EP1968075B1 - Verfahren zur Dekontamination einer eine Oxidschicht aufweisenden Oberfläche einer Komponente oder eines Systems einer kerntechnischen Anlage - Google Patents

Verfahren zur Dekontamination einer eine Oxidschicht aufweisenden Oberfläche einer Komponente oder eines Systems einer kerntechnischen Anlage Download PDF

Info

Publication number
EP1968075B1
EP1968075B1 EP08009058A EP08009058A EP1968075B1 EP 1968075 B1 EP1968075 B1 EP 1968075B1 EP 08009058 A EP08009058 A EP 08009058A EP 08009058 A EP08009058 A EP 08009058A EP 1968075 B1 EP1968075 B1 EP 1968075B1
Authority
EP
European Patent Office
Prior art keywords
oxide layer
steam
oxidation
water
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08009058A
Other languages
English (en)
French (fr)
Other versions
EP1968075A1 (de
Inventor
Horst-Otto Bertholdt
Terezinha Claudete Dr. Maciel
Franz Dr. Strohmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Areva GmbH
Original Assignee
Areva NP GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Areva NP GmbH filed Critical Areva NP GmbH
Priority to SI200631179T priority Critical patent/SI1968075T1/sl
Publication of EP1968075A1 publication Critical patent/EP1968075A1/de
Application granted granted Critical
Publication of EP1968075B1 publication Critical patent/EP1968075B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/001Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof
    • G21F9/002Decontamination of the surface of objects with chemical or electrochemical processes
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/001Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof
    • G21F9/002Decontamination of the surface of objects with chemical or electrochemical processes
    • G21F9/004Decontamination of the surface of objects with chemical or electrochemical processes of metallic surfaces

Definitions

  • the invention relates to a method for decontamination of an oxide layer having surface of a component or a system of a nuclear facility.
  • an oxidation layer forms on system and component surfaces which must be removed in order, for example, to minimize the radiation exposure of the personnel in the case of revision work.
  • Austenitic chromium-nickel steel for example, with 72% iron, 18% chromium and 10% nickel comes into consideration as material for a system or a component.
  • Oxidation on the surfaces forms oxide layers with spinel-like structures of the general formula AB 2 O 4 .
  • the chromium is always present in trivalent, nickel always in divalent and iron in both the two- and trivalent form in the oxide structure. Such oxide layers are chemically almost insoluble.
  • the mentioned pre-oxidation of the oxide layer is conventionally in acidic solution with potassium permanganate and nitric acid or in alkaline solution with potassium permanganate and sodium hydroxide.
  • EP 0 160 831 B1 known process is carried out in the acidic range and used instead of potassium permanganate permanganic acid.
  • the said processes have the disadvantage that during the oxidation treatment manganese dioxide (MnO 2 ) is formed, which deposits on the oxide layer to be treated and inhibits the passage of the oxidant (permanganate ion) into the oxide layer.
  • MnO 2 manganese dioxide
  • the oxide layer can not be completely oxidized in one step. Rather, acting as a diffusion barrier manganese dioxide layers must be removed by intermediate reduction treatments. Normally, three to five such reduction treatments are required, which is associated with a correspondingly high expenditure of time.
  • Another disadvantage of the known methods is the large amount of secondary waste, which is mainly due to the removal of manganese by means of ion exchanger
  • a method for cleaning radioactively contaminated plastic material in which the contaminated plastic with a decontamination solution which consists of an aqueous nitric acid solution containing a No x - generating reagent.
  • This object is achieved in a method according to claim 1, characterized in that the oxidation of the oxide layer with gaseous nitrogen oxide (NO x ) is performed.
  • NO x gaseous nitrogen oxide
  • Such a procedure initially achieves the advantage that the oxidizing agent can be applied to the oxide layer at a considerably higher concentration than is the case with an aqueous solution with its limited solubility for the oxidizing agent.
  • nitric oxide is less stable in aqueous solution than in the gas phase.
  • an oxidant in aqueous solution such as the primary coolant of a light water reactor, usually finds a variety of reactants, so that a portion of the oxidizing agent is consumed on its way from the feed point to the oxide layer.
  • the required oxidation reactions in particular the conversion of chromium-III to chromium-VI, would take place slowly. Therefore, it is advantageous if a water film is maintained on the oxide layer during the treatment.
  • the nitrogen oxide (NO x ) finds in the oxide film covering the water film or in water-filled pores of the oxide layer, the aqueous conditions required for the course of the oxidative reactions.
  • the oxide layer is still moistened or moistened with water, so a water film already exists, so this may need to be maintained only during the gas phase oxidation.
  • a water film is preferably generated or maintained by means of water vapor.
  • an elevated temperature can be achieved to be required.
  • heat is supplied to the surface of a system or a component or the oxide layer present on it, which takes place for example with the aid of an external heating device or preferably with the aid of superheated steam or hot air.
  • the desired water film is also formed on the oxide layer at the same time.
  • ozone is used as the oxidizing agent.
  • ozone is converted to oxygen, which can be supplied to the exhaust air system of a nuclear installation without further aftertreatment.
  • Ozone is also much more stable in the gas phase than in the aqueous phase. Solubility problems as in the aqueous phase, especially at higher temperatures, do not occur.
  • the ozone gas can thus be brought in high doses to a water-wetted oxide layer, so that the oxidation of the oxide layer, in particular the oxidation of chromium-III to chromium-VI proceeds faster, especially when working at higher temperatures.
  • Ozone has an oxidation potential of 2.08 V in an acid solution, but only 1.25 V in a basic solution.
  • acidic conditions are created in the water film wetting the oxide layer, which occurs in particular due to the metered addition of nitrogen oxides can.
  • ozone as an oxidizing agent, a pH of 1 to 2 is maintained.
  • the acidification of the water film is preferably carried out with the aid of gaseous acid anhydrides. These form acids under water accumulation in the water film.
  • the acid anhydrides have an oxidizing effect, they can simultaneously be used as the oxidizing agent, as is the case in a preferred process variant described below.
  • the running oxidation reactions can be accelerated by using elevated temperatures.
  • a temperature range of 40-70 ° C has been found to be particularly advantageous. From 40 ° C, the oxidation reactions take place in the oxide layer at an acceptable rate. However, a temperature increase is only useful up to about 70 ° C, since at higher temperatures, the decomposition of ozone in the gas phase increases significantly.
  • the duration for the oxidation treatment of the oxide layer can be influenced not only by the temperature but also by the concentration of the oxidizing agent. In the case of ozone, acceptable conversion rates, optimum ratios at concentrations of 100 to 120 g / Nm 3 , are achieved within the abovementioned temperature range only from about 5 g / Nm 3 .
  • mixtures of various nitrogen oxides such as NO, NO 2 , N 2 O and N 2 O 4 are used for the oxidation.
  • the oxidation effect can be increased by using elevated temperatures, with such an increase from about 80 ° C is noticeable.
  • the best effectiveness is achieved when working in a temperature range of about 110 ° C to about 180 ° C.
  • the oxidation effect can also, as in the case of ozone, be influenced by the concentration of nitrogen oxides.
  • An NO x concentration of less than 0.5 g / Nm 3 is hardly effective.
  • work is carried out at NO x concentrations of 10 to 50 g / Nm 3 .
  • a rinse is that of the above-described Way treated oxide layer, for example, with deionized appropriate.
  • an oxide layer is subjected to steam after the oxidation treatment, wherein a condensation of the water vapor takes place at the oxide layer.
  • this treatment in or adheres to the oxide layers or component surfaces adhering activity, such as in particulate form or in dissolved or colloidal form in the condensate and is removed with this from the surfaces. This effect is clearly noticeable at water vapor temperatures above 100 ° C.
  • Another advantage of this approach is the comparatively small amount of accumulating condensate.
  • Excess water vapor that is, which has not been condensed on the treated surfaces, is removed from the system to be cleaned or a container in which an oxidative treatment has been carried out and condensed. Together with the condensate draining from a component surface, it is passed over a cation exchanger. In this way, the condensate is released from the activity and can be disposed of easily.
  • a further treatment may be expedient in advance, especially if nitrate ions are contained which originate from the oxidative treatment of an oxide layer or an acidification of a water film with nitrogen oxides.
  • the nitrates are preferably removed from the condensate by reacting with a reducing agent, in particular with hydrazine, to form gaseous nitrogen. It is expedient to set a molar ratio of nitrate to hydrazine of 1: 0.5 to 2: 5.
  • the attached figure shows a flow chart for a decontamination process.
  • the system 1 to be decontaminated for example the primary circuit of a pressurized water system, is first emptied. In the decontamination of a component, such as a primary system pipeline, this is arranged in a container. Such a container would correspond in the flow chart to the system 1.
  • a decontamination circuit 2 is connected to the system 1 and the container. This is gas-tight. Before commissioning, the decontamination circuit 2 and the system are checked for leaks, for example by evacuation.
  • the entire system, ie system 1 and decontamination circuit 2 is heated up.
  • a feed station 3 for hot air and / or superheated steam is arranged in the decontamination circuit 2.
  • a pump 5 is further provided to fill the system 1 with the appropriate gaseous medium and this, as long as necessary, to circulate in the entire system.
  • the system With the help of hot air or superheated steam, the system is brought to the intended process temperature, in the case of ozone to 50-70 ° C.
  • steam is added via the feed station 3. Separating or condensing water is separated at the system outlet 6 by means of a liquid separator 7 and removed from the decontamination circuit 2 with the aid of a condensate line 8.
  • the water film wetting the oxide layer to be oxidized is acidified.
  • 2 gaseous nitrogen oxides or finely atomized nitric acid are added at a feed station 9 of the decontamination cycle.
  • the nitrogen oxides dissolve in the water to form the corresponding acids, such as to form nitric or nitrous acid.
  • the metered amounts of NO x or nitric acid / nitrous acid are chosen so that in the water film a pH of about 1 to 2 sets.
  • the system 1 is supplied with ozone at a concentration of preferably 100 to 120 g via a feed stadium 10 / Nm 3 continuously supplied with in-service pump 5. If necessary, there is a continuous feed of NO x (or HNO 3 ) to maintain the acidic conditions in the water film and hot air or superheated steam to maintain the set temperature parallel to the ozone feed.
  • NO x or HNO 3
  • part of the gas / vapor mixture present in the decontamination cycle 2 is discharged, so that fresh ozone gas and possibly other auxiliary substances such as NOx can be metered in, the discharged quantity corresponding to the metered amount of gas.
  • the discharge takes place via a scrubber for the separation of NO x / HNO 3 / HNO 2 and then via a catalyst 12, in which a conversion of ozone to oxygen takes place.
  • the ozone-free, optionally still containing water vapor oxygen-air mixture is fed to the exhaust system of the power plant.
  • the ozone concentration is measured at the system return 13 by means of measuring probes (not shown).
  • a temperature monitoring is carried out with appropriate, arranged in the area of the system 1 sensors.
  • the amount of metered NO x is a function of the amount of water vapor supplied. Per Nm 3 of water vapor is supplied at least 0.1 g of NO x, thereby ensuring a pH of the water film of ⁇ 2.
  • the oxide layer is acted upon by steam and ensured that the component surfaces or an oxide layer located thereon a Temperature of below 100 ° C, so that the water vapor can condense it.
  • activity present in or on the oxide layer is removed by this treatment.
  • the respective surfaces of acid residues mainly so rinsed by nitrates.
  • aqueous solution containing nitrate and radioactive cations there is thus an aqueous solution containing nitrate and radioactive cations.
  • the nitrate is converted to gaseous nitrogen with the aid of a reducing agent, the best results of which were achieved with hydrazine, and thus removed from the condensate solution.
  • a stoichiometric amount of hydrazine is preferably used, ie a molar ratio of nitrate to hydrazine of 2: 5 is set.
  • the active cations are removed by passing the solution through a cation exchanger.
  • the rinsing of an oxidatively treated oxide layer can also be done by filling the system 1 with deionized water.
  • the displaced gas is passed over the catalyst 12 while the residual ozone therein is reduced to O 2 and, as already mentioned above, fed to the exhaust system of the nuclear power plant.
  • the nitrate ions present on the surface of the components to be decontaminated or of the oxide layer still present there, which have been formed by metering in nitric acid or by oxidation of NO x are taken up by the deionate and remain during the subsequent treatment to dissolve the oxide coating the decontamination solution.
  • an organic complexing acid preferably oxalic acid, approximately corresponding to one in EP 0 160 831 B1 described method at a temperature of for example 95 ° C added. It will circulated the decontamination solution by means of the pump 5 in the decontamination circuit 2, wherein via a shunt (not shown), a part of the solution passed through ion exchange resins and cations dissolved out of the oxide layer are bound to the exchange resins. Finally, at the end of decontamination, an oxidative decomposition of the organic acid by means of UV irradiation to carbon dioxide and water, approximately corresponding to that in the EP patent 0 753 196 B1 described method.
  • a gas phase oxidation was carried out on a pipe section of a primary system pipeline.
  • the pipeline originated from a pressurized water system with more than 25 years of service operation and was provided with an inner cladding made of austenitic Fe-Cr-Ni steel (DIN 1.4551). Accordingly, dense and difficult to dissolve was the oxide formation present on the pipe inner surface.
  • the oxide layer of Inconel 600 steam generator pipes which had been in power operation for 22 years, was preoxidized with ozone in the gas phase. Comparative tests with permanganate as the oxidizing agent were carried out in each case for the first and second laboratory tests.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treating Waste Gases (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Dekontamination einer eine Oxidschicht aufweisenden Oberfläche einer Komponente oder eines Systems einer kerntechnischen Anlage. Während des Betriebs eines Leichtwasserreaktors bildet sich auf System- und Komponentenoberflächen eine Oxidationsschicht, die entfernt werden muss, um beispielsweise im Falle von Revisionsarbeiten die Strahlenbelastung des Personals möglichst gering zu halten. Als Material für ein System bzw. eine Komponente kommt vor allen Dingen austenitischer Chrom-Nickel-Stahl beispielsweise mit 72% Eisen, 18% Chrom und 10% Nickel in Frage. Durch Oxidation bilden sich auf den Oberflächen Oxidschichten mit spinellartigen Strukturen der allgemeinen Formel AB2O4. Das Chrom kommt dabei immer in dreiwertiger, Nickel immer in zweiwertiger und Eisen sowohl in zwei- als auch in dreiwertiger Form in der Oxidstruktur vor. Derartige Oxidschichten sind chemisch nahezu unlöslich. Der Entfernung bzw. Auflösung einer Oxidschicht im Rahmen eines Dekontaminationsverfahrens geht somit stets ein Oxidationsschritt voraus, bei dem das dreiwertig gebundenen Chrom in sechswertiges Chrom überführt wird. Dabei wird die kompakte Spinellstruktur zerstört und es bilden sich Eisen-,Chrom- und Nickeloxide, die in organischen und mineralischen Säuren leicht löslich sind. Herkömmlicherweise schließt sich daher an einen Oxidationsschritt eine Behandlung mit einer Säure, insbesondere mit einer komplexierenden Säure, etwa Oxalsäure an.
  • Die erwähnte Voroxidation der Oxidschicht wird herkömmlicherweise in saurer Lösung mit Kaliumpermanganat und Salpetersäure oder in alkalischer Lösung mit Kaliumpermanganat und Natriumhydroxid durchgeführt. Bei einem aus EP 0 160 831 B1 bekannten Verfahren wird im sauren Bereich gearbeitet und anstelle von Kaliumpermanganat Permangansäure eingesetzt. Die genannten Verfahren haben den Nachteil, dass sich während der Oxidationsbehandlung Braunstein (MnO2) bildet, der sich auf der zu behandelnden Oxidschicht absetzt und den Übertritt des Oxidationsmittels (Permanganat-Ion) in die Oxidschicht hemmt. Bei herkömmlichen Verfahren kann daher die Oxidschicht nicht in einem Schritt vollstäzldig aufoxidiert werden. Vielmehr müssen als Diffusionssperre wirkende Braunsteinschichten durch zwischengeschaltete Reduktionsbehandlungen entfernt werden. Normalerweise sind drei bis fünf solcher Reduktionsbehandlungen erforderlich, was mit entsprechend hohem Zeitaufwand verbunden ist. Ein weiterer Nachteil der bekannten Verfahren ist die große Menge an Sekundärabfall, die sich vor allem durch die Entfernung des Mangans mittels Ionentauscher ergibt.
  • Neben der Permanganatoxidation wird in der Literatur die Oxidation mittels Ozon in wässriger saurer Lösung unter Zusatz von Chromaten, Nitraten oder Cer-IV-Salzen beschrieben. Die Oxidation mit Ozon unter den genannten Bedingungen erfordert Prozesstemperaturen im Bereich von 40-60°. Unter diesen Bedingungen ist jedoch die Löslichkeit und die thermische Beständigkeit des Ozons relativ gering, so dass es nahezu unmöglich ist, an einer Oxidschicht Ozonkonzentrationen zu erzeugen, die ausreichend hoch sind, um die Spinellstruktur der Oxidschicht in akzeptabler Zeit aufzubrechen. Außerdem ist die Einbringung von Ozon in große Wasservolumina technisch aufwendig. Daher hat sich, trotz ihrer Nachteile, die Oxidation mit Permanganat bzw. Permangansäure weltweit durchgesetzt.
  • Des weiteren ist aus der WO 98/53462 ein Verfahren zur Reinigung von radioaktiv kontaminiertem Plastikmaterial bekannt, bei dem das kontaminierte Plastik mit einer Dekontaminationslösung behandelt wird, welche aus einer wässrigen Salpetersäurelösung besteht, die ein Nox - erzeugendes Reagens enthält.
  • Davon ausgehend ist es die Aufgabe der Erfindung, ein Verfahren zur Dekontamination einer eine Oxidschicht aufweisenden Oberfläche einer Komponente oder eines Systems einer kerntechmischen Anlage vorzuschlagen, welches wirksam arbeitet und insbesondere einstufig durchführbar ist.
  • Diese Aufgabe wird bei einem Verfahren nach Anspruch 1 dadurch gelöst, dass die Oxidation der Oxidschicht mit gasförmigen Stickoxid (NOx) durchgeführt wird. Durch eine derartige Verfahrensweise wird zunächst der Vorteil erzielt, dass das Oxidationsmittel mit einer erheblich höheren Konzentration auf die Oxidschicht appliziert werden kann, als dies bei einer wässrigen Lösung mit ihrer begrenzten Lösefähigkeit für das Oxidationsmittel der Fall ist. Außerdem ist Stickoxid in wässriger Lösung weniger beständig als in der Gasphase. Hinzu kommt noch, dass ein Oxidationsmittel in wässriger Lösung, etwa dem Primärkühlmittel eines Leichtwasserreaktors, in der Regel eine Vielzahl von Reaktionspartnern findet, so dass ein Teil des Oxidationsmittels auf seinem Weg von der Einspeisestelle zur Oxidschicht verbraucht wird.
  • Bei völlig trockener Oxidschicht würden die erforderlichen Oxidationsreaktionen, insbesondere die Umwandlung von Chrom-III zu Chrom-VI, langsam ablaufen. Daher ist es vorteilhaft, wenn während der Behandlung auf der Oxidschicht ein Wasserfilm aufrechterhalten wird. Das Stickoxid (NOx) findet dann in dem die Oxidschicht bedeckenden Wasserfilm bzw. in mit Wasser gefüllten Poren der Oxidschicht die zum Ablaufen der oxidativen Umsetzungen erforderlichen wässrigen Bedingungen vor. Für den Fall, dass ein vorher mit Wasser gefülltes System entleert und anschließend die Gasphasenoxidation durchgeführt wird, ist die Oxidschicht noch mit Wasser benetzt bzw. durchfeuchtet, ein Wasserfilm also schon vorhanden, so dass dieser gegebenenfalls während der Gasphasenoxidation nur noch aufrechterhalten werden muss. Ein Wasserfilm wird vorzugsweise mit Hilfe von Wasserdampf erzeugt bzw. aufrechterhalten.
  • Damit die gewünschten Oxidationsreaktionen in ökonomisch vertretbaren Zeiträumen ablaufen, kann eine erhöhte Temperatur erforderlich sein. Bei einer weiteren bevorzugten Verfahrensvariante ist daher vorgesehen, dass der Oberfläche eines Systems oder einer Komponente bzw. der auf ihr vorhandenen Oxidschicht Wärme zugeführt wird, was etwa mit Hilfe einer externen Heizeinrichtung oder vorzugsweise mit Hilfe von Heißdampf oder Heißluft erfolgt. Im erstgenannten Fall entsteht gleichzeitig auch der gewünschte Wasserfilm auf der Oxidschicht.
  • Bei einer weiteren besonders bevorzugten Verfahrensvariante wird als Oxidationsmittel Ozon verwendet. Bei den in oder an der Oxidschicht ablaufenden Redox-Reaktionen wird Ozon zu Sauerstoff umgesetzt, der ohne weitere Nachbehandlung dem Abluftsystem einer kerntechnisches Anlage zugeführt werden kann. Ozon ist außerdem in der Gasphase wesentlich beständiger als in der wässrigen Phase. Löslichkeitsprobleme wie in der wässrigen Phase, insbesondere bei höheren Temperaturen, treten nicht auf. Das Ozongas kann somit in hohen Dosen an eine wasserbenetzte Oxidschicht herangeführt werden, so dass die Oxidation der Oxidschicht, insbesondere die Oxidation von Chrom-III zu Chrom-VI schneller vonstatten geht, insbesondere wenn bei höheren Temperaturen gearbeitet wird.
  • Nicht nur Ozon, sondern auch andere Oxidationsmittel haben in saurer Lösung ein höheres Oxidationspotential als in alkalischer Lösung. Ozon beispielsweise hat in saurer Lösung ein Oxidationspotential von 2,08 V, in basischer Lösung dagegen nur von 1,25 V. Bei einer weiteren bevorzugten Verfahrensvariante werden daher in dem die Oxidschicht benetzenden Wasserfilm saure Bedingungen geschaffen, was insbesondere durch die Zudosierung von Stickoxiden geschehen kann. Insbesondere im Falle von Ozon als Oxidationsmittel wird ein pH-Wert von 1 bis 2 eingehalten. Das Ansäuern des Wasserfilms erfolgt vorzugsweise mit Hilfe von gasförmigen Säureanhydriden. Diese bilden unter Wasseranlagerung im Wasserfilm Säuren.
  • Wenn die Säureanhydride oxidierend wirken, können sie gleichzeitig als Oxidationsmittel eingesetzt werden, wie dies bei einer weiter unten beschriebenen bevorzugten Verfahrensvariante der Fall ist.
  • Wie bereits erwähnt wurde, können die ablaufenden Oxidationsreaktionen durch Anwendung erhöhter Temperaturen beschleunigt werden. Im Falle der Oxidation mit Ozon hat sich ein Temperaturbereich von 40-70°C als besonders vorteilhaft herausgestellt. Ab 40 °C laufen die Oxidationsreaktionen in der Oxidschicht mit akzeptabler Geschwindigkeit ab. Eine Temperatursteigerung ist jedoch nur bis etwa 70 °C zweckmäßig, da bei höheren Temperaturen der Zerfall des Ozons in der Gasphase merklich zunimmt. Die Dauer für die Oxidationsbehandlung der Oxidschicht kann außer durch die Temperatur auch durch die Konzentration des Oxidationsmittels beeinflusst werden. Im Fall von Ozon werden innerhalb des o.g. Temperaturbereichs erst ab etwa 5 g/Nm3 akzeptable Umsatzraten, optimale Verhältnisse bei Konzentrationen von 100 bis 120 g/Nm3 erreicht.
  • Bei einer weiteren bevorzugten Verfahrensvariante werden zur Oxidation Gemische verschiedener Stickstoffoxide wie NO, NO2, N2O und N2O4 eingesetzt. Auch bei Verwendung von Stickoxiden kann die Oxidationswirkung durch Anwendung erhöhter Temperaturen gesteigert werden, wobei eine solche Steigerung ab etwa 80 °C spürbar ist. Die beste Effektivität wird erreicht, wenn in einem Temperaturbereich von etwa 110 °C bis etwa 180 °C gearbeitet wird. Die Oxidationswirkung kann außerdem, wie im Falle von Ozon auch, durch die Konzentration der Stickoxide beeinflusst werden. Eine NOx-Konzentration von weniger als 0,5 g/Nm3 ist kaum wirksam. Vorzugsweise wird bei NOx-Konzentrationen von 10 bis 50 g/Nm3 gearbeitet.
  • Bevor nach Abschluss der Oxidationsbehandlung eine Auflösung der auf einer Bauteiloberfläche vorhandenen Oxidschicht eingeleitet wird, ist eine Spülung der auf die oben geschilderte Art und Weise behandelten Oxidschicht, beispielsweise mit Deionat zweckmäßig. Bei einer bevorzugten Verfahrensvariante wird jedoch eine Oxidschicht im Anschluss an die Oxidationsbehandlung mit Wasserdampf beaufschlagt wird, wobei an der Oxidschicht eine Kondensation des Wasserdampfes erfolgt. Damit Wasserdampf kondensieren kann ist gegebenenfalls eine Abkühlung der Bauteiloberflächen bzw. einer auf ihnen vorhandenen Oxidschicht auf eine Temperatur unterhalb 100 °C erforderlich. Es hat sich überraschenderweise gezeigt, dass durch diese Behandlung in oder an den Oxidschichten oder Bauteiloberflächen anhaftende Aktivität, etwa in Partikelform oder in gelöster oder kolloidaler Form in das Kondensat übertritt und mit diesem von den Oberflächen entfernt wird. Dieser Effekt macht sich bei Wasserdampf-Temperaturen oberhalb von 100 °C deutlich bemerkbar. Ein weiterer Vorteil dieser Vorgehensweise ist die vergleichsweise geringe Menge an anfallender Kondensatflüssigkeit.
  • Überschüssiger Wasserdampf, also solcher der nicht an den behandelten Oberflächen kondensiert ist, wird aus dem zu reinigenden System oder einem Behälter, in dem eine oxidative Behandlung durchgeführt wurde, entfernt und kondensiert. Zusammen mit dem von einer Bauteiloberfläche ablaufenden Kondensat wird es über einen Kationentauscher geführt wird. Auf diese Weise wird das Kondensat von der Aktivität befreit und kann problemlos entsorgt werden. Vorher kann allerdings eine weitere Behandlung zweckmäßig sein, insbesondere wenn Nitrationen enthalten sind, die aus der oxidativen Behandlung einer Oxidschicht oder einer Ansäuerung eines Wasserfilms mit Stickoxiden stammen. Die Nitrate werden vorzugsweise dadurch aus dem Kondensat entfernt, dass sie mit einem Reduktionsmittel, insbesondere mit Hydrazin zu gasförmigen Stickstoff umgesetzt werden. Dabei wird zweckmäßigerweise ein Molverhältnis von Nitrat zu Hydrazin von 1:0,5 bis 2:5 eingestellt.
  • Die beigefügte Abbildung zeigt ein Flussdiagramm für ein Dekontaminationsverfahren. Das zu dekontaminierende System 1, beispielsweise der Primärkreis einer Druckwasseranlage wird zunächst entleert. Bei der Dekontamination eines Bauteils, beispielsweise einer Primärsystem-Rohrleitung, wird dieses in einem Behälter angeordnet. Ein solcher Behälter würde im Flussdiagramm dem System 1 entsprechen. An das System 1 bzw. den Behälter ist ein Dekontaminationskreislauf 2 angeschlossen. Dieser ist gasdicht ausgeführt. Vor der Inbetriebnahme erfolgt eine Prüfung des Dekontaminationskreislaufs 2 und des Systems auf Dichtigkeit beispielsweise durch Evakuieren. Als nächster Schritt wird die gesamte Anlage also System 1 und Dekontaminationskreislauf 2 aufgeheizt. Zu diesem Zweck ist in den Dekontaminationskreislauf 2 eine Einspeisestadion 3 für Heißluft und/oder Heißdampf angeordnet. Die Zuführung von Luft bzw. Dampf erfolgt über eine Zuleitung 4. Im Dekontaminationskreislauf 2 ist weiterhin eine Pumpe 5 vorhanden, um das System 1 mit dem entsprechenden gasförmigen Medium zu füllen und dieses, solange erforderlich, in der gesamten Anlage umzuwälzen. Mit Hilfe heißer Luft oder Heißdampf wird das System auf die vorgesehene Prozesstemperatur, im Falle von Ozon auf 50-70°C gebracht. Zur Erzeugung eines Wasserfilms auf der Oxidschicht des Systems 1 bzw. einer in einem Behälter vorhandenen Systemkomponente wird über die Einspeisestadion 3 Wasserdampf zudosiert. Sich abscheidendes oder kondensierendes Wasser wird am Systemausgang 6 mit Hilfe eines Flüssigkeitsabscheiders 7 abgetrennt und mit Hilfe einer Kondensatleitung 8 aus dem Dekontaminationskreislauf 2 entfernt. Zur Beschleunigung der CrIII/CrVI-Oxidation wird der die zu oxidierende Oxidschicht benetzende Wasserfilm angesäuert. Dazu werden an einer Einspeisestadion 9 des Dekontaminationskreislaufes 2 gasförmige Stickoxide oder fein vernebelte Salpetersäure zudosiert. Die Stickoxide lösen sich im Wasser unter Bildung der entsprechenden Säuren, etwa unter Bildung von Salpeter- oder salpetriger Säure. Die zudosierten Mengen an NOx bzw. Salpetersäure/salpetriger Säure werden so gewählt, dass sich im Wasserfilm ein pH-Wert von etwa 1 bis 2 einstellt. Sobald die erforderlichen Prozessparameter, also gewünschte Temperatur des Systems bzw. eines auf einer Oberfläche vorhandenen Oxidfilms, Vorhandensein eines Wasserfilms und Säuregrad des Wasserfilms, erreicht sind, wird dem System 1 über eine Einspeisestadion 10 Ozon mit einer Konzentration im Bereich von vorzugsweise 100 bis 120 g/Nm3 bei in Betrieb befindlicher Pumpe 5 kontinuierlich zugeführt. Soweit erforderlich, erfolgt parallel zur Ozoneinspeisung eine kontinuierliche Einspeisung von NOx (oder auch HNO3) zur Aufrechterhaltung der sauren Bedingungen im Wasserfilm und Heißluft oder Heißdampf zur Aufrechterhaltung der Solltemperatur. Am Systemaustritt 6 wird ein Teil des sich im Dekontaminationskreislauf 2 befindlichen Gas/Dampfgemisches ausgeleitet, damit frisches Ozongas und gegebenenfalls sonstige Hilfsstoffe wie NOx zudosiert werden können, wobei die ausgeleitete Menge der zudosierten Gasmenge entspricht. Die Ausleitung erfolgt über einen Gaswäscher zur Abscheidung von NOx/HNO3/HNO2 und anschließend über einen Katalysator 12, in welchem eine Umwandlung von Ozon zu Sauerstoff erfolgt. Die ozonfreie, gegebenenfalls noch Wasserdampf enthaltende Sauerstoff-Luftmischung wird dem Abluftsystem des Kraftwerkes zugeführt. Während der Oxidationsbehandlung wird am Systemrücklauf 13 mit Hilfe von Messsonden (nicht dargestellt) die Ozonkonzentration gemessen. Eine Temperaturüberwachung erfolgt mit entsprechenden, im Bereich des Systems 1 angeordneten Messfühlern. Die Menge des zudosierten NOx erfolgt in Abhängigkeit von der zugeführten Wasserdampfmenge. Pro Nm3 Wasserdampf wird mindestens 0,1g NOx zugeführt und dadurch ein pH des Wasserfilms von <2 gewährleistet.
  • Wenn das in einer Oxidschicht vorhandene Cr-III in Cr-VI zumindest in einem wesentlichen Umfang umgewandelt ist, werden Ozon-, NOx-, Heißlufteinspeisung abgestellt und ein Spülschritt eingeleitet. Vorzugsweise wird dazu die Oxidschicht mit Wasserdampf beaufschlagt und dafür Sorge getragen, dass die Bauteilflächen bzw. eine sich darauf befindliche Oxidschicht eine Temperatur von unter 100 °C aufweisen, damit der Wasserdampf daran kondensieren kann. Wie bereits weiter oben erwähnt, wird durch diese Behandlung in oder an der Oxidschicht vorhandene Aktivität entfernt. Außerdem werden die jeweiligen Oberflächen von Säureresten, hauptsächlich also von Nitraten freigespült. Diese sind bei der oxidativen Behandlung eines Oxidfilms oder bei der Ansäuerung eines auf einer Oxidschicht vorhandenen Oxidfilms aus den dazu verwendeten Stickoxiden durch Reaktion mit Wasser entstanden. Nach dem mit Wasserdampf durchgeführten Spülschritt liegt somit eine wässrige Nitrat und radioaktive Kationen enthaltende Lösung vor. Zunächst wird das Nitrat mit Hilfe eines Reduktionsmittels, die besten Ergebnisse wurden mit Hydrazin erzielt, zu gasförmigen Stickstoff umgewandelt, und damit aus der Kondensatlösung entfernt. Um das Nitrat vollständig zu entfernen wird vorzugsweise eine stöchimetrische Menge an Hydrazin eingesetzt, d.h. es wird ein Molverhältnis von Nitrat zu Hydrazin von 2:5 eingestellt. Als nächstes werden die aktiven Kationen entfernt, indem die Lösung über einen Kationenaustauscher geführt wird.
  • Natürlich kann die Spülung einer oxidativ behandelten Oxidschicht auch erfolgen, indem das System 1 mit Deionat aufgefüllt wird. Beim Auffüllen wird das verdrängte Gas über den Katalysator 12 geführt und dabei das sich darin befindliche Rest-Ozon zu O2 reduziert und, wie weiter oben schon erwähnt dem Abluftsystem des Kernkraftwerkes zugeführt. Die auf der Oberfläche der zu dekontaminierenden Bauteile bzw. der dort noch vorhandenen Oxidschicht vorliegenden Nitrationen, die durch Zudosierung von Salpetersäure oder durch Oxidation von NOx entstanden sind, werden vom Deionat aufgenommen und verbleiben während der sich nun anschließenden zum Auflösen der Oxidschicht dienenden Behandlung in der Dekontaminationslösung. Dieser wird zu dem genannten Zwecke eine organische komplexierende Säure, vorzugsweise Oxalsäure, etwa entsprechend einem in EP 0 160 831 B1 beschriebenen Verfahren bei einer Temperatur von beispielsweise 95°C zugesetzt. Dabei wird die Dekontaminationslösung mit Hilfe der Pumpe 5 im Dekontaminationskreislauf 2 umgewälzt, wobei über einen Nebenschluss (nicht dargestellt) ein Teil der Lösung über Ionentauscherharze geführt und aus der Oxidschicht herausgelöste Kationen an den Austauscherharzen gebunden werden. Am Ende der Dekontamination erfolgt schließlich noch eine oxidative Zersetzung der organischen Säure mittels einer UV-Bestrahlung zu Kohlendioxid und Wasser, etwa entsprechend dem in dem EP-Patent 0 753 196 B1 beschriebenen Verfahren.
  • In einem Laborversuch wurde eine Gasphasenoxidation an einem Rohrstück einer Primärsystemrohrleitung durchgeführt. Dazu wurde ein dem beigefügten Flussdiagramm entsprechender Versuchsaufbau verwendet. Die Rohrleitung stammte aus einer Druckwasseranlage mit mehr als 25 Jahren Leistungsbetrieb und war mit einer Innenplattierung aus austenitischen Fe-Cr-Ni-Stahl (DIN 1.4551) versehen. Dementsprechend dicht und schwer löslich war die auf der Rohrinnenfläche vorhandene Oxidformation In einem zweiten Laborversuch wurde die Oxidschicht von aus Inconel 600 bestehenden Dampferzeugerrohren, die 22 Jahre im Leistungsbetrieb waren, mit Ozon in der Gasphase voroxidiert. Sowohl zum ersten als auch zum zweiten Laborversuch wurden jeweils Vergleichsversuche mit Permanganat als Oxidationsmittel durchgeführt. In weiteren Versuchen wurden Originalproben aus einer Druckwasseranlage, die sich 3 Jahre lang im Leistungsbetrieb befanden, ausschließlich einer NOx-GasphasenOxidation unterzogen. Die Ergebnisse sind in den nachfolgenden Tabellen 1, 2 und 3 zusammengefasst. Unter dem in den Tabellen angegebenen Begriff "Zyklus" ist 1 Voroxidations- und 1 Dekontaminationsschritt zu verstehen. Tabelle 1: Dekontamination einer austenitischen Fe/Cr/Ni-Stahlplattierung (DIN 1.4551) aus einer Primärrohrleitung eines Druckwasserreaktors
    Dekontaminationsverfahren Voroxidations-schritt Summe der Behandlungszeit [h] Dekontaminationsschritt Summe der Behandlungszeit [h] DF
    Dekontverfahren auf Basis Permanganat + Oxalsäure
    3 Zyklen, Temp. 90-95°C
    40-60 20 10-17
    Dekontverfahren auf Basis Ozon/NOx-Gasphase
    1 Zyklus, Temp. 50-55°C
    12 6 300-400
    Tabelle 2: Dekontamination von DWR/Dampferzeugerrohren aus Inconel 600
    Dekontaminationsverfahren Voroxidations-schritt Summe der Behandlungszeit [h] Dekontaminationsschritt Summe der Behandlungszeit [h] DF
    Dekontverfahren auf Basis Permanganat + Oxalsäure
    3 Zyklen, Temp. 90-95°C
    40-60 20 3-8
    Dekontverfahren auf Basis Ozon/NOx-Gasphase
    1 Zyklus, Temp. 50-55°C
    6 6 30-60
    Tabelle 3 Original Probe aus einer DWR Anlage (Werkstoff Nr. 1.4550, 3 Jahre Leistungsbetrieb
    Dekontaminationsverfahren Behandlungsdauer gesamt DF
    Dekontverfahren auf Basis Permanganat + Oxalsäure
    3 Zyklen, Temp. 90-95°C
    36 Stunden 20-35
    NOxBehandlung
    1 Zyklus, Temp. 150-160°C
    12 Stunden 100-280
  • Es ist erkennbar, dass für die Gasphasenoxidation mit Ozon eine wesentlich geringere Behandlungszeit bei niedrigerer Temperatur erforderlich war als bei einer Voroxidation mit Permanganat. Überraschenderweise hat sich auch gezeigt, dass die sich der Voroxidation anschließende Dekontaminationsphase, bei der also die vorbehandelte Oxidschicht mit Hilfe von Oxalsäure abgelöst wurde, ebenfalls in wesentlich kürzerer Zeit durchgeführt werden konnte. Als weiteres überraschendes Ergebnis wurde festgestellt, dass bei einer erfindungsgemäßen Vorgehensweise wesentlich höhere Dekontaminationsfaktoren (DF) erreicht werden können. Da die Nachbehandlung bei den Versuchen und ihren entsprechenden Vergleichsversuchen jeweils gleich war, kann dieses Ergebnis nur als Auswirkung der Voroxidation in der Gasphase interpretiert werden. Diese schließt einen Oxidfilm offenbar in einer Weise auf, die das nachfolgende Auflösen der Oxidschicht mit Oxal- oder auch einer anderen komplexierenden organischen Säure erheblich begünstigt.
  • Vergleichbare Ergebnisse (siehe Tabelle 3) wurden bei einer ausschließlich mit NOx als Oxidationsmittel arbeitenden Voroxidation erreicht.

Claims (20)

  1. Verfahren zur Dekontamination einer eine Oxidschicht aufweisenden Oberfläche einer Komponente oder eines Systems einer kerntechnischen Anlage, bei dem die Oxidschicht mit gasförmigem Stickoxid (NOx) als Oxidationsmittel behandelt wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass während der Behandlung auf der Oxidschicht ein Wasserfilm aufrechterhalten und ein wasserlösliches Oxidationsmittel verwendet wird.
  3. Verfahren nach Anspruch 2,
    dadurch gekennzeichnet,
    dass der Wasserfilm mit Hilfe von Wasserdampf erzeugt wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Oberfläche bzw. der auf ihr vorhandenen Oxidschicht Wärme zugeführt wird.
  5. Verfahren nach Anspruch 4,
    dadurch gekennzeichnet,
    dass die Wärmezufuhr mit Hilfe von Heißdampf oder Heißluft erfolgt.
  6. Verfahren nach Anspruch 4,
    dadurch gekennzeichnet,
    dass die Wärmezufuhr mit Hilfe einer externen Heizeinrichtung erfolgt.
  7. Verfahren nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die zu behandelnde Oberfläche auf eine Temperatur von mindestens 80 °C, aufgeheizt wird.
  8. Verfahren nach Anspruch 7,
    gekennzeichnet durch
    eine Temperatur von 110°C bis 180°C.
  9. Verfahren nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet,
    dass während der Behandlung eine NOx-Konzentration von mindestens 1 g/Nm3 eingehalten wird.
  10. Verfahren nach Anspruch 9,
    gekennzeichnet durch
    eine NOx-Konzentration von 10 bis 50 g/Nm3.
  11. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass im Anschluss an die Oxidationsbehandlung die behandelten Oberflächen mit Wasserdampf behandelt werden, wobei an den Oberflächen eine Kondensation des Wasserdampfes erfolgt.
  12. Verfahren nach Anspruch 11,
    gekennzeichnet durch
    eine Temperatur des Wasserdampfes von größer 100 °C
  13. Verfahren nach Anspruch 12,
    dadurch gekennzeichnet,
    dass überschüssiger Wasserdampf kondensiert wird.
  14. Verfahren nach Anspruch 12 oder 13,
    dadurch gekennzeichnet,
    dass das Kondensat über einen Kationentauscher geführt wird.
  15. Verfahren nach Anspruch 12, 13 oder 14,
    dadurch gekennzeichnet,
    dass das Kondensat zur Entfernung von darin enthaltenem Nitrat mit einem Reduktionsmittel behandelt wird.
  16. Verfahren nach Anspruch 15,
    dadurch gekennzeichnet,
    dass als Reduktionsmittel Hydrazin eingesetzt wird.
  17. Verfahren nach Anspruch 16,
    gekennzeichnet durch
    ein Molverhältnis von Nitrat zu Hydrazin von mindestens 1 zu 0,5.
  18. Verfahren nach Anspruch 17,
    gekennzeichnet durch
    ein Molverhältnis von Nitrat zu Hydrazin von 1:0,5 bis 2:5.
  19. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass im Anschluss an die Oxidationsbehandlung die Oxidschicht mit einer wässrigen Lösung einer organischen Säure behandelt wird.
  20. Verfahren nach Anspruch 19,
    gekennzeichnet durch
    die Verwendung von Oxalsäure.
EP08009058A 2005-11-29 2006-11-15 Verfahren zur Dekontamination einer eine Oxidschicht aufweisenden Oberfläche einer Komponente oder eines Systems einer kerntechnischen Anlage Active EP1968075B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200631179T SI1968075T1 (sl) 2005-11-29 2006-11-15 Postopek za dekontaminacijo površine, ki ima oksidno plast, komponente ali sistema jedrske naprave

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005056727 2005-11-29
EP06818538A EP1955335B1 (de) 2005-11-29 2006-11-15 Verfahren zur dekontamination einer eine oxidschicht aufweisenden oberfläche einer komponente oder eines systems einer kerntechnischen anlage

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP06818538A Division EP1955335B1 (de) 2005-11-29 2006-11-15 Verfahren zur dekontamination einer eine oxidschicht aufweisenden oberfläche einer komponente oder eines systems einer kerntechnischen anlage
EP06818538.8 Division 2006-11-15

Publications (2)

Publication Number Publication Date
EP1968075A1 EP1968075A1 (de) 2008-09-10
EP1968075B1 true EP1968075B1 (de) 2011-08-31

Family

ID=38051982

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08009058A Active EP1968075B1 (de) 2005-11-29 2006-11-15 Verfahren zur Dekontamination einer eine Oxidschicht aufweisenden Oberfläche einer Komponente oder eines Systems einer kerntechnischen Anlage
EP06818538A Active EP1955335B1 (de) 2005-11-29 2006-11-15 Verfahren zur dekontamination einer eine oxidschicht aufweisenden oberfläche einer komponente oder eines systems einer kerntechnischen anlage

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP06818538A Active EP1955335B1 (de) 2005-11-29 2006-11-15 Verfahren zur dekontamination einer eine oxidschicht aufweisenden oberfläche einer komponente oder eines systems einer kerntechnischen anlage

Country Status (16)

Country Link
US (2) US8021494B2 (de)
EP (2) EP1968075B1 (de)
JP (3) JP4881389B2 (de)
KR (2) KR100960783B1 (de)
CN (2) CN101199026B (de)
AR (2) AR058844A1 (de)
AT (2) ATE507566T1 (de)
BR (2) BRPI0621970A2 (de)
CA (2) CA2633626C (de)
DE (1) DE502006009409D1 (de)
ES (2) ES2365417T3 (de)
MX (1) MX2008000630A (de)
SI (2) SI1968075T1 (de)
TW (2) TWI406299B (de)
WO (1) WO2007062743A2 (de)
ZA (2) ZA200709783B (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2633626C (en) * 2005-11-29 2010-05-04 Areva Np Gmbh Method for the decontamination of an oxide layer-containing surface of a component or a system of a nuclear facility
JP4901691B2 (ja) * 2007-10-29 2012-03-21 日立Geニュークリア・エナジー株式会社 化学除染方法
KR100889260B1 (ko) 2007-11-20 2009-03-17 조한식 용수배관의 세정 및 살균 장치
DE102009002681A1 (de) * 2009-02-18 2010-09-09 Areva Np Gmbh Verfahren zur Dekontamination radioaktiv kontaminierter Oberflächen
DE102009047524A1 (de) * 2009-12-04 2011-06-09 Areva Np Gmbh Verfahren zur Oberflächen-Dekontamination
DE102010028457A1 (de) * 2010-04-30 2011-11-03 Areva Np Gmbh Verfahren zur Oberflächen-Dekontamination
WO2013041595A1 (de) 2011-09-20 2013-03-28 Nis Ingenieurgesellschaft Mbh Verfahren zum abbau einer oxidschicht
KR20140095266A (ko) 2013-01-24 2014-08-01 한국원자력연구원 금속 표면 고착성 방사능 오염 산화막 제거를 위한 무착화성 화학 제염제 및 이를 이용한 화학 제염방법
DE102013100933B3 (de) * 2013-01-30 2014-03-27 Areva Gmbh Verfahren zur Oberflächen-Dekontamination von Bauteilen des Kühlmittelkreislaufs eines Kernreaktors
DE102013102331B3 (de) 2013-03-08 2014-07-03 Horst-Otto Bertholdt Verfahren zum Abbau einer Oxidschicht
CN105149278B (zh) * 2015-10-14 2017-05-24 广东核电合营有限公司 核电站化学清洗去污设备
JP6615009B2 (ja) * 2016-03-04 2019-12-04 東京エレクトロン株式会社 金属汚染防止方法及び金属汚染防止装置、並びにこれらを用いた基板処理方法及び基板処理装置
KR102378652B1 (ko) 2017-02-14 2022-03-28 짐펠캄프 니스 인제니어게젤샤프트 엠베하 방사성핵종 함유 산화물 층의 분해 방법
CN108630332B (zh) * 2018-03-26 2021-06-18 中国核电工程有限公司 一种草酸盐沉淀过滤母液中草酸根的破坏装置及破坏方法
CN112233827B (zh) * 2020-09-10 2023-06-13 福建福清核电有限公司 一种核电站反应堆冷却剂***氧化停堆前溶解氢含量控制方法
CN114684843B (zh) * 2020-12-25 2023-11-03 中核四0四有限公司 一种快速氧化草酸的方法
KR102631595B1 (ko) * 2021-12-13 2024-02-02 한국원자력연구원 사산화이질소를 이용한 제염 폐액의 처리 방법

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2128426B1 (de) * 1971-03-02 1980-03-07 Cnen
US4287002A (en) * 1979-04-09 1981-09-01 Atomic Energy Of Canada Ltd. Nuclear reactor decontamination
DE3143440A1 (de) * 1981-11-02 1983-05-19 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Verfahren zur dekontamination von radioaktiv kontaminierten oberflaechen metallischer werkstoffe
US4587043A (en) * 1983-06-07 1986-05-06 Westinghouse Electric Corp. Decontamination of metal surfaces in nuclear power reactors
DE3413868A1 (de) 1984-04-12 1985-10-17 Kraftwerk Union AG, 4330 Mülheim Verfahren zur chemischen dekontamination von metallischen bauteilen von kernreaktoranlagen
SU1273404A1 (ru) * 1985-08-13 1986-11-30 Институт ядерной энергетики АН БССР Способ отделени окисной пленки
JPS62269096A (ja) * 1986-05-19 1987-11-21 株式会社日立製作所 除染方法
JPH0753269B2 (ja) * 1992-07-06 1995-06-07 日揮株式会社 管路の洗浄方法
FR2699936B1 (fr) * 1992-12-24 1995-01-27 Electricite De France Procédé de dissolution d'oxydes déposés sur un substrat métallique.
US5958247A (en) * 1994-03-28 1999-09-28 Siemens Aktiengesellschaft Method for disposing of a solution containing an organic acid
DE4410747A1 (de) 1994-03-28 1995-10-05 Siemens Ag Verfahren und Einrichtung zum Entsorgen einer Lösung, die eine organische Säure enthält
FR2730641B1 (fr) * 1995-02-20 1997-03-14 Commissariat Energie Atomique Mousse de decontamination a l'ozone, et procede de decontamination utilisant cette mousse
US5545794A (en) * 1995-06-19 1996-08-13 Battelle Memorial Institute Method for decontamination of radioactive metal surfaces
GB9610647D0 (en) * 1996-05-21 1996-07-31 British Nuclear Fuels Plc Decontamination of metal
GB9709882D0 (en) * 1997-05-16 1997-07-09 British Nuclear Fuels Plc A method for cleaning radioactively contaminated material
US6635232B1 (en) * 1999-05-13 2003-10-21 Kabushiki Kaisha Toshiba Method of chemically decontaminating components of radioactive material handling facility and system for carrying out the same
JP2002066486A (ja) * 2000-09-01 2002-03-05 Kaken Tec Kk 管路内面の洗浄方法
WO2002027775A1 (fr) * 2000-09-28 2002-04-04 Mitsubishi Denki Kabushiki Kaisha Procede et appareil de traitement de plaquettes
JP4481524B2 (ja) * 2001-04-24 2010-06-16 住友金属鉱山エンジニアリング株式会社 硝酸性窒素含有排水の処理方法
CN1678535A (zh) * 2002-08-29 2005-10-05 住友金属矿山株式会社 处理含高浓度硝酸盐氮的排放水的方法
US7485611B2 (en) * 2002-10-31 2009-02-03 Advanced Technology Materials, Inc. Supercritical fluid-based cleaning compositions and methods
CA2633626C (en) * 2005-11-29 2010-05-04 Areva Np Gmbh Method for the decontamination of an oxide layer-containing surface of a component or a system of a nuclear facility

Also Published As

Publication number Publication date
CA2614249A1 (en) 2007-06-07
ZA200800291B (en) 2009-08-26
EP1955335B1 (de) 2011-04-27
CN101199026A (zh) 2008-06-11
JP4876190B2 (ja) 2012-02-15
BRPI0621970A2 (pt) 2011-07-19
BRPI0611248A2 (pt) 2009-07-07
CA2633626A1 (en) 2007-06-07
KR100960783B1 (ko) 2010-06-01
TW200729233A (en) 2007-08-01
US8021494B2 (en) 2011-09-20
WO2007062743A2 (de) 2007-06-07
AR064520A2 (es) 2009-04-08
SI1955335T1 (sl) 2011-09-30
TWI406299B (zh) 2013-08-21
MX2008000630A (es) 2008-03-13
TW200826119A (en) 2008-06-16
JP2009517638A (ja) 2009-04-30
US8608861B2 (en) 2013-12-17
ATE507566T1 (de) 2011-05-15
DE502006009409D1 (de) 2011-06-09
SI1968075T1 (sl) 2011-12-30
KR100879849B1 (ko) 2009-01-22
ES2365417T3 (es) 2011-10-04
CN101286374A (zh) 2008-10-15
WO2007062743A3 (de) 2007-09-27
TWI376698B (de) 2012-11-11
US20080190450A1 (en) 2008-08-14
KR20080009767A (ko) 2008-01-29
JP2011169910A (ja) 2011-09-01
CA2633626C (en) 2010-05-04
JP4881389B2 (ja) 2012-02-22
EP1968075A1 (de) 2008-09-10
CN101286374B (zh) 2012-02-22
CN101199026B (zh) 2012-02-22
KR20080016701A (ko) 2008-02-21
CA2614249C (en) 2010-11-16
AR058844A1 (es) 2008-02-27
EP1955335A2 (de) 2008-08-13
ATE522907T1 (de) 2011-09-15
US20090250083A1 (en) 2009-10-08
JP2010107196A (ja) 2010-05-13
ES2371685T3 (es) 2012-01-09
ZA200709783B (en) 2008-11-26

Similar Documents

Publication Publication Date Title
EP1968075B1 (de) Verfahren zur Dekontamination einer eine Oxidschicht aufweisenden Oberfläche einer Komponente oder eines Systems einer kerntechnischen Anlage
EP2417606B1 (de) Verfahren zur oberflächen-dekontamination
DE102017115122B4 (de) Verfahren zum Dekontaminieren einer Metalloberfläche in einem Kernkraftwerk
DE3122543A1 (de) Dekontaminierungs-verfahren
WO2011134958A1 (de) Verfahren zur oberflächen-dekontamination
CH653466A5 (de) Verfahren zur dekontamination von stahloberflaechen und entsorgung der radioaktiven stoffe.
EP0313843B2 (de) Verfahren zur Dekontamination von Oberflächen
CH626741A5 (en) Process for the chemical decontamination of nuclear reactor components
EP2923360B1 (de) Verfahren zur oberflächen-dekontamination von bauteilen des kühlmittelkreislaufs eines kernreaktors
EP2787509B1 (de) Verfahren zum Abbau einer Oxidschicht
EP2188814B1 (de) Verfahren zur dekontamination von mit alphastrahlern kontaminierten oberflächen von nuklearanlagen
EP2758966B1 (de) Verfahren zum abbau einer oxidschicht
EP3494579A1 (de) Verfahren zum abbau einer radionuklidhaltigen oxidschicht
EP3607562B1 (de) Zinkdosierung zur dekontamination von leichtwasserreaktoren
EP3430628B1 (de) Verfahren zur behandlung von abwasser aus der dekontamination einer metalloberfläche in einem primärkühlmittelkreislauf eines kernreaktors, kernreaktor-abwasserbehandlungsvorrichtung und verwendung der kernreaktor-abwasserbehandlungsvorrichtung
EP2248134B1 (de) Verfahren zur konditionierung radioaktiver ionenaustauscherharze

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1955335

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20090219

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20101109

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BERTHOLDT, HORST-OTTO

Inventor name: STROHMER, FRANZ, DR.

Inventor name: MACIEL, TEREZINHA CLAUDETE, DR.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1955335

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. AG PATENT- UND MARKENANWAELTE VSP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006010092

Country of ref document: DE

Effective date: 20111103

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2371685

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111231

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 10552

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111201

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120601

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006010092

Country of ref document: DE

Effective date: 20120601

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E012912

Country of ref document: HU

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 522907

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006010092

Country of ref document: DE

Representative=s name: MEISSNER BOLTE & PARTNER GBR, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LT

Payment date: 20131107

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006010092

Country of ref document: DE

Owner name: AREVA GMBH, DE

Free format text: FORMER OWNER: AREVA NP GMBH, 91052 ERLANGEN, DE

Effective date: 20131216

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006010092

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

Effective date: 20131216

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006010092

Country of ref document: DE

Representative=s name: MEISSNER BOLTE & PARTNER GBR, DE

Effective date: 20131216

REG Reference to a national code

Ref country code: LT

Ref legal event code: MM4D

Effective date: 20141115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141115

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006010092

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20161123

Year of fee payment: 11

Ref country code: NL

Payment date: 20161124

Year of fee payment: 11

Ref country code: HU

Payment date: 20161109

Year of fee payment: 11

Ref country code: DE

Payment date: 20161125

Year of fee payment: 11

Ref country code: CH

Payment date: 20161124

Year of fee payment: 11

Ref country code: CZ

Payment date: 20161114

Year of fee payment: 11

Ref country code: SK

Payment date: 20161111

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20161124

Year of fee payment: 11

Ref country code: BG

Payment date: 20161124

Year of fee payment: 11

Ref country code: SE

Payment date: 20161124

Year of fee payment: 11

Ref country code: RO

Payment date: 20161107

Year of fee payment: 11

Ref country code: SI

Payment date: 20161109

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006010092

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20171201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171115

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171115

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171115

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 10552

Country of ref document: SK

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171115

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171116

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171116

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171116

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20180709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180605

REG Reference to a national code

Ref country code: BE

Ref legal event code: HC

Owner name: AREVA GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGEMENT DE NOM DU PROPRIETAIRE

Effective date: 20190107

Ref country code: BE

Ref legal event code: PD

Owner name: FRAMATOME GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CESSION

Effective date: 20190107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171116

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20191212 AND 20191218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20221121

Year of fee payment: 17

Ref country code: FR

Payment date: 20221122

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20221125

Year of fee payment: 17