  • the fixed contact part 39 is designed in the manner of a rivet, whose outer resting head 41 serves as the first external connection, with which thus the inner region 13 is in electrical connection.
  • the flanged edge 35 is used as the second outer terminal 42.
  • the spring 11 together with the movable contact part 38, a temperature-dependent switching mechanism 43, which produces or opens depending on its temperature, an electrically conductive connection between the external terminals 41 and 42.
  • the in Fig. 4 schematically corresponds to shown, the end faces 26, 27 via the bottom 37 in electrically conductive connection with the second outer terminal 42, while the movable contact part 38 is connected by contact with the fixed contact part 39 is electrically connected to the first outer terminal 41.
  • a contact surface 44 is provided on the movable contact part 38 which, when the switch 30 is closed, comes into contact with a contact surface 45 which is provided on the fixed contact part 39.
  • the spring 11 snaps without creeping abruptly from the in Fig. 5 shown configuration in its open position, which is schematically in Fig. 3 is shown.
  • the inner web 16 thereby bends downwards and lifts the movable contact part 38 from the fixed contact part 39, whereby the circuit is opened.
  • the outer webs 17, 18 also snap over.
  • the movable contact part 38 moves together with the inner web 16 between the outer webs 17 and 18 therethrough.
  • Fig. 6 shows a temperature-dependent switch 50, as he from the above-mentioned DE 197 08 46 A1 is known, the disclosure of which is hereby expressly made the subject of the present application.
  • the switch 50 has a lower part 51 which is closed by an upper part 52.
  • two fixed contact parts 53, 54 are arranged, which are connected to external terminals 55, 56.
  • With the fixed contact parts 53, 54 two contact surfaces act together on a contact bridge 57, which is fastened via a rivet 58 to the inner web 16 of a bimetal part 10 designed as a spring 11 according to the invention.
  • the spring 11 is fixed with its end faces 26, 27 in a groove 61 of the lower part 51, which thus serves as an abutment.
  • the spring 11 forms here together with the contact bridge 57 and the rivet 58, a temperature-dependent switching mechanism 62, which makes or opens depending on its temperature, an electrically conductive connection between the external terminals 55 and 56.
  • the outer webs 17, 18 also snap into their high-temperature position, with the contact bridge 57 moving together with the inner web 16 between the outer webs 17 and 18.
  • a temperature-dependent switch 70 is shown in which the disc 22 from Fig. 2 is used as an active switching element.
  • the disk is not traversed by the current to be switched, as in the switch 30 Fig. 5 Also, it does not produce the contact pressure as in the switch 50 Fig. 6 ,
  • the switch 70 has a plastic body 71, which is closed at the top and bottom by sheets 72, 73, which also serve as external connections.
  • a spring tongue 74 On the upper plate 72 is in electrically conductive connection to a spring tongue 74 which carries at its free end a movable contact member 75 which is in the illustrated low-temperature position with a fixed contact member 76 in abutment, which is arranged on the lower plate 73.
  • a receiving space 78 is formed by a wall 77, in which the disc 22 is located, which rests with its edge 25 of the serving as abutment edge 77 and is fixed so in the radial direction R.
  • a movable contact or a contact bridge to assemble may be provided on the bimetallic part 10, a region 21 in which a contact surface is integrated, as shown in the Fig. 1 and 2 is indicated.
  • a contact surface 82 connected in a materially joined manner to the region 21 can be produced.
  • the contact surface 82 can be produced by rolling in a conductive material 83, for example of gold wires, whereby the contact surface is positively connected to the region 21.
  • the flexible region 21 of the bimetallic disc 81 is provided with a highly electrically conductive contact surface 82, which has a low contact resistance to an adjacent contact surface, wherein the flexibility of the bimetallic part is not adversely affected.
  • the bimetallic disc 81 may be at the switch Fig. 5 or 6 can be used, wherein the movable contact part 38 and the contact bridge 57 are now replaced so to speak by the integrated contact surface 82.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Thermally Actuated Switches (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Bimetallteil zur Verwendung als aktives Schaltelement in einem temperaturabhängigen Schalter sowie mit dem Bimetallteil ausgestattete temperaturabhängige Schalter.
  • Die GB 2 325 345 A sowie das US 1 668 973 A beschreiben jeweils ein derartiges Bimetallteil, das zumindest einen inneren Bereich sowie einen den zumindest einen inneren Bereich umgebenden äußeren Bereich aufweist, wobei innerer und äußerer Bereich abschnittsweise einstückig miteinander und abschnittsweise mechanisch voneinander getrennt ausgebildet sind, und wobei an dem inneren Bereich zumindest eine Kontaktfläche vorgesehen ist.
  • Die bekannten Bimetallteile sind als etwa rechteckige Bimetallfeder mit zwei äußeren Stegen und einem dazwischen verlaufenden inneren Steg ausgebildet, wobei in den Stegen gekrümmte Bereiche vorgesehen sind, die dazu führen, dass die äußeren Stege und der innere Steg jeweils unterschiedliche Längen aufweisen.
  • Im Rahmen der vorliegenden Erfindung wird unter Bimetallteil ein mehrlagiges aktives, blechförmiges Bauteile aus zwei, drei oder vier untrennbar miteinander verbundenen Komponenten mit unterschiedlichem Ausdehnungskoeffizienten verstanden. Die Verbindung der einzelnen Lagen aus Metallen oder Metalllegierungen sind stoffschlüssig oder formschlüssig und werden beispielsweise durch Walzen erreicht.
  • Derartige Bimetallteile sind als Bleche kommerziell verfügbar, siehe beispielsweise die Firma G. Rau GmbH &Co. KG, Kaiser-Friedrich-Str. 7, 75172 Pforzheim, sowie deren entsprechenden Internetauftritt unter www.rau-pforzheim.de.
  • Aus der EP 0 658 911 B1 ist es in diesem Zusammenhang bekannt, mehrlagige Bimetallteile als Federn und Scheiben in temperaturabhängigen Schaltern einzusetzen, wobei durch entsprechende Materialauswahl und -zusammenstellung eine Erhöhung der möglichen Nennströme und der Schalthysterese erzielt werden soll.
  • Das Bimetallteil ist dabei Teil eines temperaturabhängigen Schaltwerks, das in Abhängigkeit von seiner Temperatur zwischen zwei an dem Schalter vorgesehenen festen Kontaktteilen eine elektrisch leitende Verbindung herstellt oder öffnet.
  • Aus dem Stand der Technik sind derartige temperaturabhängige Schalter in unterschiedlichen Konstruktionen bekannt.
  • Das Bimetallteil ist dabei in der Regel als einseitig eingespannte Feder oder als lose eingelegte Scheibe ausgebildet.
  • Wenn das Bimetallteil wie in der DE 198 16 807 A1 als Bimetallfederzunge ausgebildet ist, so trägt es an seinem freien Ende ein bewegliches Kontaktteil, das mit einem festen Kontaktteil zusammenwirkt. Das feste Kontaktteil ist elektrisch mit einem ersten Außenanschluss verbunden, wobei ein zweiter Außenanschluss elektrisch mit dem eingespannten Ende der Bimetallfederzunge verbunden ist.
  • Die Bimetallfederzunge schließt unterhalb ihrer Ansprechtemperatur den elektrischen Stromkreis zwischen den beiden Außenanschlüssen, indem es das bewegliche Kontaktteil gegen das feste Kontaktteil drückt.
  • Erhöht sich die Temperatur der Bimetallfederzunge, so beginnt sich diese zu strecken und in einer Schleichphase zu verformen, bis sie schließlich in ihre Offenstellung umspringt, in der sie das bewegliche Kontaktteil von dem festen Kontaktteil abhebt. In dieser Schleichphase verringert sich der Kontaktdruck, was zur Bildung von Lichtbögen, Kontaktabbrand und Kontaktflattern führen kann.
  • Ist das Bimetallteil dagegen als Bimetallscheibe ausgelegt, so wirkt sie in der Regel mit einer Federschnappscheibe zusammen, die das bewegliche Kontaktteil trägt, das in der oben beschriebenen Weise mit dem festen Kontaktteil zusammenwirkt. Die Federschnappscheibe stützt sich mit ihrem Rand an einer Elektrode ab, die mit dem zweiten Außenanschluss verbunden ist. Ein solcher Schalter ist beispielsweise in der DE 21 21 802 A oder der DE 196 09 310 A1 beschrieben.
  • Unterhalb ihrer Ansprechtemperatur ist die Bimetallscheibe lose eingelegt, ist also mechanisch unbelastet. Der Kontaktdruck zwischen festem und beweglichem Kontaktteil und damit die elektrische Verbindung zwischen den beiden Außenanschlüssen wird über die Federschnappscheibe bereitgestellt. Erhöht sich die Temperatur des bekannten temperaturabhängigen Schalters, so durchläuft die Bimetallscheibe eine Schleichphase, in der sie sich allmählich verformt, bis sie dann schlagartig in ihre Offenstellung umspringt, in der sie so auf die Federschnappscheibe einwirkt, dass sie das bewegliche Kontaktteil von dem festen Kontaktteil abhebt und somit den bekannten Schalter öffnet. Hier hat die Schleichphase keine negativen Auswirkungen auf den Kontaktdruck.
  • Bei dem oben beschriebenen Schalter mit der Bimetallfederzunge ist das Bimetallteil selbst stromdurchflossen, so dass es sich durch den durch den Schalter fließenden Strom aufheizt. Auf diese Weise reagiert der bekannte Schalter nicht nur auf externe Temperaturerhöhungen, er reagiert auch auf einen zu hohen Stromfluss.
  • Derartige Schalter reagieren daher temperaturabhängig und stromabhängig.
  • Im Gegensatz dazu ist bei dem Schalter mit Bimetallscheibe das Bimetallteil immer stromfrei, es erwärmt sich also durch den fließenden Strom nicht, so dass derartige Schalter weitgehend stromunabhängig schalten.
  • Es sind aber auch Schalter bekannt, bei denen eine Bimetallfederzunge mit einem Federschnappteil zusammenwirkt, das den fließenden Strom führt, so dass bei diesen Konstruktionen die Bimetallfederzunge selbst keinen Strom führt. Umgekehrt sind auch Schalter bekannt, bei denen eine Bimetallscheibe das bewegliche Kontaktteil trägt und somit stromdurchflossen ist.
  • Schließlich sind temperaturabhängige Schalter mit zwei Außenanschlüssen bekannt, die jeweils mit einem festen Kontaktteil verbunden sind, wobei eine elektrisch leitende Kontaktbrücke vorgesehen ist, die den fließenden Strom führt, wenn sie an den festen Kontaktteilen anliegt.
  • Derartige Schalter mit Kontaktbrücke sind z.B. in der DE 197 08 436 A1 beschrieben. Sie sind für Anwendungen vorgesehen, bei denen hohe Nennströme durch den Schalter fließen, die zu einer starken Belastung oder Eigenerwärmung eines stromführenden Federschnappteils oder Bimetallteils führen würden.
  • Die Kontaktbrücke wird dabei von einer Federschnappscheibe getragen, die mit einer Bimetallscheibe zusammenwirkt. Wenn die Bimetallscheibe sich unterhalb ihrer Ansprechtemperatur befindet, liegt sie ohne mechanische Belastung frei in dem Schalter, die Federschnappscheibe drückt die Kontaktbrücke gegen die festen Kontaktteile, so dass der Stromkreis geschlossen ist. Wenn sich die Temperatur erhöht, schnappt die Bimetallscheibe von ihrer kräftefreien Schließstellung in ihre Offenstellung um, in der sie gegen die Federschnappscheibe arbeitet und die Kontaktbrücke von den festen Kontaktteilen abhebt.
  • Auch bei dieser Schalterkonstruktion treten die oben erwähnten Probleme im Zusammenhang mit der Schleichphase der Bimetallscheibe auf, wenn diese unmittelbar die Kontaktbrücke trägt und für den Kontaktdruck sorgt. Deshalb ist bei dem bekannten Schalter die Federschnappscheibe vorgesehen, die auch in der Schleichphase der Bimetallscheibe den Kontaktdruck unverändert aufrechterhält.
  • Die insoweit beschriebenen Schalter werden dazu eingesetzt, um elektrische Geräte wie beispielsweise Haartrockner, Motoren von Laugenpumpen, Bügeleisen etc. vor zu hoher Temperatur und ggf. zu hohem Strom zu schützen. Zu diesem Zwecke werden die bekannten Schalter mit ihren Außenanschlüssen in Reihe in den Versorgungsstromkreis des zu schützenden elektrischen Gerätes geschaltet und ferner thermisch an das zu schützende Gerät angekoppelt.
  • Erhöht sich die Temperatur des zu schützenden Gerätes über die Schalttemperatur des Bimetallteils hinaus, so öffnet der temperaturabhängige Schalter den Stromkreis und das geschützte Gerät kann sich wieder abkühlen.
  • Um ein Wiedereinschalten nach dem Abkühlen des Gerätes und damit auch des Bimetallteiles zu verhindern, ist es ferner bekannt, dem temperaturabhängigen Schalter einen Parallelwiderstand zuzuordnen, der bei geöffnetem Schalter einen Reststrom durchlässt, der den Widerstand soweit aufheizt, dass der Schalter geöffnet bleibt. Derartige Schalter werden als selbsthaltende Schalter bezeichnet.
  • Ferner ist es bekannt, die bekannten Schalter mit einer definierten Stromabhängigkeit zu versehen, indem in Reihe zu den Außenanschlüssen ein Heizwiderstand geschaltet ist, der vom Betriebsstrom des zu schützenden elektrischen Gerätes durchflossen wird und sich bei zu hohem Betriebsstrom definiert aufheizt und dafür sorgt, dass der Schalter geöffnet wird, da sich auch das Bimetallteil entsprechend erhitzt.
  • Sowohl bei Schaltern mit stromdurchflossenem Bimetallteil als auch bei Schaltern mit stromfreiem Bimetallteil ist die Umschalttemperatur entscheidend für die durch den Schalter bereitgestellte Sicherheitsfunktion. Für unterschiedliche Anwendungen muss die Schalttemperatur unterschiedliche Werte einnehmen, die jedoch nur in engen Grenzen schwanken dürfen, um die gewünschte Sicherheit bereitzustellen.
  • Vor diesem Hintergrund wird bei dem Entwurf derartiger temperaturabhängiger Schalter größtes Augenmerk auf die Einhaltung der Sprungtemperatur gelegt.
  • Dabei sind temperaturabhängige Schalter mit nicht stromdurchflossenem Bimetallteil bevorzugt, da sie eine konstantere Umschalttemperatur aufweisen. Dies liegt u.a. daran, dass das Bimetallteil in der Schließstellung mechanisch kräftefrei ist, so dass sie deutlich geringeren Alterungsprozessen ausgesetzt ist als ein Bimetallteil, das in der Schließstellung für den Kontaktdruck sorgen muss, was bei den anderen Konstruktionen das Federschnappteil übernimmt.
  • Insbesondere bei stromdurchflossenen Bimetallteilen ist die oben erwähnte Schleichphase von Nachteil, denn in der Schleichphase streckt sich das Bimetallteil unvorhersehbar, wodurch der Kontaktdruck nachlässt. Dies kann zu einem unerwünschten Kontaktflackern und damit zu unerwünschtem Kontaktabbrand führen.
  • Um diese Probleme zu beseitigen, werden stromdurchflossene Bimetallteile mit Einprägungen versehen, die die Schleichphase größtenteils unterdrücken. Diese Einprägungen sorgen dafür, dass sich unterhalb der gewünschten Sprungtemperatur die Längenausdehnungen der beiden Metallschichten kompensieren. Dies führt jedoch zu mechanischen Spannungen innerhalb der Bimetallteile, was sich wiederum nachteilig auf den Alterungsprozess auswirkt.
  • Diese Probleme treten bei den losen eingelegten Bimetallteilen nicht auf, denn dort ist es nicht erforderlich, die Schleichphase zu unterdrücken.
  • Die Schaltervarianten mit Bimetallscheibe und Federschnappscheibe haben jedoch den Nachteil, dass die Bimetallscheibe und die Federschnappscheibe bezüglich ihrer mechanischen und elektrischen Eigenschaften jeweils neu aufeinander abgestimmt werden müssen, wenn Schalter mit anderen Sprungtemperaturen bzw. anderen zulässigen Betriebsströmen zu entwerfen sind.
  • Ein weiterer Nachteil bei den Schaltern mit Federschnappscheibe und Bimetallscheibe ist in der Vielzahl der erforderlichen Bauelemente zu sehen, die zudem für eine Bauhöhe sorgt, die in bestimmten Anwendungsfällen problematisch sein kann.
  • Aus der DE 1 590 324 A ist ein Bimetallteil für einen temperaturabhängigen Schalter bekannt, das als längliches Rechteck ausgebildet ist und an seinem einen Schmalende fest eingespannt wird, während es an seinem anderen Schmalende ein bewegliches Kontaktteil trägt, das mit einem festen Kontaktteil derart zusammenwirkt, dass bei geschlossenem Schalter der Betriebsstrom des zu schützenden Gerätes durch das Bimetallteil und die beiden dann in Anlage miteinander befindlichen Kontaktteile fließt.
  • Die Längsseiten des Bimetallteils sind so umgefalzt, dass an beiden Längsseiten das Bimetallteil über etwa je ein Viertel seiner Breite doppellagig ist. Zwischen dem beweglichen Kontaktteil und etwa der Hälfte der Länge des Bimetallteils ist die obere Schicht der doppellagigen Längsseiten durch Ausstanzen von Rechtecken entfernt, die sich über etwa je ein Viertel der Breite des Bimetallteils erstrecken. Auf diese Weise bilden sich in der unteren Lage einlagige Seitenstege aus, die zwischen sich einen Mittelsteg in der oberen Lage begrenzen, der die Hälfte der Breite des Bimetallteils einnimmt. Die Seitenstege sind durch v-förmige Prägung verkürzt, so dass der Mittelsteg sich vorwölbt.
  • Bei Erhöhung der Temperatur biegt sich der Mittelsteg entgegengesetzt zu der Biegung des restlichen Bimetallteiles, schnappt also zwischen den Seitenstegen durch. Auf diese Weise soll das Temperaturintervall verkleinert werden, innerhalb dessen das Bimetallteil zwischen seiner Tieftemperatur- und seiner Hochtemperaturstellung umschnappt.
  • Durch die teils einlagige und teils doppellagige Struktur des bekannten Bimetallteils sowie die Verkürzung der Seitenstege sind die Stellkräfte in dem Mittelsteg und in den Seitenstegen stark unterschiedlich. Ferner ist der Aufbau mechanisch komplex und in seiner Festigkeit durch die beiden ausgestanzten Rechtecke geschwächt.
  • Dies führt dazu, dass das bekannte Bimetallteil bezüglich seiner Sprungtemperatur nicht exakt einstellbar ist, wobei die Sprungtemperatur wegen der mechanisch asymmetrischen Belastungen nicht langzeitstabil ist.
  • Ferner ist das bekannte Bimetallteil nur als einseitig eingespannte, stromdurchflossene Bimetallfeder einsetzbar, was mit dem oben beschriebenen Nachteilen verbunden ist.
  • Ein ähnliches Bimetallteil beschreibt die US 2 249 837 A . Das bekannte Bimetallteil ist einlagig als längliches Rechteck ausgebildet und wird an seinem einen Schmalende fest eingespannt, während es an seinem anderen Schmalende ein bewegliches Kontaktteil trägt, das mit einem festen Kontaktteil derart zusammenwirkt, dass bei geschlossenem Schalter der Betriebsstrom des zu schützenden Gerätes durch das Bimetallteil fließt.
  • Das Bimetallteil ist durch zwei in Längsrichtung verlaufende Schlitze in einen Mittelsteg und zwei Außenstege unterteilt, wobei die Stege an den Schmalenden des Bimetallteils einstückig ineinander übergehen. Das Bimetallteil ist durch Biegen und Wärmebehandlung so verformt, dass der Mittelsteg stärker nach unten gekrümmt ist als die beiden Außenstege.
  • Durch Verstellen der relativen Höhe des festen Kontaktteils zu dem eingespannten Schmalende des Bimetallteils wird die Krümmung des Mittelstegs verglichen mit der Biegung der Außenstege weiter verstellt, wodurch die Öffnungstemperatur des mit dem Bimetallteil ausgerüsteten temperaturabhängigen Schalters verändert wird.
  • Auch dieses bekannte Bimetallteil ist nur als einseitig eingespannte, stromdurchflossene Bimetallfeder einsetzbar, was mit dem oben beschriebenen Nachteilen verbunden ist. Ferner muss die Öffnungstemperatur durch nachträgliche Justierarbeiten eingestellt werden, was ebenfalls nachteilig ist.
  • Durch die unterschiedliche Krümmung des Mittelsteges einerseits und der Seitenstege andererseits sind die Stellkräfte in dem Mittelsteg und in den Seitenstegen stark unterschiedlich. Dies führt dazu, dass bei dem bekannten die Sprungtemperatur wegen der mechanisch asymmetrischen Belastungen nicht langzeitstabil ist.
  • Vor diesem Hintergrund liegt der vorliegenden Erfindung die Aufgabe zugrunde, das eingangs erwähnte Bimetall und die eingangs erwähnten temperaturabhängigen Schalter derart weiterzubilden, dass die im Stand der Technik anzutreffenden Nachteile vermieden werden, wobei der mechanische Aufbau der Schalter einfach und preiswert sein soll.
  • Erfindungsgemäß wird diese Aufgabe bei dem eingangs erwähnten Bimetallteil dadurch gelöst, dass der innere Bereich und der äußere Bereich von unterschiedlicher Seite derart mit Einprägungen in Form von Näpfen (Dimplen) versehen sind, dass ihre Schleichphasen unterdrückt werden, wobei der innere und der äußere Bereich gleiche mechanische Eigenschaften aufweisen.
  • Die der Erfindung zugrunde liegende Aufgabe wird auf diese Weise vollkommen gelöst.
  • Der Erfinder der vorliegenden Anmeldung hat nämlich erkannt, dass es bei Bitmetallteilen möglich ist, sozusagen für eine innere Gegenkraft zu sorgen, indem der innere und der äußere Bereich sich im Bereich des Schaltpunkts entgegengesetzt verformen. Dies wird durch die gegensinnige Prägung sowie dadurch erreicht, dass innerer und äußerer Bereich abschnittsweise voneinander mechanisch getrennt sind, so dass sie sich dort frei gegeneinander bewegen können, andererseits aber auch abschnittsweise einstückig miteinander ausgebildet sind, so dass sie sich in Längs- oder Radialrichtung nicht gegeneinander verschieben können.
  • Dies führt nach Erkenntnis des Erfinders dazu, dass die Schleichphasen sozusagen abgeblockt werden. Der Schaltpunkt ist langzeitstabil und wird durch mechanische Belastungen, durch Stromfluss oder Alterungsprozesse nicht beeinflusst. Ferner erfolgt die Konformationsänderung zwischen Hoch- und Tieftemperaturstellung sehr schlagartig. Schließlich tritt keine oder nur eine vernachlässigbare Schalthysterese auf.
  • Weil die Kontaktfläche an dem inneren Bereich vorgesehen ist, kann das Bimetallteil an dem äußeren Bereich an mehreren Stellen fest eingespannt werden, so dass es in seiner Längs- oder Radialausdehnung beschränkt wird. Damit wird ein gegensinniges Durchbiegen von innerem und äußerem Bereich erzwungen, wobei das Bimetallteil insgesamt symmetrisch ausgelegt ist, was zu günstigen mechanischen Gegebenheiten und gleichmäßigen mechanischen Belastungen führt.
  • Ferner sind die Bewegungen von innerem und äußeren Bereich beim Übergang zwischen Hoch- und Tieftemperaturstellung nicht nur gegenläufig, die beim Durchbiegen von den Bereichen zurückzulegenden Wege sind auch gleich groß, was an der gegensinnigen Prägung liegt.
  • All dies führt dazu, dass mit dem neuen Bimetallteil ausgestattete temperaturabhängige Schalter über viele Schaltzyklen sehr zuverlässig und reproduzierbar schalten.
  • Wie Bimetallteile mit Prägungen versehen werden, ist im Stand der Technik hinreichend bekannt. Unter "gegensinnig geprägt" wird nun im Rahmen der vorliegenden Erfindung verstanden, dass innerer und äußerer Bereich von unterschiedlicher Seite mit Einprägungen, auch als Näpfe oder Dimple bezeichnet, versehen werden, deren Öffnungen also auf unterschiedlichen Seiten des Bimetallteils liegen.
  • Die neue Bimetallteil kann bei allen eingangs erwähnten Schalterkonstruktionen verwendet werden, die Offenbarungen der DE 197 08 436 A1 , DE 21 21 802 A , DE 196 09 310 A1 und DE 198 16 807 A1 werden daher hiermit ausdrücklich zum Gegenstand der vorliegenden Anmeldung gemacht.
  • Das neue Bimetallteil kann stromfrei oder stromdurchflossen verwendet werden, es wird jedoch nicht als einseitig eingespannte Bimetallfeder verwendet, so dass es die damit verbundenen Nachteile nicht aufweist.
  • Vor diesem Hintergrund betrifft die vorliegende Erfindung auch einen temperaturabhängiger Schalter mit zwei Außenanschlüssen und einem temperaturabhängigen Schaltwerk, das in Abhängigkeit von seiner Temperatur zwischen den beiden Außenanschlüssen eine elektrisch leitende Verbindung herstellt oder öffnet, wobei in dem Schaltwerk das neue Bimetallteil als aktives Schaltelement vorgesehen ist.
  • Ein großer Vorteil des neuen Schalters liegt darin, dass auf Federschnappscheiben verzichtet werden kann, so dass der neue Schalter mit wenigen Bauteilen und geringer Bauhöhe aufgebaut werden kann.
  • Ein weiterer Vorteil ist darin zu sehen, dass Schalter mit unterschiedlichen Ansprechtemperaturen und Nennströmen jetzt mechanisch prinzipiell identisch aufgebaut sein können, nur das jeweilige Bimetallteil muss entsprechend der Sprungtemperaturen und Nennströme unterschiedlich ausgelegt sein. Eine Abstimmung zwischen einem temperaturabhängig schaltenden Bimetallteil sowie einer Federschnappscheibe wie im Stand der Technik ist nicht mehr erforderlich.
  • Damit kann eine bestehende Produktpalette auch nachträglich problemlos erweitert werden, indem weitere Bimetallteile entwickelt und verbaut werden.
  • Einerseits ist es dementsprechend bevorzugt, wenn das Bimetallteil über seinen einen Bereich mit einem der beiden Außenanschlüsse in Verbindung steht, und an seinen anderen Bereich, vorzugsweise über ein bewegliches Kontaktteil, mit einem festen Kontaktteil zusammenwirkt, das mit dem anderen Außenanschluss in Verbindung steht.
  • In einer Alternative umfasst das Schaltwerk eine Federzunge, die an ihrem festgelegten Ende mit einem der beiden Außenanschlüsse in Verbindung steht, und an ihrem freien Ende ein bewegliches Kontaktteil trägt, das mit einem festen Kontaktteil zusammenwirkt, das mit dem anderen Außenanschluss in Verbindung steht, wobei das Bimetallteil bei Erreichen einer Schalttemperatur mit der Federzunge derart zusammenwirkt, dass das bewegliche Kontaktteil von dem festen Kontaktteil abgehoben wird.
  • Diese sind die beiden "klassischen" Konstruktionsvarianten für temperaturabhängige Schalter, die jetzt beide von dem erfindungsgemäßen Bimetallteil Gebrauch machen.
  • Dabei haben Konstruktionsvarianten mit stromdurchflossenem Bimetallteil den weiteren Vorteil, dass der Kontraktdruck durch das Bimetallteil aufgebracht wird, so dass der Schalter einfach und mit geringer Bauhöhe aufgebaut ist.
  • Weiter ist es bevorzugt, wenn das Bimetallteil an seinen einen Bereich eine Kontaktbrücke trägt, die mit zwei festen Kontaktteilen zusammenwirkt, die jeweils mit einem der Außenanschlüsse in Verbindung stehen.
  • Bei dieser Verwendung des erfindungsgemäßen Bimetallteils kann die Kontaktbrücke unmittelbar von dem Bimetallteil getragen werden, da es wegen der verbesserten Alterungsbeständigkeit für einen dauerhaft guten Kontaktdruck zwischen der Kontaktbrücke und den stationären Kontakten sorgen kann, solange die Temperatur unterhalb der Ansprech- oder Umschnapptemperatur des Bimetallteils bleibt. Die im Stand der Technik bisher verwendete Federschnappscheibe ist nicht mehr erforderlich.
  • Das Bimetallteil kann dabei als etwa rechteckige Feder ausgebildet sein, die vorzugsweise als inneren Bereich zumindest einen sich in Längsrichtung der Feder erstreckenden inneren Steg und als äußeren Bereich zumindest zwei sich in Längsrichtung der Feder erstreckende äußere Stege umfasst, die den inneren Steg zwischen sich aufnehmen und von diesem über je einen sich in Längsrichtung (L) erstreckenden Spalt getrennt sind, wobei weiter vorzugsweise der innere Steg vergleichbare mechanische Eigenschaften aufweist, wie die äußeren Stege zusammen.
  • Durch diese Maßnahmen wird ein aktives Schaltelement geschaffen, das auch nach vielen Schaltspielen seine mechanischen und elektrischen Eigenschaften nicht verändert und nahezu ohne Schleichphase schaltet, so dass die mit der Schleichphase im Stand der Technik verbundenen Nachteile vermieden werden.
  • Alternativ ist es bevorzugt, wenn das Bimetallteil als Scheibe ausgebildet ist, wobei vorzugsweise der innere Bereich von einem Spalt umgeben ist, der abschnittsweise unterbrochen ist, und weiter vorzugsweise der Spalt gezackt, mäanderförmig oder wellenförmig verläuft, wobei der innere Bereich vorzugsweise vergleichbare mechanische Eigenschaften aufweist wie die äußeren Bereich.
  • Auch diese Maßnahmen schaffen ein langzeitstabiles aktives Schaltelement.
  • Allgemein ist es bevorzugt, wenn der innere Bereich ein bewegliches Kontaktteil trägt, das vorzugsweise formschlüssig oder kraftschlüssig festgelegt ist, und an dem die zumindest eine Kontaktfläche ausgebildet ist, oder eine Kontaktbrücke mit zwei Kontaktflächen trägt, oder wenn die Kontaktfläche in den einen Bereich integriert ist.
  • Durch beide Maßnahmen wird für einen guten elektrischen Kontakt zu einem Gegenkontakt gesorgt, mit dem die Kontaktfläche zusammenwirkt.
  • Wenn dazu ein Kontaktteil eingesetzt wird, das formschlüssig oder kraftschlüssig festgelegt ist, so werden dadurch die mechanischen Eigenschaften des Bimetallteils erheblich weniger beeinflusst, als wenn das Kontaktteil - wie im Stand der Technik - stoffschlüssig mit dem Bimetallteil verbunden würde, was dort insbesondere durch Schweißen erfolgt. Diese stoffschlüssige Verbindung hat nach Erkenntnis des Erfinders der vorliegenden Anmeldung jedoch den Nachteil, dass dadurch die mechanischen und elektrischen Eigenschaften des Bimetallteils nachträglich unvorhersehbar verändert werden.
  • Diese Probleme treten bei der kraftschlüssigen oder formschlüssigen Verbindung, die beispielsweise durch Kleben, Nieten oder Klemmen erreicht werden kann, nicht mehr auf.
  • Mit der formschlüssigen bzw. kraftschlüssigen Verbindung des beweglichen Kontaktteiles mit dem Bimetallteil ist also der Vorteil verbunden, dass die einmal eingestellten mechanischen und elektrischen Eigenschaften des Bimetallteils nachträglich nicht verändert werden.
  • Diese Maßnahme sorgt also für eine weitere Stabilität und Zuverlässigkeit des Schaltpunktes.
  • Besondere Vorteile ergeben sich jedoch, wenn die Kontaktfläche in den einen Bereich integriert ist. Denn dann kann auf das gesonderte bewegliche Kontaktteil verzichtet werden, was Kostenvorteile und Montagvorteile mit sich bringt.
  • Die integrierte Kontaktfläche beeinflusst die mechanischen Eigenschaften des flexiblen Bimetallteils noch erheblich geringer als ein formschlüssig oder kraftschlüssig befestigtes Kontaktteil.
  • Diese integrierte Kontaktfläche ist auch für sich genommen neu und erfinderisch. Vor diesem Hintergrund betrifft die vorliegende Erfindung auch ein Bimetallteil zur Verwendung als aktives Schaltelement in einem temperaturabhängigen Schalter, mit einem flexiblen Bereich, in den eine Kontaktfläche integriert ist.
  • Das Bimetallteil kann dabei klassisch aufgebaut sein, es muss also nicht zumindest einen inneren Bereich sowie einen den zumindest einen inneren Bereich umgebenden äußeren Bereich aufweisen, wobei innerer und äußerer Bereich abschnittsweise einstückig und abschnittsweise mechanisch voneinander getrennt ausgebildet und gegensinnig geprägt sind.
  • Dabei ist es allgemein bevorzugt, wenn entweder die Kontaktfläche, vorzugsweise durch Plattieren oder Galvanisieren mit einem leitfähigen Material, stoffschlüssig mit dem einen Bereich verbunden ist, oder die Kontaktfläche, vorzugsweise durch Einwalzen eines leitfähigen Materials, formschlüssig mit dem einen Bereich verbunden ist.
  • Auf diese Weise wird der eine Bereich des Bimetallteils mit einer elektrisch gut leitenden und einen geringen Übergangswiderstand zu einer anliegenden Kontaktfläche ermöglichenden Kontaktfläche versehen, ohne das die Flexibilität des Bimetallteils negativ beeinflusst wird.
  • Weitere Vorteile ergeben sich aus der Beschreibung und der beigefügten Zeichnung.
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in den jeweils angegebenen Kombinationen, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Drei Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
  • Figur 1
    eine schematische Ansichten eines ersten Ausführungsbeispiels eines erfindungsgemäßen Bimetallteils in Draufsicht;
    Figur 2
    eine schematische Ansichten eines zweiten Ausführungsbeispiels eines erfindungsgemäßen Bimetallteils in Draufsicht;
    Figur 3
    eine schematische Seitenansicht des Bimetallteils aus Fig. 1 in einer ersten Schaltstellung;
    Figur 4
    eine schematische Seitenansicht des Bimetallteils aus Fig. 1 in einer zweiten Schaltstellung;
    Figur 5
    in einer schematischen Schnittdarstellung ein erstes Ausführungsbeispiel eines temperaturabhängigen Schalters mit dem Bimetallteil aus Fig. 1;
    Figur 6
    ein zweites Ausführungsbeispiel eines temperaturabhängigen Schalters mit dem Bimetallteil aus Fig. 1;
    Figur 7
    ein drittes Ausführungsbeispiel eines temperaturabhängigen Schalters mit dem Bimetallteil aus Fig. 1; und
    Figur 8
    eine Draufsicht auf ein Bimetallteil mit integrierter Kontaktfläche.
  • Fig. 1 zeigt in einer schematischen Draufsicht ein Bimetallteil 10, das im vorliegenden Fall als rechteckige Feder 11 ausgebildet ist. Die Feder 11 ist in einen äußeren Bereich 12 und einen inneren Bereich 13 unterteilt.
  • Die beiden Bereiche 12 und 13 sind abschnittsweise einstückig miteinander ausgebildet. Sie sind ferner abschnittsweise durch zwei in Längsrichtung L verlaufende Schlitze oder Spalte 14 und 15 mechanisch so von einander getrennt, dass sich ein innerer Steg 16 bildet, der von zwei äußeren Stegen 17 und 18 umgeben ist.
  • Die Schlitze oder Spalte 14, 15 werden durch Stanzen, Schneiden oder sonstige, geeignete Trennmaßnahmen erzeugt. Zwischen zwei benachbarten Stegen 16, 17; 16, 18 wird dabei zumindest ein derartiger Freiraum erzeugen, der es diesen Stegen 16, 17, 18 ermöglicht, sich ohne mechanische Behinderung durch den jeweils benachbarten Steg 16, 17, 18 zu verbiegen. Solange diese Bedingung erfüllt ist, können die Schlitze oder Spalte 14, 15 quer zur Längsrichtung L eine lichte Weite zwischen benachbarten Stegen 16, 17, 18 aufweisen, die sich durch das gewählte Trennverfahren ergibt.
  • Alle drei Stege 16, 17, 18 sind einstückig mit sich in Längsrichtung L gegenüberliegenden Endbereichen 19, 20 des Blechteils 11 verbunden. Auf diese Weise bilden die Stege 17 und 18 sowie die Endbereiche 19, 20 den äußeren Bereich 12, der den Steg 16, also den inneren Bereich 13 vollständig umgibt. Die Stege 16, 17, 18 können sich somit in Längsrichtung L nicht gegeneinander verlagern.
  • Selbstverständlich ist es möglich, den inneren Bereich 13 in mehrere parallel zueinander verlaufende innere Stege 16 zu unterteilen, die durch weitere Spalte oder Schlitze parallel zur Längsrichtung L mechanisch voneinander getrennt sind.
  • An dem inneren Steg 16 ist bei 21 ein Bereich angedeutet, an dem entweder gemäß dem Beispiel der Fig. 5 ein Kontaktteil kraft- oder formschlüssig befestigt wird, gemäß dem Beispiel der Fig. 6 eine Kontaktbrücke befestigt wird, oder an dem eine integrierte Kontaktfläche vorgesehen ist, wie dies nachstehend im Zusammenhang mit Fig. 8 noch eingeheder erläutert wird.
  • In einem in Fig. 2 dargestellten, zweiten Ausführungsbeispiel ist das Bimetallteil 10 als Scheibe 22 ausgebildet, die im gezeigten Ausführungsbeispiel in der Draufsicht kreisrund ist. Die Scheibe 22 kann jedoch auch andere Formen annehmen, beispielsweise kann sie oval oder elliptisch ausgeführt sein.
  • Die Scheibe 22 weist ebenfalls einen äußeren Bereich 12 auf, der einen inneren Bereich 13 umgibt. Die beiden Bereiche 12, 13 sind durch einen Spalt 23 aus umfänglich verteilt angeordneten V-förmige Schlitzen abschnittsweise mechanisch voneinander getrennt, so dass der inneren Bereich 13 die Form eines gezackten Sterns annimmt. Die V-förmigen Schlitze sind an ihren Spitzen 24 unterbrochen, so dass der innere und der äußere Bereich 13, 12 hier abschnittsweise einstückig ineinander übergehen und in Radialrichtung R gegeneinander fixiert sind.
  • Die V-förmigen Schlitze entsprechen von ihrer Funktion her den Schlitzen oder Spalten 14, 15 in der Feder 11aus Fig. 1 und sind ebenfalls durch Stanzen, Schneiden oder sonstige, geeignete Trennmaßnahmen erzeugt worden. Auf diese Weise können sich der innere Bereich 13 und der äußere Bereich 12 verformen, ohne im Bereich des Spalts 23 durch den am jeweiligen Schlitz gegenüberliegenden Bereich mechanisch behindert zu werden.
  • Statt der V-förmigen Schlitze können auch mäander- oder wellenförmige Schlitze vorgesehen sein, die abschnittsweise unterbrochen sind, um die einstückige Verbindung zwischen innerem und äußerem Bereich herzustellen.
  • An dem inneren Bereich 13 ist wieder ein Bereich 21 angedeutet, in dem eine Kontaktfläche so integriert ist, wie dies nachstehend anhand von Fig. 8 für eine ansonsten konventionelle Bimetallscheibe, also ohne inneren und äußeren Bereich, erläutert wird.
  • Die Feder 11 und die Scheibe 22 werden aus einem Blech aus Bimetall ausgestanzt, wodurch sie ihre äußere Form erhalten und ggf. bereits in diesem ersten Arbeitsgang mit den Schlitzen 14, 15, 23 versehen werden. In zwei weiteren Stanzvorgängen werden die inneren und äußeren Bereich 13, 12 dann so geprägt, dass ihre Schleichphasen unterdrückt werden, die dies eingangs erläutert wurde. Einer dieser beiden Stanzvorgänge kann auch während des ersten Arbeitsgangs mit erledigt werden.
  • Diese Stanzvorgänge werden nun so ausgeführt, dass der äußere und der innere Bereich 12, 13 gegensinnig geprägt werden, aber gleiche Eigenschaften aufweisen. Für die Feder 11 bedeutet dies, dass der innere Steg 16 vergleichbare mechanische Eigenschaften aufweist, wie die äußeren Stege 17 und 18 zusammen. Mit anderen Worten, bei der Prägung werden Näpfe oder Vertiefungen eingebracht, die auf der Oberseite des inneren Steges 16 und der unteren Seite der äußeren Stege 17 und 18 liegen, oder umgekehrt. Je nach Anforderung können auch sowohl innerer Steg 16 als auch äußere Stege 17 und 18 Prägungen auf Oberseite und Unterseite aufweisen, nur eben mit gegensinniger Anordnung und Wirkung.
  • Nach den Stanzvorgängen liegen der innere und der äußere Bereich 12, 13 des Bimetallteils nach wie vor in einer Ebene, wenn dieses mechanisch entspannt ist.
  • Wenn sich das Bimetallteil 10 erhitzt, biegt sich folglich der eine Bereich 12, 13 in die eine Richtung und der andere zeitgleich in die andere Richtung, wenn die Sprungtemperatur überschritten wird. Durch die Prägung und die Wahl der Geometrie wird dabei die Schleichphase weitgehend unterdrückt, so dass das Durchbiegen schlagartig und gegensinnig erfolgt.
  • Durch die gewählte Geometrie, die Abmaße und eine entsprechende Materialauswahl sowie die Prägung enthält das Bimetallteil 10 somit sozusagen sein eigenes Gegenlager. Dadurch ergibt sich ein innerer Kraftausgleich, so dass sich ein Schaltpunkt einstellen lässt, der sehr genau eingehalten wird, da die Schleichphasen effizient unterdrückt werden.
  • Mit anderen Worten, das Umschalten zwischen der Hoch- und der Tieftemperaturstellung erfolgt schlagartig und über viele Schaltspiele reproduzierbar. Ferner wird die Schalthysterese weitgehend unterdrückt.
  • Das Bimetallteil 10 kann daher auch über lange Zeiträume mechanische Kräfte aufnehmen und Strom führen, ohne dass sich seine Eigenschaften durch Alterungsprozesse verändern.
  • Das Bimetallteil 10 kann somit in den beiden Ausführungsformen Feder 11 und Scheibe 22 als aktives Schaltelement in einem temperaturabhängigen Schalter verwendet werden, wie er eingangs ausführlich diskutiert wurde. Der innere Bereich 13 führt dabei die Schaltfunktion aus.
  • Wegen der gegensinnigen Eigenschaften von innerem und äußerem Bereich 13, 12 ist es nicht erforderlich - aber auch nicht ausgeschlossen -, dass dem Bimetallteil 10 ein Federschnappteil zugeordnet wird, das im geschlossenen Zustand des Schalters für den kontaktdruck sorgt und ggf. auch den Betriebsstrom des zu schützenden Gerätes führt.
  • Der innere Bereich 13 kann also unmittelbar ein bewegliches Kontaktteil oder eine Kontaktbrücke tragen. Die mechanische Belastung sowie der Stromfluss während der Schließzustände des Schalters führen bei diesem neuartigen Bimetallteil 10 nicht mehr zu den Alterungserscheinungen und Schaltpunktverschiebungen, wie sie aus dem Stand der Technik bekannt sind.
  • Die Eigenschaften des neuen Bimetallteils 10 lassen sich besonders effektiv nutzen, wenn die Scheibe 22 an ihrem äußeren Rand 25 bzw. die Feder 11 an ihren in Längsrichtung L voneinander weg weisenden Stirnseiten 26, 27 gegenüber dem Schalter unbeweglich gehalten wird.
  • Dadurch wird eine konstante Länge der Feder 11 in Längsrichtung L oder der Scheibe 22 in Radialrichtung R erzwungen, so dass innerer und äußerer Bereich 13, 12 nur gleichzeitig und gegensinnig umschnappen können. Dies trägt zur gleichmäßigen Verteilung der mechanischen Belastung und folglich zu einer noch mal verbesserten Langzeitstabilität des Umschaltpunktes bei.
  • Diese Anordnung ist schematisch in der Seitenansicht gemäß Fig. 3 und 4 gezeigt, wo die Feder 11 aus Fig. 1 mit ihren Stirnseiten 26, 27 an zwei Widerlagern 28, 29 gehalten ist. In der in Fig. 3 gezeigten Tieftemperaturstellung ist der innere Steg 16 nach unten, in der in Fig. 4 gezeigten Hochtemperaturstellung nach oben gebogen. Die äußeren Stege 17, 18, von denen in den Fig. 3 und 4 nur der Steg 18 zu sehen ist, sind entgegengesetzt gebogen.
  • Der Übergang zwischen den Schaltstellungen gemäß Fig. 3 und 4 erfolgt schlagartig bei Über- bzw. Unterschreiten der Schalttemperatur, die durch Material, Geometrie und Prägung bestimmt wird.
  • In Fig. 5 ist in einer schematischen, geschnittenen Seitenansicht ein temperaturabhängiger Schalter 30 gezeigt, der ein erstes Ausführungsbeispiel für die Verwendung des Bimetallteils 10, das im vorliegenden Fall als Feder 11 ausgebildet ist, als aktives Schaltelement in einem temperaturabhängigen Schaltwerk ist.
  • Der Schalter 30 umfasst ein topfartiges Unterteil 31 aus leitendem Material, das von einem Oberteil 32 aus ebenfalls leitendem Material verschlossen ist. Das Oberteil 32 ist unter Zwischenlage einer Isolierschicht 33 auf eine Schulter 34 des Unterteiles 31 aufgelegt und über einen umgebördelten Rand 35 fest an dem Unterteil 31 befestigt.
  • Das Unterteil 31 weist eine umlaufende Seitenwand 36 auf, an der die Schulter 34 ausgebildet ist.
  • Die Feder 11 stützt sich in der in Fig. 5 gezeigten Schließstellung mit ihren Stirnseiten 26 und 27, und damit mit ihrem äußeren Bereich 12, an einem als Elektrode 37 wirkenden, inneren Boden des Unterteiles 31 ab und wird durch die Seitenwand 36 in Längsrichtung L fixiert. Die Seitenwand 36 wirkt dabei als Widerlager im Sinne der Widerlager 28, 29 aus Fig. 3 und 4.
  • Die äußeren Stege, von denen in Fig. 5 nur der Steg 18 zu sehen ist, sind nach unten gebogen, der innere Steg 16 ist nach oben gebogen und drückt dabei ein von ihm getragenes bewegliches Kontaktteil 38 gegen ein festes Kontaktteil 39, das an dem Oberteil 32 angeordnet ist. Das feste Kontaktteil 39 ist nach Art eines Nietes ausgebildet, dessen außen aufliegender Kopf 41 als erster Außenanschluss dient, mit dem somit der innere Bereich 13 in elektrischer Verbindung steht.
  • Als zweiter Außenanschluss 42 dient der umgebördelte Rand 35.
  • Die Feder 11 bildet zusammen mit dem beweglichen Kontaktteil 38 ein temperaturabhängiges Schaltwerk 43, das je nach seiner Temperatur eine elektrisch leitende Verbindung zwischen den Außenanschlüssen 41 und 42 herstellt oder öffnet.
  • In der in Fig. 5 gezeigten Schließstellung, die der in Fig. 4 schematisch gezeigten Konfiguration entspricht, sind die Stirnseiten 26, 27 über den Boden 37 in elektrisch leitender Verbindung mit dem zweiten Außenanschluss 42, während das bewegliche Kontaktteil 38 durch Anlage mit dem festen Kontaktteil 39 elektrisch leitend mit dem ersten Außenanschluss 41 verbunden ist. Zu diesem Zweck ist an dem beweglichen Kontaktteil 38 eine Kontaktfläche 44 vorgesehen, die bei geschlossenem Schalter 30 in Anlage mit einer Kontaktfläche 45 gelangt, die an dem festen Kontaktteil 39 vorgesehen ist.
  • Auf diese Weise ist über die Feder 11 eine elektrisch leitende Verbindung zwischen den Außenanschlüssen 41 und 42 hergestellt.
  • Wenn sich die Temperatur der Feder 11 über die Ansprechtemperatur hinaus erhöht, schnappt die Feder 11 ohne Schleichphase schlagartig von der in Fig. 5 gezeigten Konfiguration in ihre Offenstellung um, die schematisch in Fig. 3 gezeigt ist. Der innere Steg 16 biegt sich dabei nach unten durch und hebt das bewegliche Kontaktteil 38 von dem festen Kontaktteil 39 ab, wodurch der Stromkreis geöffnet wird. Zeitgleich schnappen die äußeren Stege 17, 18 ebenfalls um.
  • Das bewegliche Kontaktteil 38 bewegt sich dabei zusammen mit dem inneren Steg 16 zwischen den äußeren Stegen 17 und 18 hindurch.
  • Fig. 6 zeigt einen temperaturabhängigen Schalter 50, wie er aus der eingangs erwähnten DE 197 08 46 A1 bekannt ist, deren Offenbarung hiermit ausdrücklich zum Gegenstand der vorliegenden Anmeldung gemacht wird.
  • Der Schalter 50 weist ein Unterteil 51 auf, das von einem Oberteil 52 verschlossen ist. In dem Oberteil 52 sind zwei feste Kontaktteile 53, 54 angeordnet, die mit Außenanschlüssen 55, 56 verbunden sind. Mit den festen Kontaktteilen 53, 54 wirken zwei Kontaktflächen an einer Kontaktbrücke 57 zusammen, die über einen Niet 58 an dem inneren Steg 16 eines als Feder 11 ausgebildeten, erfindungsgemäßen Bimetallteils 10 befestigt ist.
  • Die Feder 11 ist mit ihren Stirnseiten 26, 27 in einer Nut 61 des Unterteils 51 fixiert, die somit als Widerlager dient.
  • Die Feder 11 bildet hier zusammen mit der Kontaktbrücke 57 und dem Niet 58 ein temperaturabhängiges Schaltwerk 62, das das je nach seiner Temperatur eine elektrisch leitende Verbindung zwischen den Außenanschlüssen 55 und 56 herstellt oder öffnet.
  • In der in Fig. 6 gezeigten Stellung ist der Schalter 50 geschlossen, der innere Steg 16 sorgt für den Kontaktdruck zwischen der Kontaktbrücke 57 und den festen Kontaktteilen 53, 54. Erhöht sich die Temperatur des Schalters 50 und damit der Feder 11, so führt dies auch hier nicht zu einer Schleichphase, die den Kontaktdruck beeinträchtigt. Erst wenn die Schalttemperatur erreicht wird, springt die Feder 11 von der in Fig. 6 gezeigten Stellung, die der Stellung aus Fig. 4 entspricht, in die Stellung gemäß Fig. 3 um, in der der inneren Steg 16 die Kontaktbrücke 57 von den festen Kontaktteilen 53, 54 abhebt und den Schalter 50 öffnet.
  • Die äußeren Stege 17, 18 schnappen dabei ebenfalls in ihre Hochtemperaturstellung um, wobei sich die Kontaktbrücke 57 zusammen mit dem inneren Steg 16 zwischen den äußeren Stegen 17 und 18 hindurchbewegt.
  • In Fig. 7 ist ein temperaturabhängiger Schalter 70 gezeigt, in dem die Scheibe 22 aus Fig. 2 als aktives Schaltelement verwendet wird. Die Scheibe wird nicht vom zu schaltenden Strom durchflossen, wie bei dem Schalter 30 aus Fig. 5, sie stellt auch nicht den Kontaktdruck her, wie bei dem Schalter 50 aus Fig. 6.
  • Der Schalter 70 weist einen Kunststoffkörper 71 auf, der oben und unten durch Bleche 72, 73 verschlossen ist, die auch als Außenanschlüsse dienen. An dem oberen Blech 72 liegt in elektrisch leitender Verbindung eine Federzunge 74 an, die an ihrem freien Ende ein bewegliches Kontaktteil 75 trägt, das in der gezeigten Tieftemperaturstellung mit einem festen Kontaktteil 76 in Anlage ist, das an dem unteren Blech 73 angeordnet ist.
  • In dem Kunststoffkörper 71 ist durch eine Wand 77ein Aufnahmeraum 78 gebildet, in dem die Scheibe 22 liegt, die mit ihrem Rand 25 von dem als Widerlager dienenden Rand 77 anliegt und so in Radialrichtung R festgelegt wird.
  • An der Federzunge 74 ist eine nach unten weisende Kalotte 79 zu erkennen, auf die die Scheibe 22 über ihren inneren Bereich 13 einwirkt, wenn sie infolge Temperaturerhöhung ihre Konfiguration ändert und das bewegliche Kontaktteil 75 von dem festen Kontaktteil 76 abhebt.
  • Federzuge 74, Scheibe 22 und Kontaktteile 75, 76 bilden dabei ein temperaturabhängiges Schaltwerk 80.
  • In der in Fig. 7 gezeigten Schließstellung des Schalters 70 befindet sich die nicht stromdurchflossene Scheibe 22 in einer Konfiguration ähnlich zu Fig. 3, die Kalotte 79 ragt in den äußeren Bereich 12 hinein, aus dem der innere Bereich 13 nach unten gebogen ist. Bei Schalten springt der innere Bereich 13 nach oben, erreicht die Konfiguration der Fig. 4 und drückt dabei über die Kalotte 79 die Federzunge 74 nach oben.
  • Statt ein bewegliches Kontaktteil oder eine Kontaktbrücke zu montieren, wie bei den Schaltern aus den Fig. 5 und 6, kann an dem Bimetallteil 10 auch ein Bereich 21 vorgesehen sein, in dem eine Kontaktfläche integriert ist, wie dies in den Fig. 1 und 2 angedeutet ist.
  • Anhand von Fig. 8 soll jetzt für eine ansonsten konventionelle Bimetallscheibe 81, also ohne inneren und äußeren Bereich, erläutert werden, wie in einem etwa zentrischen flexiblen Bereich 21 eine integrierte Kontaktfläche 82 erzeugt werden kann.
  • Einerseits kann durch Plattieren oder Galvanisieren mit einem leitfähigen Material 83 eine stoffschlüssig mit dem Bereich 21 verbundene Kontaktfläche 82 erzeugt werden.
  • Andererseits kann die Kontaktfläche 82 durch Einwalzen eines leitfähigen Materials 83, beispielsweise von Golddrähten, erzeugt werden, wodurch die Kontaktfläche formschlüssig mit dem Bereich 21 verbunden wird.
  • Auf diese Weise wird der flexible Bereich 21 der Bimetallscheibe 81 mit einer elektrisch gut leitenden Kontaktfläche 82 versehen, die einen geringen Übergangswiderstand zu einer anliegenden Kontaktfläche aufweist, wobei die Flexibilität des Bimetallteils nicht negativ beeinflusst wird.
  • Die Bimetallscheibe 81 kann bei dem Schalter aus Fig. 5 oder 6 eingesetzt werden, wobei das bewegliche Kontaktteil 38 bzw. die Kontaktbrücke 57 jetzt sozusagen durch die integrierte Kontaktfläche 82 ersetzt werden.

Claims (19)

  1. Bimetallteil zur Verwendung als aktives Schaltelement in einem temperaturabhängigen Schalter (30, 50, 70), das zumindest einen inneren Bereich (13) sowie einen den zumindest einen inneren Bereich (13) umgebenden äußeren Bereich (12) aufweist, wobei innerer und äußerer Bereich (13, 12) abschnittsweise einstückig miteinander und abschnittsweise mechanisch voneinander getrennt ausgebildet sind, und wobei an dem inneren Bereich (13) zumindest eine Kontaktfläche (21, 82) vorgesehen ist, dadurch gekennzeichnet, dass der innere Bereich (13) und der äußere Bereich (12) von unterschiedlicher Seite derart mit Einprägungen in Form von Näpfen oder Vertiefungen versehen sind, dass ihre Schleichphasen unterdrückt werden, wobei der innere und der äußere Bereich (13, 12) gleiche mechanische Eigenschaften aufweisen.
  2. Bimetallteil nach Anspruch 1, dadurch gekennzeichnet, dass es als etwa rechteckige Feder (11) ausgebildet ist.
  3. Bimetallteil nach Anspruch 2, dadurch gekennzeichnet, dass die Feder (11) als inneren Bereich (13) zumindest einen sich in Längsrichtung (L) der Feder (11) erstreckenden inneren Steg (16) und als äußeren Bereich (12) zumindest zwei sich in Längsrichtung (L) der Feder (11) erstreckende äußere Stege (17, 18) umfasst, die den inneren Steg (16) zwischen sich aufnehmen und von diesem über je einen sich in Längsrichtung (L) erstreckenden Spalt (14, 15) getrennt sind.
  4. Bimetallteil nach Anspruch 3, dadurch gekennzeichnet, dass der innere Steg (16) vergleichbare mechanische Eigenschaften aufweist, wie die äußeren Stege (17, 18) zusammen.
  5. Bimetallteil nach Anspruch 1, dadurch gekennzeichnet, dass es als Scheibe (22) ausgebildet ist.
  6. Bimetallteil nach Anspruch 5, dadurch gekennzeichnet, dass der innere Bereich (13) von einem Spalt (23) umgeben ist, der abschnittsweise (24) unterbrochen ist.
  7. Bimetallteil nach Anspruch 6, dadurch gekennzeichnet, dass der Spalt (23) gezackt, mäanderförmig oder wellenförmig verläuft.
  8. Bimetallteil nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass der innere Bereich (13) vergleichbare mechanische Eigenschaften aufweist, wie die äußeren Bereich (12).
  9. Bimetallteil nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der innere Bereich (13,) eine Kontaktbrücke (57) mit zwei Kontaktflächen trägt.
  10. Bimetallteil nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der innere Bereich (13) ein bewegliches Kontaktteil (38) trägt, das vorzugsweise formschlüssig oder kraftschlüssig festgelegt ist, und an dem die zumindest eine Kontaktfläche (45) ausgebildet ist.
  11. Bimetallteil nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Kontaktfläche (82) in den inneren Bereich (13) integriert ist.
  12. Bimetallteil nach Anspruch 11, dadurch gekennzeichnet, dass die Kontaktfläche (82), vorzugsweise durch Plattieren oder Galvanisieren mit einem leitfähigen Material (83), stoffschlüssig mit dem inneren Bereich (13) verbunden ist.
  13. Bimetallteil nach Anspruch 11, dadurch gekennzeichnet, dass die Kontaktfläche (82), vorzugsweise durch Einwalzen eines leitfähigen Materials (83), formschlüssig mit dem inneren Bereich (13) verbunden ist.
  14. Temperaturabhängiger Schalter mit zwei Außenanschlüssen (41, 42; 55, 56; 72,73) und einem temperaturabhängigen Schaltwerk (43, 62, 80), das in Abhängigkeit von seiner Temperatur zwischen den beiden Außenanschlüssen (41, 42; 55, 56; 72,73) eine elektrisch leitende Verbindung herstellt oder öffnet, wobei in dem Schaltwerk (43, 62, 80) das Bimetallteil (10) gemäß einem der Ansprüche 1 bis 13 als aktives Schaltelement vorgesehen ist.
  15. Temperaturabhängiger Schalter nach Anspruch 14, dadurch gekennzeichnet, dass das Bimetallteil (10) über den inneren oder äußeren Bereich (13, 12) mit einem (42) der beiden Außenanschlüsse (41, 42) in Verbindung steht, und an dem äußeren bzw. inneren Bereich (12, 13), vorzugsweise über ein bewegliches Kontaktteil (38), mit einem festen Kontaktteil (39) zusammenwirkt, das mit dem anderen Außenanschluss (41) in Verbindung steht.
  16. Temperaturabhängiger Schalter nach Anspruch 14, dadurch gekennzeichnet, dass das Bimetallteil (10) an seinem inneren Bereich (13) eine Kontaktbrücke (57) trägt, die mit zwei festen Kontaktteilen (53, 54) zusammenwirkt, die jeweils mit einem der Außenanschlüsse (55, 56) in Verbindung stehen.
  17. Temperaturabhängiger Schalter nach Anspruch 14, dadurch gekennzeichnet, dass das Schaltwerk (80) eine Federzunge (74) umfasst, die an ihrem festgelegten Ende mit einem (72) der beiden Außenanschlüsse (72, 73) in Verbindung steht, und an ihrem freien Ende ein bewegliches Kontaktteil (75) trägt, das mit einem festen Kontaktteil (76) zusammenwirkt, das mit dem anderen Außenanschluss (73) in Verbindung steht, wobei das Bimetallteil (10) bei Erreichen einer Schalttemperatur mit der Federzunge (74) derart zusammenwirkt, dass das bewegliche Kontaktteil (75) von dem festen Kontaktteil (76) abgehoben wird.
  18. Temperaturabhängiger Schalter nach einem der Ansprüche 14 bis 17, dadurch gekennzeichnet, dass das Bimetallteil (10) als etwa rechteckige Feder (11) ausgebildet ist, die an ihren beiden Stirnseiten (26, 27) gegenüber dem Schalter unbeweglich gelagert sind.
  19. Temperaturabhängiger Schalter nach einem der Ansprüche 14 bis 17, dadurch gekennzeichnet, dass das Bimetallteil (10) als Scheibe (22) ausgebildet ist, die an ihren Rand (25) gegenüber dem Schalter unbeweglich gelagert ist.
EP10724491.5A 2009-06-05 2010-06-04 Bimetallteil und damit ausgestattete temperaturabhängige schalter Active EP2304757B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL10724491T PL2304757T3 (pl) 2009-06-05 2010-06-04 Część bimetalowa i wyposażony w nią, zależny od temperatury wyłącznik

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009025221A DE102009025221A1 (de) 2009-06-05 2009-06-05 Bimetallteil und damit ausgestattete temperaturabhängige Schalter
PCT/EP2010/057824 WO2010139781A1 (de) 2009-06-05 2010-06-04 Bimetallteil und damit ausgestattete temperaturabhängige schalter

Publications (2)

Publication Number Publication Date
EP2304757A1 EP2304757A1 (de) 2011-04-06
EP2304757B1 true EP2304757B1 (de) 2015-12-23

Family

ID=42313041

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10724491.5A Active EP2304757B1 (de) 2009-06-05 2010-06-04 Bimetallteil und damit ausgestattete temperaturabhängige schalter

Country Status (7)

Country Link
US (1) US9355801B2 (de)
EP (1) EP2304757B1 (de)
DE (1) DE102009061050B4 (de)
DK (1) DK2304757T3 (de)
ES (1) ES2563729T3 (de)
PL (1) PL2304757T3 (de)
WO (1) WO2010139781A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130021132A1 (en) * 2011-07-21 2013-01-24 Honeywell International Inc. Permanent one-shot thermostat
DE102011119637B4 (de) * 2011-11-22 2013-06-06 Marcel P. HOFSAESS Temperaturabhängiger Schalter mit einem temperaturabhängigen Schaltwerk sowie Verfahren zum Herstellen eines solchen Schalters
DE102011119633B3 (de) * 2011-11-22 2013-04-11 Marcel P. HOFSAESS Temperaturabhängiger Schalter
JP5264004B1 (ja) * 2012-10-19 2013-08-14 ワコー電子株式会社 サーモスタット用感熱板及びサーモスタット
DE102013109291A1 (de) * 2013-08-27 2015-03-05 Thermik Gerätebau GmbH Temperaturabhängiger Schalter mit am Rand eingeklemmter Schnappscheibe
DE102013017232A1 (de) 2013-10-17 2015-04-23 Thermik Gerätebau GmbH Temperaturabhängiges Schaltwerk
DE102019125450B4 (de) * 2019-09-20 2021-04-08 Marcel P. HOFSAESS Temperaturabhängiger Schalter
DE102019128367B4 (de) * 2019-10-21 2021-06-10 Marcel P. HOFSAESS Temperaturabhängiger schalter
US11885532B2 (en) * 2020-01-15 2024-01-30 Carrier Corporation Efficient limit switch design and its location in a gas furnace
DE102022118405B3 (de) * 2022-07-22 2023-08-24 Marcel P. HOFSAESS Temperaturabhängiges Schaltwerk und temperaturabhängiger Schalter mit einem solchen Schaltwerk

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1668973A (en) * 1924-07-11 1928-05-08 Westinghouse Electric & Mfg Co Thermostatic regulator
NL59346C (de) 1938-08-27
US2286053A (en) * 1940-09-10 1942-06-09 Westinghouse Electric & Mfg Co Thermostat
US2363376A (en) * 1942-06-10 1944-11-21 Westinghouse Electric & Mfg Co Thermostat
US2701475A (en) * 1950-04-17 1955-02-08 Honeywell Regulator Co Snap acting device
BE508318A (de) * 1951-01-10
US2777032A (en) * 1953-05-12 1957-01-08 Burch Parkhurst Associates Snap switch and blade therefor
US2967920A (en) * 1958-12-01 1961-01-10 Texas Instruments Inc Thermostatic switch
US3213228A (en) * 1961-09-25 1965-10-19 Lyndon W Burch Snap-acting mechanisms
DE1590324B1 (de) 1966-11-10 1971-12-16 Danfoss As Bimetallschalter mit schnappwirkung
FR1570321A (de) 1967-07-06 1969-06-06
AU1868970A (en) * 1969-09-22 1972-02-17 Thermo-Disc Incorporated Bimetallic snap disc and method and apparatus for making same
DE2121802C3 (de) 1971-05-03 1974-10-24 Thermik-Geraetebau Gmbh + Co, 7530 Pforzheim Temperaturwächter
CH537088A (de) * 1972-09-26 1973-05-15 Sprecher & Schuh Ag Schnappschalter für einen thermischen Auslöser, insbesondere für den Motorenschutz
US4118610A (en) * 1974-11-16 1978-10-03 Ranco Incorporated Snap action switch blades
DE2556062A1 (de) 1974-12-12 1976-06-16 Taylor John C Auf waerme ansprechendes schnapp- betaetigungsorgan
US4145587A (en) * 1977-07-25 1979-03-20 Ranco Incorporated Snap action switches
KR940002671B1 (ko) * 1990-04-06 1994-03-28 가부시끼가이샤 히다찌세이사꾸쇼 과부하 보호장치
TW391078B (en) * 1992-10-16 2000-05-21 Hitachi Ltd Overload protective apparatus utilizing a bimetal
US5402099A (en) 1993-12-14 1995-03-28 Ballard; Edwin C. High temperature, temperature responsive snap acting control member and electrical switches using such members
DE19609310C2 (de) 1996-03-09 1999-07-15 Thermik Geraetebau Gmbh Schalter mit einem temperaturabhängigen Schaltwerk
DE19708436C2 (de) 1997-03-01 1999-08-19 Hofsaes Temperaturabhängiger Schalter mit Kontaktbrücke und Verfahren zu dessen Herstellung
US5790010A (en) * 1997-02-11 1998-08-04 Schwab; Pierre P. Means for actuating a snap-acting M-blade
US5760672A (en) * 1997-05-02 1998-06-02 Wang; Ming-Shan Safety switch built-in with protecting circuit
GB2325345B (en) * 1997-05-16 1999-04-07 Claud Raymond Summerfield Snap-action springs (thermally & mechanically operated)
DE19727197C2 (de) * 1997-06-26 1999-10-21 Marcel Hofsaess Temperaturabhängiger Schalter mit Kontaktbrücke
JP2002507318A (ja) * 1997-07-02 2002-03-05 シーメンス アクチエンゲゼルシヤフト 回路基板に固定されるサーモ安全装置
DE19816807C2 (de) 1998-04-16 2000-06-08 Thermik Geraetebau Gmbh Temperaturabhängiger Schalter
DE29907707U1 (de) * 1999-02-12 1999-08-05 Yu, Tsung-Mou, Pan-Chiao, Taipeh Kleiner und einfacher Schalter mit einem Schaltungsschutz
US6633222B2 (en) * 2000-08-08 2003-10-14 Furukawa Precision Engineering Co., Ltd. Battery breaker
US6580351B2 (en) * 2000-10-13 2003-06-17 George D. Davis Laser adjusted set-point of bimetallic thermal disc
US6538553B2 (en) * 2001-07-13 2003-03-25 Tsung-Mou Yu Switching element for electric switch
US6617951B2 (en) 2001-08-24 2003-09-09 Tsung-Mou Yu Safety switch
US20030071710A1 (en) * 2001-10-13 2003-04-17 Tsung-Mou Yu Safety switch
US6621402B2 (en) * 2002-01-23 2003-09-16 Albert Huang Circuit breaker
US6741159B1 (en) * 2002-05-16 2004-05-25 Robert A. Kuczynski Fail-safe assembly for coacting contacts in a current-carrying system, apparatus or component
JP3828476B2 (ja) * 2002-10-15 2006-10-04 株式会社センサータ・テクノロジーズジャパン 無通電式密閉型モータプロテクタ
US7005957B2 (en) 2004-05-29 2006-02-28 Tsung-Mou Yu Mechanism for trip-free of the bimetallic plate of a safety switch device
JP2006092825A (ja) * 2004-09-22 2006-04-06 Fuji Denshi Kogyo Kk 温度スイッチと温度スイッチの組立方法

Also Published As

Publication number Publication date
US9355801B2 (en) 2016-05-31
WO2010139781A1 (de) 2010-12-09
DE102009061050B4 (de) 2019-09-05
US20120126930A1 (en) 2012-05-24
DK2304757T3 (en) 2016-03-07
DE102009061050A1 (de) 2011-02-24
ES2563729T3 (es) 2016-03-16
EP2304757A1 (de) 2011-04-06
PL2304757T3 (pl) 2016-06-30

Similar Documents

Publication Publication Date Title
EP2304757B1 (de) Bimetallteil und damit ausgestattete temperaturabhängige schalter
DE102008048554B3 (de) Temperaturabhängiger Schalter
DE112009004500B4 (de) Temperaturwächter
EP2511930B1 (de) Temperaturschutzschalter
WO2008113489A1 (de) Temperaturabhängiger schalter und dafür vorgesehenes schaltwerk
EP2958125B1 (de) Temperaturabhängiger schalter mit distanzring
DE102011119632B3 (de) Temperaturabhängiges Schaltwerk
DE102011101862A1 (de) Temperaturabhängiger Schalter mit Stromübertragungsglied
DE3104827C2 (de)
EP2503581A1 (de) Temperaturabhängiger Schalter mit Stromübertragungsglied
EP2854149A1 (de) Temperaturabhängiger Schalter mit am Rand eingeklemmter Schnappscheibe
EP2783380B1 (de) Temperaturabhängiges schaltwerk
EP0994497B1 (de) Schalter mit einem Isolierstoffträger
EP0938117B1 (de) Schalter
EP0391086B1 (de) Druckknopfbetätigter Ueberstromschutzschalter
EP3736845B1 (de) Temperaturabhängiger schalter
EP3229255B1 (de) Temperaturabhängiger schalter
EP0285927B1 (de) Temperaturschalter
DE2502579C2 (de) Druckknopfbetaetigter ueberstromschalter mit thermischer ausloesung
EP3796360B1 (de) Temperaturabhängiger schalter
DE102009025221A1 (de) Bimetallteil und damit ausgestattete temperaturabhängige Schalter
DE102007004920B4 (de) Schutzschalter, insbesondere Leistungsschutzschalter, und thermischen Auslöser für einen Schutzschalter
DE2702851C3 (de) Bimetallgesteuerter Schalter
DE69837032T2 (de) Magnetothermische Steuervorrichtung und mit einer solchen Vorrichtung ausgerüsteter Schutzschalter
DE102023102302B3 (de) Temperaturabhängiger Schalter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110224

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HOFSAESS, MARCEL P.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOFSAESS, MARCEL P.

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20141128

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01H 37/54 20060101AFI20150630BHEP

Ipc: H01H 1/26 20060101ALN20150630BHEP

INTG Intention to grant announced

Effective date: 20150721

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 766866

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010010823

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG, CH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20160304

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2563729

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160316

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160324

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160423

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160426

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010010823

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160605

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160604

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170620

Year of fee payment: 8

Ref country code: FR

Payment date: 20170621

Year of fee payment: 8

Ref country code: DK

Payment date: 20170621

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 766866

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160604

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170724

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010010823

Country of ref document: DE

Representative=s name: WITTE, WELLER & PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010010823

Country of ref document: DE

Owner name: HOFSAESS, MARCEL P., DE

Free format text: FORMER OWNER: HOFSAESS, MARCEL P., 99706 SONDERSHAUSEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160604

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20180620

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20180522

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20180630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180605

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190604

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230623

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230725

Year of fee payment: 14