EP2018643B1 - Induktives bauelement und verfahren zum herstellen eines induktiven bauelements - Google Patents

Induktives bauelement und verfahren zum herstellen eines induktiven bauelements Download PDF

Info

Publication number
EP2018643B1
EP2018643B1 EP07728738A EP07728738A EP2018643B1 EP 2018643 B1 EP2018643 B1 EP 2018643B1 EP 07728738 A EP07728738 A EP 07728738A EP 07728738 A EP07728738 A EP 07728738A EP 2018643 B1 EP2018643 B1 EP 2018643B1
Authority
EP
European Patent Office
Prior art keywords
magnetic
ceramic layer
layers
dielectric ceramic
ceramic layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP07728738A
Other languages
English (en)
French (fr)
Other versions
EP2018643A1 (de
Inventor
Dieter GÖTSCH
Richard Matz
Ruth MÄNNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP2018643A1 publication Critical patent/EP2018643A1/de
Application granted granted Critical
Publication of EP2018643B1 publication Critical patent/EP2018643B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/043Fixed inductances of the signal type  with magnetic core with two, usually identical or nearly identical parts enclosing completely the coil (pot cores)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/348Hexaferrites with decreased hardness or anisotropy, i.e. with increased permeability in the microwave (GHz) range, e.g. having a hexagonal crystallographic structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49073Electromagnet, transformer or inductor by assembling coil and core

Definitions

  • the present invention relates to a method for producing an inductive component which is formed from a plurality of layers. Moreover, the invention also relates to such an inductive component.
  • Static magnetic devices such as transformers and inductors
  • transformers and inductors are essential elements of circuits that are designed to store and convert energy, to match impedance, to filter, to suppress electromagnetic interference, or even to voltage or current conversion.
  • these components are also essential components of resonant circuits.
  • Inductive components are based on the generation of alternating magnetic fields by primary currents, which in turn induce secondary currents. At high frequencies they can therefore be manufactured with acceptable compactness and efficiency without magnetic materials by suitable arrangement of the current paths.
  • partially planar windings which can be integrated into conventional multi-layer circuit carriers of organic or ceramic materials, have proven to be successful compared with the wire-wound, relatively expensive components.
  • circuit carrier made of FR4 material or the LTCC (Low Temperature Cofired Ceramics) technology to call.
  • LTCC Low Temperature Cofired Ceramics
  • unsintered ceramic green sheets are punched and screen printed using metal-filled, electrically conductive pastes and provided with vias and planar conductive structures and then sintered together in the stack. This results in thermally resilient, low-loss, hermetically sealed substrates that can be conventionally further populated.
  • Fig. 1 The two spatial areas with high magnetic permeability on the one hand and good insulation of the windings on the other hand are in basic form in Fig. 1 shown.
  • a ring core 1 is shown, which is surrounded on the one hand by a primary winding 2 and on the other hand by a secondary winding 3.
  • Fig. 2 Another basic design is in Fig. 2 shown.
  • two ring cores 1a and 1b are provided, which are arranged side by side in the horizontal direction, wherein both ring cores 1a and 1b are surrounded by a primary winding 2 and a secondary winding 3, which are arranged horizontally one above the other.
  • Fig. 3 is a sectional view in the plane of the primary winding 2 as shown Fig. 2 shown.
  • the winding 2 can be seen, which surrounds a central region 11 of the ferrite core, which is formed by the ring cores 1a and 1b.
  • a ferrite core of the inductive component is formed.
  • the vertical ferrite legs detected in the sectional view are closed by ferrite covering layers on the top and bottom sides of these ring cores 1a and 1b.
  • the windings 2 and 3 and the ring cores 1a and 1b are embedded in a dielectric 4.
  • Fig. 4 is a further sectional view shown, which shows an approximation to a pot core with five vertical legs of ferrite material.
  • the Legs are characterized by the central region 11 and the vertical outer legs 1a, 1b, 1c and 1d. Again, the arrangement is embedded in an insulating dielectric medium.
  • a method of fabricating a monolithic integrated planar transformer based on LTCC technology is known.
  • the in the Fig. 1 and 2 The basic structures shown are made by combining a low-permeability material at higher resistivity and a higher-permeability material at lower resistivity.
  • the integration of these two materials is carried out by punching out openings in the films of the one material, filling the openings with pieces of film or film stacks of the other material and then sintering together.
  • This intarsia process is complex and error-prone even with well-matched materials and thus relatively expensive, since the films must be processed on impact.
  • WO 2005/032226 shows the features of the preamble of claim 1.
  • the present invention is therefore based on the object to provide a method with which an inductive component with high dielectric strength can be produced with little effort. In addition, it is also an object to provide such an inductive component.
  • this is formed from a plurality of layers.
  • an electrically conductive material is arranged as a winding or winding of the component on a first non-magnetic, dielectric ceramic layer.
  • at least one continuous recess is formed in the non-magnetic dielectric ceramic layer.
  • a first magnetic ceramic layer or a corresponding layer stack is disposed on an upper surface of this non-magnetic dielectric ceramic layer.
  • a separate second magnetic ceramic layer or a corresponding one Layer stack is placed on a bottom surface of the non-magnetic dielectric ceramic layer.
  • This thus created intermediate state of the inductive component is then subjected to at least one further process step, in which at least one of the magnetic ceramic layers is plastically deformed, such that the two magnetic ceramic layers are contacted in the region of the recess and form a magnetic core of the device.
  • an inductive component can be produced in a low-cost and thus also cost-effective manner.
  • the inductive component can be generated with an optimized dielectric strength between the windings or the windings of the inductive component.
  • the order of the process steps is not specified by the list above. In particular, the first two steps can also be performed in reverse order.
  • the electrically conductive material is embedded or printed in the non-magnetic dielectric ceramic layer.
  • the non-magnetic dielectric ceramic layer and the magnetic ceramic layers are preferably provided as foils.
  • the dimensions of the recess in the plane of the ceramic layer are made larger in comparison with the thickness of the ceramic layer.
  • the windings or windings are thus preferably embedded conventionally in the non-magnetic dielectric ceramic layer or at least printed there.
  • lay numbers from 5 to 10 are sufficient for a variety of applications and thus results in a relatively low material thickness of the entire inductive component of a few 100 microns.
  • at least one non-magnetic, dielectric ceramic layer is provided with preferably punched openings whose extent is large in comparison to the material thickness of the multilayer.
  • a recess has a diameter between 1 mm and 3 mm, preferably about 2 mm.
  • At least one closed covering film of ferrite is then advantageously laminated to the upper side and the underside of this non-magnetic, dielectric ceramic layer in an advantageous manner.
  • the windings are covered by another non-magnetic dielectric ceramic layer and thus are substantially completely surrounded by nonmagnetic dielectric material.
  • a direct connection with the magnetic ceramic layers is not provided in this embodiment.
  • the process step for plastically deforming at least one magnetic ceramic layer as a sintering process is advantageously carried out.
  • This sintering process is performed so that the magnetic ceramic layers, which are preferably ferrite foils, are centered on each other by plastic deformation due to the softening of the glass portion in the recess of the non-magnetic dielectric ceramic material.
  • a support can be applied, which is arranged to support the deformation of this ceramic layer.
  • the deformation can be carried out in a location-specific manner, and the deformation of the magnetic ceramic layers into the recess and thus also the contacting of the two magnetic ceramic layers can be improved.
  • the contact surface between the two magnetic ceramic layers can thereby be made as large as possible.
  • a plurality of non-magnetic, dielectric layers are stacked, wherein at least one recess is formed in each of the non-magnetic, dielectric ceramic layers and the non-magnetic, dielectric ceramic layers are arranged one above the other such that these recesses overlap at least in regions.
  • a recess is formed in a non-magnetic, dielectric ceramic layer of different dimensions to a recess of at least a second non-magnetic, dielectric ceramic layer.
  • the non-magnetic dielectric ceramic layers are then preferably stacked such that one through all non-magnetic, dielectric ceramic layers continuous recess is formed at least partially tapered.
  • a recess is formed, which is initially formed to be tapered and then widens again.
  • this taper and subsequent expansion in a cross-sectional view is formed such that the continuous recess is formed symmetrically to a horizontal symmetry line in a cross-sectional view.
  • the taper is formed as a stepped profile.
  • Stepped magnetic vias offer a high degree of design freedom in terms of the number of dielectric and magnetic layers.
  • a magnetic material is applied, wherein the magnetic ceramic layer is arranged on the non-magnetic, dielectric ceramic layer, that the magnetic material is positioned in the region of the recess.
  • the magnetic material is preferably applied with such a structure that substantially corresponds to the inverse configuration of the tapered recess of the plurality of stacked non-magnetic dielectric ceramic layers. With more turns and higher number of layers, such a step design in the region of this recess avoids too small radii of curvature of the outer magnetic ceramic layers, in particular of the ferrite layers.
  • this magnetic material is printed on the magnetic ceramic layers.
  • a reduction of the plastic deformation of the magnetic ceramic layers in the region of the recess can thereby be achieved.
  • this magnetic material is printed as a thick-film ferritic paste by a screen printing process.
  • ferrite paste can be repeatedly printed on the magnetic ceramic layers in the region of the recess before laminating in order to close the recess completely and thus to be able to form without an air gap.
  • At least two non-magnetic, dielectric ceramic layers are formed, between which a magnetic layer, in particular a magnetic ceramic layer, is formed.
  • this magnetic ceramic layer is formed as a continuous layer. This allows you to set specific field lines. For example, field lines can escape laterally without penetrating all turns. The size of this leakage inductance can be adjusted specifically by the thickness of this additionally introduced magnetic ceramic layer.
  • the electrically conductive material for forming turns may be formed on an upper side and a lower side of this nonmagnetic dielectric ceramic layer.
  • the electrically conductive material may be arranged to form a primary winding and a secondary winding of the inductive component.
  • the non-magnetic, dielectric ceramic layer is preferably formed with a thickness between 20 ⁇ m and 200 ⁇ m, in particular between 50 ⁇ m and 100 ⁇ m.
  • the conductor tracks or windings can be completely embedded in highly insulating, dielectric ceramic. Due to the high dielectric strength, these ceramic layers can be made correspondingly thinner, whereby costs can be saved and the size can be minimized.
  • the inductive component is preferably designed as a monolithically integrated planar transformer.
  • the functions of magnetic permeability and electrical insulation are realized in their respective space regions by tailoring specific ceramics, respectively, resulting in high efficiency of the design and the requirement and application of the component.
  • different ceramics can be used.
  • hexa-ferrite ceramics in particular barium-hexa-ferrite ceramics, can preferably be used. These have a permeability between about 10 and 30.
  • a second class of ceramics may be used when frequencies in the middle range of about 10 to about 30 MHz are required.
  • CuNiZn ferrite materials can be used.
  • the permeability Ceramics used for components for use in this medium frequency range have permeability values of about 150 to about 500.
  • ceramics used in this class have permeability values between about 500 and 1000.
  • An inductive component according to the invention is constructed from a plurality of layers, and in particular realized as a monolithically integrated planar transformer.
  • the inductive component comprises at least one electrically conductive winding which is arranged on a first non-magnetic, dielectric ceramic layer. At least one continuous recess is formed in this at least one non-magnetic, dielectric ceramic layer.
  • the inductor further includes a first magnetic ceramic layer disposed on an upper surface of the non-magnetic dielectric ceramic layer.
  • a second magnetic ceramic layer is on a bottom side arranged this non-magnetic dielectric ceramic layer.
  • At least one of these two magnetic ceramic layers is plastically deformed in the region of the recess in such a way that it is connected to the other magnetic ceramic layer in the region of the recess and, overall, a magnetic core of the component is formed by these two ceramic layers.
  • the inductive component provided in this way has an optimized dielectric strength between the windings or windings and, moreover, can be produced inexpensively.
  • non-magnetic material herein is meant a material having a relative magnetic permeability close to or equal to 1 as compared to the magnetic material used for the magnetic ceramic layer.
  • FIG. 5 an example of a completed monolithically integrated planar transformer I is shown, which forms the starting point of the illustrated invention. It is a longitudinal section through a Layer stack shown, with only the essential part of the planar transformer I is shown for the invention.
  • the sectional view shows a planar transformer I with a low number of turns, which was produced in LTCC technology.
  • the planar transformer I has a non-magnetic, dielectric ceramic layer 5, which is formed as a foil.
  • On the upper side 51 of this dielectric ceramic layer 5 self-contained conductive traces or windings 511, 512, 513 and 514 are arranged in the exemplary embodiment, which surround the transformer core in a specific sense of rotation and constitute turns of a primary winding of the planar transformer 1.
  • this primary winding is spiral-shaped. At non-illustrated ends of this winding contacts are provided, through which an electrical connection with a power supply can be made possible.
  • a secondary winding is formed, which comprises the windings 521, 522, 523 and 524.
  • This secondary winding also has ends which are provided for further electrical contacting.
  • Both the turns 511 to 514 of the primary winding and the turns 521 to 524 of the secondary winding are printed in a conventional manner on the upper side 51 and on the lower side 52 of the dielectric ceramic layer 5, respectively.
  • planar transformer I has a continuous recess 53, which is produced by a stamping process.
  • a first magnetic ceramic layer 6 is arranged on the upper side 51 and directly on the windings 511 to 514.
  • a second magnetic ceramic layer 7 is disposed on the underside 52 and directly on the windings 521 to 524 of the secondary winding.
  • these two separate magnetic ceramic layers 6 and 7 are plastically deformed and connected to each other in the middle.
  • a magnetic via is formed in the region of the recess 53, as a result of which the two magnetic ceramic layers 6 and 7 form a magnetic core of the planar transformer I.
  • the magnetic ceramic layers 6 and 7 are also contacted with one another at the edge regions facing away from the recess 53 in the x-direction.
  • This contacting at the edge regions is also formed by a plastic deformation of at least one of the ceramic layers 6 or 7.
  • the indentations in the y-direction in the region of the recess 53 resulting from the plastic deformation of the ceramic layers 6 and 7 can be planarized as required by a subsequent doctoring process.
  • a further dielectric paste can be applied at the appropriate points, which is formed flat by this doctor blade process.
  • the in Fig. 5 shown finished planar transformer I is formed such that first the dielectric ceramic layer 5 is prepared and prepared for further processing. For this purpose, the at least one recess 53 is punched out. Further, then, the electrically conductive material for forming the windings 511 to 514 and the windings 521 to 524 printed on the corresponding surfaces of this dielectric ceramic layer 5.
  • the recess in the x-direction and also in the z-direction (perpendicular to the plane of the figure) is punched out with dimensions which are substantially greater than the thickness (y-direction) of the dielectric ceramic layer 5.
  • a central region 9 of the magnetic core of the planar transformer I is formed.
  • the sintering process takes place.
  • the plastic deformation thus takes place through the lamination process.
  • a stack of a plurality of magnetic layers may be formed in each case corresponding to the requirements of the component.
  • FIG. 6 An embodiment of a monolithically integrated planar transformer II, which was produced in LTCC technology is in Fig. 6 shown. Again, a longitudinal sectional view of a partial section of a completed planar transformer II shown. The sectional view shows a structure of the planar transformer II, which has a high number of turns.
  • the planar transformer II has non-magnetic dielectric ceramic layers 5a, 5b, 5c, 5d and 5e stacked one above the other. On the dielectric ceramic layers 5a, 5b, 5d and 5e windings are respectively applied to the upper sides.
  • the turns 511b, 512b, 513b and 514b are mentioned, which are printed on an upper side 51b of the dielectric ceramic layer 5b.
  • the windings 511a, 512a, 513a and 514a are printed on an upper side 51a of the dielectric ceramic layer 5a. These windings are assigned in the embodiment of a primary winding of the planar transformer II.
  • the unspecified, printed on the dielectric ceramic layers 5d and 5e turns are associated with a secondary winding of the planar transformer II.
  • the windings can also be arranged such that turns arranged on an upper side, for example on the top side of the dielectric ceramic layer 5a, are alternately assigned one of the primary winding and the subsequent secondary winding in the x direction.
  • the dielectric ceramic layer 5c is arranged as a final covering layer.
  • the turns of the planar transformer II are thereby completely surrounded by dielectric ceramic material.
  • magnetic ceramic layers 6 and 7 are laminated on the opposite sides of the stacked dielectric ceramic layer 5a to 5e, which are plastically deformed in the region of a recess 53 ', so that they are interconnected in this area. As a result, a central region 9 'of the magnetic core of the planar transformer II is also formed here.
  • the stacked dielectric ceramic layers 5a to 5e each have recesses having different dimensions.
  • the dielectric ceramic layers 5a to 5e are stacked in such a way that the individual recesses formed in each of these ceramic layers form a common continuous recess 53 '.
  • the dielectric ceramic layer 5c in the sectional view shown has a recess which, at least in the x-direction, is larger than the recesses formed individually in the electrical ceramic layers 5b, 5a and 5d.
  • the recesses formed in the dielectric ceramic layers 5b and 5d are larger than the recess formed in the dielectric ceramic layer 5a.
  • the dielectric ceramic layers 5a to 5e are stacked on top of each other in such a way that a tapering recess 53 'results in the y direction from the upper dielectric ceramic layer 5c to the centrally arranged dielectric ceramic layer 5a.
  • a stepped profile is realized. Starting from the central dielectric ceramic layer 5a, this recess 53 'widens in the y-direction up to the lower dielectric ceramic layer 5e again. Also, a step profile is formed.
  • the planar transformer II is formed symmetrically with respect to an axis of symmetry drawn through the dielectric ceramic layer 5a in the x direction.
  • planar transformer II shown in the completed state is preferably analogous to the preparation of the in Fig. 5 shown planar transformer I performed.
  • Fig. 7 is a further longitudinal section through a planar transformer III shown, which is shown in a not yet completed process stage. Again, only a partial section is shown, which shows the essential structure in a central region of the device.
  • the configuration and arrangement of the non-magnetic, dielectric ceramic layers 5a to 5e is analogous to the embodiment according to FIG Fig. 6 ,
  • the first magnetic ceramic layer 6 or possibly a corresponding layer stack is provided with an additional structure comprising the layers 6a and 6b.
  • These layers 6a and 6b are made of a magnetic material, and are applied in the embodiment of ferritic thick-film paste by means of screen printing. It can be seen that these layers 6a and 6b are formed on the surface of the magnetic ceramic layer 6 facing the dielectric ceramic layers 5a to 5e.
  • These layers 6a and 6b are formed as a stepped profile and designed so that they are designed as a complementary structure to the step configuration of the dielectric ceramic layers 5c and 5b.
  • layers 7a and 7b are also arranged on the second magnetic ceramic layer 7 or, if appropriate, a corresponding layer stack, which are designed as a stepped profile and as a complementary structure with respect to the step profile which is produced by the dielectric ceramic layers 5d and 5e .
  • the magnetic ceramic layers 6 and 7 are positioned in a subsequent process such that, as in FIG Fig. 7 4, the layers 6a and 6b and the layers 7a and 7b are disposed substantially in the region of the step profile formed by the dielectric ceramic layers 5a to 5b.
  • these structures of the ceramic layers 6 and 7 are laminated onto the stacked form of the dielectric ceramic layers 5a to 5e to form a recess 53 " of planar transformer III.
  • FIG. 8 is a further longitudinal sectional view of another Ausfaturigsbeispiels of a monolithically integrated planar transformer IV shown.
  • the planar transformer IV is shown in a completed state. It can be seen that between an dielectric ceramic layer 5a and a dielectric ceramic layer 5f an intermediate layer is formed, which is formed as a further magnetic ceramic layer 10. In a symmetrical arrangement are to this Magnetic ceramic layer 10 each stacked and in the region of a recess 53 '''stepped designed dielectric ceramic layers 5a, 5b and 5c and 5f, 5g and 5h arranged.
  • a central region 9 "of the magnetic core of the planar transformer IV is formed, and by integrating a central magnetic ceramic layer 10, which may be a ferrite foil, field lines of the primary winding (in the exemplary embodiment, the turns arranged on the ceramic layers 5g, 5h) are present.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Herstellen eines induktiven Bauelements, welches aus mehreren Schichten ausgebildet wird, bei dem nachfolgende Schritte durchgeführt werden: a) Anordnen eines elektrisch leitenden Materials (511 bis 514; 521 bis 524) als Wicklung des Bauelements (I, II, III, IV) an einer ersten nicht-magnetischen dielektrischen Keramikschicht (5; 5a bis 5h); b) Ausbilden zumindest einer durchgängigen Aussparung (53, 53', 53'', 53''') in der nicht-magnetischen dielektrischen Keramikschicht (5, 5a bis 5h); c) Anordnen einer ersten magnetischen Keramikschicht (6) an einer Oberseite und einer zweiten magnetischen Keramikschicht (7) an einer Unterseite der nicht-magnetischen dielektrischen Keramikschicht (5, 5a bis 5h); und d) Durchführen eines Prozessschrittes, bei dem zumindest eine der magnetischen Keramikschichten (6, 7) plastisch verformt wird, derart, dass die beiden magnetischen Keramikschichten (6, 7) im Bereich der Aussparung (53, 53', 53'', 53''') kontaktiert werden und einen magnetischen Kern des Bauelements (I, II, III, IV) ausbilden. Die Erfindung betrifft auch ein derartiges induktives Bauelement.

Description

    Technisches Gebiet
  • Die vorliegende Erfindung betrifft ein Verfahren zum Herstellen eines induktiven Bauelements, welches aus mehreren Schichten ausgebildet wird. Darüber hinaus betrifft die Erfindung auch ein derartiges induktives Bauelement.
  • Stand der Technik
  • Statische Magnetvorrichtungen, wie beispielsweise Transformatoren und Induktoren, sind wesentliche Elemente von Schaltkreisen, welche zur Speicherung und Umwandlung von Energie, zur Impedanzanpassung, zur Filterung, zur Unterdrückung elektromagnetischer Störstrahlung oder aber auch zur Spannungs- oder Stromumwandlung konzipiert sind. Darüber hinaus sind diese Bauelemente auch wesentliche Komponenten von Resonanzkreisen. Induktive Bauelemente beruhen auf der Erzeugung magnetischer Wechselfelder durch Primärströme, die ihrerseits Sekundärströme induzieren. Bei hohen Frequenzen können sie deshalb mit akzeptabler Kompaktheit und Effizienz ohne magnetische Werkstoffe durch geeignete Anordnung der Strompfade hergestellt werden. Für eine Miniaturisierung haben sich gegenüber den drahtgewickelten, relativ kostenintensiven Bauteilen, teilweise planare Wicklungen bewährt, die sich in konventionelle mehrlagige Schaltungsträger aus organischen oder keramischen Werkstoffen integrieren lassen. Insbesondere sind hier die weit verbreiteten Schaltungsträger aus FR4-Material oder die LTCC (Low Temperature Cofired Ceramics)-Technologie zu nennen. Bei dieser Technologie werden ungesinterte keramische Grünfolien unter Verwendung metallgefüllter, elektrisch leitfähiger Pasten in Stanz- und Siebdruckverfahren mit Durchkontaktierungen und planaren Leitungsstrukturen versehen und anschließend im Stapel zusammen gesintert. Dabei entstehen thermisch belastbare, verlustarme, hermetisch dichte Substrate, die konventionell weiter bestückt werden können.
  • Für das weite Anwendungsfeld der Strom- und Spannungstransformation sowie der Tiefpassfilter in leistungselektronischen Schaltungen sind wegen der niedrigen Frequenzen Bauelemente mit verbesserter magnetischer Kopplung auf Basis magnetischer Werkstoffe erforderlich, die den magnetischen Fluss verstärken und formen können. Hierfür sind eine Vielzahl von Varianten von Spulen- und Transformatorkernen aus ferritischer Keramik kommerziell verfügbar, die sich nachträglich mit Hilfe von Metallklammern an den erwähnten planaren Schaltungsträgern befestigen lassen.
  • Vollkommen monolithische Lösungen, die eine kostengünstigere Herstellung im Nutzen versprechen, haben sich aufgrund tiefer gehender Ansprüche an Material- und Prozesstechnik noch nicht etablieren können. Ein Problempunkt hierbei ist, dass eine Steigerung der magnetischen Leistungsfähigkeit von Ferriten, d. h. der Permeabilität des Materials, mit Hilfe keramischer Technologien erfahrungsgemäß mit einer Abnahme ihres spezifischen Widerstands und damit der wichtigen Gleichspannungsisolation zwischen Primär- und Sekundärseite des Transformators einhergeht. Um dem entgegenzutreten kann prinzipiell eine Einbettung der Strom führenden Windungen in gut isolierendes Material geringer Permeabilität vorgesehen werden. Es entspricht der Drahtisolation und der Luft bei den drahtgewickelten Bauelementen.
  • Die beiden räumlichen Gebiete mit hoher magnetischer Permeabilität einerseits und guter Isolation der Windungen andererseits sind in grundlegender Form in Fig. 1 dargestellt. Dort ist ein Ringkern 1 gezeigt, welcher einerseits von einer Primärwicklung 2 und andererseits von einer Sekundärwicklung 3 umringt ist. Eine weitere grundlegende Ausgestaltung ist in Fig. 2 gezeigt. Dort sind zwei Ringkerne 1a und 1b vorgesehen, welche in horizontaler Richtung nebeneinander angeordnet sind, wobei beide Ringkerne 1a und 1b durch eine Primärwicklung 2 und eine Sekundärwicklung 3, welche horizontal übereinander angeordnet sind, umringt sind.
  • In Fig. 3 ist eine Schnittdarstellung in der Ebene der Primärwicklung 2 gemäß der Darstellung Fig. 2 gezeigt. In gestrichelter Ausführung ist dabei die Wicklung 2 zu erkennen, welche einen Zentralbereich 11 des Ferrit-Kerns, welcher durch die Ringkerne 1a und 1b gebildet wird, umgibt. Durch die Ringkerne 1a und 1b wird ein Ferrit-Kern des induktiven Bauelements gebildet. Die in der Schnittdarstellung erfassten vertikalen Ferrit-Schenkel werden durch Ferrit-Deckschichten auf der Ober- und Unterseite zu diesen Ringkernen 1a und 1b geschlossen. Die Wicklungen 2 und 3 sowie die Ringkerne 1a und 1b sind in ein Dielektrikum 4 eingebettet.
  • In Fig. 4 ist eine weitere Schnittdarstellung dargestellt, welche eine Approximation an einen Topfkern mit fünf vertikalen Schenkeln aus Ferrit-Material zeigt. Die Schenkel sind durch den Zentralbereich 11 und den vertikalen äußeren Schenkeln 1a, 1b, 1c und 1d charakterisiert. Auch hier ist die Anordnung in ein isolierendes dielektrisches Medium eingebettet.
  • Aus der US 5,349,743 ist ein Verfahren zum Herstellen eines monolithisch integrierten Planartransformators auf Basis der LTCC-Technologie bekannt. Die in den Fig. 1 und 2 gezeigten Grundstrukturen werden dabei durch Verbindung eines Werkstoffs mit niedriger Permeabilität bei höherem spezifischen Widerstand und eines Werkstoffs mit höherer Permeabilität bei geringerem spezifischen Widerstand hergestellt. Die Integration dieser beiden Werkstoffe erfolgt durch Ausstanzen von Öffnungen in den Folien des einen Werkstoffs, Füllen der Öffnungen mit Folienstücken oder Folienstapeln des anderen Werkstoffs und anschließendes gemeinsames Sintern. Dieser Intarsien-Prozess ist selbst bei gut aufeinander abgestimmten Werkstoffen aufwändig und fehleranfällig und somit auch relativ teuer, da die Folien auf Stoß verarbeitet werden müssen.
  • Darüber hinaus ist aus der US 6,198,374 ein Verfahren auf Basis konventioneller LTCC-Technik bekannt. Bei diesem Verfahren wird nur eine Foliensorte, nämlich die aus dem bestgeeigneten Ferrit eingesetzt, um die Leiterbahnen darauf aufzudrucken. Diese werden anschließend beispielsweise durch Siebdruck mit unmagnetischem, dielektrischem Material beschichtet. Dadurch soll in der Umgebung der Windungen einer Wicklung die effektive Permeabilität und die auf der Leckage von Feldlinien beruhende Streuinduktivität reduziert werden. Zusätzlich soll dadurch die elektrische Isolation zwischen den Windungen verbessert werden. Nachteilig ist die zusätzliche Materialschicht im Bereich der Windungen, die zur Vermeidung von Spannungsrissen nicht beliebig dick gewählt werden kann. Insbesondere sind bereits die Leiterbahnen selbst bei leistungselektronischen Anwendungen so dick wie möglich auszulegen, um Widerstandsverluste zu reduzieren. Das bekannte Verfahren bietet somit nur beschränkte Wirksamkeit.
  • WO 2005/032226 zeigt die Merkmale des Oberbegriffs des Anspruchs 1.
  • Darstellung der Erfindung
  • Der vorliegenden Erfindung liegt deshalb die Aufgabe zugrunde, ein Verfahren zu schaffen, mit welchem ein induktives Bauelement mit hoher Spannungsfestigkeit aufwandsarm hergestellt werden kann. Darüber hinaus ist es auch Aufgabe, ein derartiges induktives Bauelement zu schaffen.
  • Diese Aufgabe wird durch ein Verfahren, welches die Merkmale nach Patentanspruch 1 aufweist, und ein induktives Bauelement, welches die Merkmale nach Patentanspruch 6 aufweist, gelöst.
  • Bei dem erfindungsgemäßen Verfahren zum Herstellen eines induktiven Bauelements wird dieses aus mehreren Schichten ausgebildet. Dabei wird ein elektrisch leitendes Material als Windung oder Wicklung des Bauelements an einer ersten nicht-magnetischen, dielektrischen Keramikschicht angeordnet. Des Weiteren wird zumindest eine durchgängige Aussparung in der nicht-magnetischen, dielektrischen Keramikschicht ausgebildet. Eine erste magnetische Keramikschicht oder ein entsprechender Schichtenstapel wird bzw. werden an einer Oberseite dieser nicht-magnetischen dielektrischen Keramikschicht angeordnet. Eine separate zweite magnetische Keramikschicht oder ein entsprechender Schichtenstapel wird bzw. werden an einer Unterseite der nicht-magnetischen dielektrischen Keramikschicht angeordnet. Dieser so geschaffene Zwischenzustand des induktiven Bauelements wird dann zumindest einem weiteren Prozessschritt unterzogen, bei dem zumindest eine der magnetischen Keramikschichten plastisch verformt wird, derart, dass die beiden magnetischen Keramikschichten im Bereich der Aussparung kontaktiert werden und einen magnetischen Kern des Bauelements ausbilden. Durch das Verfahren kann in aufwandsarmer und somit auch kostengünstiger Weise ein induktives Bauelement erzeugt werden. Das induktive Bauelement kann dabei mit einer optimierten Spannungsfestigkeit zwischen den Windungen bzw. den Wicklungen des induktiven Bauelements erzeugt werden. Die Reihenfolge der Prozessschritte ist durch oben genannte Aufzählung nicht festgelegt. Insbesondere die die beiden erstgenannten Schritte können auch in umgekehrter Reihenfolge durchgeführt werden.
  • Vorzugsweise wird das elektrisch leitende Material in die nicht-magnetische, dielektrische Keramikschicht eingebettet oder aufgedruckt. Die nicht-magnetische, dielektrische Keramikschicht und die magnetischen Keramikschichten sind bevorzugt als Folien bereitgestellt.
  • Die Ausmaße der Aussparung in der Ebene der Keramikschicht werden im Vergleich zur Dicke der Keramikschicht größer ausgebildet.
  • Im Vergleich zum Stand der Technik werden die Windungen bzw. Wicklungen somit bevorzugt konventionell in die unmagnetische dielektrische Keramiklage eingebettet oder zumindest dort aufgedruckt. Die Erfahrung zeigt, dass Lagenzahlen von 5 bis 10 für eine Vielzahl von Anwendungen hinreichend sind und somit eine relativ geringe Materialstärke des gesamten induktiven Bauelements von einigen wenigen 100 µm resultiert. Um eine magnetische Durchkontaktierung verwirklichen zu können, wird zumindest eine nicht-magnetische, dielektrische Keramikschicht mit bevorzugt gestanzten Öffnungen versehen, deren Ausdehnung groß im Vergleich zur Materialstärke des Multilayers ist. Beispielsweise kann hierbei vorgesehen sein, dass eine Aussparung einen Durchmesser zwischen 1 mm und 3 mm, bevorzugt etwa 2 mm, aufweist.
  • Bevorzugt werden anschließend dann auf die Oberseite und die Unterseite dieser nicht-magnetischen, dielektrischen Keramikschicht bevorzugt jeweils zumindest eine geschlossene Deckfolie aus Ferrit in vorteilhafter Weise auflaminiert.
  • Die Windungen bzw. Wicklungen werden durch eine weitere nicht-magnetische, dielektrische Keramikschicht bedeckt und sind somit im Wesentlichen vollständig von nichtmagnetischem, dielektrischem Material umgeben. Eine unmittelbare Verbindung mit den magnetischen Keramikschichten ist bei dieser Ausgestaltung nicht vorgesehen.
  • In vorteilhafter Weise wird der Prozessschritt zum plastischen Verformen zumindest einer magnetischen Keramikschicht als Sinterprozess durchgeführt. Dieser Sinterprozess wird so gefahren, dass sich die magnetischen Keramikschichten, welche bevorzugt Ferritfolien sind, durch plastische Verformung infolge der Erweichung des Glasanteils in der Aussparung des nicht-magnetischen, dielektrischen Keramikmaterials mittig aneinander legen. Bevorzugt verformen sich beide magnetischen Keramikschichten während dieses Sinterprozesses. Dadurch kann praktisch ein magnetisches Via von hinreichend großem Querschnitt erzeugt werden, welches den Magnetfluss schließt. Durch die magnetischen Keramikschichten kann dadurch in optimierter Weise ein magnetischer Kern des Bauelements ausgebildet werden.
  • In vorteilhafter Weise kann zumindest auf eine magnetische Keramikschicht während diesem Sinterprozess eine Auflage aufgebracht werden, welche zur Unterstützung der Verformung dieser Keramikschicht angeordnet wird. Durch eine derartige Auflage kann die Verformung ortsgenau durchgeführt werden, und die Verformung der magnetischen Keramikschichten in die Aussparung hinein und somit auch die Kontaktierung der beiden magnetischen Keramikschichten verbessert werden. Die Kontaktfläche zwischen beiden magnetischen Keramikschichten kann dadurch möglichst groß ausgebildet werden.
  • Erfindungsgemäß wird eine Mehrzahl von nicht-magnetischen, dielektrischen Schichten gestapelt, wobei in jede der nicht-magnetischen, dielektrischen Keramikschichten zumindest eine Aussparung ausgebildet wird und die nicht-magnetischen, dielektrischen Keramikschichten derart übereinander angeordnet werden, dass diese Aussparungen zumindest bereichsweise überlappen. In bevorzugter Weise wird eine Aussparung in einer nicht-magnetischen, dielektrischen Keramikschicht mit unterschiedlichen Ausmaßen zu einer Aussparung einer zumindest zweiten nicht-magnetischen, dielektrischen Keramikschicht ausgebildet. Die nicht-magnetischen, dielektrischen Keramikschichten werden dann bevorzugt derart gestapelt, dass eine durch alle nicht-magnetischen, dielektrischen Keramikschichten durchgängige Aussparung zumindest bereichsweise verjüngt ausgebildet wird. Vorzugsweise stellt sich in einer Schnittdarstellung eines derartig hergestellten induktiven Bauelements mit einer Mehrzahl an nicht-magnetischen, dielektrischen Keramikschichten eine Aussparung dar, welche zunächst verjüngt ausgebildet wird und sich dann wieder erweitert. Bevorzugt wird diese Verjüngung und anschließende Erweiterung in einer Querschnittdarstellung derart ausgebildet, dass die durchgängige Aussparung symmetrisch zu einer horizontal angeordneten Symmetrielinie in einer Querschnittdarstellung ausgebildet wird.
  • Vorzugsweise wird die Verjüngung als Stufenprofil ausgebildet. Stufenförmig ausgeprägte magnetische Vias bieten eine hohe Designfreiheit bezüglich der Zahl dielektrischer und magnetischer Lagen.
  • Vorzugsweise wird zumindest an einer magnetischen Keramikschicht ein magnetisches Material aufgetragen, wobei die magnetische Keramikschicht so an der nicht-magnetischen, dielektrischen Keramikschicht angeordnet wird, dass das magnetische Material im Bereich der Aussparung positioniert wird. Das magnetische Material wird bevorzugt mit einer derartigen Struktur aufgebracht, welche im Wesentlichen der inversen Ausgestaltung der verjüngten Aussparung der Mehrzahl an gestapelten nicht-magnetischen, dielektrischen Keramikschichten entspricht. Bei mehr Windungen und höherer Lagenzahl vermeidet ein derartiges Stufendesign im Bereich dieser Aussparung zu kleine Krümmungsradien der äußeren magnetischen Keramikschichten, insbesondere der Ferritlagen.
  • Vorzugsweise wird dieses magnetische Material auf die magnetischen Keramikschichten aufgedruckt. Bevorzugt kann dadurch eine Verminderung der plastischen Verformung der magnetischen Keramikschichten im Bereich der Aussparung erreicht werden. Bevorzugt wird dieses magnetische Material als ferritische Dickschichtpaste durch ein Siebdruckverfahren aufgedruckt. Zusätzlich kann im Bereich der Aussparung vor dem Laminieren Ferritpaste mehrfach auf die magnetischen Keramikschichten aufgedruckt werden, um die Aussparung vollständig schließen zu können und somit ohne Luftspalt ausbilden zu können.
  • Bevorzugt werden zumindest zwei nicht-magnetische, dielektrische Keramikschichten ausgebildet, zwischen denen eine magnetische Schicht, insbesondere eine magnetische Keramikschicht, ausgebildet wird. Bevorzugt ist diese magnetische Keramikschicht als durchgehende Schicht ausgebildet. Dadurch können gezielt Feldlinienverläufe eingestellt werden. Beispielsweise können dadurch auch Feldlinien seitlich entweichen, ohne alle Windungen zu durchdringen. Die Größe dieser Streuinduktivität kann durch die Dicke dieser zusätzlich eingebrachten magnetischen Keramikschicht gezielt eingestellt werden.
  • Bei einer Ausgestaltung mit lediglich einer nicht-magnetischen, dielektrischen Keramikschicht kann das elektrisch leitende Material zum Ausbilden von Windungen an einer Oberseite und an einer Unterseite dieser nicht-magnetischen, dielektrischen Keramikschicht ausgebildet werden.
  • Das elektrisch leitende Material kann zum Ausbilden einer Primärwicklung und einer Sekundärwicklung des induktiven Bauelements angeordnet werden.
  • Vorzugsweise wird die nicht-magnetische, dielektrische Keramikschicht mit einer Dicke zwischen 20 µm und 200 µm, insbesondere zwischen 50 µm und 100 µm, ausgebildet. Die Leiterbahnen bzw. Windungen können vollständig in hoch isolierende, dielektrische Keramik eingebettet werden. Aufgrund der hohen Durchschlagsfestigkeit können diese Keramiklagen entsprechend dünner ausgelegt werden, wodurch Kosten gespart und die Baugröße minimiert werden können.
  • Bevorzugt wird das induktive Bauelement als monolithisch integrierter Planartransformator ausgebildet.
  • Bei dem vorgeschlagenen Verfahren werden die Funktionen der magnetischen Permeabilität und der elektrischen Isolation in ihren jeweiligen Raumgebieten durch jeweils maßgeschneiderte spezifische Keramiken verwirklicht, wodurch eine hohe Wirksamkeit des Designs und der Anforderung und Anwendung des Bauteils resultieren. Bedarfsabhängig können dabei unterschiedliche Keramiken verwendet werden. Soll das induktive Bauteil bei hohen Frequenzen, beispielsweise im Bereich zwischen 1 und 2 GHz verwendet werden, können bevorzugt Hexa-Ferrit-Keramiken, insbesondere Barium-Hexa-Ferrit-Keramiken verwendet werden. Diese weisen eine Permeabilität zwischen etwa 10 und 30 auf.
  • Eine zweite Klasse von Keramiken kann dann verwendet werden, wenn Frequenzen im mittleren Bereich von etwa 10 bis etwa 30 MHz erforderlich sind. Dabei können beispielsweise CuNiZn-Ferrit-Materialien verwendet werden. Die Permeabilität von Keramiken, welche für Bauteile zur Verwendung in diesem mittleren Frequenzbereich herangezogen werden, weisen Permeabilitätswerte von etwa 150 bis etwa 500 auf.
  • Darüber hinaus ist eine weitere Klasse von Keramiken vorgesehen, die für Bauteile im relativ niedrigen Frequenzbereich zwischen etwa 1 bis etwa 3 MHz verwendet werden. Dabei können beispielsweise MnZn-Ferrit-Materialien eingesetzt werden. Bevorzugt weisen Keramiken, welche in dieser Klasse eingesetzt werden, Permeabilitätswerte zwischen etwa 500 und 1000 auf.
  • Bei dem erfindungsgemäßen Verfahren wird somit kein Mischmaterial mit eingeschränkter Performance eingesetzt, wie dies beispielsweise bei dem Verfahren in der US 6,198,374 durchgeführt wird. Darüber hinaus wird kein problematischer Prozessschritt, wie dies im Stand der Technik gemäß der US 5,349,743 , erfolgt.
  • Ein erfindungsgemäßes induktives Bauelement ist aus einer Mehrzahl an Schichten aufgebaut, und insbesondere als monolithisch integrierter Planartransformator realisiert. Das induktive Bauelement umfasst zumindest eine elektrisch leitende Wicklung, welche an einer ersten nicht-magnetischen, dielektrischen Keramikschicht angeordnet ist. In diese zumindest eine nicht-magnetische, dielektrische Keramikschicht ist zumindest eine durchgängige Aussparung ausgebildet. Das induktive Bauelement umfasst des Weiteren eine erste magnetische Keramikschicht, welche an einer Oberseite der nicht-magnetischen, dielektrischen Keramikschicht angeordnet ist. Darüber hinaus ist eine zweite magnetische Keramikschicht an einer Unterseite dieser nicht-magnetischen, dielektrischen Keramikschicht angeordnet. Zumindest eine dieser beiden magnetischen Keramikschichten ist im Bereich der Aussparung derart plastisch verformt, dass sie mit der anderen magnetischen Keramikschicht im Bereich der Aussparung verbunden ist und im Gesamten ein magnetischer Kern des Bauelements durch diese beiden Keramikschichten ausgebildet ist. Das derartig bereitgestellte induktive Bauelement weist eine optimierte Spannungsfestigkeit zwischen den Windungen bzw. Wicklungen auf und kann darüber hinaus kostengünstig hergestellt werden.
  • Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben. Darüber hinausgehende vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens sind auch als vorteilhafte Ausgestaltungen des erfindungsgemäßen induktiven Bauelements anzusehen.
  • Kurze Beschreibung der Zeichnung(en)
  • Im Nachfolgenden werden Ausführungsbeispiele der vorliegenden Erfindung anhand schematischer Zeichnungen näher erläutert. Es zeigen:
  • Fig. 1
    eine erste bekannte Grundstruktur eines Transfor- mators;
    Fig. 2
    eine zweite bekannte Grundstruktur eines Transfor- mators;
    Fig.
    3 eine Schnittdarstellung des Transformators gemäß Fig. 2;
    Fig. 4
    eine weitere Schnittdarstellung durch eine Ausfüh- rungsform eines bekannten Transformators;
    Fig. 5
    eine Schnittdarstellung durch ein erstes Ausfüh- rungsbeispiel eines erfindungsgemäßen induktiven Bauelements;
    Fig. 6
    eine Schnittdarstellung durch ein zweites Ausfüh- rungsbeispiel eines erfindungsgemäßen induktiven Bauelements;
    Fig. 7
    eine Schnittdarstellung durch ein weiteres Ausfüh- rungsbeispiel eines erfindungsgemäßen induktiven Bauelements, welches noch nicht fertig gestellt ist; und
    Fig. 8
    eine Schnittdarstellung durch ein weiteres Ausfüh- rungsbeispiel eines erfindungsgemäßen induktiven Bauelements.
    Bevorzugte Ausführung der Erfindung
  • In den Figuren werden gleiche und funktionsgleiche Elemente mit den gleichen Bezugszeichen versehen.
  • Mit dem Ausdruck "nicht-magnetisches Material" wird hierbei ein Material bezeichnet, das im Vergleich zu dem für die magnetische Keramikschicht verwendeten magnetischen Material eine relative magnetische Permeabilität nahe oder gleich 1 aufweist.
  • In Fig. 5 ist ein Beispiel eines fertig gestellten monolithisch integrierten Planartransformators I gezeigt, der den Ausgangspunkt der dargestellten Erfindung bildet. Es ist dabei eine Längsschnittdarstellung durch einen Schichtenstapel dargestellt, wobei lediglich der für die Erfindung wesentliche Teil des Planartransformators I gezeigt ist. Die Schnittdarstellung zeigt einen Planartransformator I mit geringer Windungszahl, welcher in LTCC-Technik hergestellt wurde. Der Planartransformator I weist eine nicht-magnetische, dielektrische Keramikschicht 5 auf, welche als Folie ausgebildet ist. An einer Oberseite 51 dieser dielektrischen Keramikschicht 5 sind im Ausführungsbeispiel in sich geschlossene stromführende Leiterbahnen bzw. Windungen 511, 512, 513 und 514 angeordnet, welche den Transformatorkern in einem bestimmten Drehsinn umschließen und Windungen einer Primärwicklung des Planartransformators 1 darstellen. In einer Draufsichtdarstellung ist diese Primärwicklung spiralenförmig ausgebildet. An nicht dargestellten Enden dieser Wicklung sind Kontaktierungen angebracht, durch welche eine elektrische Verbindung mit einer Energieversorgung ermöglicht werden kann.
  • An einer Unterseite 52 der dielektrischen Keramikschicht 5 ist eine Sekundärwicklung ausgebildet, welche die Windungen 521, 522, 523 und 524 umfasst. Auch diese Sekundärwicklung weist Enden auf, welche zur weiteren elektrischen Kontaktierung vorgesehen sind. Sowohl die Windungen 511 bis 514 der Primärwicklung als auch die Windungen 521 bis 524 der Sekundärwicklung werden in konventioneller Weise auf die Oberseite 51 bzw. auf die Unterseite 52 der dielektrischen Keramikschicht 5 aufgedruckt.
  • Darüber hinaus weist der Planartransformator I eine durchgängige Aussparung 53 auf, welche durch einen Stanzprozess erzeugt ist.
  • Im gezeigten Ausführungsbeispiel ist eine erste magnetische Keramikschicht 6 auf der Oberseite 51 sowie unmittelbar auf den Windungen 511 bis 514 angeordnet. Ebenso ist an der Unterseite 52 sowie unmittelbar auf den Windungen 521 bis 524 der Sekundärwicklung eine zweite magnetische Keramikschicht 7 angeordnet. Im Bereich der Aussparung 53 sind diese beiden separaten magnetischen Keramikschichten 6 und 7 plastisch verformt und mittig miteinander verbunden. Dadurch wird im Bereich der Aussparung 53 praktisch ein magnetisches Via gebildet, wodurch die beiden magnetischen Keramikschichten 6 und 7 einen magnetischen Kern des Planartransformators I ausbilden. Dazu sind die magnetischen Keramikschichten 6 und 7 auch an den der Aussparung 53 in x-Richtung abgewandten Randbereichen miteinander kontaktiert. Auch diese Kontaktierung an den Randbereichen ist durch eine plastische Verformung zumindest einer der Keramikschichten 6 oder 7 ausgebildet. Die sich aufgrund der plastischen Verformung der Keramikschichten 6 und 7 ergebenden Einbuchtungen in y-Richtung im Bereich der Aussparung 53 kann bei Bedarf durch einen nachfolgenden Rakel-Prozess planarisiert werden. Dabei kann beispielsweise eine weitere dielektrische Paste an den entsprechenden Stellen aufgetragen werden, die durch diesen Rakel-Prozess eben ausgebildet wird.
  • Der in Fig. 5 gezeigte fertig gestellte Planartransformator I wird derart ausgebildet, dass zunächst die dielektrische Keramikschicht 5 hergestellt wird und für die weitere Verarbeitung präpariert wird. Dazu wird die zumindest eine Aussparung 53 ausgestanzt. Des Weiteren werden dann das elektrisch leitende Material zum Ausbilden der Windungen 511 bis 514 sowie der Windungen 521 bis 524 auf die entsprechenden Oberflächen dieser dielektrischen Keramikschicht 5 aufgedruckt.
  • Im Ausführungsbeispiel wird die Aussparung in x-Richtung und auch in z-Richtung (senkrecht zur Figurenebene) mit Ausmaßen ausgestanzt, welche wesentlich größer sind, als die Dicke (y-Richtung) der dielektrischen Keramikschicht 5 ist.
  • Anschließend werden dann auf die Oberseite 51 und die Unterseite 52 die zwei separat bereitgestellten magnetischen Keramikschichten 6 und 7, welche als geschlossene ungebrannte Grünfolien aus Ferrit bereitgestellt werden, derart auflaminiert, dass sich diese Keramikschichten 6 und 7 aufgrund ihres organischen Bindeanteils durch plastische Verformung in der Aussparung 53 mittig aneinander legen. In der Aussparung ist somit ein Zentralbereich 9 des magnetischen Kerns des Planartransformators I ausgebildet. Anschließend erfolgt der Sinterprozess. Im Ausführungsbeispiel erfolgt die plastische Verformung somit durch den Laminierungsprozess. An Stelle der Schichten 6 und 7 kann entsprechend den Erfordernissen des Bauelements jeweils auch ein Stapel aus mehreren magnetischen Schichten ausgebildet sein.
  • Ein Ausführungsbeispiel eines monolithisch integrierter Planartransformators II, welcher in LTCC-Technik hergestellt wurde, ist in Fig. 6 gezeigt. Auch hier ist eine Längsschnittdarstellung eines Teilausschnitts eines fertig gestellten Planartransformators II gezeigt. Die Schnittdarstellung zeigt einen Aufbau des Planartransformators II, welcher eine hohe Windungszahl aufweist.
  • Der Planartransformator II weist nicht-magnetische, dielektrische Keramikschichten 5a, 5b, 5c, 5d und 5e auf, welche übereinander angeordnet gestapelt sind. Auf den dielektrischen Keramikschichten 5a, 5b, 5d und 5e sind jeweils an den Oberseiten Windungen aufgebracht. Beispielhaft sind dabei die Windungen 511b, 512b, 513b und 514b genannt, welche auf einer Oberseite 51b der dielektrischen Keramikschicht 5b aufgedruckt sind. Die Windungen 511a, 512a, 513a und 514a sind auf einer Oberseite 51a der dielektrischen Keramikschicht 5a aufgedruckt. Diese Windungen sind im Ausführungsbeispiel einer Primärwicklung des Planartransformators II zugeordnet. Die nicht näher gekennzeichneten, auf den dielektrischen Keramikschichten 5d und 5e aufgedruckten Windungen sind einer Sekundärwicklung des Planartransformators II zugeordnet. Die Windungen können auch derart angeordnet sein, dass auf einer Oberseite, beispielsweise auf der Oberseite der dielektrischen Keramikschicht 5a, angeordnete Windungen in x-Richtung alternierend eine davon der Primärwicklung und die nachfolgende der Sekundärwicklung zugeordnet ist.
  • Wie aus der Darstellung in Fig. 6 zu erkennen ist, ist auf der dielektrischen Keramikschicht 5b die dielektrische Keramikschicht 5c als abschließende Deckschicht angeordnet. Die Windungen des Planartransformators II sind dadurch vollständig von dielektrischem Keramikmaterial umgeben.
  • Auch hier sind magnetische Keramikschichten 6 und 7 an den gegenüberliegenden Seiten der gestapelten dielektrischen Keramikschicht 5a bis 5e auflaminiert, welche im Bereich einer Aussparung 53' plastisch verformt sind, so dass sie in diesem Bereich miteinander verbunden sind. Dadurch wird auch hier ein Zentralbereich 9' des magnetischen Kerns des Planartransformators II ausgebildet.
  • Wie dazu zu erkennen ist, weisen die gestapelten dielektrischen Keramikschichten 5a bis 5e jeweils Aussparungen auf, welche unterschiedliche Ausmaße aufweisen. Die dielektrischen Keramikschichten 5a bis 5e sind dabei derart gestapelt, dass die jeweils in diesen Keramikschichten ausgebildeten individuellen Aussparungen eine gemeinsame durchgängige Aussparung 53' ausbilden. Wie dabei zu erkennen ist, weist die dielektrische Keramikschicht 5c in der gezeigten Schnittdarstellung eine Aussparung auf, welche zumindest in x-Richtung größer als die in den elektrischen Keramikschichten 5b, 5a und 5d individuell ausgebildeten Aussparungen sind.
  • Darüber hinaus ist zu erkennen, dass die in den dielektrischen Keramikschichten 5b und 5d ausgebildeten Aussparungen größer sind, als die in der dielektrischen Keramikschicht 5a ausgebildete Aussparung. Im Ausführungsbeispiel sind die dielektrischen Keramikschichten 5a bis 5e derart übereinander gestapelt, dass sich ausgehend von der oberen dielektrischen Keramikschicht 5c bis zur mittig angeordneten dielektrischen Keramikschicht 5a in y-Richtung eine sich verjüngende Aussparung 53' ergibt. Im Ausführungsbeispiel ist dabei ein Stufenprofil realisiert. Ausgehend von der mittigen dielektrischen Keramikschicht 5a weitet sich diese Aussparung 53' in y-Richtung bis zur unteren dielektrischen Keramikschicht 5e wieder auf. Auch dabei ist ein Stufenprofil ausgebildet. Im Ausführungsbeispiel ist der Planartransformator II symmetrisch zu einer in x-Richtung durch die dielektrische Keramikschicht 5a gezogene Symmetrieachse ausgebildet.
  • Die verfahrensgemäße Ausgestaltung des im fertig gestellten Zustand gezeigten Planartransformators II wird bevorzugt analog zur Herstellung des in Fig. 5 gezeigten Planartransformators I durchgeführt.
  • In Fig. 7 ist eine weitere Längsschnittdarstellung durch einen Planartransformator III gezeigt, welcher in einem noch nicht fertig gestellten Prozessstadium dargestellt ist. Auch hier wird lediglich ein Teilausschnitt gezeigt, welcher die wesentliche Struktur in einem zentralen Bereich des Bauelements zeigt.
  • Die Ausgestaltung und Anordnung der nicht-magnetischen, dielektrischen Keramikschichten 5a bis 5e ist analog zur Ausgestaltung gemäß Fig. 6. Darüber hinaus ist in Fig. 7 zu erkennen, dass die erste magnetische Keramikschicht 6 oder ggf. ein entsprechender Schichtenstapel mit einer zusätzlichen Struktur versehen ist, welche die Schichten 6a und 6b aufweist. Diese Schichten 6a und 6b sind aus einem magnetischen Material, und sind im Ausführungsbeispiel aus ferritischer Dickschichtpaste mittels Siebdruck aufgebracht. Es ist zu erkennen, dass diese Schichten 6a und 6b auf der den dielektrischen Keramikschichten 5a bis 5e zugewandten Oberfläche der magnetischen Keramikschicht 6 ausgebildet sind. Diese Schichten 6a und 6b sind als Stufenprofil ausgebildet und derart konzipiert, dass sie als komplementäre Struktur zu der Stufenausgestaltung der dielektrischen Keramikschichten 5c und 5b gestaltet sind.
  • Analog dazu sind an der zweiten magnetischen Keramikschicht 7 oder ggf. ein entsprechender Schichtenstapel ebenfalls Schichten 7a und 7b angeordnet, welche als Stufenprofil ausgebildet sind und als komplementäre Struktur im Hinblick auf das Stufenprofil, welches durch die dielektrischen Keramikschichten 5d und 5e erzeugt wird, ausgebildet sind. Die magnetischen Keramikschichten 6 und 7 werden in einem nachfolgenden Prozess derart positioniert, dass wie in Fig. 7 gezeigt ist, die Schichten 6a und 6b sowie die Schichten 7a und 7b im Wesentlichen im Bereich des Stufenprofils, welches durch die dielektrischen Keramikschichten 5a bis 5b ausgebildet wird, angeordnet sind. Vor dem abschließenden Sinterprozess werden diese Strukturen der Keramikschichten 6 und 7 derart auf die Stapelform der dielektrischen Keramikschichten 5a bis 5e auflaminiert, dass eine Aussparung 53" ausgebildet wird. Durch diese komplementäre Strukturierung der Keramikschichten 6 und 7 kann ein luftspaltfreies Ausbilden eines Zentralbereichs des magnetischen Kerns des Planartransformators III unterstützt werden.
  • In Fig. 8 ist eine weitere Längsschnittdarstellung eines weiteren Ausführurigsbeispiels eines monolithisch integrierten Planartransformators IV gezeigt. Der Planartransformator IV ist dabei in einem fertig gestellten Zustand gezeigt. Es ist zu erkennen, dass zwischen einer dielektrischen Keramikschicht 5a und einer dielektrischen Keramikschicht 5f eine Zwischenschicht ausgebildet ist, welche als weitere magnetische Keramikschicht 10 ausgebildet ist. In symmetrischer Anordnung sind zu dieser magnetischen Keramikschicht 10 jeweils gestapelt und im Bereich einer Aussparung 53''' gestuft konzipierte dielektrische Keramikschichten 5a, 5b und 5c sowie 5f, 5g und 5h angeordnet. Ein Zentralbereich 9" des magnetischen Kerns des Planartransformators IV ist ausgebildet. Durch diese Integration einer zentralen magnetischen Keramikschicht 10, welche wiederum eine Ferritfolie sein kann, werden Feldlinien der Primärwicklung (im Ausführungsbeispiel die Windungen, welche auf den Keramikschichten 5g, 5h angeordnet sind) vor der Sekundärwicklung (Windungen, welche auf den Keramikschichten 5a und 5b angeordnet sind) abgezweigt und gezielt eine Streuinduktivität erzeugt. Der Vorteil einer derartig gezielt erzeugten Streuinduktivität kann darin gesehen werden, dass kein zusätzliches separates Bauelement erforderlich ist, um die individuelle Einstellung von Impedanzen erreichen zu können. Beispielsweise kann dabei die Primärseite eine zusätzliche Streuinduktivität aufweisen, die einen weiteren Freiheitsgrad für die schaltungstechnische Gestaltung des Bauelements darstellt. In der gezeigten Ausführung kann eine derartige gezielte Einstellung somit durch eine integrierte Ausgestaltung ermöglicht werden.

Claims (8)

  1. Verfahren zum Herstellen eines induktiven Bauelements, welches aus mehreren Schichten ausgebildet wird, bei dem nachfolgende Schritte durchgeführt werden:
    a) Anordnen eines elektrisch leitenden Materials (511 bis 514; 521 bis 524) als Wicklung des Bauelements (I, II, III, IV) an einer ersten nicht-magnetischen dielektrischen Keramikschicht (5; 5a bis 5h);
    b) Ausbilden zumindest einer durchgängigen Aussparung (53, 53', 53", 53"') in der nicht-magnetischen dielektrischen Keramikschicht (5, 5a bis 5h);
    c) Anordnen einer ersten magnetischen Keramikschicht (6) an einer Oberseite und einer zweiten magnetischen Keramikschicht (7) an einer Unterseite der nicht-magnetischen dielektrischen Keramikschicht (5, 5a bis 5h); und
    d) Durchführen eines Prozessschrittes, bei dem zumindest eine der magnetischen Keramikschichten (6, 7) plastisch verformt wird, derart, dass die beiden magnetischen Keramikschichten (6, 7) im Bereich der Aussparung (53, 53', 53", 53"') kontaktiert werden und einen magnetischen Kern des Bauelements (I, II, III, IV) ausbilden,
    wobei das Verfahren dadurch gekennzeichnet ist, dass
    auf das elektrisch leitende Material (511 bis 514; 521 bis 524) eine weitere unmagnetische dielektrische Schicht, insbesondere Keramikschicht (5c, 5f), aufgebracht wird,
    wobei eine Mehrzahl von nicht-magnetischen dielektrischen Keramikschichten (5a bis 5h) gestapelt werden, in welchen jeweils zumindest eine Aussparung ausgebildet wird, wobei die nicht-magnetischen dielektrischen Keramikschichten (5a bis 5h) derart übereinander angeordnet werden, dass die Aussparungen zumindest bereichsweise überlappen,
    und wobei die Aussparungen in den jeweiligen Keramikschichten (5a bis 5h) mit unterschiedlichen Ausmaßen ausgebildet werden und derart gestapelt werden, dass eine durch alle nicht-magnetische dielelektrische Keramikschichten (5a bis 5h) durchgängige Aussparung (53', 53", 53"') zumindest bereichsweise verjüngt ausgebildet wird..
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    zumindest auf eine magnetische Keramikschicht (6, 7) während des Schrittes d) eine Auflage zur Unterstützung der Verformung dieser Keramikschicht (6, 7) angeordnet wird.
  3. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    zumindest auf einer magnetischen Keramikschicht (6, 7) ein magnetisches Material (6a, 6b; 7a, 7b) aufgetragen wird, wobei die magnetische Keramikschicht (6, 7) gemäß Schritt c) so an der nicht-magnetischen dielelektrischen Keramikschicht (5, 5a bis 5h) angeordnet wird, dass das magnetische Material (6a, 6b; 7a, 7b) im Bereich der Aussparung (53, 53', 53", 53"') positioniert wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    zumindest zwei nicht-magnetische dielektrische Keramikschichten (5a bis 5h) ausgebildet werden, zwischen denen eine magnetische Schicht, insbesondere eine Keramikschicht (10), ausgebildet wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die nicht-magnetischen dielelektrischen Keramikschichten (5, 5a bis 5h) mit einer Dicke zwischen 20µm und 200µm, insbesondere zwischen 50µm und 100µm, ausgebildet werden.
  6. Induktives Bauelement, welches eine Mehrzahl an Schichten aufweist, bei dem
    - zumindest eine elektrisch leitende Wicklung des Bauelements (I, II, III, IV) an einer ersten, nicht-magnetischen dielektrischen Keramikschicht (5, 5a bis 5h) angeordnet ist, in welcher zumindest eine durchgängige Aussparung (53, 53', 53", 53"') ausgebildet ist;
    - und eine erste magnetische Keramikschicht (6) an einer Oberseite und eine zweite magnetische Keramikschicht (7) an einer Unterseite der nicht-magnetischen dielektrischen Keramikschicht (5, 5a bis 5h) angeordnet ist, wobei zumindest eine magnetische Keramikschicht (6, 7) im Bereich der Aussparung (53, 53', 53", 53"') derart plastisch verformt ist, dass sie mit der anderen magnetischen Keramikschicht (6, 7) verbunden ist und ein magnetischer Kern des Bauelements (I, II, III, IV) ausgebildet ist,
    wobei das induktive Element dadurch gekennzeichnet ist, dass
    eine Mehrzahl von nicht-magnetischen dielektrischen Keramikschichtten (5a bis 5h) gestapelt ist, in welchen jeweils zumindest eine Aussparung ausgebildet ist, wobei die nicht-magnetischen dielektrischen Keramikschichten (5a bis 5h) derart übereinander angeordnet sind, dass die Aussparungen zumindest bereichsweise überlappen
    und wobei die Aussparungen in den jeweiligen Keramikschichten (5a bis 5h) unterschiedliche Ausmaße aufweisen und die Keramikschichten (5a bis 5h) derart gestapelt sind, dass eine durch alle nicht-magnetischen dielelektrischen Keramikschichten (5a bis 5h) durchgängige Aussparung (53', 53", 53"') ausgebildet ist, welche zumindest bereichsweise verjüngt ist.
  7. Induktives Bauelement nach Anspruch 6,
    dadurch gekennzeichnet, dass
    die Verjüngung ein Stufenprofil ist.
  8. Induktives Bauelement nach einem der Ansprüche 6 oder 7,
    dadurch gekennzeichnet, dass
    zumindest zwei nicht-magnetische dielektrische Keramikschichten (5a bis 5h) ausgebildet sind, zwischen denen eine magnetische Schicht, insbesondere eine Keramikschicht (10), ausgebildet ist.
EP07728738A 2006-05-16 2007-05-03 Induktives bauelement und verfahren zum herstellen eines induktiven bauelements Expired - Fee Related EP2018643B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006022785A DE102006022785A1 (de) 2006-05-16 2006-05-16 Induktives Bauelement und Verfahren zum Herstellen eines induktiven Bau-elements
PCT/EP2007/054285 WO2007131884A1 (de) 2006-05-16 2007-05-03 Induktives bauelement und verfahren zum herstellen eines induktiven bauelements

Publications (2)

Publication Number Publication Date
EP2018643A1 EP2018643A1 (de) 2009-01-28
EP2018643B1 true EP2018643B1 (de) 2010-11-24

Family

ID=38330479

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07728738A Expired - Fee Related EP2018643B1 (de) 2006-05-16 2007-05-03 Induktives bauelement und verfahren zum herstellen eines induktiven bauelements

Country Status (8)

Country Link
US (1) US7973631B2 (de)
EP (1) EP2018643B1 (de)
JP (1) JP4971432B2 (de)
KR (1) KR101433838B1 (de)
CN (1) CN101443863B (de)
DE (2) DE102006022785A1 (de)
TW (1) TW200802436A (de)
WO (1) WO2007131884A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006025098B4 (de) * 2006-05-19 2008-06-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sensor zur Ermittlung der elektrischen Leitfähigkeit flüssiger Medien und ein Verfahren zu seiner Herstellung
CN101981635B (zh) * 2008-04-08 2013-09-25 株式会社村田制作所 电子元器件
CN102637677A (zh) * 2012-04-24 2012-08-15 上海宏力半导体制造有限公司 电感及其形成方法、射频器件、集成无源器件
JP5970716B2 (ja) * 2012-06-08 2016-08-17 株式会社村田製作所 電子部品及びその製造方法
JP6090902B2 (ja) * 2012-10-17 2017-03-08 Necトーキン株式会社 コイル部品
WO2015069279A1 (en) * 2013-11-08 2015-05-14 Empire Technology Development Llc Apparatus and methods for detecting substrate alignment during a printing process
JP5999119B2 (ja) 2014-02-10 2016-09-28 株式会社村田製作所 インダクタ
KR101762778B1 (ko) 2014-03-04 2017-07-28 엘지이노텍 주식회사 무선 충전 및 통신 기판 그리고 무선 충전 및 통신 장치
DE102014218638A1 (de) * 2014-09-17 2016-03-31 Siemens Aktiengesellschaft Herstellen eines Bauteils mit einem Keramikpulverkörper
KR20160117943A (ko) * 2015-04-01 2016-10-11 삼성전기주식회사 코일 부품
DE102015206697A1 (de) * 2015-04-15 2016-10-20 Schaeffler Technologies AG & Co. KG Primärteil einer elektrischen Maschine, elektrische Maschine und Verfahren zur Herstellung eines Primärteils
DE102018204366A1 (de) * 2018-03-22 2019-09-26 Robert Bosch Gmbh Induktives Bauelement und Hochfrequenz-Filtervorrichtung
KR102019877B1 (ko) 2019-05-08 2019-11-04 국방과학연구소 코일형 전도성 미세 입자를 이용한 유효 투자율을 가지는 입자-매질 복합소재
US11387678B2 (en) 2019-09-27 2022-07-12 Apple Inc. Stacked resonant structures for wireless power systems
US20210098180A1 (en) * 2019-09-30 2021-04-01 Advanced Semiconductor Engineering, Inc. Inductor structure

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890004585B1 (ko) * 1980-09-11 1989-11-16 아사히가세이고교가부시키가이샤 마이크로코일(microcoil)
US5349743A (en) * 1991-05-02 1994-09-27 At&T Bell Laboratories Method of making a multilayer monolithic magnet component
EP0782154A4 (de) * 1995-06-13 1999-08-11 Nihon Shingo Kabushiki Kaisha Flacher transformator
JPH09199331A (ja) * 1996-01-18 1997-07-31 Matsushita Electric Ind Co Ltd コイル部品およびその製造方法
JPH10189342A (ja) * 1996-12-24 1998-07-21 Matsushita Electric Ind Co Ltd コモンモードチョークコイルおよびその製造方法
US6198374B1 (en) 1999-04-01 2001-03-06 Midcom, Inc. Multi-layer transformer apparatus and method
JP2001007468A (ja) * 1999-06-24 2001-01-12 Nec Kansai Ltd 配線基板,多層配線基板およびその製造方法
EP1168386B1 (de) 2000-06-20 2009-02-11 Murata Manufacturing Co., Ltd. Spulenvorrichtung und Verfahren zu ihrer Herstellung
DE10030605A1 (de) 2000-06-21 2002-01-03 Philips Corp Intellectual Pty Elektronisches Bauteil
ITTO20001128A1 (it) * 2000-12-04 2002-06-04 Fiat Ricerche Induttore planare con nucleo ferromagnetico e relativo metodo di fabbricazione.
JP4092914B2 (ja) * 2001-01-26 2008-05-28 セイコーエプソン株式会社 マスクの製造方法、有機エレクトロルミネッセンス装置の製造方法
US6611046B2 (en) * 2001-06-05 2003-08-26 3M Innovative Properties Company Flexible polyimide circuits having predetermined via angles
JP2002373810A (ja) * 2001-06-14 2002-12-26 Tdk Corp チップ型コモンモードチョークコイル
KR100466884B1 (ko) * 2002-10-01 2005-01-24 주식회사 쎄라텍 적층형 코일 부품 및 그 제조방법
US7579629B2 (en) * 2003-04-01 2009-08-25 Sharp Kabushiki Kaisha Light-emitting apparatus package, light-emitting apparatus, backlight apparatus, and display apparatus
CN1860833A (zh) 2003-09-29 2006-11-08 株式会社田村制作所 多层层叠电路基板
JP2005268455A (ja) * 2004-03-17 2005-09-29 Murata Mfg Co Ltd 積層型電子部品
JP2007081613A (ja) * 2005-09-13 2007-03-29 Seiko Epson Corp 弾性表面波デバイス及びその製造方法

Also Published As

Publication number Publication date
JP2009537976A (ja) 2009-10-29
DE502007005763D1 (de) 2011-01-05
DE102006022785A1 (de) 2007-11-22
US7973631B2 (en) 2011-07-05
KR20090015975A (ko) 2009-02-12
KR101433838B1 (ko) 2014-08-27
TW200802436A (en) 2008-01-01
CN101443863A (zh) 2009-05-27
CN101443863B (zh) 2012-05-30
WO2007131884A1 (de) 2007-11-22
EP2018643A1 (de) 2009-01-28
US20090102591A1 (en) 2009-04-23
JP4971432B2 (ja) 2012-07-11

Similar Documents

Publication Publication Date Title
EP2018643B1 (de) Induktives bauelement und verfahren zum herstellen eines induktiven bauelements
DE69519476T2 (de) Herstellungsverfahren für einen Magnetkreis in einem integrierten Kreis
JP3621300B2 (ja) 電源回路用積層インダクタ
KR100552010B1 (ko) 적층전자부품 및 그 제조방법
DE19723068C1 (de) Induktives Bauelement
DE19922122A1 (de) Verfahren zum Herstellen von Induktoren
DE3145585C2 (de)
EP2158597B1 (de) Monolithisches induktives bauelement, verfahren zum herstellen des bauelements und verwendung des bauelements
EP3547338A1 (de) Elektronisches bauelement und verfahren zu dessen herstellung
DE102018113765B4 (de) Transformator mit einer durchkontaktierung für einen magnetkern
DE68908234T2 (de) Integrierter Kondensator und Spulen/Transformatoren mit isoliertem, amorphem Metallband.
DE69007703T2 (de) Induktoren des Typs aus gestapelten Schichten zusammengesetzter Wirkung, einschliesslich Induktoren mit Induktivität und Gegeninduktivität und ihr Herstellungsverfahren.
WO2020025500A1 (de) Verfahren zur herstellung eines induktiven bauelements und induktives bauelement
DE69623867T2 (de) Chip-Antenne
WO2018095757A1 (de) Transformatorvorrichtung, transformator und verfahren zur herstellung einer transformatorvorrichtung
DE102014114205A1 (de) Planarer Miniaturtransformator
WO2015176919A1 (de) Mehrlagiges induktives passives bauelement und folienkörper zu dessen herstellung
DE102008049756A1 (de) Schaltungsträger mit Transformator
DE4312455A1 (de) Nicht-reziprokes Schaltungselement
DE1564910A1 (de) Induktives Bauelement fuer die Nachrichtentechnik mit geschlossenem ferromagnetischem Kern,insbesondere fuer Hochfrequenz
WO2009124783A1 (de) Spulenanordnung
DE112017004276T5 (de) Verfahren zur herstellung einer induktiven komponente und eine induktive komponente
DE102018110458A1 (de) Formungsverfahren für Drahtleiter von elektronischen Geräten
DE102013205655A1 (de) Mehrlagiges induktives passives Bauelement und Folienkörper zu dessen Herstellung
DE10338471A1 (de) Miniaturisierte, magnetische Bauelemente und Verfahren zu ihrer Herstellung mit Hilfe von Wafer-Level-Technologie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080925

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB HU IT

17Q First examination report despatched

Effective date: 20090529

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB HU IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502007005763

Country of ref document: DE

Date of ref document: 20110105

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110825

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007005763

Country of ref document: DE

Effective date: 20110825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101124

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007005763

Country of ref document: DE

Owner name: SIEMENS AKTIENGESELLSCHAFT, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007005763

Country of ref document: DE

Owner name: SIEMENS AKTIENGESELLSCHAFT, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20121126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101124

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150511

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150513

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150720

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007005763

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160503

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160503