EP2105206B1 - Elektrostatischer Abscheider mit Partikelabweisemittel und Heizsystem - Google Patents

Elektrostatischer Abscheider mit Partikelabweisemittel und Heizsystem Download PDF

Info

Publication number
EP2105206B1
EP2105206B1 EP09003859.7A EP09003859A EP2105206B1 EP 2105206 B1 EP2105206 B1 EP 2105206B1 EP 09003859 A EP09003859 A EP 09003859A EP 2105206 B1 EP2105206 B1 EP 2105206B1
Authority
EP
European Patent Office
Prior art keywords
electrode
electrostatic precipitator
holding device
particles
removing means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09003859.7A
Other languages
English (en)
French (fr)
Other versions
EP2105206A2 (de
EP2105206A3 (de
Inventor
Tania Gonzalez Baquet
David Schütz
Dietmar Dr. Steiner
Henrik Dr. Siegle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2105206A2 publication Critical patent/EP2105206A2/de
Publication of EP2105206A3 publication Critical patent/EP2105206A3/de
Application granted granted Critical
Publication of EP2105206B1 publication Critical patent/EP2105206B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/88Cleaning-out collected particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes

Definitions

  • the invention relates to an electrostatic precipitator, in particular for an exhaust pipe of an exhaust gas purification system, according to the preamble of claim 1. Further, the invention relates to a heating system for generating heat by burning an energy source with an electrostatic precipitator according to claim 11.
  • emission control systems Due to emissions from heating systems and global efforts to reduce such emissions - see, for example, the Kyoto Protocol or legislation for small wood firing systems - heating systems use appropriate emission control systems. These are in particular to filter out the harmful substances and particles from exhaust gases, so that the remaining, purified exhaust gas can be safely released to the environment. In particular, such emission control systems are used in biomass heating systems, where in addition to otherwise economic and environmental benefits especially the relatively high emissions of particulate matter can pose a problem.
  • An emission control system which is used for biomass heating systems to reduce particulate matter emission.
  • the device described therein can be installed in a flue gas channel and for this purpose has a lid which can be placed gas-tight on an associated opening on a flue gas channel.
  • a so-called spray electrode for example in the form of a tensioned rod, is held over an insulating holder.
  • a high-voltage transformer with rectifier function allows the construction of a high DC voltage between the wire and the lid, which is electrically connected to the exhaust pipe, so that it acts as a so-called collector electrode.
  • WO 89/12731 describes an electrostatic precipitator for purifying fossil fuel effluents with a duct wall and with a flow passage through which particulate containing exhaust flows in a flow direction. An electric field is formed between a central electrode and the grounded channel wall. An isolated high-voltage supply feeds the central electrode.
  • Such electrostatic filters with a spray electrode and collector electrode are also known as electrostatic precipitators.
  • This is used for exhaust gas purification in an exhaust pipe of a heating system.
  • the spray electrode extends substantially along the exhaust gas flow direction and approximately centrally through the exhaust pipe, which is why it is also referred to as the center electrode.
  • the center electrode Together with an acting as a collector electrode, the surrounding lateral surface of the exhaust pipe, it forms a capacitor, which in a cylindrical tube Design of the exhaust pipe is also referred to as a cylinder capacitor.
  • the spray or center electrode generally has a circular cross section, wherein the diameter of the cross section or the radius of curvature is generally formed relatively small (for example, less than 0.4 mm).
  • an electric field extending transversely to the direction of flow is clamped between the center electrode and the exhaust gas pipe.
  • a high voltage is applied to the center electrode, for example in the range of 15 kV.
  • corona discharge is formed, through which the particles flowing with the exhaust gas through the electric field are charged unipolarly. Due to this charge, most of the particles migrate through the electrostatic Coulomb forces to the inner wall of the exhaust pipe, which serves as a collector electrode.
  • a disadvantage of the electrostatic precipitators according to the prior art is that it comes after a longer period of operation to a continuous degradation (reduction) of the corona current at a constant high voltage. As a result, the charging efficiency of the electrode decreases, which in turn reduces the separation efficiency of the entire system. Remedy is provided by the maintenance and cleaning of the separator, which must be carried out by qualified personnel because of the high-voltage components that are present.
  • the invention has for its object to provide an electrostatic precipitator, which overcomes this disadvantage and in particular provides improved operation and extended cleaning intervals. Further, the invention has for its object to provide a heating system with a separator according to the invention, which guarantees reliable exhaust gas purification.
  • the electrostatic precipitator according to the invention is characterized in that in the electrostatic precipitator, in particular for an exhaust pipe of an exhaust gas purification system, with a channel wall and a flow channel through which a particle-containing exhaust gas flows in a flow direction and an electrode extending in the flow channel substantially in the flow direction , for forming an electric field between the electrode and the channel wall, is provided that further comprises an electrode holding device and at least one Pumbleabweisesch are included, and that the spray electrode is at least partially formed integrally with the electrode holding device.
  • the at least one particle-repelling agent prevents or reduces the fact that particles of the exhaust gas are deposited on the electrode, in particular permanently deposited.
  • the particle repelling agent can effectively reduce the deposition of particulates on other components of the electrostatic precipitator.
  • the electrode holding device is expediently arranged approximately centrally in the exhaust gas line and extending in a substantially rod-shaped manner along the exhaust gas flow direction. To fix the electrode holding device on the separator or on the exhaust pipe, it can be made in one piece with the high-voltage supply or separated from it on a separate suspension.
  • a heatable particle-repelling agent protects the electrode holding device from particle adhesion.
  • the particle-repelling agent may be formed as a heating ceramic, which heats the electrode holding device. By heating the electrode holding device, a process called thermophoresis is initiated which rejects particles from the surface of the electrode holding device and thus also from the electrode surface, whereby a deposition of fine dust particles on the electrode is reduced or at least avoided.
  • the electrode holding device and the particle repelling agent may be made in one piece, i. the electrode holding device is heated directly.
  • the spray electrode is formed at least tellweise integrated with the heatable electrode holding device.
  • the electrode may be at least partially along a surface of the electrode holding device run, especially in close contact with the surface.
  • the electrode is adjacent, preferably adjacent and / or formed on the electrode holding device.
  • An embodiment of the electrostatic precipitator provides that the spray electrode is non-linearly extending to provide a larger active area of action in the flow channel.
  • Nonlinear in this case does not mean in a straight line, but rather curved, bent, coiled, kinked or the like.
  • a larger amount of electrode is provided in the effective deposition area.
  • the surface of the electrode is the surface of action, as it forms the responsible for the deposition of corona. Due to the enlarged surface of the electrode, the effective area is also increased. If the spray electrode is wound (wound) around a rod-shaped electrode holding device, for example, then the corona passes around the entire separation cross-section and thus reaches the entire particle-containing exhaust gas flow.
  • the electrode is at least partially formed spirally with a suitable pitch, so that adjacent areas, in particular corresponding winding areas of the electrode do not influence each other negatively.
  • the electrode has, at least in sections, current-flowable lugs, such as projections, in order to provide a larger active area of action.
  • the electrode may be formed, for example, barbed wire or with projections such as knobs.
  • Another embodiment provides a plurality of Prismabweisesch before, so for example on the electrode holding device and / or on the high voltage supply.
  • a plurality of heatable Prismabweisesch be provided, wherein the heating separately or integrated with each other can be realized.
  • the different heatable Prismabweisestoff be controlled separately.
  • the separate heating is not operated with high voltage, which may need to be transformed into low voltage.
  • a separate heating can be different Set temperatures.
  • the heatable Prismabweisestoff are preferably formed as a ceramic heater, for example as an insulator to the high voltage supply and to the electrode holding device.
  • the two Prismabweisestoff can be formed as a unit.
  • At least one particle-repelling agent can be designed as a mechanical particle-repelling agent, comprising a vibrating device, in order to at least mechanically reduce the permanent adhesion of particles to the separator or its components by vibration generated by vibration. As a result of the vibrations, adhering particles simply fall off or do not adhere at all.
  • the at least one particle-repelling agent can be arranged externally on the separator and can thus be retrofitted or removed from the separator, for example for maintenance purposes.
  • the at least one Pumbleabweisestoff may be formed integrally with the separator.
  • At least one particle-repelling agent is designed as a mechanical particle-repelling agent, comprising a fluid injection device, in order to mechanically permanently adhere particles to the precipitator or its components by injecting a fluid and the associated action of the fluid on particles to reduce.
  • the heating system according to the invention for generating heat by burning an energy source such as biomass is characterized in that it is provided with a particulate matter emitting heating system such as a biomass heating system for burning the energy carrier, wherein particle-containing exhaust gases, and an inventive electrostatic precipitator is provided.
  • the heating ceramic spray spiral system By heating the heating ceramic spray spiral system to over 100 ° C, the condensation of a water film on the spiral is prevented. The water film would make it difficult to form a high enough corona stream.
  • the system can be used immediately at the start of the biomass heating system burner, where experience has shown that most of the particles are emitted.
  • the system can also be used downstream of condensing heat exchangers (calorific value utilization). Here the use of unheated electrodes is hardly possible.
  • the system can also be mechanically freed of particulate matter by a vibrating device as shown in the figure. Also for their activation, the shift of the current / voltage characteristic of the high voltage supply can be used.
  • the fraction of the accumulated particulate matter that can not be dissolved by burnout can be removed from the spiral electrode by the application of mechanical energy.
  • the mechanical cleaning by a vibrator is carried out in the following manner.
  • an eccentric is mounted in the immediate vicinity of Hochwoods knock- or feeding the spray electrode so that it can put the spray electrode into vibration.
  • the eccentric is activated (rotated) upon reaching a certain degree of contamination for a defined period of time, so that the charger is set in vibration and the inside adhering dust drops.
  • the degree of contamination of the spray electrode can be determined in various ways (eg optically, electrically, etc.).
  • a preferred example of an implementation of an automated cleaning is given: By detecting the current-voltage characteristic of the discharge electrode, it is possible to determine the degree of soiling. This effect can be used to control the vibrator. If a previously defined degree of contamination is reached, the control activates the vibrator. Furthermore, this effect can be used to determine the success of the filter cleaning and to control the duration of the activation. If a certain degree of contamination is reached, the control shuts off the vibrator again. If the cleaning fails, ie, the desired degree of cleaning is not achieved, the operator z. B. informed by LED display on the control unit of the electrostatic precipitator on a possible malfunction.
  • the deposition surface surrounding the charger is made of a material similar to that of the vibrator transmits generated vibrations (eg exhaust pipe made of stainless steel), so not only the spray electrode but also the exhaust pipe can be cleaned from the particulate matter contamination with the invention.
  • the released particulate matter falls into, for example, a removable ash drawer.
  • Spray electrode and exhaust pipe mechanical excitation can be done instead of an eccentric by an ultrasonic generator with a frequency adapted to the system.
  • At least one P is advantageously designed as a gas injection system.
  • the spray electrode of the separator, the high-voltage feed, the channel wall designed as a separation surface and / or further separator components can be freed from dust deposits by means of one or more jets of compressed fluid (gas, eg air or CO 2 ).
  • the necessary device can preferably be realized as follows: On the tube wall of the chimney pipe several nozzles at the height of the separator (spray electrode and collector electrode, for example, the channel wall) can be attached.
  • the gas supply can be a small gas bottle or gas cartridge attached to the chimney pipe. With the help of one or more automatically controlled valves, jets of compressed gas can be directed against the spray electrode and the collector electrode for a short time.
  • the spray electrode is made of a thin wire, a jet of gas is sufficient to blow off and vibrate the spray electrode, thereby cleaning it over its entire length.
  • a type of multipoint injection system can be installed, so that the dust deposits can be removed over the entire separation surface.
  • the effect of the degradation of the current-voltage characteristic of the spray electrode can be used.
  • a further advantageous possibility for the regulation of the cleaning devices is the specification of fixed intervals to which they are activated and the cleaning takes place.
  • the filter and / or the heating system should be switched off when the cleaning device is activated.
  • the vibrations generated cause the electrode to vibrate, which reduces the distance to the pipe wall. This could lead to high voltage flashovers.
  • the heating system switched off should possibly be done with the heating system switched off.
  • the released particulate matter could otherwise be blown out with the exhaust gas flow.
  • the operator can Manually activate the cleaning device on the separator control unit in order to be able to intervene directly in the event of unpredictable operating conditions.
  • Fig. 1 schematically shows a longitudinal section through an embodiment of an electrostatic precipitator 1 according to the invention, wherein the section represents only a part of the Abschelders 1.
  • the electrostatic precipitator 1 is arranged in a tubular section of an exhaust pipe 2 of an exhaust gas purification system shown only partially and comprises a duct wall 3 and a flow channel 4.
  • a particulate-containing exhaust gas shown here by an arrow P flows into the likewise indicated by the arrow P. illustrated flow direction.
  • an electrode 5 which is also referred to as a center electrode, spray electrode or corona electrode.
  • the flow channel 4 has a rotational axis symmetrical to a central axis A.
  • the electrode 5 extends substantially along this central axis A.
  • the electrode 5 is fed via a high-voltage supply 6, which is covered with an insulator 7.
  • the insulator 7 prevents a voltage flashover from the electrode 5 to the channel wall 3 (collector electrode).
  • the electrode 5 forms a charging unit in which particles can be charged electrically.
  • the electrode 5 forms an electric field with the channel wall 3 while applying a high voltage, the field lines of which extend essentially radially to the electrode 5 or the channel wall 3, essentially transversely to the flow direction P.
  • the electrostatic precipitator 1 comprises in the illustrated embodiment in Fig. 1 several particle repellents.
  • a first, heatable Pelleabweisestoff 8.1 is integrated in the insulator 7 and is designed as a heating element for the insulator 7, which is realized here in the form of the insulator 7 penetrating heating wires.
  • the substantially rod-shaped electrode holding device 9 comprises a suspension 10, via which it is connected to the duct wall 3.
  • the electrode holding device 9 and the suspension 10 are L-shaped to each other.
  • a heating wire is used for heating the electrode holding device 9, a heating wire is used.
  • the suspension 10 projects radially from the outside through the channel wall 3 into the flow channel 4, approximately to the central axis A, from where the electrode holding device 9 extends approximately along the central axis A counter to the flow direction P in the direction of the insulator 7.
  • the spray electrode 5, which is fed via the high-voltage supply 6, is spirally wound around the electrode holding device 9, wherein the distances a of the windings are formed approximately equidistant, preferably at a distance of about a 10 mm.
  • the windings increase the effective area of the electrode 5 per channel section in the flow direction P.
  • the electrode 5 can also be formed independently of the electrode holding device 9 with windings.
  • a third Prismabweisestoff 8.3 is integrated with the electrode holding device 9, more precisely an over the channel wall 3 outwardly projecting part of the suspension 10 is formed.
  • the third Prismabweisestoff 8.3 is designed as a mechanical Prismabweisestoff, which is realized here by a vibrator.
  • the vibrator generates vibrations, which are transmitted via the suspension 10 on to the electrode holding device 9.
  • particles adhering to the electrode holding device 9 and / or to the electrode 5 are removed mechanically or adhesion is prevented or reduced.
  • the vibrator causes the channel wall 3 to vibrate, so that particles adhering to the channel wall 3 are shaken off.
  • the three in Fig. 1 Particle repelling agents shown can each be present individually or in various combinations on a separator 1.
  • Fig. 2 schematically shows a longitudinal section through a further embodiment of an electrostatic precipitator 1 according to the invention. Identical or similar parts are identified by the same reference numerals. A detailed description of already described components is eliminated.
  • the electrostatic precipitator 1 after Fig. 2 is based on the same principle as the electrostatic precipitator 1 after Fig. 1 , and differs only by the execution of the mechanical Prismabweisestoffs 8.4, for ease of illustration, the other Prismabweisestoff are not shown explicitly, and these are also omitted can.
  • the electrostatic precipitator 1 is arranged in a tubular section of an exhaust pipe 2 of an exhaust gas purification system shown only partially and comprises a duct wall 3 and a flow channel 4. Through the flow channel 4 flows, not shown here, particulate exhaust gas.
  • the electrode 5, which is non-linear extends in the direction of flow in the interior of the flow channel 4, as in FIG Fig. 1 shown, may be formed.
  • the electrode 5 is fed via a high-voltage supply 6, which is covered with the insulator 7.
  • the fourth Pelleabweisestoff 8.4 is designed as a fluid injection device. It serves to free the spray electrode 5 and, if appropriate, other particles bearing particles by means of one or more jets S of the particles.
  • a fluid such as any gas or water is compressed on the part to be liberated from particles.
  • a plurality of nozzles 11 are arranged in or on the channel wall 3. The nozzles 11 are arranged approximately at the level of the electrostatic precipitator 1, more precisely opposite or at the locations where particles preferably adhere.
  • the fluid injection device 8.4 further comprises a fluid reservoir 12, for example a gas cylinder or gas cartridge. This can be attached to the duct wall 3. Via a line system, the nozzles 11 are connected to the fluid reservoir 12 storage.
  • valve 13 In the line system at least one valve 13, preferably an automatically controlled valve 13 is arranged.
  • the valve 13 controls the inflow of the fluid to the nozzles 11. With the valve 13 open, a fluid jet S is directed, for example, to the electrode 5, or also to the channel wall 3, as shown by the dashed divergent lines. In this case, the illuminated part is acted upon by a pulse and gets into vibrations. As a result of the fluid flow and / or the component vibrations caused, adhering particles fall off or do not adhere at all.

Landscapes

  • Electrostatic Separation (AREA)

Description

  • Die Erfindung betrifft einen elektrostatischen Abscheider, insbesondere für eine Abgasleitung einer Abgasreinigungsanlage, nach dem Oberbegriff des Patentanspruches 1. Weiter betrifft die Erfindung ein Heizungssystem zur Erzeugung von Wärme mittels Verbrennen von einem Energieträger mit einem elektrostatischen Abscheider nach Anspruch 11.
  • Aufgrund der Emissionen von Heizungsanlagen und globaler Bemühungen, derartige Emissionen zu reduzieren - siehe zum Beispiel das Kyoto-Abkommen oder gesetzliche Regelungen für kleine Holzfeuerungsanlagen -, werden bei Heizungsanlagen entsprechende Abgasreinigungsanlagen verwendet. Diese sollen insbesondere die schädlichen Stoffe und Partikel aus Abgasen herausfiltern, so dass das verbleibende, gereinigte Abgas bedenkenlos an die Umwelt abgegeben werden kann. Insbesondere werden derartige Abgasreinigungsanlagen bei Biomasse-Heizanlagen eingesetzt, bei denen neben ansonsten ökonomischen und ökologischen Vorteilen gerade die relativ hohen Emissionen an Feinstaub ein Problem darstellen können.
  • Aus der EP 1 193 445 A2 ist eine Abgasreinigungsanlage bekannt, welche für Biomasse-Heizungsanlagen zur Verringerung von Feinstaubemission verwendet wird. Die dort beschriebene Vorrichtung ist in einen Rauchgaskanal einbaubar und weist hierzu einen Deckel auf, der gasdicht auf eine zugehörige Öffnung an einem Rauchgaskanal aufsetzbar ist. An der Innenseite des Deckels ist über eine isolierende Halterung eine sogenannte Sprühelektrode, zum Beispiel in Form eines gespannten Stabes, gehalten. Ein Hochspannungs-Transformator mit Gleichrichterfunktion erlaubt den Aufbau einer hohen Gleichspannung zwischen dem Draht und dem Deckel, welcher elektrisch leitend mit dem Abgasrohr verbunden ist, so dass dieses als sogenannte Kollektorelektrode wirkt.
  • WO 89/12731 beschreibt einen elektrostatischen Abscheider zum Reinigen von Abgasen fossiler Brennstoffe mit einer Kanalwandung und mit einem Strömungskanal, durch welchen ein partikelbeinhaltendes Abgas in einer Strömungsrichtung strömt,. Ein elektrisches Feld wird gebildet zwischen einer zentralen Elektrode und der geerdeten Kanalwandung. Eine isolierte Hochspannungszuführung speist die zentrale Elektrode.
  • Derartige Elektrofilter mit Sprühelektrode und Kollektorelektrode sind auch als elektrostatischer Abscheider bekannt. Dieser wird zur Abgasreinigung in einer Abgasleitung einer Heizungsanlage eingesetzt. Die Sprühelektrode verläuft im Wesentlichen längs der Abgasströmungsrichtung und etwa mittig durch die Abgasleitung, weshalb sie auch als Mittelelektrode bezeichnet wird. Zusammen mit einer als Kollektorelektrode wirkenden, umgebenden Mantelfläche der Abgasleitung bildet sie einen Kondensator, der bei einer zylinderrohrförmigen Ausbildung der Abgasleitung auch als Zylinderkondensator bezeichnet wird. Die Sprüh- oder Mittelelektrode hat in der Regel einen kreisförmigen Querschnitt, wobei der Durchmesser des Querschnitts oder auch der Krümmungsradius im Allgemeinen relativ klein ausgebildet ist (zum Beispiel kleiner als 0,4 mm). Um nun die Schadstoffe, genauer die nicht an die Umwelt abzugebenden Partikel des Abgases aus dem Abgasstrom abzuscheiden, wird zwischen Mittelelektrode und Abgasrohr ein quer zur Strömungsrichtung verlaufendes elektrisches Feld aufgespannt. Hierzu wird an die Mittelelektrode eine Hochspannung angelegt, zum Beispiel im Bereich von 15 kV. Dadurch bildet sich eine sogenannte Corona-Entladung aus, durch welche die mit dem Abgas durch das elektrische Feld strömenden Partikel unipolar aufgeladen werden. Aufgrund dieser Aufladung wandern die meisten der Partikel durch die elektrostatischen Coulomb-Kräfte zur Innenwand der Abgasleitung, welche als Kollektorelektrode dient.
  • Wie oben bereits erwähnt, werden die Partikel durch die entlang der Oberfläche der Sprühelektrode sich ausbildende Corona-Entladung elektrostatisch aufgeladen. Dies geschieht auf molekularer Ebene durch folgenden Prozess: Liegt die Elektrode z.B. gegenüber dem Abgasrohr auf negativer Hochspannung, so wird eine große Anzahl von Gasmolekülen negativ aufgeladen. Sie bewegen sich im von der Elektrode sowie dem Abgasrohr aufgespannten elektrischen Feld in Richtung des Abgasrohres. Treffen diese auf ihrem Weg durch das Abgasrohr auf elektrisch neutrale Partikel, so bleiben sie an diesen haften und laden die bis dahin neutralen Partikel ebenfalls negativ auf. Die geladenen Partikel strömen getrieben durch elektrostatische Ablenkungskräfte zur Innenwand des Abgasrohres. Hier bleiben die Teilchen haften, verlieren ihre Ladung und werden sicher aus dem Abgasstrom entfernt. Dies ist der Kernprozess eines elektrostatischen Abscheiders und führt je nach Geometrie, Höhe des Corona-Stroms, Elektrodenform etc. zu Abscheideraten bis etwa über 90%. Dieser Kernprozess kann durch folgende Effekte gestört werden:
    • Bei der Verbrennung entstehen bipolar geladene Partikel. Mittels Boltzmann-Verteilung kann der Anteil einfach bzw. mehrfach geladener Partikel abgeschätzt werden. Die Verteilung ist symmetrisch, d.h., es entstehen gleich viele positive wie negativ geladene Partikel. Für Bedingungen, wie sie im Abgas von Biomasse-Heizungen vorliegen, tragen zwischen 15 und 20% der Partikel eine elektrische Elementarladung. Die Anzahl geladener Partikel wird durch Koagulation zwar um ca. 10% pro Sekunde reduziert, dennoch liegen am Ort des elektrostatischen Abscheiders (entspricht ca. ein bis zwei Sekunden Flugzeit der Partikel vom Ort der Verbrennung) noch über 10% geladener Partikel vor. Gelangen die geladenen Partikel nun in die Nähe der auf negativer Hochspannung liegenden Elektrode der Aufladeelnheit (Einheit aus Abgasrohr und Elektrode), so werden die negativen Partikel von der Elektrode weg in Richtung Abgasrohrinnenseite strömen. Die positiven Partikel strömen dagegen auf die Elektrode zu. Hiervon wird ein Teil beim Durchströmen der Aufladeeinheit neutralisiert bzw. negativ umgeladen, der Rest der Partikel gelangt jedoch zur Elektrode und lagert sich dort ab. Über die Betriebsdauer kommt es deshalb zu Funktionseinschränkungen des elektrostatischen Abscheiders. Denn der auf der Elektrode abgelagerte Feinstaub verhindert lokal die Ausbildung der Corona. Dadurch verringert sich die elektrische Aufladung der Partikel und verschlechtert sich die Abscheideeffizienz des Systems. Zudem existiert in unmittelbarer Nähe der Corona (in einem Radius wenige Millimeter um die Elektrode) ein bipolares Ladungsgebiet. Elektrisch neutrale Partikel, welche dieses Gebiet durchströmen, können auch von einer negativen Elektrode positiv aufgeladen werden. Sie strömen dann auf die Elektrode zu. Ein Teil wird durch die Corona neutralisiert bzw. negativ umgeladen, ein kleiner Rest gelangt jedoch zur Elektrode und lagert sich ebenfalls dort ab.
  • Nachteilig an den elektrostatischen Abscheidern gemäß dem Stand der Technik ist, dass es nach einer längeren Betriebszeit zu einer kontinuierlichen Degradation (Verringerung) des Corona-Stroms bei konstanter Hochspannung kommt. Dadurch sinkt die Aufladeeffizienz der Elektrode, was wiederum die Abscheideleistung des gesamten Systems verringert. Abhilfe bieten die Wartung und Reinigung des Abscheiders, die wegen der vorhandenen Hochspannung führenden Komponenten von Fachpersonal auszuführen sind.
  • Bei Verbrennungsabgasen mit hoher relativer Feuchte können sich schwierige Betriebsbedingungen für den elektrostatischen Abscheider aus der Kondensationsneigung ebendieser Abgase ergeben. An der mindestens beim Anfahren der Heizungsanlage kühlen Coronaelektrode kann sich ein dünner Wasserfilm bilden, der den Coronastrom wirkungsvoll reduziert oder sogar komplett unterdrückt. In Folge des geringen Coronastroms werden die Partikel im Abgas nicht oder nicht ausreichend aufgeladen und die Abscheideleistung des Filters bricht zusammen.
  • Der Erfindung liegt die Aufgabe zugrunde, einen elektrostatischen Abscheider zu schaffen, der diesen Nachteil überwindet und der insbesondere eine verbesserte Betriebsweise und verlängerte Reinigungsintervalle bietet. Weiter liegt der Erfindung die Aufgabe zugrunde, ein Heizungssystem mit einem erfindungsgemäßen Abscheider zu schaffen, das eine zuverlässige Abgasreinigung garantiert.
  • Erfindungsgemäß wird dies durch die Gegenstände mit den Merkmalen des Patentanspruches 1 und des Patentanspruchs 11 gelöst. Vorteilhafte Weiterbildungen sind den Unteransprüchen zu entnehmen.
  • Der erfindungsgemäße elektrostatische Abscheider ist dadurch gekennzeichnet, dass bei dem elektrostatischen Abscheider, insbesondere für eine Abgasleitung einer Abgasreinigungsanlage, mit einer Kanalwandung und einem Strömungskanal, durch welchen ein partikelbeinhaltendes Abgas in einer Strömungsrichtung strömt, und einer sich in dem Strömungskanal im Wesentlichen in Strömungsrichtung erstreckenden Elektrode, zur Bildung eines elektrischen Feldes zwischen Elektrode und der Kanalwandung, vorgesehen ist, dass weiter eine Elektrodenhaltevorrichtung und mindestens ein Partikelabweisemittel umfasst sind, und dass die Sprühelektrode zumindest teilweise integriert mit der Elektrodenhaltevorrichtung ausgebildet ist. Das mindestens eine Partikelabweisemittel verhindert oder reduziert, dass sich Partikel des Abgases an der Elektrode ablagern, insbesondere dauerhaft ablagern. Darüber hinaus kann das Partikelabweisemittel das Ablagern von Partikeln an weiteren Komponenten des elektrostatischen Abscheiders wirksam reduzieren.
  • Die Elektrodenhaltevorrichtung wird zweckmäßigerweise etwa mittig in der Abgasleitung angeordnet und sich im Wesentlichen stabförmig längs der Abgasströmungsrichtung erstrecken. Zur Fixierung der Elektrodenhaltevorrichtung am Abscheider bzw. an der Abgasleitung kann sie einteilig mit der Hochspannungszuführung oder davon getrennt an einer eigenen Aufhängung ausgeführt sein.
  • Es ist vorgesehen, dass ein beheizbares Partikelabweisemittel die Elektrodenhaltevorrichtung vor Partikelanhaftung schützt. Das Partikelabweisemittel kann als Heizkeramik ausgebildet sein, welche die Elektrodenhaltevorrichtung erwärmt. Durch Erwärmung der Elektrodenhaltevorrichtung kommt ein Thermophorese genannter Prozess in Gang, der Partikel von der Oberfläche der Elektrodenhaltevorrichtung und damit auch von der Elektrodenoberfläche abweist, wodurch ein Ablagern von Feinstaubpartikeln auf der Elektrode reduziert oder zumindest vermieden wird. Zweckmäßigerweise können die Elektrodenhaltevorrichtung und das Partikelabweisemittel einteilig ausgeführt sein, d.h. die Elektrodenhaltevorrichtung wird direkt beheizt.
  • Es ist weiterhin vorgesehen, dass die Sprühelektrode zumindest tellweise integriert mit der beheizbaren Elektrodenhaltevorrichtung ausgebildet ist. Die Elektrode kann zumindest teilweise entlang einer Oberfläche der Elektrodenhaltevorrichlung verlaufen, insbesondere in engem Kontakt zu der Oberfläche. Hierbei ist die Elektrode benachbart, bevorzugt angrenzend und/oder kontaktierend an der Elektrodenhaltevorrichtung ausgebildet.
  • Ein Ausführungsbeispiel des elektrostatischen Abscheiders sieht vor, dass die Sprühelektrode sich nichtlinear erstreckend ausgebildet ist, um in dem Strömungskanal eine größere aktive Wirkungsfläche bereitzustellen. Nichtlinear bedeutet vorliegend nicht in gerader Linie, sondern vielmehr gekrümmt, gebogen, gewendelt, geknickt oder dergleichen ausgebildet. Hierdurch wird eine größere Menge an Elektrode im wirksamen Abscheidebereich bereitgestellt. Die Oberfläche der Elektrode ist die Wirkungsfläche, da sich an ihr die für die Abscheidung verantwortliche Corona ausbildet. Durch die vergrößerte Oberfläche der Elektrode ist ebenfalls die Wirkungsfläche vergrößert. Wird die Sprühelektrode um eine beispielsweise stabförmige Elektrodenhaltevorrichtung herum gewendelt (gewickelt), so überstreicht die Corona rundum den ganzen Abscheidequerschnitt und erreicht damit den gesamten partikelbeinhaltenden Abgasstrom.
  • Ein weiteres Ausführungsbeispiel sieht vor, dass die Elektrode zumindest teilweise spiralförmig mit einer geeigneten Steigung ausgebildet ist, so dass sich benachbarte Bereiche, insbesondere entsprechende Windungsbereiche der Elektrode nicht gegenseitig negativ beeinflussen. Der Abstand benachbarter Bereiche kann in einem Intervall a mit 1 mm ≤ a ≤ 20 mm, bevorzugt in einem Intervall 5 mm ≤ a ≤ 15 mm liegen und beträgt am meisten bevorzugt etwa a = 10 mm. Bei kleiner werdendem Abstand benachbarter Windungsbereiche ist festzustellen, dass die Corona-Ausbildung nicht mehr besser wird, sondern dass sich vielmehr ein Sättigungseffekt einstellt.
  • Noch ein weiteres Ausführungsbeispiel sieht vor, dass die Elektrode zumindest abschnittsweise stromdurchfließbare Ansätze wie Vorsprünge aufweist, um eine größere aktive Wirkungsfläche bereitzustellen. Die Elektrode kann beispielweise stacheldrahtförmig oder mit Anformungen wie Noppen ausgebildet sein.
  • Ein anderes Ausführungsbeispiel sieht mehrere Partikelabweisemittel vor, so zum Beispiel an der Elektrodenhaltevorrichtung und/oder an der Hochspannungszuführung. So können mehrere beheizbare Partikelabweisemittel vorgesehen sein, wobei die Beheizung separat voneinander oder integriert miteinander realisierbar ist. Bevorzugt sind die unterschiedlichen beheizbaren Partikelabweisemittel getrennt voneinander regelbar. Die getrennte Beheizung wird nicht mit Hochspannung betrieben, die gegebenenfalls in Niederspannung transformiert werden muss. Bei einer getrennten Beheizung lassen sich verschiedene Temperaturen einstellen. Die beheizbaren Partikelabweisemittel sind bevorzugt als Heizkeramik ausgebildet, zum Beispiel als Isolator an der Hochspannungszuführung und an der Elektrodenhaltevorrichtung. In einer Ausführung lassen sich die beiden Partikelabweisemittel als eine Einheit ausbilden.
  • Mindestens ein Partikelabweisemittel kann als mechanisches Partikelabweisemittel, umfassend eine Rütteleinrichtung, ausgebildet sein, um ein dauerhaftes Anhaften von Partikeln an dem Abscheider oder dessen Komponenten durch mittels Rütteln erzeugter Schwingungen mechanisch zumindest zu reduzieren. Durch die Schwingungen fallen anhaftende Partikel auf einfache Weise ab oder haften erst gar nicht an. Das mindestens eine Partikelabweisemittel kann extern an dem Abscheider angeordnet sein und lässt sich so zum Beispiel nachrüsten oder von dem Abscheider, zum Beispiel zu Wartungszwecken, entnehmen. In einer anderen Variante kann das mindestens eine Partikelabweisemittel integriert mit dem Abscheider ausgebildet sein.
  • Wiederum ein anderes Ausführungsbeispiel sieht vor, dass mindestens ein Partikelabweisemittel als mechanisches Partikelabweisemittel, umfassend eine Fluideindüsungseinrichtung, ausgebildet Ist, um ein dauerhaftes Anhaften von Partikeln an dem Abscheider oder dessen Komponenten durch Eindüsen eines Fluids und dem damit verbundenen Einwirken des Fluids auf Partikel mechanisch zumindest zu reduzieren.
  • Der erfindungsgemäße Heizungssystem zur Erzeugung von Wärme mittels Verbrennen von einem Energieträger wie Biomasse ist dadurch gekennzeichnet, dass bei diesem eine Feinstaub emittierenden Heizungsanlage wie eine Biomasse-Heizungsanlage zum Verbrennen des Energieträgers vorgesehen ist, wobei partikelbeinhaltende Abgase entstehen, und ein erfindungsgemäßer elektrostatisches Abscheider vorgesehen ist.
  • Mit dem erfindungsgemäßen elektrostatischen Abscheider und dem erfindungsgemäßen Heizungssystem werden insbesondere die folgenden Vorteile realisiert:
    • Eine Vermeidung bzw. Reduzierung von Feinstaubablagerungen auf der Elektrode wird realisiert. Durch die nichtlineare Ausbildung der Elektrode, die auch Mittel- oder Sprühelektrode genannt wird, ggf. auch mit Anformungen, ist die aktive Oberfläche oder die Wirkungsfläche der Elektrode vergrößert. Beim Betrieb mit hohen Feinstaubkonzentrationen, wie beim Verbrennungsstart beispielsweise von Scheitholzanlagen, kann durch Erhitzen des Systems Heizkeramik-Sprühspirate deren Feinstaubkontamination erfolgreich durch Thermophorese verhindert werden. Wird eine Oberfläche im Partikel beladenen Abgasstrom einer Scheitholzanlage oder auch eines Verbrennungsmotors oder dergleichen auf ca. 100 K über der umgebenden Gastemperatur erwärmt, so wird durch den Temperaturgradienten zur Umgebung das Ablagern vor allem kleiner, deutlich submikroner Partikel (< 200 nm) zuverlässig verhindert. Die Aufladeeffizienz der Spiralelektrode wird im sie umgebenden lokal partikelarmen Volumen nicht reduziert, da die mittlere freie Weglänge der Ionen, welche die Feinstaubpartikel aufladen, durch die Temperatursteigerung erhöht wird.
  • Durch das Beheizen des Systems Heizkeramik-Sprühspirale auf über 100 °C wird die Kondensation eines Wasserfilms auf der Spirale verhindert. Der Wasserfilm würde das Ausbilden eines genügend hohen Coronastrom erschweren. Dadurch kann das System sofort bei Brennerstart der Biomasse-Heizanlage eingesetzt werden, wo erfahrungsgemäß die meisten Partikel emittiert werden. Weiter kann das System auch stromabwärts von kondensierenden Wärmetauschern eingesetzt werden (Brennwertnutzung). Hier ist der Einsatz unbeheizter Elektroden kaum möglich.
  • Erste Abschätzungen zeigen, dass für die Bedingungen, welche zum Beispiel im Abgasrohr einer Scheitholzanlage direkt am Kesselausgang vorliegen (220 °C, Strömungsgeschwindigkeit 0,5 bis 1,5 m/s), für die Beheizung der Keramikisolation (Durchmesser 4 mm, Länge 60 mm) ca. 5 bis 10 W Heizleistung über eine elektrische Widerstandsheizung genügen. Sollte es trotz Thermophorese nach einem längeren Zeitraum zu Partikelablagerungen auf der Sprühelektrode kommen, so kann dies durch Verschiebung der Strom-Spannungs-Kennlinie der Hochspannungsversorgung über einen vorher eingestellten Maximalwert hinaus detektiert werden. Die elektronische Steuerungseinheit des elektrostatischen Abscheiders heizt dann die Keramikisolation kurzzeitig auf über 600 °C auf. Ab dieser Temperatur wird die Isolation von den brennbaren, niedergeschlagenen Rußpartikeln freigebrannt. Sie stellen bei der Scheitholzverbrennung den Hauptbestandteil des Feinstaubes dar. Alternativ kann das System auch durch eine wie aus der Abbildung ersichtlichen Rütteleinrichtung mechanisch von Feinstaubablagerungen befreit werden. Auch zu deren Aktivierung kann die Verschiebung der Strom-/Spannungskennlinie der Hochspannungsversorgung herangezogen werden.
  • Elektrostatische Abscheider stellen im Abgassystem einen minimalen Strömungswiderstand dar, welcher sich auch bei steigender Beladung nur sehr langsam erhöht. Sie weisen eine große Aufnahmekapazität für abgeschiedenen Feinstaub auf. Bei langsamen Strömungsgeschwindigkeiten und genügend langen Abscheidestrecken verfügen sie für submikrone Partikel über eine Abscheideeffizienz von 80 bis 90 %. Aus den oben genannten Gründen sind sie deshalb eine aussichtsreiche Option für die Abgasreinigung bei Scheitholzanlagen, anderen Biomasse-Heizanlagen oder Ölbrennern. Das Aufrechterhalten der Hochspannung der Mittelelektrode stellt eine technische Schwierigkeit bei der Ausführung des elektrostatischen Abscheiders dar. Durch mindestens zwei Möglichkeiten kann die Spiralelektrode von Feinstaubkontaminationen freigehalten bzw. abgereinigt werden:
    • Bei der Thermophorese wird das Freihalten der Sprühelektrode durch bloßes Beheizen derselben gelöst. Diese Option zeichnet sich durch minimalen Energieaufwand (5 bis 10 W elektrische Heizleistung), lange Standzeiten und Geräuschlosigkeit (keine bewegten Teile) aus. Falls es nach extrem langer Standzeit dennoch zu Verunreinigung der Keramikisolation kommen sollte, kann diese durch eine zweite, höhere Leistungsstufe, freigebrannt werden.
  • Optional kann die durch Freibrennen nicht lösbare Fraktion des angelagerten Feinstaubs durch Anwendung mechanischer Energie von der Spiralelektrode entfernt werden. Die mechanische Abreinigung durch eine Rütteleinrichtung wird auf folgende Weise durchgeführt. Bevorzugt an der Außenseite der Aufladeeinheit, gebildet aus Kanalwandung und Elektrode, wird in unmittelbarer Nähe der Hochspannungsdurch- oder Zuführung der Sprühelektrode ein Exzenter so angebracht, dass dieser die Sprühelektrode in Schwingungen versetzen kann. Der Exzenter wird beim Erreichen eines bestimmten Verschmutzungsgrades für einen definierten Zeitraum aktiviert (rotiert), so dass die Aufladeeinheit in Schwingungen versetzt wird und der innen anhaftende Staub abfällt. Es können beliebige andere Einrichtungen vorgesehen werden, welche die Aufladeeinheit in entsprechende Schwingungen versetzten.
  • Der Verschmutzungsgrad der Sprühelektrode lässt sich auf verschiedene Arten (z. B. optisch, elektrisch etc....) feststellen. Vorliegend wird ein bevorzugtes Beispiel für eine Umsetzung einer automatisierten Reinigung gegeben: Über die Erfassung der StromSpannungskennlinie der Sprühelektrode ist es möglich, deren Verschmutzungsgrad zu bestimmen. Dieser Effekt kann für die Regelung der Rütteleinrichtung genutzt werden. Wird ein zuvor definierter Verschmutzungsgrad erreicht, so aktiviert die Regelung die Rütteleinrichtung. Des Weiteren kann über diesen Effekt der Erfolg der Filterreinigung bestimmt und die Dauer der Aktivierung gesteuert werden. Wird ein bestimmter Verschmutzungsgrad unterschritten, so schaltet die Regelung die Rütteleinrichtung wieder ab. Schlägt die Abreinigung fehl, d.h., der gewünschte Abreinigungsgrad wird nicht erreicht, so wird der Betreiber z. B. mittels LED-Anzeige an der Steuereinheit des elektrostatischen Abscheiders über eine mögliche Fehlfunktion informiert. Falls die Abscheidefläche, welche die Aufladeeinheit umgibt, aus einem Material besteht, welches die von der RüttelEinrichtung erzeugten Schwingungen überträgt (z. B. Abgasrohr aus Edelstahl), so kann mit der Erfindung nicht nur die Sprühelektrode sondern auch das Abgasrohr von der Feinstaubkontamination gereinigt werden. Bei vertikaler Einbausituation fällt der freigesetzte Feinstaub dabei zum Beispiel in eine entnehmbare Ascheschublade. Bei angepasster Ausgestaltung der Materialeigenschaften von Hochspannungszuführung. Sprühelektrode sowie Abgasrohr kann die mechanische Anregung statt mit einem Exzenter auch durch einen Ultraschallgeber mit einer an das System adaptierten Frequenz erfolgen.
  • Ein anderes bevorzugtes Ausführungsbeispiel sieht vor, dass mindestens ein Partikelabweisemittel in vorteilhafter Weise als Gaseindüsungssystem ausgebildet ist. Die Sprühelektrode des Abscheiders, die Hochspannungszuführung, die als Abscheidefläche ausgeführte Kanalwandung und/oder weitere Abscheiderkomponenten können mittels eines oder mehrerer Strahlen komprimierten Fluids (Gas, z. B. Luft oder CO2) von Staubablagerungen befreit werden. Die dafür notwendige Einrichtung kann vorzugsweise folgendermaßen realisiert werden: An der Rohrwand des Kaminrohrs können mehrere Düsen auf der Höhe des Abscheiders (Sprühelektrode und Kollektorelektrode, beispielsweise die Kanalwandung) angebracht werden. Als Gasversorgung kann eine kleine am Kaminrohr angebrachte Gasflasche oder Gaskartusche dienen. Mit Hilfe eines oder mehrerer automatisch gesteuerter Ventile können Strahlen aus komprimiertem Gas kurzfristig gegen Sprühelektrode und Kollektorelektrode gerichtet werden. Da die Sprühelektrode aus einem dünnen Draht besteht, reicht ein Gasstrahl, um die Sprühelektrode abzublasen und in Schwingung zu versetzen, wodurch diese über die gesamte Länge gesäubert wird. Für die Reinigung der Kollektorelektrode kann eine Art von Multipoint-Injection-Anlage installiert werden, so dass damit die Staubablagerungen über die gesamte Abscheidefläche entfernt werden können. Für die Regelung des Ventils kann, wie oben schon erwähnt, der Effekt der Degradation der Strom-Spannungskennlinie der Sprühelektrode genutzt werden.
  • Eine weitere vorteilhafte Möglichkeit für die Regelung der Abreinigungseinrichtungen ist die Vorgabe fester Intervalle, zu denen diese aktiviert werden und die Abreinigung erfolgt. Unter Umständen sollte der Filter und/oder die Heizungsanlage bei aktivierter Abreinigungseinrichtung ausgeschaltet werden. Durch die erzeugten Vibrationen wird die Elektrode in Schwingung versetzt, wodurch sich die Distanz zur Rohrwand verringert. Dadurch könnte es zu Hochspannungsüberschlägen kommen. Sollte mit der Abreinigungseinrichtung auch das Abgasrohr gereinigt werden, sollte dies evtl. bei ausgeschalteter Heizungsanlage geschehen. Der freigesetzte Feinstaub könnte sonst mit dem Abgasstrom ausgeblasen werden. Gegebenenfalls kann der Betreiber die Abreinigungseinrichtung manuell an der Steuereinheit des Abscheiders aktivieren, um bei unvorhersehbaren Betriebszuständen direkt eingreifen zu können.
  • Die Zeichnungen stellen mehrere Ausführungsbeispiele der Erfindung dar und zeigen in den Figuren:
  • Fig. 1
    schematisch einen Längsquerschnitt durch eine Ausführungsform eines erfindungsgemäßen elektrostatischen Abscheiders,
    Fig. 2
    schematisch einen Längsschnitt durch eine weitere Ausführungsform eines erfindungsgemäßen elektrostatischen Abscheiders und
  • Fig. 1 zeigt schematisch einen Längsschnitt durch eine Ausführungsform eines erfindungsgemäßen elektrostatischen Abscheiders 1, wobei der Schnitt nur einen Teil des Abschelders 1 darstellt. Der elektrostatische Abscheider 1 ist in einem rohrförmiger Abschnitt einer Abgasleitung 2 einer nur teilweise dargestellten Abgasreinigungsanlage angeordnet und umfasst eine Kanalwandung 3 und einen Strömungskanal 4. Durch den Strömungskanal 4 strömt ein hier durch einen Pfeil P dargestelltes, partikelbeinhaltendes Abgas in die ebenfalls durch den Pfeil P dargestellte Strömungsrichtung. In der Mitte des Strömungskanals 4 erstreckt sich in Strömungsrichtung P eine Elektrode 5, die auch als Mittelelektrode, Sprühelektrode oder Coronaelektrode bezeichnet wird. Der Strömungskanal 4 hat einen zu einer Mittelachse A rotationssymmetrischen Querschnitt. Die Elektrode 5 erstreckt sich im Wesentlichen entlang dieser Mittelachse A. Gespeist wird die Elektrode 5 über eine Hochspannungszuführung 6, welche mit einem Isolator 7 ummantelt ist. Der Isolator 7 verhindert einen Spannungsüberschlag von der Elektrode 5 auf die Kanalwandung 3 (Kollektorelektrode). Zusammen mit der Kanalwandung 3 bildet die Elektrode 5 eine Aufladeeinheit, in welcher Partikel elektrisch aufgeladen werden können. Hierzu bildet die Elektrode 5 mit der Kanalwandung 3 unter Anlegen einer Hochspannung ein elektrisches Feld aus, dessen Feldlininen im Wesentlichen radial zu der Elektrode 5 bzw. der Kanalwandung 3 verlaufen, im Wesentlichen quer zur Strömungsrichtung P.
  • Der elektrostatische Abscheider 1 umfasst in der dargestellten Ausführungsform in Fig. 1 mehrere Partikelabweisemittel. Ein erstes, beheizbares Partikelabweisemittel 8.1 ist in dem Isolator 7 integriert und ist als Heizelement für den Isolator 7 ausgebildet, das hier in Form von den Isolator 7 durchdringenden Heizdrähten realisiert ist.
  • Ein zweites, ebenfalls beheizbares Partikelabweisemittel 8.2 ist integriert mit der Elektradenhaltevorrichtung 9 ausgebildet. Die im Wesentlichen stabförmige Elektrodenhaltevorrichtung 9 umfasst eine Aufhängung 10, über die sie mit der Kanalwandung 3 verbunden ist. Bevorzugt sind die Elektrodenhaltevorrichtung 9 und die Aufhängung 10 L-förmig zueinander angeordnet. Zum Erwärmen der Elektrodenhaltevorrichtung 9 dient ein Heizdraht. Die Aufhängung 10 ragt radial von außen durch die Kanalwandung 3 in den Strömungskanal 4 hinein, etwa bis zur Mittelachse A, von wo die Elektrodenhaltevorrichtung 9 etwa entlang der Mittelachse A entgegen der Strömungsrichtung P in Richtung Isolator 7 verläuft. Die Sprühelektrode 5, welche über die Hochspannungszuführung 6 gespeist wird, ist spiralförmig um die Elektrodenhaltevorrichtung 9 gewickelt, wobei die Abstände a der Windungen etwa äquidlstant ausgebildet sind, bevorzugt in einem Abstand von etwa a = 10 mm. Durch die Windungen ist die Wirkungsfläche der Elektrode 5 pro Kanalabschnitt in Strömungsrichtung P vergrößert. Die Elektrode 5 kann auch unabhängig von der Elektrodenhaltevorrichtung 9 mit Windungen ausgebildet sein.
  • Ein drittes Partikelabweisemittel 8.3 ist integriert mit der Elektrodenhaltevorrichtung 9, genauer einem über die Kanalwandung 3 nach außen hervorragenden Teil der Aufhängung 10, ausgebildet. Das dritte Partikelabweisemittel 8.3 ist als mechanisches Partikelabweisemittel ausgebildet, welches hier durch eine Rütteleinrichtung realisiert ist. Die Rütteleinrichtung erzeugt Schwingungen, welche über die Aufhängung 10 weiter zu der Elektrodenhaltevorrichtung 9 übertragen werden. Durch die Schwingungen werden an der Elektrodenhaltevorrichtung 9 und/oder an der Elektrode 5 anhaftende Partikel mechanisch entfernt oder ein Anhaften verhindert oder reduziert. Zudem versetzt die Rütteleinrichtung die Kanalwandung 3 in Schwingung, so dass an der Kanalwandung 3 anhaftende Partikel abgeschüttelt werden. Die drei in Fig. 1 dargestellten Partikelabweisemittel können jeweils einzeln oder auch in verschiedenen Kombinationen an einem Abscheider 1 vorhanden sein.
  • Fig. 2 zeigt schematisch einen Längsschnitt durch eine weitere Ausführungsform eines erfindungsgemäßen elektrostatischen Abscheiders 1. Gleiche oder ähnliche Teile werden mit gleichen Bezugszeichen gekennzeichnet. Eine detaillierte Beschreibung bereits beschriebener Bauteile entfällt.
  • Der elektrostatische Abscheider 1 nach Fig. 2 ist vom Prinzip gleich aufgebaut wie der elektrostatische Abscheider 1 nach Fig. 1, und unterscheidet sich lediglich durch die Ausführung des mechanischen Partikelabweisemittels 8.4, wobei zur einfacheren Darstellung die anderen Partikelabweisemittel nicht explizit dargestellt sind, wobei diese auch entfallen können. Der elektrostatische Abscheider 1 ist in einem rohrförmigen Abschnitt einer Abgasleitung 2 einer nur teilweise dargestellten Abgasreinigungsanlage angeordnet und umfasst eine Kanalwandung 3 und einen Strömungskanal 4. Durch den Strömungskanal 4 strömt ein hier nicht dargestelltes, partikelbeinhaltendes Abgas. Im Inneren des Strömungskanals 4 erstreckt sich in Strömungsrichtung die Elektrode 5, die nichtlinear, wie in Fig. 1 dargestellt, ausgebildet sein kann. Gespeist wird die Elektrode 5 über eine Hochspannungszuführung 6, welche mit dem Isolator 7 ummantelt ist.
  • Das vierte Partikelabweisemittel 8.4 ist als Fluideindüsungseinrichtung ausgebildet. Sie dient dazu, die Sprühelektrode 5 und ggf. weitere partikelbehaftete Teile mittels eines oder mehrerer Strahlen S von den Partikeln zu befreien. Hierzu wird ein Fluid wie beispielsweise ein beliebiges Gas oder Wasser komprimiert auf das von Partikeln zu befreiende Teil gedüst. Hierzu sind In oder an der Kanalwandung 3 mehrere Düsen 11 angeordnet. Die Düsen 11 sind etwa auf Höhe des elektrostatischen Abscheiders 1, genauer gegenüber oder an den Orten, an denen Partikel bevorzugt anhaften, angeordnet. Die Fluideindüsungseinrichtung 8.4 umfasst weiter einen Fluidvorratsspeicher 12, beispielsweise eine Gasflasche oder Gaskartusche. Diese kann an der Kanalwandung 3 angebracht sein. Über ein Leitungssystem sind die Düsen 11 mit dem Fluidvorratsspeicher 12 verbunden. In dem Leitungssystem ist mindestens ein Ventil 13, bevorzugt ein automatisch gesteuertes Ventil 13 angeordnet. Das Ventil 13 steuert den Zufluss des Fluids zu den Düsen 11. Bei geöffnetem Ventil 13 wird ein Fluidstrahl S zum Beispiel auf die Elektrode 5 gerichtet, oder auch auf die Kanalwandung 3, wie durch die gestrichelten, auseinanderlaufenden Linien dargestellt. Dabei wird das angestrahlte Teil mit einem Impuls beaufschlagt und gerät in Schwingungen. Durch die Fluidströmung und/oder die verursachten Bauteilschwingungen fallen anhaftende Partikel ab oder haften erst gar nicht an.

Claims (11)

  1. Elektrostatischer Abscheider (1), insbesondere für eine Abgasleitung (2) einer Abgasreinigungsanlage, mit einer Kanalwandung (3) und einem Strömungskanal (4), durch welchen ein partikelbeinhaltendes Abgas (P) in einer Strömungsrichtung strömt, einer sich in dem Strömungskanal (4) im Wesentlichen in Strömungsrichtung (P) erstreckenden Elektrode (5) zur Bildung eines elektrischen Feldes zwischen der Elektrode (5) und der Kanalwandung (3), und einer Hochspannungszuführung (6) zum Speisen der Elektrode (5),
    dadurch gekennzeichnet, dass eine Elektrodenhaltevorrichtung (9) und mindestens ein Partikelabweisemittel umfasst sind, und dass die Elektrode (5) zumindest teilweise integriert mit der Elektrodenhaltevorrichtung (9) ausgebildet ist., wobei mindestens ein Partikelabweisemittel (8.2) beheizbar ist und die Elektrodenhaltevorrichtung (9) erwärmt, und dass die Elektrodenhaltevorrichtung (9) zumindest teilweise integriert mit dem Partikelabweisemittel (8.2) ausgebildet ist.
  2. Elektrostatischer Abscheider (1) nach Anspruch 1,
    dadurch gekennzeichnet, dass die Elektrode (5) zumindest teilweise entlang einer Oberfläche der Elektrodenhaltevorrichtung (9) verlaufend ausgebildet ist.
  3. Elektrostatischer Abscheider (1) nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet, dass die Elektrode (5) sich nichtlinear erstreckend ausgebildet ist, um in dem Strömungskanal (4) eine größere aktive Wirkungsfläche bereitzustellen.
  4. Elektrostatischer Abscheider (1) nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass die Elektrode (5) zumindest teilweise spiralförmig mit einer geeigneten Steigung ausgebildet ist, so dass sich benachbarte Bereiche der Elektrode (5) nicht gegenseitig negativ beeinflussen.
  5. Elektrostatischer Abscheider (1) nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass die Elektrode (5) zumindest abschnittsweise stromdurchfließbare Ansätze, wie Vorsprünge, aufweist, um eine größere aktive Wirkungsfläche bereitzustellen.
  6. Elektrostatischer Abscheider (1) nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass die Elektrodenhaltevorrichtung (9) getrennt von oder einteilig mit der Hochspannungszuführung (6) ausgebildet ist.
  7. Elektrostatischer Abscheider (1) nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, dass mehrere Partikelabweisemittel an einer und/oder verschiedenen Abscheiderkomponenten vorgesehen sind.
  8. Elektrostatischer Abscheider (1) nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, dass mehrere beheizbare Partikelabweisemittel vorgesehen sind, wobei die Beheizung separat voneinander oder integriert miteinander realisierbar ist.
  9. Elektrostatischer Abscheider (1) nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet, dass ein eine Rütteleinrichtung aufweisendes, mechanisches Partikelabweisemittel (8.3) umfasst ist, das ein dauerhaftes Anhaften von Partikeln an dem Abscheider (1) oder dessen Komponenten durch mittels Rütteln erzeugter Schwingungen mechanisch zumindest reduziert.
  10. Elektrostatischer Abscheider (1) nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet, dass ein eine Fluideindüsungseinrichtung aufweisendes, mechanisches Partikelabweisemittel (8.4) umfasst ist, das ein dauerhaftes Anhaften von Partikeln an dem Abscheider (1) oder dessen Komponenten durch Eindüsen eines Fluids und dem damit verbundenen Einwirken des Fluids auf Partikel mechanisch zumindest reduziert.
  11. Heizungssystem zur Erzeugung von Wärme mittels Verbrennen von einem Energieträger wie Biomasse mit einer Feinstaub emittierenden Heizungsanlage wie eine Biomasse-Heizungsanlage zum Verbrennen des Energieträgers, wobei partikelbeinhaltende Abgase entstehen, und mit einem elektrostatischen Abscheider (1) nach einem der vorherigen Ansprüche 1 bis 10.
EP09003859.7A 2008-03-26 2009-03-18 Elektrostatischer Abscheider mit Partikelabweisemittel und Heizsystem Not-in-force EP2105206B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200810015616 DE102008015616A1 (de) 2008-03-26 2008-03-26 Elektrostatischer Abscheider mit Partikelabweisemittel und Heizsystem

Publications (3)

Publication Number Publication Date
EP2105206A2 EP2105206A2 (de) 2009-09-30
EP2105206A3 EP2105206A3 (de) 2013-08-21
EP2105206B1 true EP2105206B1 (de) 2015-08-26

Family

ID=40524788

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09003859.7A Not-in-force EP2105206B1 (de) 2008-03-26 2009-03-18 Elektrostatischer Abscheider mit Partikelabweisemittel und Heizsystem

Country Status (2)

Country Link
EP (1) EP2105206B1 (de)
DE (1) DE102008015616A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008037763A1 (de) * 2008-08-14 2010-03-04 Robert Bosch Gmbh Elektrostatischer Abscheider und Heizsystem
DE102008038236B4 (de) * 2008-08-18 2011-07-21 Robert Bosch GmbH, 70469 Elektrostatischer Abscheider und Heizungssystem mit einem Elektroden-Partikelabweisemittel umfassend ein Bimetall
DE102009021072A1 (de) * 2009-05-13 2010-11-25 Robert Bosch Gmbh Elektrostatischer Abscheider und Heizsystem
DE102009023522B4 (de) * 2009-05-30 2013-08-14 Robert Bosch Gmbh Elektrostatischer Abscheider mit Partikelabweisemittel und Heizungssystem
DE102009053621A1 (de) * 2009-11-17 2011-05-19 Robert Bosch Gmbh Heizungsanlage für Biomasse mit einem elektrostatischen Abscheider
CN110230829B (zh) * 2019-07-10 2024-03-12 四川丞仕邦厨房设备有限公司 一种多功能一体灶
DE102021125149A1 (de) * 2021-09-28 2023-03-30 Karl Schräder Nachf. Inh. Karl-Heinz Schräder e. K. Rauchgasreinigungsvorrichtung
CN116337703B (zh) * 2023-05-25 2023-08-01 江苏中能电力设备有限公司 一种用于烟气排放检测的测量装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1174574A1 (ru) * 1983-09-30 1985-08-23 Ворошиловградский машиностроительный институт Электрофильтр
DE3820740A1 (de) * 1988-06-18 1989-12-21 Bosch Gmbh Robert Koagulator fuer einrichtungen zum reinigen von abgasen fossiler brennstoffe
DE4114935C2 (de) * 1990-05-25 1994-11-17 Nagao Kogyo Nagoya Kk Abgasreinigungsanlage für einen Kraftfahrzeug-Dieselmotor
JPH1047037A (ja) * 1996-07-29 1998-02-17 Teikoku Piston Ring Co Ltd 微粒子分離装置
CH695113A5 (de) 2000-10-02 2005-12-15 Empa Vorrichtung zur Rauchgasreinigung an Kleinfeuerungen.
JP3725058B2 (ja) * 2001-09-28 2005-12-07 日立造船株式会社 プラスチック静電分離設備
DE102007028134B3 (de) * 2007-06-19 2008-12-18 Robert Bosch Gmbh Elektrostatischer Abscheider und Heizungssystem

Also Published As

Publication number Publication date
DE102008015616A1 (de) 2009-10-08
EP2105206A2 (de) 2009-09-30
EP2105206A3 (de) 2013-08-21

Similar Documents

Publication Publication Date Title
EP2105206B1 (de) Elektrostatischer Abscheider mit Partikelabweisemittel und Heizsystem
EP2244834B1 (de) Elektrostatischer abscheider
DE102004022288B4 (de) Elektrostatischer Abscheider mit internem Netzgerät
EP1930081B1 (de) Optimierter elektrostatischer Abscheider
AT505295B1 (de) Feuerungseinheit
WO2022069586A1 (de) Elektroabscheider, rohrabschnitt und schwebstaub erzeugende anlage
EP2256411B1 (de) Abgasleitung für ein Heizgerät oder eine Verbrennungsmaschine
EP2153902B1 (de) Elektrostatischer Abscheider und Heizungssystem
EP2251088B1 (de) Elektrostatischer Abscheider und Heizsystem
DE102009036957A1 (de) Elektrostatischer Abscheider und Heizungssystem
EP2072141B1 (de) Elektrostatischer Abscheider mit Sicherungseinrichtung
DE102007056696B3 (de) Elektrostatischer Abscheider mit Partikelabweisemittel, Heizungssystem und Verfahren zum Betrieb
CH623240A5 (de)
EP1761338B1 (de) Verfahren und steuerungseinheit zur regelung der betriebsspannung und zur verschleisskontrolle an einer vorrichtung für die elektrostatische partikelabscheidung in gasströmen
DE102007056704B3 (de) Elektrostatischer Abscheider und Verfahren zur Bestimmung eines Zustandes eines mit elektrischer Energie betriebenen elektrostatischen Abscheiders
DE102007028134B3 (de) Elektrostatischer Abscheider und Heizungssystem
AT504749A2 (de) Elektrostatischer feinstaubfilter für rauchgasreinigung
EP2266702A1 (de) Elektrostatischer Abscheider zur Rauchgasreinigung mit einem elektrischen Sperrfeld
DE102008038236B4 (de) Elektrostatischer Abscheider und Heizungssystem mit einem Elektroden-Partikelabweisemittel umfassend ein Bimetall
DE202008008801U1 (de) Sprühelektrode für Elektrofilter
EP2062648B1 (de) Elektrostatischer Abscheider und Verfahren
EP2311570A1 (de) Elektrostatischer Abscheider mit verbesserter Versorgungsspannung, Verfahren zur Hochspannungsversorgung und Heizungssystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIC1 Information provided on ipc code assigned before grant

Ipc: B03C 3/74 20060101ALI20130712BHEP

Ipc: B03C 3/88 20060101AFI20130712BHEP

17P Request for examination filed

Effective date: 20140221

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20140710

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150428

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 744845

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009011454

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151126

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151127

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151228

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151226

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160322

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009011454

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160318

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160318

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210324

Year of fee payment: 13

Ref country code: SE

Payment date: 20210323

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220324

Year of fee payment: 14

Ref country code: AT

Payment date: 20220318

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220322

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220331

Year of fee payment: 14

Ref country code: DE

Payment date: 20220525

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220319

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220318

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009011454

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 744845

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231003

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230318