EP0938117B1 - Schalter - Google Patents

Schalter Download PDF

Info

Publication number
EP0938117B1
EP0938117B1 EP98114459A EP98114459A EP0938117B1 EP 0938117 B1 EP0938117 B1 EP 0938117B1 EP 98114459 A EP98114459 A EP 98114459A EP 98114459 A EP98114459 A EP 98114459A EP 0938117 B1 EP0938117 B1 EP 0938117B1
Authority
EP
European Patent Office
Prior art keywords
switch
spring element
switching
temperature
switching member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98114459A
Other languages
English (en)
French (fr)
Other versions
EP0938117A2 (de
EP0938117A3 (de
Inventor
Marcel P. Hofsaess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hofsaess Marcel P
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/248,511 priority Critical patent/US6097274A/en
Publication of EP0938117A2 publication Critical patent/EP0938117A2/de
Publication of EP0938117A3 publication Critical patent/EP0938117A3/de
Application granted granted Critical
Publication of EP0938117B1 publication Critical patent/EP0938117B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting
    • H01H37/5418Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting using cantilevered bimetallic snap elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting
    • H01H2037/5445Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting with measures for avoiding slow break of contacts during the creep phase of the snap bimetal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting
    • H01H2037/5463Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting the bimetallic snap element forming part of switched circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/002Thermally-actuated switches combined with protective means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting
    • H01H37/5427Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting encapsulated in sealed miniaturised housing

Definitions

  • the present invention relates to a switch having a first and at least one second external terminal and a temperature-dependent switching mechanism, which produces an electrically conductive connection for an electrical current to be conducted through the switch as a function of its temperature between the two external terminals, wherein the switching mechanism is a switching element, the temperature changes its geometric shape between a closed and an open position and in its closed position the current flowing through the switch leads, and includes an actuator which is permanently connected electrically and mechanically in series with the switching element.
  • Such a switch is from the US 4,636,766 A as well as out US 5,196,820 known.
  • the known switch comprises as a switching element, a U-shaped bimetallic element with two legs of different lengths. On the long leg, a movable contact member is fixed, which cooperates with a switch-fixed mating contact, which in turn is in an electrically conductive connection with one of the two outer terminals.
  • the shorter leg of the U-shaped bimetallic element is attached to the free end of a lever arm formed as an actuator, which is connected at its other end fixed to the housing and is in electrically conductive communication with the other of the two outer terminals.
  • the actuator is another bimetallic element, which is tuned to the U-shaped bimetallic element, which deform the two bimetallic elements in opposite directions with temperature changes and thus maintain the contact pressure between the movable contact part and the housing-fixed mating contact.
  • This switch is intended as a breaker for high currents, which lead to a strong heating of the flowed through bimetal elements, whereby ultimately the movable contact part is lifted from the fixed counter-contact. Influences of the ambient temperature are compensated by the aforementioned opposing deformation of the bimetallic elements.
  • the two bimetallic elements are designed geometrically very different, they also have different long-term stabilities, so that actually from time to time a readjustment would be required. However, this is no longer possible in use, so that overall the long-term stability and thus the functional reliability leaves something to be desired.
  • Another, from the EP 0 103 792 B1 known, current-dependent switch has as a switching member on a bimetallic spring tongue, which is attached to the one outer terminal and carries at its free end a movable contact part, which cooperates with a mating contact, which is arranged at the free end of an elongated spring element, the other end is attached to the other external terminal.
  • the switch is connected with its external terminals in series with an electrical device, that the operating current of this switch flows through the bimetallic spring tongue.
  • the well-known Switch further thermally coupled to the electrical device so that it can follow the temperature changes.
  • the bimetallic spring tongue lifts the moving contact away from the mating contact, interrupting the flow of current and protecting the electrical device against further heating. In this open position, however, the bimetal spring tongue can also be brought by an increased current flow, since the bimetallic spring tongue heats up through the electrical current flowing therethrough.
  • the electrical properties of the bimetal spring tongue can now be adjusted in coordination with the mechanical properties and the transition temperature so that it is in its closed position in which it directs the operating current of the electrical device when both the ambient temperature is below the switching temperature as well the operating current is below a response current. Now increases the operating current beyond the permissible value, so heats up the bimetal spring tongue very quickly and reaches its critical temperature, whereupon it goes into its open position.
  • This switch provides protection against both over temperature and overcurrent.
  • the elastic Storage of the mating contact further ensures a low mechanical load on the bimetal spring tongue, since the mating contact gives limited. As a result, irreversible deformations of the bimetallic spring tongue are avoided. Since such mechanical deformations can lead to a shift of the switching temperature, this arrangement provides a total of high reliability.
  • the bimetallic spring tongue as all bimetallic elements in the transition from the closed to the open position passes through a so-called creep, in which due to a temperature increase or decrease the bimetallic element deforms creeping, but without its eg Convex low-temperature position already in its concave high-temperature position umzuschnappen.
  • This creep phase occurs whenever the temperature of the bimetallic element approaches either the top or the bottom of the transition temperature and leads to significant conformational changes.
  • the creep behavior of a bimetallic element can also change beyond.
  • the creep can cause the pressure of the contact against the mating contact to decrease, which results in undefined switching states.
  • the contact may be during the slow phase gradually approach the mating contact, which can cause the danger of an arc.
  • bimetal disc is fixed to the free end of a spring element, wherein the connection point between the spring element and bimetal disc is supported by a housing-fixed nose. In this way, the bimetal disc is under mechanical bias, which suppresses the creep phase.
  • the bimetallic switching mechanism comprises a mating contact mounted on a spring arm and a movable contact part mounted on a bimetallic arm.
  • the bimetallic arm is either attached directly to the lower housing part or it is supported by a further bimetallic arm, which in turn is attached to the lower housing part.
  • the bimetal is provided with an embossment for adjusting the defined snap point, wherein either the bimetallic arm itself or the other bimetallic arm is associated with an abutment about which pivots the corresponding bimetallic arm with temperature changes.
  • the bimetallic arms must be additionally provided with the creep-limiting imprints, and also support approximately centrally on a counter-bearing, around which they bend accordingly.
  • the derailleur comprises a spring washer which is supported in the closed state of the switch with its edge on a first terminal electrode and a centrally supported movable contact presses against a stationary counter-contact, which is provided at a second terminal electrode.
  • the two terminal electrodes form in the known switch an encapsulated metallic housing and are electrically isolated from each other by an insulating.
  • a bimetallic snap disk is slipped, which is below its switching temperature loosely inside the known switch, so is exposed to no mechanical stress.
  • the operating current of the device to be protected in this switch flows only through the spring washer, the bimetallic snap disk is not loaded by the operating current.
  • the switching element comprises a spring element whose force is largely independent of temperature
  • the switching member has a temperature-dependent actuating force which is greater than the restoring force of the spring element in its creep phase, regardless of its geometry change in the creep phase, the switching element compared to the spring element is to be regarded as rigid, so that the contact pressure is exerted solely by the force of the spring element.
  • the object underlying the invention is completely solved in this way.
  • the inventor of the present application has namely recognized that the from the DE 21 21 802 C known mechanical and electrical parallel arrangement of temperature-neutral spring element and switching element in an electrical and modified mechanical series circuit and can be used in the generic switch to unite a number of advantages in the thus created new switch.
  • the electrical series connection of the spring element and switching element results in a current-dependent switch, since the switching element, which is preferably a bimetallic element or a trimetal element, can heat up very quickly due to its low thermal mass at too high current flow or even at short current peaks , Due to the mechanical series connection, so the interaction of the spring force of the spring element with that of the switching element, beyond the creep phase of the switching element can be compensated. If the switching element changes its geometry during the slow phase, this is compensated directly by the spring element. This makes it possible for the first time, even with a so-called current-dependent switch to allow a large creep phase of the switching element, because the spring element can compensate for the "unwanted" changes in shape during the creep phase.
  • the temperature-neutral spring element exerts on the bimetallic element no more hindering its deformation pressure, it is similar in the creep phase, the deformation of the bimetallic element by their own deformation such that movable contact part and fixed mating contact with each other so securely in abutment that for a low contact resistance is ensured, the contact pressure remains below the switching temperature largely independent of the temperature constant.
  • the creep phase of the bimetallic element is therefore no longer suppressed as in the prior art, but balanced, so to speak, the bimetallic element can namely deform almost unhindered in the slow phase, the changes in geometry are compensated by the spring element so that the Switch remains securely closed.
  • the temperature-dependent actuating force of the bimetallic element is chosen so that it is greater than the largely temperature-independent actuating force of the spring element in the creep phase, which thus merely “leads” the thus "rigid” bimetallic element.
  • a big advantage of the new switch is its simple design, in addition to the housing-fixed mating contact is only one Bimetallic element required, the spring element is temperature-neutral and therefore inexpensive. Overall, bimetallic element and spring element must still be matched with respect to the rest of the force, but no longer also in terms of their temperature behavior, because the rear derailleur is, so to speak, self-sufficient. As a result, a standard spring element for all temperature ranges is possible, whereby a significant rationalization effect is achieved. By this construction, a low overall height is also feasible, with no new individual adaptation is required at different switching temperatures, only the bimetallic element must be designed with the same spring characteristics but other switching temperatures.
  • Another advantage is that tolerances and fluctuations in the switching temperature are compensated by the leadership by the temperature-neutral spring element.
  • the spring element is connected at its first end to the first connection element and at its second end to the switching element, wherein preferably by the spring element, the switching element in its closed position with its free end against a connected to the second connection element Counter contact is pressed and lifts in its open position its free end of the mating contact, which is further preferably arranged switch fixed, wherein also preferably the switching member carries at its free end a movable contact part, which cooperates with the mating contact.
  • the switching element and the spring element welded together or are firmly connected by crimping, preferably wherein the free end of the switching element and the first end of the spring element lie on the same side of the connection between the spring element and switching element.
  • a further advantage of this construction is overall in the small space requirements, by the "folded back" arrangement of the mating contact with respect to the connection between the switching element and spring element are on the one hand small dimensions in the longitudinal direction required. But also transversely to the longitudinal direction, ie in "switching direction", only small dimensions are required.
  • the switching member tends to lift the movable contact part of the mating contact, which is compensated by lowering the connection point between the spring element and switching element.
  • the switch now snaps over, the joint moves even further towards the mating contact, while simultaneously moving the movable contact in the opposite direction.
  • the path between the attachment point of the spring element to the first outer terminal and the mating contact is thus used twice, once for the compensating movement of the junction between the switching element and spring element during the slow phase of the switching element and the other to lift the movable contact part of the mating contact.
  • the first external terminal is connected to a terminal electrode to which the spring member is fixed at its first end, and when preferably the second external terminal is connected to a second terminal electrode and the switching mechanism is disposed between the first and second terminal electrodes ,
  • first and the second terminal electrode are held by a Isolierstoff uman, wherein Preferably, the second terminal electrode is an integral part of an insulating housing lower part by encapsulation, which is closed by the first terminal electrode.
  • This measure is structurally of great advantage, because the four basic components of the new switch, namely switching element, spring element and the two terminal electrodes can be assembled into a so-called open as well as a closed switch, without the construction of the four components themselves must be changed.
  • the cover part formed by the first terminal electrode and the bottom part formed by the second terminal electrode may be planar, planar electrodes, which was not previously possible in the prior art.
  • this not only leads to a very low height of the new switch, these flat surfaces also create a prerequisite for Substratbedruckung to realize pre- or parallel resistors can be given to the new switch more functions.
  • Fig. 1 is shown generally at 10 a new switch, which is shown in schematic longitudinal section.
  • the new switch 10 has a first outer terminal 11 which is integrally connected to a flat terminal electrode 12. Further, a second external terminal 14 is provided, which is formed integrally with a second terminal electrode 15. The two terminal electrodes 12, 15 are on a Isolierstoffong Held 16, which holds the two terminal electrodes 12, 15 spaced parallel to each other.
  • the Isolierstoffong 16 can basically be open on the side, is in Fig. 1 an embodiment shown in which the Isolierstoff relie 16 comprises a cup-shaped housing lower part 17 which is formed around the second terminal electrode 15 around by molding or casting such that the second terminal electrode 15 is an integral part of the housing lower part 17.
  • the lower housing part 17 is closed by the first terminal electrode 12, which acts for this purpose as a cover part and is held captive by a indicated at 18, hot-welded edge of the insulating substrate 16.
  • a temperature-dependent switching mechanism 19 which comprises a mechanical and electrical series connection of a spring element 21 and a switching member 22 which are interconnected by a connection indicated at 23.
  • the switching member 22 is in this case a bimetallic element.
  • the spring element 21 in this case has a largely temperature-independent actuating force, which means in the context of the present invention that the actuating force or spring force of the spring element 21 does not change appreciably in the range of the permissible operating temperature of the switch 10.
  • the force of the bimetallic element is strongly temperature-dependent and even in the so-called slow phase so great that the spring element 21 can not exert the deformation of the bimetallic element disabling pressure on the constant temperature in this spring system thus rigid bimetallic element.
  • the spring element 21 is with its first end 25 in Fig. 1 attached to the right of the first terminal electrode 12 and leads with its second end 26 in the connection 23 to the switching member 22.
  • the switching member 22 carries at its free end 27 a movable contact member 28 which cooperates with a switch-fixed mating contact 29, which at the second terminal electrode 15 is formed.
  • a PTC element indicated at 31 is still provided, which is arranged electrically parallel to the switching mechanism 19.
  • the switching mechanism 19 establishes an electrically conductive connection between the two external terminals 11, 14 and thereby closes the PTC element 31 short.
  • a current flowing through the switch 10 now passes from the first external terminal 11 in the first terminal electrode 12 and from there via the spring element 21 in the switching member 22, from which it exits via the movable contact member 28, via the mating contact 29 and the second terminal electrode 15 to get to the second external terminal 14.
  • the switching element 22 moves into its opening position, which will be described later, in which it lifts the movable contact part 28 away from the mating contact 29 , As a result, the flow of current through the switching mechanism 19 is interrupted, so that now a residual current can flow through the PTC element 31.
  • This residual current heats the PTC element 31 so far that the temperature in the switch 10 remains above the response temperature of the switching element 22. In other words, the PTC element ensures a self-holding the once opened switch 10th
  • Fig. 2 is a top view of the switch off Fig. 1 shown here, in which case the first and the second external terminal 11, 14 not as in Fig. 1 among themselves but adjacent to each other are indicated.
  • the edge 18 of the housing lower part 17, the first terminal electrode 12 completely surrounds, so that the switch 10 is completely encapsulated.
  • both the spring element 21 and the switching member 22 are formed as elongated tongues which are arranged in the plan view with each other so that both the first end 25 of the spring element 21 and the free end 27 of the switching member 22 in Fig. 2 to the right of connection 23.
  • FIG. 3 another switch 10 is shown which does not have the square outline Fig. 2 but has a round outline. Otherwise, the switch 10 corresponds Fig. 3 however, the construction as he is in Fig. 1 shown in longitudinal section, wherein the same design features are denoted by the same reference numerals. It should only be mentioned that the spring element 21 and the switching member 22 are each formed as an oval discs.
  • the new switch 10 comprises four basic components, namely the two electrodes 12, 15 and the spring element 21 and the switching member 22. All four components can be punched out of strip material and merged for the purpose of automatic assembly. For this purpose, first the connection 23 by welding ( Fig. 1 ) or flanging ( FIGS. 4 to 6 ), whereupon the spring element 21 is then welded at its first end 25 to the connection electrode 12. Due to the V-shaped design of the switching mechanism thereby comes the free end 27 of the switching member 22 via the mating contact 29 to lie. It should be mentioned that, of course, can be dispensed with the movable contact member 28 that is provided by the contact member 28, however, for a better contact resistance to the mating contact 29.
  • the two terminal electrodes 12, 15 are then still attached to the insulating substrate 16, whereby it is possible to spray around the housing lower part 17 around the terminal electrode 15 and then hang the terminal electrode 12 with the rear derailleur 19 attached thereto from above and through a hot edge 18 to be pressed fasten.
  • Fig. 4 is schematically the rear derailleur 19 from Fig. 1 shown in enlarged scale in its closed position.
  • the switching element 22 is located so far below its critical temperature that its creep has not yet used.
  • the switching member 22 presses against the force of the spring element 21, the compound 23 in Fig. 4 to the top, so that adjusts a distance indicated at 33 to the first terminal electrode 12 and a distance indicated at 34 to the mating contact 29.
  • the switching element 22 If now increases the temperature of the switching element 22 due to an increased current flow or due to an increased outside temperature, so first begins the creep phase of the Switching member 22, in which its spring force acting against the force of the spring element 21 decreases, so that the connection 23 in Fig. 4 is moved down, as it is in Fig. 5 is shown. However, the force of the bimetallic element is still so great that the force of the spring element 21 is not sufficient to hinder the deformations occurring in the creep phase. Regardless of its geometry change in the slow phase, the switching element compared to the spring element 21 is to be regarded as rigid, the contact pressure is exerted solely by the force of the spring element.
  • the distance 33 increases as the distance 34 decreases.
  • the mechanical series circuit of spring element 21 and switching element 22 still pushes the movable contact member 28 against the mating contact 29.
  • the movable contact part 28 in Fig. 5 has moved transversely to the mating contact 29. This friction is desirable, because in this way the contact surfaces between contact part 28 and mating contact 29 are cleaned, so that the electrical contact resistance is very low.
  • connection 23 has reached even further down, wherein the switching element 22 has lifted the movable contact part 28 from the mating contact 29.
  • connection 23 between the terminal electrodes 12, 15 moves downward, while the movable contact member 28 moves in the reverse direction upwards, so that the light Distance between the two terminal electrodes 12, 15, so to speak, twice exploited.
  • the spring element 21 prevents contact between the connection 23 and the connection electrode 15.
  • the spring element designed so that it is the connection 23 in Fig. 6 would urükken on the terminal electrode 15, it may be provided between connection 23 and terminal electrode 15, an insulating part, as in Fig. 1 indicated at 36.
  • the switching element 22 reaches its open position, the spring element 21 presses the connection 23 onto the insulating element 36, which thus prevents contact with the connection electrode 15.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Thermally Actuated Switches (AREA)
  • Switches With Compound Operations (AREA)
  • Lock And Its Accessories (AREA)
  • Push-Button Switches (AREA)
  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
  • Percussive Tools And Related Accessories (AREA)
  • Valve Device For Special Equipments (AREA)

Description

  • Die vorliegende Erfindung betrifft einen Schalter mit einem ersten und zumindest einem zweiten Außenanschluß sowie einem temperaturabhängigen Schaltwerk, das in Abhängigkeit von seiner Temperatur zwischen den beiden Außenanschlüssen eine elektrisch leitende Verbindung für einen durch den Schalter zu leitenden elektrischen Strom herstellt, wobei das Schaltwerk ein Schaltorgan, das seine geometrische Form temperaturabhängig zwischen einer Schließ- und einer Öffnungsstellung verändert und in seiner Schließstellung den durch den Schalter fließenden Strom führt, sowie ein Stellorgan umfaßt, das mit dem Schaltorgan permanent elektrisch und mechanisch in Reihe geschaltet ist.
  • Ein derartiger Schalter ist aus der US 4,636,766 A wie auch aus US 5,196,820 bekannt.
  • Der bekannte Schalter umfaßt als Schaltorgan ein U-förmiges Bimetall-Element mit zwei unterschiedlich langen Schenkeln. An dem langen Schenkel ist ein bewegliches Kontaktteil befestigt, das mit einem schalterfesten Gegenkontakt zusammenwirkt, der wiederum mit einem der beiden Außenanschlüsse in elektrisch leitender Verbindung steht.
  • Der kürzere Schenkel des U-förmigen Bimetall-Elementes ist an dem freien Ende eines als Hebelarm ausgebildeten Stellorganes befestigt, das mit seinem anderen Ende fest mit dem Gehäuse verbunden ist sowie mit dem anderen der beiden Außenanschlüsse in elektrisch leitender Verbindung steht. Das Stellorgan ist ein weiteres Bimetall-Element, das so auf das U-förmige Bimetall-Element abgestimmt ist, das sich die beiden Bimetall-Elemente bei Temperaturänderungen gegensinnig verformen und somit den Kontaktdruck zwischen dem beweglichen Kontaktteil sowie dem gehäusefesten Gegenkontakt erhalten.
  • Dieser Schalter ist als Unterbrecher für hohe Ströme gedacht, die zu einer starken Erwärmung der durchflossenen Bimetall-Elemente führen, wodurch letztendlich das bewegliche Kontaktteil von dem festen Gegenkontakt abgehoben wird. Einflüsse der Umgebungstemperatur werden dabei durch die erwähnte gegensinnige Verformung der Bimetall-Elemente kompensiert.
  • Bei dieser Konstruktion ist vor allem von Nachteil, daß zwei Bimetall-Elemente benötigt werden, deren Temperaturverhalten exakt aufeinander abgestimmt sein muß, was konstruktiv aufwendig und kostenintensiv zu realisieren ist. Um Fertigungstoleranzen zu kompensieren, wird der bekannte Schalter nach der Montage ferner mechanisch justiert, was einen weiteren Nachteil darstellt.
  • Da die beiden Bimetall-Elemente geometrisch sehr verschieden ausgelegt sind, weisen sie außerdem unterschiedliche Langzeitstabilitäten auf, so daß eigentlich von Zeit zu Zeit eine Nachjustage erforderlich wäre. Dies ist jedoch im Einsatz nicht mehr möglich, so daß insgesamt die Langzeitstabilität und damit die Funktionssicherheit zu wünschen übrig läßt.
  • Ein weiterer Nachteil bei dieser Konstruktion besteht in der durch das U-förmige Bimetall-Element bedingten großen Bauhöhe.
  • Der bekannte stromabhängige Schalter ist also konstruktiv aufwendig, teuer und nicht sehr zuverlässig.
  • Ein weiterer, aus der EP 0 103 792 B1 bekannter, stromabhängiger Schalter weist als Schaltorgan eine Bimetall-Federzunge auf, die an dem einen Außenanschluß befestigt ist und an ihrem freien Ende ein bewegliches Kontaktteil trägt, das mit einem Gegenkontakt zusammenwirkt, der an dem freien Ende eines länglichen Federelementes angeordnet ist, das anderen Endes an dem anderen Außenanschluß befestigt ist. Der Schalter wird mit seinen Außenanschlüssen derart in Reihe zu einem elektrischen Gerät geschaltet, daß der Betriebsstrom dieses Schalters durch die Bimetall-Federzunge fließt. In der Regel ist der bekannte Schalter ferner thermisch an das elektrische Gerät angekoppelt, so daß er dessen Temperaturänderungen folgen kann.
  • Erhöht sich jetzt die Temperatur des Gerätes über einen unzulässigen Wert hinaus, so hebt die Bimetall-Federzunge den beweglichen Kontakt von dem Gegenkontakt ab, wodurch der Stromfluß unterbrochen wird und das elektrische Gerät vor weiterer Aufheizung geschützt ist. In diese Öffnungsstellung kann die Bimetall-Federzunge jedoch auch durch einen erhöhten Stromfluß gebracht werden, da sich die Bimetall-Federzunge durch den hindurchfließenden elektrischen Strom aufheizt. Die elektrischen Eigenschaften der Bimetall-Federzunge können jetzt in Abstimmung mit den mechanischen Eigenschaften sowie der Sprungtemperatur so eingestellt werden, daß sie sich in ihrer Schließstellung befindet, in der sie den Betriebsstrom des elektrischen Gerätes leitet, wenn sowohl die Umgebungstemperatur unterhalb der Schalttemperatur ist als auch der Betriebsstrom unterhalb einer Ansprechstromstärke liegt. Erhöht sich jetzt der Betriebsstrom über den zulässigen Wert hinaus, so heizt sich die Bimetall-Federzunge sehr schnell auf und erreicht ihre Sprungtemperatur, woraufhin sie in ihre Öffnungsstellung übergeht.
  • Dieser Schalter bietet damit Schutz sowohl vor Übertemperatur als auch vor Überstrom.
  • Wegen der elastischen Lagerung des Gegenkontaktes reiben Kontakt und Gegenkontakt während der Schaltvorgänge aneinander, wodurch Verschmutzungen und Beläge von den Kontaktflächen abgerieben werden, was für einen geringen Übergangswiderstand und damit eine gute elektrische Verbindung sorgt. Die elastische Lagerung des Gegenkontaktes sorgt ferner für eine geringe mechanische Belastung der Bimetall-Federzunge, da der Gegenkontakt begrenzt nachgibt. Hierdurch werden irreversible Verformungen der Bimetall-Federzunge vermieden. Da derartige mechanische Verformungen zu einer Verschiebung der Schalttemperatur führen können, sorgt diese Anordnung insgesamt für eine hohe Betriebssicherheit.
  • Bei dem bekannten Schalter ist jedoch von Nachteil, daß er wegen des elastischen Ausweichens des Gegenkontaktes sowie des Umspringens der Bimetall-Federzunge in die Öffnungsstellung einen relativ hohen Platzbedarf für die Schaltfunktion des temperaturabhängigen Schaltwerkes aufweist. Ein weiterer Nachteil besteht darin, daß die Bimetall-Federzunge wie alle Bimetall-Elemente beim Übergang von der Schließ- in die Öffnungsstellung eine sogenannte Schleichphase durchläuft, in der sich infolge einer Temperaturerhöhung oder -erniedrigung das Bimetall-Element schleichend verformt, ohne jedoch von seiner z.B. konvexen Tieftemperaturstellung bereits in seine konkave Hochtemperaturstellung umzuschnappen. Diese Schleichphase tritt jedesmal dann auf, wenn sich die Temperatur des Bimetall-Elementes entweder von oben oder von unten der Sprungtemperatur nähert und führt zu merklichen Konformationsänderungen. Insbesondere infolge von Alterung oder Langzeitbetrieb kann sich das Schleichverhalten eines Bimetall-Elementes darüber hinaus auch noch verändern.
  • Während der Öffnungsbewegung kann das Schleichen dazu führen, daß der Druck des Kontaktes gegen den Gegenkontakt nachläßt, wodurch undefinierte Schaltzustände entstehen. Während der Schließbewegung kann sich der Kontakt während der Schleichphase allmählich dem Gegenkontakt annähern, wodurch die Gefahr eines Lichtbogens hervorgerufen werden kann.
  • Bei einem aus der US 4,389,630 A bekannten Bimetall-Schalter wird diese Schleichphase des Bimetall-Elementes dadurch unterdrückt, daß die dort eingesetzte Bimetall-Scheibe im zentralen Bereich niedergedrückt oder am Rand niedergehalten wird, wobei Widerlager vorgesehen sind, die den Umschnappvorgang mitbewirken. Der Kontaktdruck wächst dabei mit zunehmender Temperatur bis zum Öffnen kontinuierlich an.
  • Dies wird dadurch erreicht, daß die Bimetall-Scheibe an dem freien Ende eines Federelementes befestigt ist, wobei die Verbindungsstelle zwischen Federelement und Bimetall-Scheibe durch eine gehäusefeste Nase unterstützt wird. Auf diese Weise steht die Bimetall-Scheibe unter mechanischer Vorspannung, die die Schleichphase unterdrückt.
  • Diese Konstruktion ist zum einen konstruktiv aufwendig, wobei ein weiterer Nachteil darin besteht, daß die Vorspannung der Bimetall-Scheibe die Lebensdauer, die Reproduzierbarkeit sowie die Langzeitstabilität der Schalttemperatur nachteilig beeinträchtigt. Sollte die Bimetall-Scheibe dennoch eine größere Schleichphase aufweisen, würde dies die Funktion des Schalters beeinträchtigen.
  • Diese mit dem Schleichverhalten eines Bimetall-Elementes einhergehenden Probleme werden bei einem stromabhängigen Schalter, wie er in der eingangs erwähnten US 4,636,766 , der US 4,389,630 oder der EP 0 103 792 beschrieben ist, dadurch gelöst, daß die Bimetall-Federzunge mit Vorprägungen versehen wird, die die Schleichphase zwar nicht vollständig aber doch zum großen Teil unterdrücken. Diese Vorprägungen oder sonstigen mechanischen Einwirkungen auf das Bimetall-Element sind aufwendige und teure Maßnahmen, durch die zudem die Lebensdauer dieser Bimetall-Elemente deutlich reduziert wird. Ein weiterer Nachteil der erforderlichen Vorprägung ist darin zu sehen, daß für verschiedene Leistungsklassen und Ansprechtemperaturen nicht nur unterschiedliche Materialzusammensetzungen und -stärken sondern auch noch unterschiedliche Vorprägungen eingesetzt werden müssen.
  • Insgesamt ist bei diesen Schaltern also neben dem erforderlichen Platzbedarf für den Schaltvorgang selbst vor allem das aufwendige und damit teure Schaltorgan von Nachteil, das zudem für unterschiedliche Schaltertypen jeweils individuell ausgelegt werden muß.
  • Eine weitere Konstruktion mit einem beweglichen Gegenkontakt zeigt auch die US 4,319,214 . Das Bimetall-Schaltwerk umfaßt einen an einem Federarm gelagerten, mitwandernden Gegenkontakt sowie ein an einem Bimetall-Arm gelagertes bewegliches Kontaktteil. Der Bimetall-Arm ist entweder direkt am Gehäuseunterteil befestigt oder er wird von einem weiteren Bimetall-Arm getragen, der seinerseits am Gehäuseunterteil befestigt ist. In jedem Fall ist der Bimetallarm mit einer Prägung zur Einstellung des definierten Schnappunktes versehen, wobei entweder der Bimetall-Arm selbst oder der weitere Bimetall-Arm einem Gegenlager zugeordnet ist, um das der entsprechende Bimetall-Arm bei Temperaturänderungen schwenkt.
  • Im Ausführungsbeispiel mit den beiden Bimetall-Armen sind diese in ihrem Schaltverhalten aufeinander abgestimmt und biegen sich bei Temperaturerhöhung ggf. um das Gegenlager, wobei das bewegliche Kontaktteil vom Gegenkontakt weg bewegt wird, der jedoch infolge der Federwirkung des Federarmes nachgestellt wird. Bei Erreichen der Schalttemperatur schnappt der Bimetall-Arm um die Prägung und ggf. das Gegenlager, wodurch das bewegliche Kontaktteil von dem Gegenkontakt abgehoben wird, der durch einen Anschlag daran gehindert wird, dem Kontaktteil noch weiter zu folgen.
  • Bei diesen beiden Konstruktionen ist zum einen von Nachteil, daß die nur begrenzt zugelassene Schleichphase des Bimetall-Armes exakt auf die Federkraft des Federarmes sowie die räumliche Lage des Anschlages abgestimmt sein muß, um zu verhindern, daß der Federarm den Anschlag noch während der Schleichphase erreicht, was zu einem ungewollten Öffnen der Kontakte vor Erreichen der Sprungtemperatur führen würde.
  • Um dies zu vermeiden, müssen die Bimetall-Arme zusätzlich mit die Schleichphase einschränkenden Prägungen versehen werden, und sich ferner etwa mittig an einem Gegenlager abstützen, um das sie sich entsprechend verbiegen.
  • Durch diese Maßnahmen werden die Bimetall-Arme starken mechanischen Belastungen ausgesetzt, die sich auch hier nachteilig auf die Lebensdauer, die Reproduzierbarkeit und die Stabilität der Schalttemperatur auswirken. Wegen der in nur sehr engen Grenzen zulässigen Toleranzen ist dieser Schalter außerdem aufwendig und teuer.
  • Ein weiterer Nachteil besteht in dem wandernden Gegenkontakt, was nicht nur konstruktiv aufwendig ist, sondern auch hier wegen des erforderlichen Hubes die Bauhöhe unerwünscht vergrößert.
  • Bei dem Ausführungsbeispiel mit den beiden Bimetall-Armen ist ferner noch von Nachteil, daß diese bezüglich ihres Temperaturverhaltens wie bei dem eingangs erwähnten, gattungsbildenden Schalter exakt aufeinander abgestimmt werden müssen, um die Schalttemperatur festzulegen.
  • Bei allen insoweit beschriebenen Schaltern aus dem Stand der Technik wird die Schleichphase also möglichst gering gehalten, wozu zunehmender oder ausgleichender Druck sowie Zusatzprägungen eingesetzt werden.
  • In diesem Zusammenhang ist aus der DE 21 21 802 C ein weiterer temperaturabhängiger Schalter bekannt, bei dem das Schaltwerk eine Federscheibe umfaßt, die sich im geschlossenen Zustand des Schalters mit ihrem Rand auf einer ersten Anschlußelektrode abstützt und einen zentrisch getragenen beweglichen Kontakt gegen einen stationären Gegenkontakt drückt, der an einer zweiten Anschlußelektrode vorgesehen ist. Die beiden Anschlußelektroden bilden bei dem bekannten Schalter ein gekapseltes metallisches Gehäuse und sind voneinander durch eine Isolierscheibe elektrisch isoliert.
  • Über den beweglichen Kontakt ist eine Bimetall-Schnappscheibe gestülpt, die unterhalb ihrer Schalttemperatur lose im Inneren des bekannten Schalters liegt, also keinen mechanischen Belastungen ausgesetzt ist. Der Betriebsstrom des zu schützenden Gerätes fließt bei diesem Schalter lediglich durch die Federscheibe, die Bimetall-Schnappscheibe wird durch den Betriebsstrom nicht belastet.
  • Bei diesem Schalter wirkt sich die Schleichphase der Bimetall-Schnappscheibe sehr viel weniger aus als bei den zuvor erwähnten Schaltern, so daß hier relativ preiswerte Schaltorgane eingesetzt werden, die zudem eine große Lebensdauer haben.
  • Wenn die Bimetall-Schnappscheibe über ihre Schalttemperatur hinaus erwärmt wird, springt sie am Ende der Schleichphase plötzlich von ihrer konvexen in eine konkave Form und stützt sich dabei mit ihrem Rand am Deckel des Gehäuses ab und drückt über ihren mittleren Bereich gegen die Kraft der Federscheibe den beweglichen Kontakt von dem Gegenkontakt weg, wodurch der Schaltkreis unterbrochen wird.
  • Damit jetzt nicht ein Strom über die Bimetall-Schnappscheibe zu der Federscheibe fließen kann, ist zwischen Bimetall-Schnappscheibe und Deckel des Gehäuses eine zusätzliche Isolierscheibe vorgesehen, die diesen unerwünschten Stromfluß unterbindet.
  • Obwohl dieser Schalter technisch extrem zuverlässig ist und großen wirtschaftlichen Erfolg hat, ist er für bestimmte Anwendungsbereiche doch konstruktiv zu aufwendig. In Abhängigkeit von Schalttemperatur, Konvexität und Dicke der Bimetall-Schnappscheibe muß z.B. immer eine speziell abgestimmte Federscheibe eingesetzt werden, was insgesamt aufwendig und teuer ist. Ein weiterer Nachteil ist in der zusätzlichen Isolation zwischen Bimetall-Schnappscheibe und Deckel des Schalters zu sehen.
  • Ein weiterer Nachteil liegt bei bestimmten Anwendungen darin, daß dieser Schalter nicht stromabhängig ist, da die Bimetall-Schnappscheibe zu keinem Zeitpunkt den Betriebsstrom führt. Jetzt ist es jedoch allgemein bekannt, den Schalter mit einem Vorwiderstand zu versehen, durch den der Betriebsstrom fließt und der sich bei zu hohem Stromfluß entsprechend aufheizt und die Bimetall-Schriappscheibe zum Umspringen bringt. Auch diese Konstruktionsvarianten sind technisch sehr zuverlässig, verglichen mit dem eingangs genannten Schalter weisen sie jedoch den Nachteil auf, daß der Vorwiderstand nicht so schnell und empfindlich reagieren kann, wie das stromdurchflossene Bimetall-Element des eingangs genannten Schalters.
  • Vor diesem Hintergrund ist es Aufgabe der vorliegenden Erfindung, einen stromabhängigen Schalter von der eingangs genannten Art zu schaffen, bei dem mit einer preiswerten und einfachen Konstruktion eine hohe Funktionssicherheit und lange Lebensdauer erreicht wird.
  • Bei dem eingangs erwähnten Schalter wird diese Aufgabe erfindungsgemäß dadurch gelöst, daß das Schaltorgan ein Federelement umfaßt, dessen Stellkraft weitgehend temperaturunabhängig ist, und das Schaltorgan eine temperaturabhängige Stellkraft aufweist, die in dessen Schleichphase größer ist als die Stellkraft des Federelementes, wobei unabhängig von seiner Geometrieänderung in der Schleichphase das Schaltorgan verglichen mit dem Federelement als starr anzusehen ist, so daß der Kontaktdruck allein durch die Stellkraft des Federelementes ausgeübt wird.
  • Die der Erfindung zugrunde liegende Aufgabe wird auf diese Weise vollkommen gelöst. Der Erfinder der vorliegenden Anmeldung hat nämlich erkannt, daß die aus der DE 21 21 802 C bekannte mechanische und elektrische parallele Anordnung von temperaturneutralem Federelement und Schaltorgan in eine elektrische und mechanische Reihenschaltung abgewandelt und bei dem gattungsbildenden Schalter eingesetzt werden kann, um eine ganze Reihe von Vorteilen in dem so geschaffenen neuen Schalter zu vereinigen.
  • Durch die elektrische Reihenschaltung von Federelement und Schaltorgan ergibt sich ein stromabhängiger Schalter, da das Schaltorgan, das vorzugsweise ein Bimetall-Element oder ein Trimetall-Element ist, sich bei zu hohem Stromfluß oder auch bei kurzen Stromspitzen wegen seiner geringen thermischen Masse sehr schnell aufheizen kann. Durch die mechanische Reihenschaltung, also das Zusammenwirken der Federkraft des Federelementes mit dem des Schaltorganes, kann darüber hinaus die Schleichphase des Schaltorganes ausgeglichen werden. Wenn sich das Schaltorgan während der Schleichphase in seiner Geometrie verändert, so wird dies durch das Federelement unmittelbar ausgeglichen. Damit ist es jetzt erstmals möglich, auch bei einem sogenannten stromabhängigen Schalter eine große Schleichphase des Schaltorganes zu ermöglichen, denn das Federelement kann die "ungewollten" Formänderungen während der Schleichphase ausgleichen. Dies bedeutet jedoch, daß ein einfacher herzustellendes und damit preiswerteres Schaltorgan eingesetzt werden kann, das zudem eine höhere Lebensdauer aufweist, da auf die Vorprägung verzichtet werden kann und eine größere Hysterese zulässig wird, so daß die Schleichphase maximal ausgenutzt werden kann.
  • Damit sind aber nicht nur geringe geometrische Anforderungen an das Schaltorgan sondern ebenfalls geringere Anforderungen an das Federelement zu stellen, denn letzteres muß jetzt nur noch dafür sorgen, daß das Schaltorgan unterhalb seiner Sprungtemperatur, also während der Schleichphase, in elektrischem Kontakt mit einem der Außenanschlüsse verbleibt. Unterschiedliche Schaltertypen bezüglich Leistungsklasse und Ansprechtemperatur können jetzt mit im wesentlichen demselben Federelement aber unterschiedlichen Schaltorganen ausgelegt werden, wobei - wie bereits erwähnt - an diese Bauteile des Schaltwerkes sehr viel geringere geometrische und mechanische Bedingungen zu stellen sind, so daß sie insgesamt einfacher und preiswerter herzustellen sind.
  • Bezüglich der Lebensdauer des Schaltorganes ergeben sich hier dieselben Vorteile wie die bei der lose eingelegten Bimetall-Schnappscheibe gemäß DE 21 21 802 , wobei jedoch eine hohe Stromempfindlichkeit erreicht wird. Insgesamt kann bei dem neuen Schalter mehr Wert auf die elektrischen Eigenschaften und die Schalttemperatur gelegt werden, die mechanische Federkraft des Schaltorganes spielt bei dem neuen Schalter zum erstenmal in der Technik eine untergeordnete Rolle, sie muß nur so groß sein, daß das Schaltorgan durch das Federelement nicht zu stark zusammengedrückt wird. Der Schaltvorgang selbst wird nach Abschluß der Schleichphase allein durch das Schaltorgan bewirkt, das in seiner Schließstellung jetzt immer vorgespannt ist. Dieses vorgespannte Schaltorgan weist noch eine ganze Reihe von weiteren Vorteilen auf, so vibriert es nicht im Magnetfeld und weist keine Lichtbogengefahr auf, denn sich allmählich öffnende oder schließende Kontakte werden durch die Vorspannung verhindert.
  • Damit ist aber nur noch eine sehr geringe Vorprägung des Bimetall-Elementes erforderlich, durch die lediglich noch der Schnappeffekt für die plötzliche Kontakttrennung sichergestellt werden muß. Eine stärkere Vorprägung, wie sie bisher zur Unterstützung bzw. Unterdrückung der Schleichphase verwendet wurde, ist nicht mehr erforderlich. Dadurch werden die mechanischen Belastungen verringert und damit die Lebensdauer sowie Zuverlässigkeit und Reproduzierbarkeit des Schaltpunktes deutlich erhöht.
  • Das temperaturneutrale Federelement übt auf das Bimetall-Element keinen dessen Verformung behindernden Druck mehr aus, es gleicht vielmehr in der Schleichphase die Verformung des Bimetall-Elementes durch eigene Verformung derart aus, daß bewegliches Kontaktteil und fester Gegenkontakt miteinander derart sicher in Anlage bleiben, daß für einen niedrigen Übergangswiderstand gesorgt wird, der Kontaktdruck bleibt unterhalb der Schalttemperatur weitgehend unabhängig von der Temperatur konstant.
  • Die Schleichphase des Bimetall-Elementes wird also nicht mehr wie im Stand der Technik unterdrückt, sondern sozusagen ausgeglichen, das Bimetall-Element kann sich nämlich in der Schleichphase nahezu ungehindert verformen, wobei die Änderungen der Geometrie dabei durch das Federelement so ausgeglichen werden, daß der Schalter sicher geschlossen bleibt.
  • Zu diesem Zweck ist die temperaturabhängige Stellkraft des Bimetall-Elementes so gewählt, daß sie in der Schleichphase größer ist als die weitgehend temperaturunabhängige Stellkraft des Federelementes, das das somit "starre" Bimetall-Element damit lediglich noch "führt".
  • Ein großer Vorteil des neuen Schalters liegt in seiner einfachen Bauweise, neben dem gehäusefesten Gegenkontakt ist nur ein Bimetall-Element erforderlich, das Federelement ist temperaturneutral und damit preiswert. Insgesamt müssen Bimetall-Element und Federelement zwar noch bezüglich der Stellkraft aufeinander abgestimmt werden, nicht mehr jedoch zusätzlich auch noch bezüglich ihres Temperaturverhaltens, denn das Schaltwerk richtet sich sozusagen selbst aus. Dadurch wird ein Standardfederelement für alle Temperaturbereiche möglich, wodurch ein wesentlicher Rationalisierungseffekt erreicht wird. Durch diese Konstruktion ist ferner eine geringe Bauhöhe realisierbar, wobei bei unterschiedlichen Schalttemperaturen keine neue individuelle Anpassung erforderlich ist, lediglich das Bimetall-Element muß mit gleichen Federeigenschaften aber anderen Schalttemperaturen ausgelegt werden.
  • Ein weiterer Vorteil besteht darin, daß Toleranzen und Schwankungen in der Schalttemperatur durch die Führung durch das temperaturneutrale Federelement ausgeglichen werden.
  • In einer Weiterbildung ist es bevorzugt, wenn das Federelement an seinem ersten Ende mit dem ersten Anschlußelement und an seinem zweiten Ende mit dem Schaltorgan verbunden ist, wobei vorzugsweise durch das Federelement das Schaltorgan in seiner Schließstellung mit seinem freien Ende gegen einen mit dem zweiten Anschlußelement verbundenen Gegenkontakt gedrückt wird und in seiner Öffnungsstellung sein freies Ende von dem Gegenkontakt abhebt, der weiter vorzugsweise schalterfest angeordnet ist, wobei ebenfalls vorzugsweise das Schaltorgan an seinem freien Ende ein bewegliches Kontaktteil trägt, das mit dem Gegenkontakt zusammenwirkt.
  • Durch diese Maßnahmen wird einzeln und in Kombination zunächst ein konstruktiv sehr einfacher Aufbau des neuen Schalters bereitgestellt. Durch die feste Verbindung zwischen Schaltorgan und Federelement werden die mit dem Einlegen der losen Bimetall-Schnappscheibe verbundenen Nachteile vermieden. Ein weiterer Vorteil besteht darin, daß keine zusätzliche Isolation erforderlich ist; wenn das Kontaktteil sich von dem Gegenkontakt abgehoben hat, besteht nicht die Gefahr eines ungewollten Strompfades. Ein weiterer Vorteil besteht darin, daß das Schaltorgan in seiner Öffnungsstellung keinen mechanischen Belastungen ausgesetzt ist, was die Langzeitstabilität des neuen Schalters erhöht. Damit ist aber auch keine Abstützung des Schaltorganes am Deckel etc. durch z.B. Auflagewarzen erforderlich, so daß ein planarer Deckel und/oder Boden möglich wird, was bei bisherigen Schaltern nicht der Fall war.
  • Weiter ist es bevorzugt, wenn das Schaltorgan und das Federelement miteinander verschweißt oder durch Bördeln fest miteinander verbunden sind, wobei vorzugsweise das freie Ende des Schaltorgans sowie das erste Ende des Federelementes auf derselben Seite der Verbindung zwischen Federelement und Schaltorgan liegen.
  • Diese Maßnahme ist konstruktiv von Vorteil, denn während der Montage müssen Schaltorgan und Federelement lediglich übereinandergelegt und dann an einem Ende mit einander durch Schweißen oder Bördeln fest verbunden werden, bevor dann das Federelement noch mit dem ersten Außenanschluß zu verbinden ist. Insgesamt sind hier also lediglich zwei automatisierbare Schritte erforderlich, um den neuen Schalter endzumontieren, nachdem einmaldie einzelnen Bauteile hergestellt und zugeführt wurden. Insgesamt führt dies zu einem sehr preiswerten Schalter, da aufwendige Montagearbeiten vermieden werden.
  • Ein weiterer Vorteil dieser Konstruktion liegt insgesamt in den geringen Platzanforderungen, durch die "zurückgeklappte" Anordnung des Gegenkontaktes gegenüber der Verbindung zwischen Schaltorgan und Federelement sind zum einen geringe Abmaße in Längsrichtung erforderlich. Aber auch quer zur Längsrichtung, also in "Schaltrichtung", sind nur geringe Abmaße erforderlich. Während der Schleichphase neigt das Schaltorgan dazu, das bewegliche Kontaktteil von dem Gegenkontakt abzuheben, was durch ein Absenken der Verbindungsstelle zwischen Federelement und Schaltorgan ausgeglichen wird. Wenn das Schaltorgan jetzt umschnappt, bewegt sich die Verbindungsstelle noch weiter in Richtung Gegenkontakt, während gleichzeitig der bewegliche Kontakt in die entgegengesetzte Richtung bewegt wird. Der Weg zwischen der Befestigungsstelle des Federelementes an dem ersten Außenanschluß und dem Gegenkontakt wird also sozusagen doppelt verwendet, einmal für die Ausgleichbewegung der Verbindungsstelle zwischen Schaltorgan und Federelement während der Schleichphase des Schaltorganes und zum anderen zum Abheben des beweglichen Kontaktteiles von dem Gegenkontakt.
  • Insgesamt führt diese Konstruktion zu einem Schalter mit sehr geringer Höhe, wobei insgesamt nur sehr wenig Material erforderlich ist, was wiederum zu einem preiswerten Schalter beiträgt.
  • Weiter ist es bevorzugt, wenn der erste Außenanschluß mit einer Anschlußelektrode verbunden ist, an der das Federelement mit seinem ersten Ende befestigt ist, und wenn vorzugsweise der zweite Außenanschluß mit einer zweiten Anschlußelektrode verbunden ist und das Schaltwerk zwischen der ersten und der zweiten Anschlußelektrode angeordnet ist.
  • Diese Maßnahme führt zu einer sehr einfachen Konstruktion; es sind nämlich lediglich zwei parallel zueinander anzuordnende Anschlußelektroden vorzusehen, zwischen denen das Schaltwerk dadurch angeordnet wird, daß das Federelement mit seinem ersten Ende an der einen Anschlußelektrode befestigt wird, während der Gegenkontakt an der anderen Anschlußelektrode vorgesehen ist.
  • Insgesamt ist es dabei von Vorteil, wenn Schaltorgan, Federelement sowie beide Anschlußelektroden aus Bandmaterial ausgestanzt sind.
  • Diese Maßnahmen sind im Hinblick auf eine Bandfertigung von Vorteil, denn diese vier grundlegenden Bauteile des neuen Schalters können z.B. über vier verschiedene Bänder zugeführt und in der oben beschriebenen Weise automatisch so miteinander verbunden werden, daß der neue Schalter entsteht. Ein großer Vorteil liegt dabei darin, daß weder das Schaltorgan noch das Federelement als Schüttgut zugeführt werden müssen, was bei bekannten Schaltern immer wieder mit großen Problemen verbunden ist, da das Schüttgut vor der Montage vereinzelt und ausgerichtet werden muß. Beim Stanzen der einzelnen Bauelemente aus Endlosbändern tauchen diese Probleme selbstverständlich nicht mehr auf. Dadurch ist eine komplette Bandfertigung ohne zusätzliche Montage möglich, wobei an den Anschlußelektroden beliebige Anschlußtechniken realisiert werden können, z.B. Crimpanschluß, Steckanschluß, Lötanschluß etc. Eine derartige Applikationsfreiheit bei der Fertigung eines temperaturabhängigen Schalters war bisher nicht bekannt.
  • Dabei ist es bevorzugt, wenn die erste und die zweite Anschlußelektrode von einem Isolierstoffträger gehalten sind, wobei vorzugsweise die zweite Anschlußelektrode durch Umspritzen integraler Bestandteil eines isolierenden Gehäuseunterteiles ist, das durch die erste Anschlußelektrode verschlossen ist.
  • Auch diese Maßnahme ist konstruktiv von großem Vorteil, denn die vier grundlegenden Bauelemente des neuen Schalters, nämlich Schaltorgan, Federelement sowie die beiden Anschlußelektroden, können sowohl zu einem sogenannten offenen als auch zu einem geschlossenen Schalter zusammengebaut werden, ohne daß die Konstruktion der vier Bauelemente selbst verändert werden muß.
  • Ein weiterer Vorteil bei dem neuen Schalter besteht darin, daß das durch die erste Anschlußelektrode gebildete Deckelteil sowie das durch die zweite Anschlußelektrode gebildete Bodenteil ebene, planare Elektroden sein können, was beim Stand der Technik bisher nicht möglich war. Dies führt jedoch nicht nur zu einer sehr geringen Bauhöhe des neuen Schalters, diese planen Flächen schaffen ferner eine Voraussetzung zur Substratbedruckung, um Vor- oder Parallelwiderstände realisieren zu können, mit denen dem neuen Schalter weitere Funktionen verliehen werden können.
  • Weitere Vorteile ergeben sich aus der Beschreibung und der beigefügten Zeichnung.
  • Es versteht sich, daß die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
  • Fig. 1
    einen Längsschnitt durch den neuen Schalter;
    Fig. 2
    eine Draufsicht auf den Schalter gemäß Fig. 1;
    Fig. 3
    ein zweites Ausführungsbeispiel des neuen Schalters in einer Ansicht wie Fig. 2;
    Fig. 4
    das Schaltwerk des Schalters aus Fig. 1 in einer schematisierten, vergrößerten Darstellung, wobei das Schaltorgan in Schließstellung ist;
    Fig. 5
    eine Darstellung wie Fig. 4, jedoch während der Schleichphase des Schaltorganes; und
    Fig. 6
    eine Darstellung wie Fig. 4, wobei das Schaltorgan jedoch in seiner Öffnungsstellung ist.
  • In Fig. 1 ist allgemein mit 10 ein neuer Schalter gezeigt, der im schematischen Längsschnitt dargestellt ist.
  • Der neue Schalter 10 weist einen ersten Außenanschluß 11 auf, der einstückig mit einer ebenen Anschlußelektrode 12 verbunden ist. Ferner ist ein zweiter Außenanschluß 14 vorgesehen, der mit einer zweiten Anschlußelektrode 15 einstückig ausgebildet ist. Die beiden Anschlußelektroden 12, 15 sind an einem Isolierstoffträger 16 gehalten, der die beiden Anschlußelektroden 12, 15 parallel zueinander beabstandet hält.
  • Während der Isolierstoffträger 16 grundsätzlich seitlich offen sein kann, ist in Fig. 1 ein Ausführungsbeispiel gezeigt, bei dem der Isolierstoffträger 16 ein topfförmiges Gehäuseunterteil 17 umfaßt, das um die zweite Anschlußelektrode 15 herum durch Umspritzen oder Vergießen derart ausgebildet ist, daß die zweite Anschlußelektrode 15 integraler Bestandteil des Gehäuseunterteiles 17 ist. Das Gehäuseunterteil 17 wird durch die erste Anschlußelektrode 12 verschlossen, die hierzu als Deckelteil wirkt und von einem bei 18 angedeuteten, heißverschweißten Rand des Isolierstoffträgers 16 unverlierbar gehalten wird.
  • Zwischen den beiden Anschlußelektroden 12, 15 ist ein temperaturabhängiges Schaltwerk 19 angeordnet, das eine mechanische und elektrische Reihenschaltung aus einem Federelement 21 sowie einem Schaltorgan 22 umfaßt, die durch eine bei 23 angedeutete Verbindung miteinander verbunden sind. Das Schaltorgan 22 ist im vorliegenden Falle ein Bimetall-Element.
  • Das Federelement 21 hat dabei eine weitgehend temperaturunabhängige Stellkraft, was im Rahmen der vorliegenden Erfindung bedeutet, daß sich die Stellkraft oder Federkraft des Federelementes 21 im Bereich der zulässigen Betriebstemperatur des Schalters 10 nicht merklich ändert. Die Stellkraft des Bimetall-Elementes ist dagegen starkt temperaturabhängig und auch in der sogenannten Schleichphase schon derart groß, daß das Federelement 21 keinen die Verformung des Bimetall-Elementes behindernden Druck auf das bei konstanter Temperatur in diesem Federsystem somit starre Bimetall-Element ausüben kann.
  • Das Federelement 21 ist mit seinem ersten Ende 25 in Fig. 1 rechts an der ersten Anschlußelektrode 12 befestigt und führt mit seinem zweiten Ende 26 in die Verbindung 23 zu dem Schaltorgan 22. Das Schaltorgan 22 trägt an seinem freien Ende 27 ein bewegliches Kontaktteil 28, das mit einem schalterfesten Gegenkontakt 29 zusammenwirkt, der an der zweiten Anschlußelektrode 15 ausgebildet ist.
  • Zwischen der ersten und der zweiten Anschlußelektrode 12, 15 ist noch ein bei 31 angedeutetes PTC-Element vorgesehen, das elektrisch parallel zu dem Schaltwerk 19 angeordnet ist.
  • In seiner in Fig. 1 gezeigten Schließstellung stellt das Schaltwerk 19 eine elektrisch leitende Verbindung zwischen den beiden Außenanschlüssen 11, 14 her und schließt dabei das PTC-Element 31 kurz. Ein durch den Schalter 10 fließender Strom gelangt jetzt von dem ersten Außenanschluß 11 in die erste Anschlußelektrode 12 und von dort über das Federelement 21 in das Schaltorgan 22, aus dem er über das bewegliche Kontaktteil 28 austritt, um über den Gegenkontakt 29 und die zweite Anschlußelektrode 15 zu dem zweiten Außenanschluß 14 zu gelangen. Erhöht sich jetzt entweder die Temperatur des Schalters 10 bzw. des Schaltorganes 22 und/oder der durch das Schaltorgan 22 fließende Strom, so gelangt das Schaltorgan 22 in seine noch näher zu beschreibende Öffnungsstellung, in der es das bewegliche Kontaktteil 28 von dem Gegenkontakt 29 abhebt. Dadurch wird der Stromfluß durch das Schaltwerk 19 unterbrochen, so daß jetzt ein Reststrom durch das PTC-Element 31 fließen kann. Dieser Reststrom heizt das PTC-Element 31 so weit auf, daß die Temperatur in dem Schalter 10 oberhalb der Ansprechtemperatur des Schaltorganes 22 bleibt. Mit anderen Worten, das PTC-Element sorgt für eine Selbsthaltung des einmal geöffneten Schalters 10.
  • In Fig. 2 ist eine Draufsicht auf den Schalter aus Fig. 1 gezeigt, wobei hier der erste und der zweite Außenanschluß 11, 14 nicht wie in Fig. 1 untereinander sondern nebeneinander angedeutet sind. In Fig. 2 ist zu erkennen, daß der Rand 18 des Gehäuseunterteiles 17 die erste Anschlußelektrode 12 vollständig umgibt, so daß der Schalter 10 vollständig gekapselt ist.
  • In Fig. 2 ist ferner zu erkennen, daß sowohl das Federelement 21 als auch das Schaltorgan 22 als längliche Zungen ausgebildet sind, die in der Draufsicht derart untereinander angeordnet sind, daß sich sowohl das erste Ende 25 des Federelementes 21 als auch das freie Ende 27 des Schaltorganes 22 in Fig. 2 rechts neben der Verbindung 23 befinden.
  • In Fig. 3 ist ein weiterer Schalter 10 gezeigt, der nicht den quadratischen Grundriß aus Fig. 2 sondern einen runden Grundriß aufweist. Im übrigen entspricht der Schalter 10 aus Fig. 3 jedoch dem Aufbau, wie er in Fig. 1 im Längsschnitt gezeigt ist, wobei gleiche Konstruktionsmerkmale mit den selben Bezugszeichen bezeichnet sind. Es sei lediglich noch erwähnt, daß das Federelement 21 sowie das Schaltorgan 22 jeweils als ovale Scheiben ausgebildet sind.
  • Abgesehen von dem PTC-Element 31, das selbstverständlich jederzeit weggelassen werden kann, wenn keine Selbsthaltefunktion erwünscht ist, umfaßt der neue Schalter 10 vier grundlegende Bauelemente, nämlich die beiden Elektroden 12, 15 sowie das Federelement 21 und das Schaltorgan 22. Alle vier Bauteile können aus Bandmaterial ausgestanzt und zum Zwecke einer automatischen Montage zusammengeführt werden. Hierzu wird zunächst die Verbindung 23 durch Schweißen (Fig. 1) oder Bördeln (Figuren 4 bis 6) hergestellt, woraufhin dann das Federelement 21 an seinem ersten Ende 25 an die Anschlußelektrode 12 angeschweißt wird. Durch die V-förmige Ausbildung des Schaltwerkes kommt dadurch das freie Ende 27 des Schaltorganes 22 über den Gegenkontakt 29 zu liegen. Hier sei noch erwähnt, daß selbstverständlich auf das bewegliche Kontaktteil 28 verzichtet werden kann, daß durch das Kontaktteil 28 jedoch für einen besseren Übergangswiderstand zu dem Gegenkontakt 29 gesorgt wird.
  • Die beiden Anschlußelektroden 12, 15 werden dann noch an dem Isolierstoffträger 16 befestigt, wobei es möglich ist, das Gehäuseunterteil 17 um die Anschlußelektrode 15 herumzuspritzen und dann die Anschlußelektrode 12 mit daran befestigtem Schaltwerk 19 von oben aufzulegen und durch einen heiß zu verpressenden Rand 18 zu befestigen.
  • In Fig. 4 ist schematisch das Schaltwerk 19 aus Fig. 1 in vergrößertem Maßstab in seiner Schließstellung dargestellt. Das Schaltorgan 22 befindet sich so weit unterhalb seiner Sprungtemperatur, daß seine Schleichphase noch nicht eingesetzt hat. Das Schaltorgan 22 drückt gegen die Kraft des Federelementes 21 die Verbindung 23 in Fig. 4 nach oben, so daß sich ein bei 33 angedeuteter Abstand zur ersten Anschlußelektrode 12 sowie ein bei 34 angedeuteter Abstand zu dem Gegenkontakt 29 einstellt.
  • Wenn sich jetzt die Temperatur des Schaltorganes 22 infolge eines erhöhten Stromflusses oder infolge einer erhöhten Außentemperatur erhöht, so beginnt zunächst die Schleichphase des Schaltorganes 22, in der seine gegen die Kraft des Federelementes 21 arbeitende Federkraft nachläßt, so daß die Verbindung 23 in Fig. 4 nach unten bewegt wird, wie es in Fig. 5 dargestellt ist. Die Stellkraft des Bimetall-Elementes ist jedoch noch immer so groß, daß die Stellkraft des Federelementes 21 nicht ausreicht, um die in der Schleichphase auftretenden Verformungen zu behindern. Unabhängig von seiner Geometrieänderung in der Schleichphase ist das Schaltorgan verglichen mit dem Federelement 21 als starr anzusehen, der Kontaktdruck wird allein durch die Stellkraft des Federelementes ausgeübt.
  • Der Abstand 33 vergrößert sich in dem Maße, in dem sich der Abstand 34 verringert. Die mechanische Reihenschaltung aus Federelement 21 und Schaltorgan 22 drückt jedoch nach wie vor das bewegliche Kontaktteil 28 gegen den Gegenkontakt 29. Im Vergleich zwischen den Figuren 4 und 5 ist jedoch zu erkennen, daß das bewegliche Kontaktteil 28 sich in Fig. 5 quer zu dem Gegenkontakt 29 verschoben hat. Diese Reibung ist erwünscht, denn hierdurch werden die Kontaktflächen zwischen Kontaktteil 28 und Gegenkontakt 29 gereinigt, so daß der elektrische Übergangswiderstand sehr gering ist.
  • Erhöht sich jetzt die Temperatur des Schaltorganes 22 weiter, so schnappt es in Richtung des Pfeiles 35 in seine Öffnungsstellung, die in Fig. 6 dargestellt ist. Die Verbindung 23 ist noch weiter nach unten gelangt, wobei das Schaltorgan 22 das bewegliche Kontaktteil 28 von dem Gegenkontakt 29 abgehoben hat. Im Vergleich zwischen den Figuren 4 und 6 ist zu erkennen, daß sich die Verbindung 23 zwischen den Anschlußelektroden 12, 15 nach unten bewegt, während sich das bewegliche Kontaktteil 28 in umgekehrter Richtung nach oben bewegt, so daß der lichte Abstand zwischen den beiden Anschlußelektroden 12, 15 sozusagen doppelt ausgenutzt wird.
  • In der in Fig. 6 gezeigten Stellung verhindert das Federelement 21 eine Berührung zwischen der Verbindung 23 sowie der Anschlußelektrode 15. Sollte es aus Elastizitätsüberlegungen heraus erforderlich sein, das Federelement so auszulegen, daß es die Verbindung 23 in Fig. 6 auf die Anschlußelektrode 15 drükken würde, so kann zwischen Verbindung 23 und Anschlußelektrode 15 ein Isolierteil vorgesehen sein, wie es in Fig. 1 bei 36 angedeutet ist. Wenn in Fig. 1 das Schaltorgan 22 in seine Öffnungsstellung gelangt, drückt das Federelement 21 die Verbindung 23 auf das Isolierelement 36, das somit einen Kontakt zu der Anschlußelektrode 15 verhindert.

Claims (15)

  1. Schalter mit einem ersten und zumindest einem zweiten Außenanschluß (11, 14) sowie einem temperaturabhängigen Schaltwerk (19), das in Abhängigkeit von seiner Temperatur zwischen den beiden Außenanschlüssen (11, 14) eine elektrisch leitende Verbindung für einen durch den Schalter (10) zu leitenden elektrischen Strom herstellt, wobei das Schaltwerk (19) ein Schaltorgan (22), das seine geometrische Form temperaturabhängig zwischen einer Schließ- und einer Öffnungsstellung verändert und in seiner Schließstellung den durch den Schalter (10) fließenden Strom führt, sowie ein Stellorgan umfaßt, das mit dem Schaltorgan (22) permanent elektrisch und mechanisch in Reihe geschaltet ist,
    dadurch gekennzeichnet, daß das Stellorgan (19) ein Federelement (21) umfaßt, dessen Stellkraft weitgehend temperaturunabhängig ist, und das Schaltorgan (22) eine temperaturabhängige Stellkraft aufweist, die in dessen Schleichphase größer ist als die Stellkraft des Federelementes (21), wobei unabhängig von seiner Geometrieänderung in der Schleichphase das Schaltorgan (22) verglichen mit dem Federelement (21) als starr anzusehen ist, so daß der Kontaktdruck allein durch die Stellkraft des Federelementes (21) ausgeübt wird.
  2. Schalter nach Anspruch 1, dadurch gekennzeichnet, daß das Schaltorgan (22) ein Bimetall-Element umfaßt.
  3. Schalter nach Anspruch 1, dadurch gekennzeichnet, daß das Schaltorgan (22) ein Trimetall-Element umfaßt.
  4. Schalter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Federelement (21) an seinem ersten Ende (25) mit dem ersten Anschlußelement (11) und an seinem zweiten Ende (26) mit dem Schaltorgan (22) verbunden ist.
  5. Schalter nach Anspruch 4, dadurch gekennzeichnet, daß durch das Federelement (21) das Schaltorgan (22) in seiner Schließstellung mit seinem freien Ende (27) gegen einen mit dem zweiten Anschlußelement (14) verbundenen Gegenkontakt (29) gedrückt wird und in seiner Öffnungsstellung sein freies Ende (27) von dem Gegenkontakt (29) abhebt.
  6. Schalter nach Anspruch 5, dadurch gekennzeichnet, daß der Gegenkontakt (29) schalterfest angeordnet ist.
  7. Schalter nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß das Schaltorgan (22) an seinem freien Ende (27) ein bewegliches Kontaktteil (28) trägt, das mit dem Gegenkontakt (29) zusammenwirkt.
  8. Schalter nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Schaltorgan (22) und das Federelement (21) miteinander verschweißt sind.
  9. Schalter nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Schaltorgan (22) und das Federelement (21) vorzugsweise durch Bördeln fest miteinander verbunden sind.
  10. Schalter nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, daß das freie Ende (27) des Schaltorgans (22) sowie das erste Ende (25) des Federelementes (21) auf derselben Seite der Verbindung (23) zwischen Federelement (21) und Schaltorgan (23) liegen.
  11. Schalter nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der erste Außenanschluß (11) mit einer Anschlußelektrode (12) verbunden ist, an der das Federelement (21) mit seinem ersten Ende (25) befestigt ist.
  12. Schalter nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß der zweite Außenanschluß (14) mit einer zweiten Anschlußelektrode (15) verbunden ist und das Schaltwerk (19) zwischen der ersten und der zweiten Anschlußelektrode (12, 15) angeordnet ist.
  13. Schalter nach den Ansprüchen 11 und 12, dadurch gekennzeichnet, daß die zweite Anschlußelektrode (15) durch Umspritzen integraler Bestandteil eines isolierenden Gehäuseunterteiles (17) ist, das durch die erste Anschlußelektrode (12) verschlossen ist.
  14. Schalter nach den Ansprüchen 11 und 12, dadurch gekennzeichnet, daß die erste und die zweite Anschlußelektrode (12, 15) von einem Isolierstoffträger (16) gehalten sind.
  15. Schalter nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, daß das Schaltorgan (22), das Federelement (21) sowie die beiden Anschlußelektroden (12, 15) aus Bandmaterial ausgestanzt sind.
EP98114459A 1998-02-23 1998-07-30 Schalter Expired - Lifetime EP0938117B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/248,511 US6097274A (en) 1998-02-23 1999-02-10 Switch having a temperature-dependent switching member and a substantially temperature-independent spring element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19807288A DE19807288C2 (de) 1998-02-23 1998-02-23 Temperaturabhängiger Schalter
DE19807288 1998-02-23

Publications (3)

Publication Number Publication Date
EP0938117A2 EP0938117A2 (de) 1999-08-25
EP0938117A3 EP0938117A3 (de) 2000-07-05
EP0938117B1 true EP0938117B1 (de) 2008-10-29

Family

ID=7858488

Family Applications (2)

Application Number Title Priority Date Filing Date
EP98114459A Expired - Lifetime EP0938117B1 (de) 1998-02-23 1998-07-30 Schalter
EP98115406A Expired - Lifetime EP0938116B1 (de) 1998-02-23 1998-08-17 Schalter

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP98115406A Expired - Lifetime EP0938116B1 (de) 1998-02-23 1998-08-17 Schalter

Country Status (5)

Country Link
EP (2) EP0938117B1 (de)
AT (2) ATE412970T1 (de)
DE (3) DE19807288C2 (de)
DK (1) DK0938117T3 (de)
ES (1) ES2316158T3 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19909059C2 (de) * 1999-03-02 2003-10-16 Marcel Hofsaes Schalter mit Verschweißsicherung
DE102007063650B4 (de) 2007-08-28 2011-09-22 Marcel P. HOFSAESS Temperaturabhängiger Schalter mit Selbsthaltefunktion
CN101685723B (zh) * 2008-09-24 2012-04-18 游聪谋 双重温度感应断电的电路保护结构
RU2553280C2 (ru) 2010-09-24 2015-06-10 Элленбергер Унд Поенсген Гмбх Миниатюрный предохранительный выключатель
DE102014004106B4 (de) 2014-03-21 2017-02-09 Ellenberger & Poensgen Gmbh Thermischer Schutzschalter
CN113113264B (zh) * 2021-03-24 2021-11-09 宁波通宝华硕温控器有限公司 一种小型复位温控器
DE102023102301B3 (de) 2023-01-31 2024-03-28 Marcel P. HOFSAESS Temperaturabhängiger Schalter und Verfahren zu dessen Herstellung
DE102023102302B3 (de) 2023-01-31 2024-03-28 Marcel P. HOFSAESS Temperaturabhängiger Schalter
DE102023102303B3 (de) 2023-01-31 2024-03-28 Marcel P. HOFSAESS Temperaturabhängiger Schalter
DE102023104839B3 (de) 2023-02-28 2024-05-16 Marcel P. HOFSAESS Temperaturabhängiger Schalter

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2121802C3 (de) * 1971-05-03 1974-10-24 Thermik-Geraetebau Gmbh + Co, 7530 Pforzheim Temperaturwächter
US4389630A (en) * 1980-03-15 1983-06-21 Susumu Ubukatu Snap action thermally responsive switch
US4319214A (en) * 1980-07-16 1982-03-09 Portage Electric Products, Inc. Creepless, snap action thermostat
DE3234373A1 (de) * 1982-09-16 1984-05-10 Peter 7530 Pforzheim Hofsäss Vorrichtung zum temperatur- und/oder stromabhaengigen schalten einer elektrischen verbindung
US4636766A (en) * 1983-09-19 1987-01-13 Gte Products Corporation Miniaturized circuit breaker
JPH0244232U (de) * 1988-09-21 1990-03-27
JP2519530B2 (ja) * 1989-03-01 1996-07-31 生方 眞哉 熱応動スイッチ
US5196820A (en) * 1990-12-19 1993-03-23 Ubukata Industries Co., Ltd. Thermally responsive switch and method of making the same
US5221914A (en) * 1991-04-03 1993-06-22 Ubukata Industries, Co., Ltd. Thermally responsive switch
US5212465A (en) * 1992-08-12 1993-05-18 Ubukata Industries Co., Ltd. Three-phase thermal protector

Also Published As

Publication number Publication date
DE59813807D1 (de) 2006-12-28
EP0938117A2 (de) 1999-08-25
DE19807288A1 (de) 1999-09-09
ATE412970T1 (de) 2008-11-15
DE19807288C2 (de) 2001-09-20
ATE345574T1 (de) 2006-12-15
EP0938116B1 (de) 2006-11-15
EP0938116A2 (de) 1999-08-25
EP0938116A3 (de) 2000-05-31
EP0938117A3 (de) 2000-07-05
DK0938117T3 (da) 2009-02-16
DE59814312D1 (de) 2008-12-11
ES2316158T3 (es) 2009-04-01

Similar Documents

Publication Publication Date Title
DE102008048554B3 (de) Temperaturabhängiger Schalter
EP0887826B1 (de) Temperaturabhängiger Schalter mit Kontaktbrücke
EP2619784B1 (de) Miniatur-schutzschalter
EP0994498B1 (de) Schalter mit einem Isolierstoffträger
EP2304757B1 (de) Bimetallteil und damit ausgestattete temperaturabhängige schalter
EP2511930B1 (de) Temperaturschutzschalter
DE102019125453A1 (de) Temperaturabhängiger Schalter
DE102011119632B3 (de) Temperaturabhängiges Schaltwerk
EP2874171A1 (de) Temperaturabhängiges Schaltwerk
EP0938117B1 (de) Schalter
EP2958125A1 (de) Temperaturabhängiger schalter mit distanzring
EP0994497B1 (de) Schalter mit einem Isolierstoffträger
DE102011119633B3 (de) Temperaturabhängiger Schalter
EP2783380B1 (de) Temperaturabhängiges schaltwerk
EP0391086B1 (de) Druckknopfbetätigter Ueberstromschutzschalter
DE102023102302B3 (de) Temperaturabhängiger Schalter
DE1200414B (de) Bimetallschaltvorrichtung
DE102023104839B3 (de) Temperaturabhängiger Schalter
DE3587064T2 (de) Thermostat.
DE102023102303B3 (de) Temperaturabhängiger Schalter
DE102007050342B3 (de) Schalter mit einem temperaturabhängigen Schaltwerk
DE4029527A1 (de) Thermoschalter mit bimetall-schnappscheibe
DE102011122890A1 (de) Temperaturabhängiges Schaltwerk
DE102009025221A1 (de) Bimetallteil und damit ausgestattete temperaturabhängige Schalter
DE202014101769U1 (de) Thermisches Schaltelement sowie Kontaktelement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB IE IT LI NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20001122

AKX Designation fees paid

Free format text: AT BE CH DE DK ES FI FR GB IE IT LI NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HOFSAESS, MARCEL P.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOFSAESS, MARCEL P.

17Q First examination report despatched

Effective date: 20070928

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB IE IT LI NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 59814312

Country of ref document: DE

Date of ref document: 20081211

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2316158

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090330

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081029

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081029

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090730

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090730

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20100727

Year of fee payment: 13

Ref country code: CH

Payment date: 20100726

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090730

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20100714

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100715

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20110720

Year of fee payment: 14

BERE Be: lapsed

Owner name: HOFSAESS, MARCEL P.

Effective date: 20110731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110730

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59814312

Country of ref document: DE

Representative=s name: WITTE, WELLER & PARTNER, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20120725

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20121016

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59814312

Country of ref document: DE

Representative=s name: WITTE, WELLER & PARTNER PATENTANWAELTE MBB, DE

Effective date: 20121017

Ref country code: DE

Ref legal event code: R082

Ref document number: 59814312

Country of ref document: DE

Representative=s name: WITTE, WELLER & PARTNER, DE

Effective date: 20121017

Ref country code: DE

Ref legal event code: R081

Ref document number: 59814312

Country of ref document: DE

Owner name: HOFSAESS, MARCEL P., DE

Free format text: FORMER OWNER: HOFSAESS, MARCEL P., 75175 PFORZHEIM, DE

Effective date: 20121017

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120806

Year of fee payment: 15

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130729

Year of fee payment: 16

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140730

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160825

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59814312

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201