EP1678333A2 - Tapping tube - Google Patents

Tapping tube

Info

Publication number
EP1678333A2
EP1678333A2 EP05730742A EP05730742A EP1678333A2 EP 1678333 A2 EP1678333 A2 EP 1678333A2 EP 05730742 A EP05730742 A EP 05730742A EP 05730742 A EP05730742 A EP 05730742A EP 1678333 A2 EP1678333 A2 EP 1678333A2
Authority
EP
European Patent Office
Prior art keywords
tapping
outlet end
inlet
pipe
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05730742A
Other languages
German (de)
French (fr)
Other versions
EP1678333B1 (en
Inventor
Oliver Zach
Michael Klikovich
Michael Berger
Christian Rahm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Refractory Intellectual Property GmbH and Co KG
Original Assignee
Refractory Intellectual Property GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Refractory Intellectual Property GmbH and Co KG filed Critical Refractory Intellectual Property GmbH and Co KG
Priority to PL05730742T priority Critical patent/PL1678333T3/en
Publication of EP1678333A2 publication Critical patent/EP1678333A2/en
Application granted granted Critical
Publication of EP1678333B1 publication Critical patent/EP1678333B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4653Tapholes; Opening or plugging thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/21Arrangements of devices for discharging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/18Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/15Tapping equipment; Equipment for removing or retaining slag
    • F27D3/1509Tapping equipment
    • F27D3/1518Tapholes

Definitions

  • the invention relates to a tapping tube for a metallurgical melting vessel.
  • a metallurgical melting vessel is understood to mean an aggregate in which a metallurgical melt is produced, treated and / or transported, for example a converter or an electric arc furnace.
  • a molten metal in the melting vessel is passed along the tapping tube in a downstream unit.
  • the steel is fed from the converter via a ladle to a downstream continuous casting plant.
  • the molten metal should be transported as possible without contamination. For example, contact with the ambient atmosphere (oxygen, nitrogen) should be avoided, as should slagging.
  • a converter tap is known, which is composed - in the axial direction - of several refractory blocks or slices.
  • the inlet-side block should have a funnel-shaped passage and at the outlet end, the passage of the tapping pipe should have the smallest diameter.
  • Tapping tubes of this type have been on the market for 20 years and have proven themselves. Also have proven tapping pipes whose geometry at the outlet end corresponds to the requirements of DE 42 08 520 C2. The calculation of the outlet cross-section is based on a flow profile of the corresponding melt, namely assuming an average value for the height of the melt above the tapping tube.
  • the height of the molten metal (bath height) during tapping is often almost constant, because the converter is tilted (fed) with increasing tapping time.
  • the bath height inevitably decreases.
  • this increases the danger that slag will be conducted with the molten metal into the tapping pipe and through it. It can also lead to the formation of turbulence and the formation of a negative pressure in the tapping pipe. At the same time, this increases the risk of reoxidation and nitridation.
  • the object of the invention is to optimize a tapping pipe of the type mentioned in such a way that it ensures the desired ("continuous") mass flow during the entire tapping time and prevents the slag from being carried along.
  • “Steady” means that the mass flow in the tapping channel of the If possible, do not tear off the tapping pipe until the end of the tapping time. Likewise, the intake of oxygen or nitrogen should be avoided as far as possible.
  • the design of the tapping pipe should be such that, regardless of its wear (within technically acceptable limits), a largely uniform mass flow can be transported along the tapping pipe. According to DE 42 08 520 C2, the flow profile of a melt can be determined from the following formula:
  • the respective bath height (height of the melt above the outlet end of the tapping tube).
  • the required radius of a circular cross-section of the tapping pipe passage is plotted against distance from the outlet end, where "0" defines the outlet end of the tapping pipe, 1.35 meters is the total length of the (new) tapping pipe and maximum bath height
  • the effective maximum height of the molten bath above the tapping inlet is 1.35 meters
  • the remaining curves show the theoretically minimum radius of the tapping channel at different distances from the outlet end for different bath heights under de r Acceptance of the same cross-section (radius 65 mm) at the outlet end
  • a radius of 80 millimeters is sufficient for the cross section of the passage channel to completely fill a circular cross section of the tapping pipe at the outlet end with a radius of 65 mm with the melt jet. If, however, the bath level continues to drop, for example to a minimum bath height of 1,600 millimeters (effective height of the molten bath above the tap inlet now 250 mm), then the same cross section of the tap tube results in the necessary radius of the cross section of the passage channel at the outlet end in the inlet area of the tapping pipe a value of approx. 1 10mm.
  • the invention leads to completely different geometries of the passage channel of a tapping tube.
  • Fig. 2 shows as a curve (1) again at a bath height of 1600 mm and a radius of the outlet cross section of 65 mm required profile of the outlet channel in longitudinal section (theoretically at least necessary radius).
  • Curve (2) shows the flow conditions in a tapping tube according to the prior art (radius of the inlet cross section: 80 mm).
  • the avoidance of turbulence and maintenance of a compact jet in the tapping channel solves the invention by such a design of the tapping channel that during the tapping time, so even at low bath heights (effective height of the bath level above the inlet end of the tapping tube: less than 30% of the maximum height) , the entire tapping channel is completely filled with melt.
  • the invention comprises in its most general embodiment a tapping tube for a metallurgical melting vessel, whose axially extending passage channel between the outlet end and the inlet end has a channel cross-section A (y) with the following dependence:
  • a (y) A. (h, + hk ) / (h, + hk -y) '
  • H should be less than or equal to 0.3 times the maximum height (h max ) of a melt in the melting vessel in the axial extension of the tapping pipe
  • the variable factor (hi / h max ) takes into account the different flow behavior especially at low bath height.
  • the factor " ⁇ 0.3” indicates that a condition is detected in which the effective height of the melt level above the inlet end of the tapping tube is at least 70% less than the effective height of the melt level at the maximum bath height.
  • H k represents the existing length of the tapping pipe between the inlet end and the outlet end. While the outlet end of the tapping pipe is necessarily its lower free end and remains unchanged over time, the position of the inlet end changes with the time of use of the tapping pipe By definition, the inlet end corresponds to the level of the adjacent refractory material of a refractory lining of the metallurgical melting vessel, and as the erosion progresses, the length of the tapping pipe is shortened accordingly.
  • h length of the tapping tube between inlet end and outlet end
  • y axial distance between the outlet end and a location along the tapping pipe.
  • the diameter "d" at the outlet end was set at 0.13 meters to ensure a desired flow rate "X".
  • the diameter of the passage channel in the inlet area to 0, 19 meters and calculated in 1 meter height to the outlet end to 0, 16 meters.
  • the factor (hi / h max) assumed to be> 0.05 and / or ⁇ 0.3 is (h max is the maximum height of the melt in the melting vessel above the inlet region of the tapping pipe in axial extension of the tapping pipe).
  • the value is between> 0, 1 and / or ⁇ 0.2.
  • the dimensioning of the tapping pipe in the inlet part is particularly important.
  • the conditions at low effective heights of the bath level are decisive.
  • the cross-sectional geometry at the outlet end is mainly determined by the setpoint of the flow rate (mass flow at maximum bath height).
  • the cross-sectional calculation for the passageway refers to values "y"> 50% of the total length of the tapping pipe. "According to another embodiment, these values are increased to ranges> 70%, which means that essentially the inlet half and the inlet side, respectively One third of the total length of the tube should be designed fiction-specific.
  • this section can be formed continuously conically tapered; but the necessary taper in the direction of the outlet end can also be done stepwise if necessary.
  • FIGS. 3-5 also show technically adapted step-shaped wall profiles with which the desired effects can likewise be realized and which are technically easier to produce.
  • the lower outlet side half of the tapping tube, the taper of the follow (upper) inlet-side part but it is also possible to form this part with less conicity (slope), up to a cylindrical shape of the passage channel. This is especially true for the last 10 to 20% of the length of the tapping tube on the outlet side.
  • the invention according to one embodiment (circular channel cross-section and symmetrical design of the inner contour to the channel axis) teaches the wall area to be designed such that the slope (S) follows the inner contour of the passage channel (in longitudinal section) as follows:
  • the slope S in this case describes the change of the radius ) of a circular cross-section of the tapping channel as a function of the distance y from the outlet end of the tapping.
  • h k 0.75 m (eg reduced tapping length with worn converter lining)
  • the values should be> 0.02. With very low effective bath heights and shorter tap lengths, the area where S> 0.02 should be, already extends to the inlet half of the tapping channel. This value S can be increased to> 0.025,> 0.05 or> 0.25.
  • the value may be »0.25, for example 1, 5, 10, 30, 50, 70 or 100. If the course of the wall of the tapping channel is completely or partially step-shaped or existing accordingly Production plants approximated so "slope" means the slope of the straight in the longitudinal section between the edges successive stages connectable straight line.
  • the dimensioning according to the invention of a tapping pipe also takes into account the change in length of the tapping pipe depending on the state of wear of the adjacent lining in that the respective values for the tapping length and the height of the overlying melt are included in the calculation.
  • SA (y) change of the cross section in m 2 / m at the point y
  • A cross-sectional area of the through-channel at the discharge end of the tapping pipe
  • hi 0.3 h max or less of the maximum height (h max ) of a melt in the melting vessel above the tapping inlet in the axial extension of the tapping pipe
  • hk length of the tapping pipe between inlet end and outlet end
  • y axial distance between the outlet end and a point along the tapping tube.
  • the cross-sectional area must increase by at least 47% per meter of channel length in order to create fluid-favorable conditions.
  • the inventive design of the tapping tube makes it possible to operate the tapping even at low bath heights with reduced turbulence and continuous melt flow and thus significantly reduce the entrainment of slag.
  • by reducing the temperature losses and the reduced wear further economic benefits such as energy savings and extended life of tapping.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Food-Manufacturing Devices (AREA)
  • Nozzles (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

The invention relates to a tapping tube for a metal fusion vessel, for example, a converter or an arc furnace.

Description

„Abstichrohr" "Tapping pipe"
B e s c h r e i b u n gDescription
Die Erfindung betrifft ein Abstichrohr für ein metallurgisches Schmelzgefäß. Unter einem metallurgischen Schmelzgefäß wird ein Aggregat verstanden, in dem eine metallurgische Schmelze hergestellt, behandelt und/oder transportiert wird, beispielsweise ein Konverter oder ein Lichtbogenofen.The invention relates to a tapping tube for a metallurgical melting vessel. A metallurgical melting vessel is understood to mean an aggregate in which a metallurgical melt is produced, treated and / or transported, for example a converter or an electric arc furnace.
Dabei wird eine im Schmelzgefäß befindliche Metallschmelze entlang des Abstichrohres in ein nachgeschaltetes Aggregat geleitet. Beispielsweise wird der Stahl aus dem Konverter über eine Pfanne einer nachgeschalteten Stranggussanlage zugeführt.In this case, a molten metal in the melting vessel is passed along the tapping tube in a downstream unit. For example, the steel is fed from the converter via a ladle to a downstream continuous casting plant.
Die Metallschmelze soll möglichst ohne Verunreinigungen transportiert werden. Beispielsweise soll ein Kontakt mit der Umgebungsatmosphäre (Sauerstoff, Stickstoff) ebenso vermieden werden wie ein Mitführen von Schlacke.The molten metal should be transported as possible without contamination. For example, contact with the ambient atmosphere (oxygen, nitrogen) should be avoided, as should slagging.
Aus der EP 0 057 946 B l ist ein Konverterabstich bekannt, der sich - in Axialrichtung - aus mehreren feuerfesten Blöcken oder Scheiben zusammensetzt. Der einlaufseitige Block soll einen trichterförmigen Durchlasskanal aufweisen und am auslaufseitigen Ende soll der Durchlasskanal des Abstichrohrs den kleinsten Durchmesser haben. Derartig gestaltete Abstichrohre sind seit 20 Jahren im Markt und haben sich bewährt. Ebenfalls bewährt haben sich Abstichrohre, deren Geometrie am auslaufseitigen Ende den Vorgaben der DE 42 08 520 C2 entspricht. Dabei liegt der Berechnung des Auslaufquerschnittes ein Strömungsprofil der korrespondierenden Schmelze zugrunde, und zwar unter der Annahme eines Mittelwertes für die Höhe der Schmelze über dem Abstichrohr.From EP 0 057 946 B l a converter tap is known, which is composed - in the axial direction - of several refractory blocks or slices. The inlet-side block should have a funnel-shaped passage and at the outlet end, the passage of the tapping pipe should have the smallest diameter. Tapping tubes of this type have been on the market for 20 years and have proven themselves. Also have proven tapping pipes whose geometry at the outlet end corresponds to the requirements of DE 42 08 520 C2. The calculation of the outlet cross-section is based on a flow profile of the corresponding melt, namely assuming an average value for the height of the melt above the tapping tube.
Bei einem Konverter-Abstichrohr ist die Höhe der Metallschmelze (Badhöhe) während des Abstichs häufig nahezu konstant, weil der Konverter mit zunehmender Abstichzeit gekippt (nachgeführt) wird. Insbesondere zum Ende eines Abstichs verringert sich jedoch die Badhöhe zwangsläufig. Damit erhöht sich gleichzeitig die Gefahr, dass Schlacke mit der Metallschmelze in das Abstichrohr und durch dieses hindurch geführt wird. Ferner kann es zur Bildung von Turbulenzen und zur Ausbildung eines Unterdrucks im Abstichrohr kommen. Gleichzeitig erhöht sich dadurch die Gefahr einer Reoxidation und Aufstickung.In the case of a converter tapping tube, the height of the molten metal (bath height) during tapping is often almost constant, because the converter is tilted (fed) with increasing tapping time. However, especially at the end of a tap, the bath height inevitably decreases. At the same time, this increases the danger that slag will be conducted with the molten metal into the tapping pipe and through it. It can also lead to the formation of turbulence and the formation of a negative pressure in the tapping pipe. At the same time, this increases the risk of reoxidation and nitridation.
Der Erfindung liegt die Aufgabe zugrunde, ein Abstichrohr der genannten Art dahingehend zu optimieren, dass es während der gesamten Abstichzeit den gewünschten („stetigen") Massedurchfluss sicherstellt und ein Mitführen von Schlacke verhindert wird. „Stetig" heißt, dass der Massestrom im Abstichkanal des Abstichrohrs möglichst bis zum Ende der Abstichzeit nicht abreißt. Ebenso ist die Aufnahme von Sauerstoff oder Stickstoff soweit wie möglich zu vermeiden. Schließlich soll die Auslegung des Abstichrohrs so erfolgen, dass unabhängig von dessen Verschleiß (innerhalb technisch akzeptierbarer Grenzen) ein weitestgehend gleichmäßiger Massenstrom entlang des Abstichrohrs transportiert werden kann. Gemäß DE 42 08 520 C2 lässt sich das Strömungsprofil einer Schmelze aus nachstehender Formel ermitteln:The object of the invention is to optimize a tapping pipe of the type mentioned in such a way that it ensures the desired ("continuous") mass flow during the entire tapping time and prevents the slag from being carried along. "Steady" means that the mass flow in the tapping channel of the If possible, do not tear off the tapping pipe until the end of the tapping time. Likewise, the intake of oxygen or nitrogen should be avoided as far as possible. Finally, the design of the tapping pipe should be such that, regardless of its wear (within technically acceptable limits), a largely uniform mass flow can be transported along the tapping pipe. According to DE 42 08 520 C2, the flow profile of a melt can be determined from the following formula:
A(x) = m/(p 1 /2 (2gx) ' " )A (x) = m / (p 1/2 (2gx))
mitWith
A(x) = erforderlicher Strömungsquerschnitt im Abstand x vom Badspiegel m = Massenstrom der Schmelze g = Erdbeschleunigung = 9,81 m/s2 x = gewählter Abstand vom Badspiegel p = Dichte der SchmelzeA (x) = required flow cross-section at a distance x from the bath level m = mass flow of the melt g = gravitational acceleration = 9.81 m / s 2 x = selected distance from the bath level p = density of the melt
Dabei wird nur die durch die Beschleunigung des Schmelzenstrahls verursachte Querschnittsänderung in Abhängigkeit der Fallhöhe berücksichtigt. Zur Bewahrung der Übersichtlichkeit und Verständlichkeit der Berechnungen werden sowohl hier als auch bei den weiteren in dieser Beschreibung angeführten Berechnungen Einflüsse wie Viskosität der Schmelze oder die Wandreibung vernachlässigt beziehungsweise außer Acht gelassen.Only the change in cross section caused by the acceleration of the melt jet is taken into account as a function of the drop height. In order to preserve the clarity and comprehensibility of the calculations, influences such as melt viscosity or wall friction are neglected or disregarded both here and in the other calculations mentioned in this description.
Für eine spezifische Schmelze lässt sich damit der erforderliche Durchmesser des Durchflusskanals am Auslaufende bei senkrechter Lage des Durchflusskanals, einer vorgegebenen Durchflussmenge und vorgegebenem Abstand zwischen Badspiegel und Auslaufende exakt bestimmen. Dies soll an einem Beispiel verdeutlicht werden:For a specific melt can thus determine the required diameter of the flow channel at the outlet end at a vertical position of the flow channel, a predetermined flow rate and a predetermined distance between the bath level and outlet end exactly. This will be illustrated by an example:
m = 700 kg/s x = 2,7 m p = 7.200 kg/m3 (für Stahl)m = 700 kg / sx = 2,7 mp = 7,200 kg / m 3 (for steel)
A(x = 2,7 m) = 700/7.200 (2 9,81 2,7)1 2 = 0,01335 m2 Aus A = d2 . π / 4 errechnet sich für einen Abstich mit Kreisquerschnitt am Auslauf der Austrittsdurchmesser zu d =(A . 4 I %) x A (x = 2.7 m) = 700 / 7,200 (2 9,81 2,7) 1 2 = 0,01335 m 2 From A = d 2 . π / 4 is calculated for a tapping with circular cross section at the outlet of the outlet diameter to d = (A.4 I%) x
d = [(0,01 335 4) / π] 1 2 = 0, 1 304 md = [(0.01 335 4) / π] 1 2 = 0, 1 304 m
Bei vorgegebenem Durchmesser des Abstichkanals am Auslaufende ist aber ein entscheidender Gesichtspunkt für die Durchflussmenge und das sich ergebende Strömungsprofil die jeweilige Badhöhe (Höhe der Schmelze über dem Auslaufende des Abstichrohrs). In FIG. 1 ist beispielsweise für verschiedene Badhöhen der erforderliche Radius eines kreisförmigen Querschnitts des Durchlasskanals des Abstichrohrs in Abhängigkeit vom Abstand vom Auslaufende aufgetragen, wobei „0" das Auslaufende des Abstichrohrs definiert, 1 ,35 Meter die Gesamtlänge des (neuen) Abstichrohrs ist und eine maximale Badhöhe von 2,70 Metern angenommen wird (gerechnet vom Auslaufende). Die effektive maximale Höhe des Schmelzbades über dem Absticheinlauf beträgt demnach: 1 ,35 Meter. Unter Zugrundelegung einer vorgegebenen Durchflussmenge zeigt die dargestellte Kurve für die maximale Badhöhe (=2700 mm) den theoretisch mindestens notwendigen Radius des Abstichkanals (Durchlasskanal im Abstichrohr) in verschiedenen Entfernungen vom Auslaufende beginnend bei einem Radius = 65 mm am Auslaufende. Die übrigen Kurven zeigen den theoretisch mindestens notwendigen Radius des Abstichkanals in verschiedenen Entfernungen vom Auslaufende für unterschiedliche Badhöhen unter der Annahme des gleichen Querschnitts (Radius 65 mm) am Auslaufende.For a given diameter of the tapping channel at the outlet end, however, a decisive aspect for the flow rate and the resulting flow profile is the respective bath height (height of the melt above the outlet end of the tapping tube). In FIG. For example, for various bath heights, the required radius of a circular cross-section of the tapping pipe passage is plotted against distance from the outlet end, where "0" defines the outlet end of the tapping pipe, 1.35 meters is the total length of the (new) tapping pipe and maximum bath height Accordingly, the effective maximum height of the molten bath above the tapping inlet is 1.35 meters, assuming a given flow rate, the illustrated curve for the maximum bath height (= 2700 mm) will theoretically show Minimum required radius of the tapping channel (passage in the tapping pipe) at different distances from the outlet end starting at a radius = 65 mm at the outlet end The remaining curves show the theoretically minimum radius of the tapping channel at different distances from the outlet end for different bath heights under de r Acceptance of the same cross-section (radius 65 mm) at the outlet end.
Man erkennt, dass bei einer Badhöhe zwischen 2.700mm und 2.400mm im Einlaufbereich des Abstichrohrs ein Radius von 80 Millimetern für den Querschnitt des Durchlasskanals ausreichend ist, um einen kreisförmigen Querschnitt des Abstichrohres am Auslaufende mit einem Radius von 65mm vollständig mit dem Schmelzenstrahl auszufüllen. Sinkt der Badspiegel jedoch weiter, beispielsweise auf eine ebenfalls dargestellte minimale Badhöhe von 1 .600 Millimetern (effektive Höhe des Schmelzbades über dem Absticheinlauf jetzt: 250 mm), so ergibt sich bei gleichem Querschnitt des Abstichrohres am Auslaufende für den notwendigen Radius des Querschnitts des Durchlasskanals im Einlaufbereich des Abstichrohrs ein Wert von ca. 1 10mm.It can be seen that at a bath height of between 2,700 mm and 2,400 mm in the inlet region of the tapping pipe, a radius of 80 millimeters is sufficient for the cross section of the passage channel to completely fill a circular cross section of the tapping pipe at the outlet end with a radius of 65 mm with the melt jet. If, however, the bath level continues to drop, for example to a minimum bath height of 1,600 millimeters (effective height of the molten bath above the tap inlet now 250 mm), then the same cross section of the tap tube results in the necessary radius of the cross section of the passage channel at the outlet end in the inlet area of the tapping pipe a value of approx. 1 10mm.
In der DE 42 08 520 C2 wird nur ein Badspiegelbereich von 30 % bis 70 % für die Auslegung der Abstichgeometrie berücksichtigt.In DE 42 08 520 C2 only a bath level range of 30% to 70% is taken into account for the design of the Abstichgeometrie.
Aus der DE 42 08 520 C2 ergibt sich für vorstehendes Beispiel mit Berücksichtigung eines minimalen Badspiegels von 30 % und einer Länge des verschlissenen Abstichs von 750 mm ein Einlaufdurchmesser von 75 mm. Daraus folgt, dass die Lehre der DE 42 08 520 C2 zu Abstichrohren führt, deren Durchlasskanal am Einlaufende zu klein ist.From DE 42 08 520 C2 results for the above example, taking into account a minimum bath level of 30% and a length of the worn tap of 750 mm, an inlet diameter of 75 mm. It follows that the teaching of DE 42 08 520 C2 leads to tapping pipes whose passage is too small at the inlet end.
Die Erfindung führt demgegenüber zu völlig anderen Geometrien des Durchlasskanals eines Abstichrohrs.In contrast, the invention leads to completely different geometries of the passage channel of a tapping tube.
Durch Berücksichtigung geringer Badhöhen (effektive Höhe der Metallschmelze über dem Einlaufbereich des Abstichrohrs: < 30 % des Maximalwertes) wird der erforderliche Querschnitt am Einlaufende größer und weicht deutlich von dem Querschnitt ab, der sich gemäß DE 42 08 520 C2 ergibt.By taking into account low bath heights (effective height of the molten metal over the inlet region of the tapping pipe: <30% of the maximum value), the required cross section at the inlet end becomes larger and deviates significantly from the cross section which results according to DE 42 08 520 C2.
Fig. 2 zeigt als Kurve ( 1 ) nochmals das bei einer Badhöhe von 1600 mm und einem Radius des Auslaufquerschnitts von 65 mm erforderliche Profil des Auslaufkanals im Längsschnitt (theoretisch mindestens notwendiger Radius). Kurve (2) zeigt die Strömungsverhältnisse bei einem Abstichrohr gemäß Stand der Technik (Radius des Einlaufquerschnitts: 80 mm). Durch den im Vergleich zum erfindungsgemäß erforderlichen Einlaufquerschnitt (Radius = 1 10 mm) zu geringen Einlaufquerschnitt kommt es beim Stand der Technik zu einer starken Einengung des Strahls im Abstichrohr. Bei freier Ausbildung des Strahls entspricht dies am Auslaufende nur noch einem Radius der Querschnittsfläche von 50 mm. Im Bereich unterhalb des Einlaufquerschnitts kann daher nicht mehr der gesamte Querschnitt des Abstichkanals gefüllt und für das Auslaufen der Schmelze genutzt werden. Die Folge sind die bereits erwähnten erhöhten Turbulenzen und Unterdrücke im Abstichrohr mit der Gefahr, dass auf der Schmelze schwimmende Schlacke mitgerissen wird. Gleichzeitig führen die entlang des Rohrweges entstehenden Turbulenzen zu einer (weiteren) Reduzierung der Durchflussmenge und damit wird die Abstichzeit länger als nötig. Daraus folgt eine Reduzierung der Temperatur der Metallschmelze. Dies macht es notwendig, die Schmelze in den nachfolgenden Behandlungsstufen wieder auf das gewünschte Temperaturniveau zu erwärmen, wodurch zusätzliche Energiekosten entstehen.Fig. 2 shows as a curve (1) again at a bath height of 1600 mm and a radius of the outlet cross section of 65 mm required profile of the outlet channel in longitudinal section (theoretically at least necessary radius). Curve (2) shows the flow conditions in a tapping tube according to the prior art (radius of the inlet cross section: 80 mm). By compared to the invention required inlet cross-section (Radius = 1 10 mm) too small inlet cross section, it comes in the prior art to a strong constriction of the beam in the tapping. With free formation of the beam, this corresponds at the outlet end only a radius of the cross-sectional area of 50 mm. In the area below the inlet cross-section, therefore, it is no longer possible to fill the entire cross section of the tapping channel and to use it for the outflow of the melt. The result is the already mentioned increased turbulence and negative pressure in the tapping tube with the risk that entrained on the melt slag is entrained. At the same time, the turbulences created along the pipe path lead to a (further) reduction of the flow rate and thus the tapping time becomes longer than necessary. This results in a reduction in the temperature of the molten metal. This makes it necessary to heat the melt in the subsequent treatment stages back to the desired temperature level, resulting in additional energy costs.
Die Vermeidung der Turbulenzen und Aufrechterhaltung eines kompakten Strahls im Abstichkanal löst die Erfindung durch eine solche Gestaltung des Abstichkanals, dass während der gesamten Abstichzeit, also auch bei geringen Badhöhen (effektive Höhe des Badspiegels über dem Einlaufende des Abstichrohrs: unter 30 % der maximalen Höhe), der gesamte Abstichkanal vollständig mit Schmelze gefüllt ist.The avoidance of turbulence and maintenance of a compact jet in the tapping channel solves the invention by such a design of the tapping channel that during the tapping time, so even at low bath heights (effective height of the bath level above the inlet end of the tapping tube: less than 30% of the maximum height) , the entire tapping channel is completely filled with melt.
Die Erfindung umfasst in ihrer allgemeinsten Ausführungsform ein Abstichrohr für ein metallurgisches Schmelzgefäß, dessen axial verlaufender Durchlasskanal zwischen dem Auslaufende und dem Einlaufende einen Kanalquerschnitt A (y) mit folgender Abhängigkeit aufweist:The invention comprises in its most general embodiment a tapping tube for a metallurgical melting vessel, whose axially extending passage channel between the outlet end and the inlet end has a channel cross-section A (y) with the following dependence:
A (y) = A . (h, + hk)/( h, + hk - y) 'A (y) = A. (h, + hk ) / (h, + hk -y) '
m i t A = Querschnittsfläche am Auslaufende [m2] h| = effektive Höhe des Schmelzbades über dem Einlaufende [m] - in axialer Verlängerung des Abstichkanals - hk = Länge des Abstichrohres zwischen Einlaufende und Auslaufende [m] y = axialer Abstand [m] zwischen dem Auslaufende und einer Stelle entlang des Abstichrohres mit 0 < y < (h| + hk)With A = cross-sectional area at the outlet end [m 2 ] h | = effective height of the molten bath above the inlet end [m] - in the axial extension of the tapping channel - h k = length of the tapping pipe between inlet end and outlet end [m] y = axial distance [m] between the outlet end and a point along the tapping pipe with 0 < y <(h | + hk )
„h|" soll kleiner oder gleich dem 0,3-fachen der maximalen Höhe (hmax) einer Schmelze im Schmelzgefäß in axialer Verlängerung des Abstichrohres sein. Der variable Faktor ( hi / hmax ) berücksichtigt das unterschiedliche Strömungsverhalten insbesondere bei geringer Badhöhe. Aus dem Faktor "<0,3" ergibt sich, dass dabei ein Zustand erfasst wird, bei dem die effektive Höhe des Schmelzenspiegels über dem Einlaufende des Abstichrohrs um mindestens 70% geringer ist als die effektive Höhe des Schmelzenspiegels bei der maximalen Badhöhe."H |" should be less than or equal to 0.3 times the maximum height (h max ) of a melt in the melting vessel in the axial extension of the tapping pipe The variable factor (hi / h max ) takes into account the different flow behavior especially at low bath height. The factor "<0.3" indicates that a condition is detected in which the effective height of the melt level above the inlet end of the tapping tube is at least 70% less than the effective height of the melt level at the maximum bath height.
„hk" gibt die jeweils vorhandene Länge des Abstichrohrs zwischen Einlaufende und Auslaufende wieder. Während das Auslaufende des Abstichrohrs zwangsläufig dessen unteres freies Ende ist und über die Zeit unverändert bleibt, verändert sich die Position des Einlaufendes mit der Benutzungsdauer des Abstichrohres. Verantwortlich dafür ist ein Verschleiß des Feuerfestmaterials am Einlaufende. Das Einlaufende entspricht definitionsgemäß dem Niveau des benachbarten Feuerfestmaterials einer feuerfesten Auskleidung des metallurgischen Schmelzgefäßes. Mit zunehmender Erosion verkürzt sich entsprechend die Länge des Abstichrohrs."H k " represents the existing length of the tapping pipe between the inlet end and the outlet end.While the outlet end of the tapping pipe is necessarily its lower free end and remains unchanged over time, the position of the inlet end changes with the time of use of the tapping pipe By definition, the inlet end corresponds to the level of the adjacent refractory material of a refractory lining of the metallurgical melting vessel, and as the erosion progresses, the length of the tapping pipe is shortened accordingly.
Mit „y" wird schließlich der axiale Abstand zwischen dem Auslaufende und einer Stelle entlang des Abstichrohres bezeichnet. Für das Auslaufende ist y = 0, so dass sich aus vorgenannter Formel ergibt: A(y=0) = A.Finally, "y" denotes the axial distance between the outlet end and a point along the tapping tube, and y = 0 for the outlet end, so that the following formula yields: A (y = 0 ) = A.
Als Spezialfall eines kreisförmigen Abstichquerschnitts ergibt sich für den Durchmesser d(y) des Abstichquerschnitts zwischen Auslaufende und Einlaufende nachstehende Abhängigkeit d(y) = d • 4 (h,+hk) / (h,+hk -y) ' As a special case of a circular Abstichquerschnitts results for the diameter d (y) of the Abstichquerschnitts between outlet end and inlet end following dependence d (y) = d • 4 (h, + h k) / (h + h k -y) '
mit d = Durchmesser am Auslaufende hi = 0,3 hmax oder weniger der maximalen Höhe (hmaχ) einer Schmelze im Schmelzgefäß über dem Absticheinlass in axialer Verlängerung des Abstichrohres, h = Länge des Abstichrohres zwischen Einlaufende und Auslaufende, y = axialer Abstand zwischen dem Auslaufende und einer Stelle entlang des Abstichrohres.with d = diameter at the outlet end hi = 0.3 h max or less of the maximum height (h ma χ) of a melt in the melting vessel above the tapping inlet in the axial extension of the tapping tube, h = length of the tapping tube between inlet end and outlet end, y = axial distance between the outlet end and a location along the tapping pipe.
Dabei beschreibt „d" den Durchmesser am Auslaufende unter Vorgabe einer gewünschten Durchflussmenge. Je höher die gewünschte Durchflussmenge ist, um so größer ist der Durchmesser „d".In this case, "d" describes the diameter at the outlet end while specifying a desired flow rate, the higher the desired flow rate, the larger the diameter "d".
Die erfindungsgemäße Lehre wird anhand verschiedener Ausführungsbeispiele nachstehend erläutert. Die Länge des Abstichrohres (hk) wird mit 1 ,35 Metern angenommen, die Höhe des Badspiegels (hi) - ab Einlaufende des Rohres - mit 0,25 Meter (= 18,5 % der maximalen Höhe des Schmelzbades von 1 ,35 Meter über dem Absticheinlauf). Der Durchmesser „d" am Auslaufende wurde mit 0, 13 Meter festgelegt, um eine gewünschte Durchflussmenge „X" sicherzustellen. Mit vorgenannter Formel berechnet sich der Innendurchmesser des Durchlasskanals am Einlauf wie folgt: d(y) = 0, 13 • 4V (0,25 + 1 ,35) / (0,25 + 1 ,35 - 1 ,35)' = 0,21 mThe teaching of the invention will be explained below with reference to various embodiments. The length of the tapping pipe (h k) is assumed to be 1, 35 meters, the height of the bath level (hi) - from the inlet end of the pipe - with 0.25 meters (= 18.5% of the maximum height of the molten bath of 1, 35 meters above the tapping inlet). The diameter "d" at the outlet end was set at 0.13 meters to ensure a desired flow rate "X". With the aforementioned formula, the inner diameter of the passage channel is calculated at the inlet as follows: d (y) = 0, 13 • 4 V (0.25 + 1, 35) / (0.25 + 1, 35 - 1. 35) '= 0.21 m
In einem Abstand von 1 Meter zum Auslaufende ergibt sich für den Durchlasskanal ein Durchmesserwert von: d(y) = 0, 13 • 4V (0,25 + 1 ,35) / (0,25 + 1 ,35 - 1 ,0) = 0, 17 mAt a distance of 1 meter from the outlet end, the diameter of the passageway is: d (y) = 0, 13 • 4 V (0,25 + 1, 35) / (0,25 + 1, 35 - 1, 0 ) = 0, 17 m
während am Auslauf - wie ausgeführt - d(y> = d, also 0, 1 3 m.while at the outlet - as stated - d ( y > = d, ie 0, 1 3 m.
Unter Zugrundelegung einer Rohrlänge von 2,0 Meter (bei ansonsten unveränderten Rahmendaten wie Auslaufquerschnitt, Auslaufdurchmesser, effektive Höhe des Badspiegels über dem Einlaufende) ergibt sich der erforderliche Durchmesser am Einlaufende zu 0,23 Meter, der in einem Abstand von 1 Meter zum Auslauf zu 0, 1 5 Meter, während der am Auslaufende unverändert 0, 13 Meter beträgt.Based on a pipe length of 2.0 meters (with otherwise unchanged frame data such as outlet cross section, outlet diameter, effective height of the bath level above the inlet end), the required diameter at the inlet end to 0.23 meters, which results at a distance of 1 meter to the outlet 0, 1 5 meters, while at the outlet end is unchanged 0, 13 meters.
Daraus ist abzuleiten, dass mit zunehmender Länge des Abstichrohres die erforderliche Öffnungsweite am Einlaufende größer wird.It can be deduced that with increasing length of the tapping tube, the required opening width at the inlet end is greater.
Führt man die obigen Berechnungen alternativ für eine Rohrlänge von 1 ,35 Meter und einen Durchmesser am Auslaufende von 0, 13 Meter mit einer effektiven Höhe des Schmelzenspiegels über dem Einlaufende von 0,4 Meter durch (entsprechend ca. 30% der maximalen Badhöhe), so berechnet sich der Durchmesser des Durchlasskanals im Einlaufbereich zu 0, 19 Meter und der in 1 Meter Höhe zum Auslaufende zu 0, 16 Meter. Nach einer Ausführungsform wird der Faktor ( hi / hmax ) mit > 0,05 und/oder < 0,3 angenommen (hmax ist die maximale Höhe der Schmelze im Schmelzgefäß über dem Einlaufbereich des Abstichrohrs in axialer Verlängerung des Abstichrohrs). Nach einer weiteren Ausführungsform liegt der Wert zwischen > 0, 1 und/oder < 0,2.Alternatively, if the above calculations are performed for a pipe length of 1.35 meters and a diameter at the outlet end of 0.13 meters with an effective height of the melt level above the inlet end of 0.4 meters (corresponding to approximately 30% of the maximum bath height), Thus, the diameter of the passage channel in the inlet area to 0, 19 meters and calculated in 1 meter height to the outlet end to 0, 16 meters. In one embodiment, the factor (hi / h max) assumed to be> 0.05 and / or <0.3 is (h max is the maximum height of the melt in the melting vessel above the inlet region of the tapping pipe in axial extension of the tapping pipe). According to another embodiment, the value is between> 0, 1 and / or <0.2.
Wie ausgeführt, kommt es vor allem auf die Dimensionierung des Abstichrohrs im einlaufseitigen Teil an. Dabei sind vor allem die Verhältnisse bei geringen effektiven Höhen des Badspiegels (< 30 % der maximalen effektiven Höhe des Badspiegels über dem Einlaufende) bestimmend. Die Querschnittsgeometrie am auslaufseitigen Ende wird überwiegend vom Sollwert der Durchflussmenge (Massestrom bei maximaler Badhöhe) bestimmt.As stated above, the dimensioning of the tapping pipe in the inlet part is particularly important. Above all, the conditions at low effective heights of the bath level (<30% of the maximum effective height of the bath level above the inlet end) are decisive. The cross-sectional geometry at the outlet end is mainly determined by the setpoint of the flow rate (mass flow at maximum bath height).
Nach einer Ausführungsform bezieht sich die Querschnittsberechnung für den Durchlasskanal deshalb auf werte „y" > 50% der Gesamtlänge des Abstichrohres. Nach einer weiteren Ausführungsform werden diese Werte auf Bereiche >70% heraufgesetzt. Dies bedeutet, dass im Wesentlichen die einlaufseitige Hälfte beziehungsweise das einlaufseitige Drittel der Gesamtlänge des Rohres erfindungsspezifisch ausgelegt werden soll.Therefore, according to one embodiment, the cross-sectional calculation for the passageway refers to values "y"> 50% of the total length of the tapping pipe. "According to another embodiment, these values are increased to ranges> 70%, which means that essentially the inlet half and the inlet side, respectively One third of the total length of the tube should be designed fiction-specific.
Dabei kann dieser Abschnitt kontinuierlich konisch verjüngend ausgebildet werden; die notwendige Verjüngung in Richtung auf das auslaufseitige Ende kann aber gegebenenfalls auch stufenartig erfolgen. Ebenfalls ist (im Längsschnitt gesehen) eine Anpassung an die optimale Geometrie des Durchlasskanals in Form von Polygonzügen (siehe Fig 3 bis 5) oder gewölbten Abschnitten möglich. In den Fig. 3-5 sind neben den erfindungsgemäß berechneten Idealgeometrien auch an diese technisch angepasste stufenförmige Wandverläufe dargestellt, mit denen sich die gewünschten Effekte ebenso realisieren lassen und die technisch leichter herstellbar sind.In this case, this section can be formed continuously conically tapered; but the necessary taper in the direction of the outlet end can also be done stepwise if necessary. Also (as seen in longitudinal section) is an adaptation to the optimal geometry of the passage channel in the form of polygons (see Figures 3 to 5) or curved sections possible. In addition to the ideal geometries calculated according to the invention, FIGS. 3-5 also show technically adapted step-shaped wall profiles with which the desired effects can likewise be realized and which are technically easier to produce.
Insbesondere die untere auslaufseitige Hälfte des Abstichrohres kann der Konizität des (oberen) einlaufseitigen Teils folgen; es ist aber auch möglich, diesen Teil mit geringerer Konizität (Steigung) auszubilden, bis hin zu einer zylindrischen Form des Durchlasskanals. Dies gilt insbesondere für die auslaufseitig letzten 10 bis 20% der Länge des Abstichrohrs.In particular, the lower outlet side half of the tapping tube, the taper of the follow (upper) inlet-side part; but it is also possible to form this part with less conicity (slope), up to a cylindrical shape of the passage channel. This is especially true for the last 10 to 20% of the length of the tapping tube on the outlet side.
Bezüglich der Steigung des Durchlasskanals gibt die Erfindung nach einer Ausführungsform (kreisförmiger Kanalquerschnitt und symmetrische Ausbildung der Innenkontur zur Kanalachse) die Lehre, den Wandbereich so zu gestalten, dass die Steigung (S) der Innenkontur des Durchlasskanals (im Längsschnitt) nachstehender Abhängigkeit folgt:With respect to the slope of the passage channel, the invention according to one embodiment (circular channel cross-section and symmetrical design of the inner contour to the channel axis) teaches the wall area to be designed such that the slope (S) follows the inner contour of the passage channel (in longitudinal section) as follows:
S = r/4 • 4V (h, + hk) / (h, + hk - y)' mit r = Radius des Kanalquerschnitts am AuslaufendeS = r / 4 • 4 V (h, + hk ) / (h, + hk - y) ' with r = radius of the channel cross section at the outlet end
Die Steigung S beschreibt in diesem Fall die Änderung des Radius ) eines kreisförmigen Querschnitts des Abstichkanals in Abhängigkeit vom Abstand y zum Auslaufende des Abstichs.The slope S in this case describes the change of the radius ) of a circular cross-section of the tapping channel as a function of the distance y from the outlet end of the tapping.
Beispielsweise ergeben sich damit für unterschiedliche effektive Badhöhen für die mindestens erforderliche Steigung S in verschiedenen Entfernungen vom Auslassende des Abstichrohrs die in nachstehenden Tabellen angeführten Werte mit hk = 1 ,35 m hmax = 1 ,35 m r = 0,065 mFor example, for different effective bath heights for the minimum required slope S at different distances from the outlet end of the tapping tube, the values listed in the following tables with h k = 1, 35 mh max = 1.35 mr = 0.065 m result
hk = 2,0 m hmax = 1 ,35 m r = 0,065 m h k = 2.0 mh max = 1, 35 mr = 0.065 m
hk = 0,75 m (z.B. verringerte Abstichlänge bei verschlissener Konverterauskleidung) hmax = 1 ,95 m r = 0,065 mh k = 0.75 m (eg reduced tapping length with worn converter lining) hmax = 1.95 mr = 0.065 m
Die Beispiele zeigen, dass im einlaufseitigen Bereich (erstes Drittel der Kanallänge) für die Steigung S die Werte > 0,02 sein sollten. Bei sehr geringen effektiven Badhöhen und kürzeren Abstichlängen erstreckt sich der Bereich, in dem S > 0,02 sein sollte, bereits auf die einlaufseitige Hälfte des Abstichkanals. Dieser Wert S kann auf > 0,025, > 0,05 oder > 0,25 heraufgesetzt werden.The examples show that in the inlet side region (first third of the channel length) for the slope S, the values should be> 0.02. With very low effective bath heights and shorter tap lengths, the area where S> 0.02 should be, already extends to the inlet half of the tapping channel. This value S can be increased to> 0.025,> 0.05 or> 0.25.
Er gilt zumindest für die obere Hälfte (dem Einlaufende benachbart) beziehungsweise das obere Drittel (dem Einlaufende benachbart) des Abstichkanals, kann sich aber auch über die gesamte Länge des Abstichkanals erstrecken. Unmittelbar am Einlaufende (über eine Länge von 0,05 der Gesamtlänge des Abstichrohrs), kann der Wert » 0,25, beispielsweise 1 , 5 , 1 0, 30, 50, 70 oder 100 betragen. Wird der Wandverlauf des Abstichkanals ganz oder teilweise stufenförmig ausgebildet oder entsprechend vorhandenen Produktionsanlagen angenähert so bedeutet „Steigung" die Steigung der im Längsschnitt zwischen den Kanten aufeinander folgenden Stufen eintragbaren geraden Verbindungslinie.It applies at least to the upper half (adjacent to the inlet end) or to the upper third (adjacent to the inlet end) of the tapping channel, but may also extend over the entire length of the tapping channel. Immediately at the inlet end (over a length of 0.05 of the total length of the tapping tube), the value may be »0.25, for example 1, 5, 10, 30, 50, 70 or 100. If the course of the wall of the tapping channel is completely or partially step-shaped or existing accordingly Production plants approximated so "slope" means the slope of the straight in the longitudinal section between the edges successive stages connectable straight line.
Die erfindungsgemäße Dimensionierung eines Abstichrohres berücksichtigt auch die Längenänderung des Abstichrohres abhängig vom Verschleißzustand der benachbarten Auskleidung, indem die jeweiligen Werte für die Abstichlänge und Höhe der darüber liegenden Schmelze in die Berechnung einfließen.The dimensioning according to the invention of a tapping pipe also takes into account the change in length of the tapping pipe depending on the state of wear of the adjacent lining in that the respective values for the tapping length and the height of the overlying melt are included in the calculation.
Betrachtet man für die idealisierten Strömungsverhältnisse die Änderung des Querschnitts des Durchlasskanals entlang der Achse vom Auslassende zum Einlassende und normiert diese Änderung auf den Querschnitt, so ergibt sichIf, for the idealized flow conditions, the change of the cross-section of the passage channel along the axis from the outlet end to the inlet end is considered, normalizing this change to the cross-section results
SA(y)/A = V2 ^(h. + h / ^ + hk - y)3 ' S A (y ) / A = V 2 ^ (h. + H / ^ + h k -y) 3 '
mitWith
SA(y) = Änderung des Querschnitts in m2/m an der Stelle ySA (y) = change of the cross section in m 2 / m at the point y
A = Querschnittsfläche des Durchgangskanals am Auslaufende des Abstichrohrs hi = 0,3 hmax oder weniger der maximalen Höhe (hmax) einer Schmelze im Schmelzgefäß über dem Absticheinlass in axialer Verlängerung des Abstichrohres, hk = Länge des Abstichrohres zwischen Einlaufende und Auslaufende, y = axialer Abstand zwischen dem Auslaufende und einer Stelle entlang des Abstichrohres.A = cross-sectional area of the through-channel at the discharge end of the tapping pipe hi = 0.3 h max or less of the maximum height (h max ) of a melt in the melting vessel above the tapping inlet in the axial extension of the tapping pipe, hk = length of the tapping pipe between inlet end and outlet end, y = axial distance between the outlet end and a point along the tapping tube.
Mit folgender Annahme: Schmelzspiegel maximal 30 % der maximalen effektiven Badhöhe über dem Einlaufende des Abstichkanals ergibt sich für die einlassseitige Hälfte des Abstichkanals ein Wert von SA(y)/A >= Vi V2,4 / (2,4 - l )3 ' With the following assumption: melting point maximum 30% of the maximum effective bath height above the inlet end of the tapping channel results in a value of the inlet side half of the tapping channel S A (y) / A> = Vi V2,4 / (2,4 - l) 3 '
SA(y)/A >= 0,468 [ 1/m] mit hk = 2 mS A (y ) / A> = 0.468 [1 / m] with h k = 2 m
y = 1 my = 1 m
Dies bedeutet, dass in der einlassseitigen Hälfte des Abstichkanals die Querschnittsfläche um mindestens 47 % je Meter Kanallänge zunehmen muss um strömungstechnisch günstige Bedingungen zu schaffen.This means that in the inlet-side half of the tapping channel, the cross-sectional area must increase by at least 47% per meter of channel length in order to create fluid-favorable conditions.
Die erfindungsgemäße Gestaltung des Abstichrohrs ermöglicht es, den Abstichvorgang auch bei geringen Badhöhen mit verringerten Turbulenzen und stetigem Schmelzenstrom zu betreiben und so das Mitziehen von Schlacke erheblich zu reduzieren. Außerdem ergeben sich durch die Verringerung der Temperaturverluste und den verringerten Verschleiß weitere wirtschaftliche Vorteile wie Energieeinsparung und verlängerte Lebensdauer des Abstichs. The inventive design of the tapping tube makes it possible to operate the tapping even at low bath heights with reduced turbulence and continuous melt flow and thus significantly reduce the entrainment of slag. In addition, by reducing the temperature losses and the reduced wear further economic benefits such as energy savings and extended life of tapping.

Claims

„Abstichrohr""Tapping pipe"
P a t e n t a n s p r ü c h eP a n t a n s p r e c h e
Abstichrohr für ein metallurgisches Schmelzgefäß, dessen axial verlaufender Durchlasskanal zwischen einem Einlaufende und einem Auslaufende einen Querschnitt aufweist, der nachstehender Abhängigkeit folgt:Tapping tube for a metallurgical melting vessel, the axial passage of which has a cross-section between an inlet end and an outlet end, as follows:
mitWith
A = Querschnittsfläche des Durchlasskanals am Auslaufende in m2 (unter Vorgabe einer gewünschten Durchflussmenge), hi = effektive Höhe einer Schmelze im Schmelzgefäß über dem Einlaufende des Abstichrohrs (in axialer Verlängerung des Abstichrohres) [m] hk = Länge des Abstichrohres zwischen Einlaufende und Auslaufende [m] y = axialer Abstand [m] zwischen dem Auslaufende und einer Stelle entlang des Abstichrohres (mit 0 < y < (hi + hk)). A = cross-sectional area of the passage channel at the outlet end in m 2 effective (by specifying a desired flow rate), hi = height of the melt in the melting vessel above the inlet end of the tapping pipe (in axial extension of the tapping pipe) [m] h k = length of the tapping pipe between inlet end and Outgoing [m] y = axial distance [m] between the outlet end and a point along the tapping pipe (with 0 <y <(hi + h k )).
2. Abstichrohr nach Anspruch 1 , mit hi > 0,05 hmax und < 0,3 hmax, mit hmax = maximale Höhe des Schmelzbades im Schmelzgefäß (in axialer Verlängerung des Abstichrohrs).2. Tapping pipe according to claim 1, with hi> 0.05 h max and <0.3 h max , with h max = maximum height of the molten bath in the melting vessel (in the axial extension of the tapping tube).
3. Abstichrohr nach Anspruch 2, mit h| > 0, 1 hmax und < 0,2 hmax.3. Tapping tube according to claim 2, with h | > 0, 1 h max and <0.2 h max .
4. Abstichrohr nach Anspruch 1 mit y > 0,5 h .4. tap pipe according to claim 1 with y> 0.5 h.
5. Abstichrohr nach Anspruch 1 mit y > 0,7 hk.5. tapping pipe according to claim 1 with y> 0.7 h k .
6. Abstichrohr nach Anspruch 1 mit kreisförmigem Querschnitt des Durchlasskanals.6. tap pipe according to claim 1 with a circular cross section of the passage channel.
7. Abstichrohr nach Anspruch 1 , bei dem ein dem Auslaufende benachbarter Abschnitt des Durchlasskanals zylindrisch gestaltet ist. 7. Tapping tube according to claim 1, wherein a the outlet end adjacent portion of the passage channel is cylindrical.
EP05730742A 2004-06-04 2005-04-16 Tapping tube Active EP1678333B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL05730742T PL1678333T3 (en) 2004-06-04 2005-04-16 Tapping tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004027440A DE102004027440B3 (en) 2004-06-04 2004-06-04 Process to optimize the geometry of a passage transporting molten metal from a converter furnace to an extrusion assembly involves using a discharge passage which conforms to a specific mathematical formula
PCT/EP2005/004051 WO2005118889A2 (en) 2004-06-04 2005-04-16 Tapping tube

Publications (2)

Publication Number Publication Date
EP1678333A2 true EP1678333A2 (en) 2006-07-12
EP1678333B1 EP1678333B1 (en) 2007-06-20

Family

ID=34585434

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05730742A Active EP1678333B1 (en) 2004-06-04 2005-04-16 Tapping tube

Country Status (24)

Country Link
US (1) US7556765B2 (en)
EP (1) EP1678333B1 (en)
JP (1) JP4787244B2 (en)
KR (1) KR100861849B1 (en)
CN (1) CN100429323C (en)
AR (1) AR049903A1 (en)
AT (1) ATE365231T1 (en)
AU (1) AU2005250081B2 (en)
BR (1) BRPI0511738B1 (en)
CA (1) CA2562334C (en)
DE (2) DE102004027440B3 (en)
DK (1) DK1678333T3 (en)
EA (1) EA008914B1 (en)
EG (1) EG24432A (en)
ES (1) ES2287912T3 (en)
MX (1) MXPA06013067A (en)
NO (1) NO20064992L (en)
PE (1) PE20060119A1 (en)
PL (1) PL1678333T3 (en)
PT (1) PT1678333E (en)
SI (1) SI1678333T1 (en)
TW (1) TWI294464B (en)
WO (1) WO2005118889A2 (en)
ZA (1) ZA200609209B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2380681A4 (en) * 2009-07-24 2017-08-02 Krosakiharima Corporation Nozzle for discharging molten metal

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009224303C1 (en) 2008-03-14 2011-03-10 Krosakiharima Corporation Upper nozzle
JP2011062722A (en) 2009-09-16 2011-03-31 Kurosaki Harima Corp Nozzle for discharging molten metal

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1984685U (en) * 1967-11-30 1968-05-02 Hagenburger Chamotte Ton FIREPROOF SPOUT FOR POURS OD. DGL.
SU901285A1 (en) * 1979-12-25 1982-01-30 Научно-производственное объединение "Тулачермет" Steel-smelting set
JPS5739064A (en) * 1980-08-19 1982-03-04 Toshiba Ceramics Co Ltd Tundish nozzle for continuous casting
AT387039B (en) * 1981-02-05 1988-11-25 Veitscher Magnesitwerke Ag TAPPING DEVICE FOR CONVERTER
JPH02106592U (en) * 1989-02-13 1990-08-24
JPH0518669A (en) * 1991-04-25 1993-01-26 Tokyo Yogyo Co Ltd Terminal brick for hearth tap hole of electric furnace
JPH0539519A (en) * 1991-08-05 1993-02-19 Nkk Corp Steel tapping hole providing slag detector in converter
DE4208520C2 (en) * 1992-03-17 1994-10-27 Didier Werke Ag Tapping tube on a converter or arc furnace
DE19821981B4 (en) * 1998-02-12 2008-08-14 Stilkerieg, Berthold, Dipl.-Ing. Sludge retainer for the tapping channel of a converter with float closure and perforated stone channel of a ladle
JPH11293323A (en) * 1998-04-13 1999-10-26 Shinagawa Refract Co Ltd Sleeve structure of tap hole for converter
DE19925598A1 (en) * 1999-06-04 2000-12-07 Sms Demag Ag Tapping channel for melting furnaces and ladles
US6346212B1 (en) * 2000-04-25 2002-02-12 Pohang Iron & Steel Co., Ltd. Converter
RU2186120C2 (en) * 2000-09-11 2002-07-27 Открытое акционерное общество "Нижнетагильский металлургический комбинат" Hot metal tap hole for blast furnace and tap hole drill
DE10117181C1 (en) * 2001-04-05 2002-10-31 Georgsmarienhuette Gmbh Method and device for preventing slag from flowing along when tapping a molten steel
RU24466U1 (en) * 2002-01-23 2002-08-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Converter for steel smelting
DE102004050701B3 (en) * 2004-10-18 2006-04-06 Refractory Intellectual Property Gmbh & Co. Kg Tapping tube for a metallurgical melting vessel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005118889A2 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2380681A4 (en) * 2009-07-24 2017-08-02 Krosakiharima Corporation Nozzle for discharging molten metal

Also Published As

Publication number Publication date
EG24432A (en) 2009-06-21
JP2008501854A (en) 2008-01-24
US7556765B2 (en) 2009-07-07
EA200602009A1 (en) 2007-06-29
BRPI0511738B1 (en) 2013-09-24
ES2287912T3 (en) 2007-12-16
CN100429323C (en) 2008-10-29
US20070164491A1 (en) 2007-07-19
TW200609357A (en) 2006-03-16
PE20060119A1 (en) 2006-04-02
AU2005250081B2 (en) 2008-01-24
DE502005000895D1 (en) 2007-08-02
AU2005250081A1 (en) 2005-12-15
NO20064992L (en) 2006-10-31
KR20070020275A (en) 2007-02-20
SI1678333T1 (en) 2007-12-31
PL1678333T3 (en) 2007-10-31
AR049903A1 (en) 2006-09-13
EP1678333B1 (en) 2007-06-20
WO2005118889A2 (en) 2005-12-15
ATE365231T1 (en) 2007-07-15
EA008914B1 (en) 2007-08-31
ZA200609209B (en) 2008-06-25
MXPA06013067A (en) 2007-02-14
CA2562334A1 (en) 2005-12-15
CA2562334C (en) 2010-01-26
JP4787244B2 (en) 2011-10-05
TWI294464B (en) 2008-03-11
KR100861849B1 (en) 2008-10-07
DK1678333T3 (en) 2007-09-24
WO2005118889A3 (en) 2006-04-06
DE102004027440B3 (en) 2005-06-16
PT1678333E (en) 2007-08-14
BRPI0511738A (en) 2008-01-08
CN1950523A (en) 2007-04-18

Similar Documents

Publication Publication Date Title
EP3251773B1 (en) Semi-continuous strand casting of a steel bar
EP0035675B2 (en) Method and arrangement for horizontal continuous casting of liquid metals, especially steel
DE2733750C2 (en) Method for adjusting the carbon content of a steel
WO2007057469A1 (en) Method of operating a twin-roll casting machine for casting molten metal into cast strip
DE2428059A1 (en) CONTINUOUS STEEL CASTING PROCESS
EP1678333B1 (en) Tapping tube
DE3049053C2 (en) Method and device for separating slag and for pouring molten steel from a container
DE2442915A1 (en) POUR PIPE WITH CLOSED BOTTOM AND OPPOSITE LATERAL OPENINGS
EP0637477B1 (en) Supplying system in a continuous aluminium casting system
AT517239B1 (en) Plug in cooperation with a bottom pour nozzle in a metallurgical vessel
WO2006136285A2 (en) Stopper for a metallurgical melting pot
WO2016128149A1 (en) Casting system
DE102007042537B4 (en) Dosing furnace and riser for the delivery of molten metal
AT406746B (en) METHOD FOR CONTINUOUS CASTING OF METAL AND CONTINUOUS CASTING MACHINE HERE
EP0920936B1 (en) Mould for continuous casting
DE2841530A1 (en) DEVICE FOR EXTRACTING A METAL STRAND FROM THE CHOCOLATE OF A CONTINUOUS CASTING SYSTEM
WO2010057566A1 (en) Immersion nozzle
DE19606291C5 (en) Mold pipe
EP1103321A1 (en) Configuration of the radii of the strand guiding means in a vertical-curved continuous casting plant
WO1994025204A1 (en) Arrangement for connecting a stopper rod for a metallurgical vessel with a lifting device, suitable stopper rod for the arrangement and process for producing the arrangement
DE4332760A1 (en) Method for the operation of a low-pressure metal-casting apparatus and a low-pressure metal-casting apparatus for this purpose
EP0726113B1 (en) Inflow system for a continuous aluminium casting installation
EP1453626B1 (en) Tundish for production of a metal strip of high purity
EP0166718B1 (en) Method of and installation for continuous casting of metallic melts
EP4374986A1 (en) Continuous casting installation, in particular for casting metallurgical long products, and a casting tube

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060523

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17Q First examination report despatched

Effective date: 20060712

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RAHM, CHRISTIAN

Inventor name: KLIKOVICH, MICHAEL

Inventor name: BERGER, MICHAEL

Inventor name: ZACH, OLIVER

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005000895

Country of ref document: DE

Date of ref document: 20070802

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20070802

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070724

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: GACHNANG AG PATENTANWAELTE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2287912

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E002097

Country of ref document: HU

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070920

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071020

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070620

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070921

26N No opposition filed

Effective date: 20080325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20100426

Year of fee payment: 6

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170424

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170425

Year of fee payment: 13

Ref country code: FR

Payment date: 20170424

Year of fee payment: 13

Ref country code: CZ

Payment date: 20170404

Year of fee payment: 13

Ref country code: RO

Payment date: 20170404

Year of fee payment: 13

Ref country code: CH

Payment date: 20170425

Year of fee payment: 13

Ref country code: SK

Payment date: 20170403

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20170424

Year of fee payment: 13

Ref country code: PT

Payment date: 20170407

Year of fee payment: 13

Ref country code: IT

Payment date: 20170420

Year of fee payment: 13

Ref country code: FI

Payment date: 20170420

Year of fee payment: 13

Ref country code: SI

Payment date: 20170405

Year of fee payment: 13

Ref country code: LU

Payment date: 20170424

Year of fee payment: 13

Ref country code: SE

Payment date: 20170425

Year of fee payment: 13

Ref country code: ES

Payment date: 20170503

Year of fee payment: 13

Ref country code: PL

Payment date: 20170410

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20170331

Year of fee payment: 13

Ref country code: TR

Payment date: 20170406

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180501

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180416

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 2341

Country of ref document: SK

Effective date: 20180416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180417

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180417

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180501

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180416

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180416

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181016

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180416

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180416

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180416

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20181204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180416

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180417

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180416

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180416

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240419

Year of fee payment: 20