EP1631745B1 - Flügelzellenpumpe mit tiefgezogenem stahlblechtopf - Google Patents

Flügelzellenpumpe mit tiefgezogenem stahlblechtopf Download PDF

Info

Publication number
EP1631745B1
EP1631745B1 EP04733242A EP04733242A EP1631745B1 EP 1631745 B1 EP1631745 B1 EP 1631745B1 EP 04733242 A EP04733242 A EP 04733242A EP 04733242 A EP04733242 A EP 04733242A EP 1631745 B1 EP1631745 B1 EP 1631745B1
Authority
EP
European Patent Office
Prior art keywords
pump according
sheet metal
pump
pot
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04733242A
Other languages
English (en)
French (fr)
Other versions
EP1631745A1 (de
Inventor
Heiko Schulz-Andres
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magna Powertrain Hueckeswagen GmbH
Original Assignee
Ixetic Hueckeswagen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ixetic Hueckeswagen GmbH filed Critical Ixetic Hueckeswagen GmbH
Publication of EP1631745A1 publication Critical patent/EP1631745A1/de
Application granted granted Critical
Publication of EP1631745B1 publication Critical patent/EP1631745B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3446Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/20Manufacture essentially without removing material
    • F04C2230/24Manufacture essentially without removing material by extrusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings

Definitions

  • the invention relates to a pump, for example for conveying lubricating oil of an internal combustion engine, in particular a multi-stroke vane pump, wherein the rotation group comprises a rotor with at least radially movable vanes, a Hubkontur on which the wings with their wing heads sealingly slide along, and two axial side covers, as has side plates or housing walls.
  • Such pumps are known. They have in their side plates axial inlet openings and outlet openings, which must be separated according to their pressure ranges, for example by sealing means or the like and therefore cause a large axial length in such vane pumps. Also, the components of the known rotation groups, such as. As side plates made of sintered steel and contour rings made of solid steel or sintered steel, according to thick-walled and thus require both a large radial and axial space.
  • Such a vane pump is disclosed, for example, in Japanese Laid-Open Publication JP57097091 shown.
  • the pump housing parts are made of die-cast and have integrated side plate contours in the housing parts.
  • the contour ring itself is integrated in a disk-shaped die-cast housing part.
  • the publication DE19913632A describes a liquid ring pump whose housing consists of a deep-drawn sheet steel. However, an additional side plate 6 is inserted within the housing.
  • the publication FR-A-2660221 discloses a pump in which the stroke contour and a first axial side plate are represented by a steel sheet pot 6.
  • the pump housing has a simple cylindrical contour and not the special contour necessary especially for a double-stroke vane pump.
  • the sheet metal housing 6 itself is sealed on its open side by a flange 7, which obviously consists of cast material, whereby a relatively large axial space is created here as well.
  • a pump for example for conveying lubricating oil of an internal combustion engine, in particular a multi-stroke vane pump
  • the rotation group comprises a rotor with at least radially movable vanes, a Hubkontur on which the wings with their wing heads sealingly slide, and two axial side covers in which the stroke contour and a first axial side plate are represented by a steel sheet pot and in which a second axial side plate is represented by a sheet steel cover, which is characterized in that the sheet metal lid has an embossed shoulder whose outer contour is the shape having the stroke contour.
  • the metal lid after insertion into the sheet metal cup, the rounding of the sheet metal cup, which are caused by the deep-drawing process, covered and thus produces tight sealing gaps within the rotation group.
  • the metal lid can be produced by fine blanking or fine blanking.
  • a pump according to the invention is characterized in that the suction openings are represented by radial openings in the sheet metal pot.
  • This has the advantage that the rotation group has a narrow construction, since the suction channel can be arranged radially around the sheet metal pot and does not have to be arranged axially on the opposite side of the pressure channel.
  • a pump is preferred in which the outlet openings are represented by axial openings (pressure kidneys) and optionally at least one radial opening in the sheet metal pot.
  • the radial outlet opening can be closed by a temperature switching valve or a pressure switching valve and thus produces a switchable delivery area.
  • a pump according to the invention is characterized in that the temperature switching valve has an overstroke spring. This has the advantage that after closing the radial outlet opening by the temperature switching valve, if a further expansion of a thermal expansion element by increasing the temperature of the lubricating oil sets, the expansion element without deformation or destruction can perform an additional expansion path against the overtravel.
  • the plastic housing is preferably finished sprayed and therefore requires no post-processing. The advantage is that an encapsulated in sheet rotation group is integrated in a plastic housing and so the advantages of the two types of material can be exploited.
  • Another pump according to the invention is characterized in that the axial outlet opening of the switchable delivery area can be closed by a spring-tongue check valve.
  • the shape of the spring tongue check valve the Shape of Hubkonturkurümmung on.
  • the spring tongue check valve is mounted on a pin made of plastic in the plastic housing.
  • the spring tongue check valve is protected by a stroke stop in the plastic housing from overstretching. This design of the spring-tongue check valve has the advantages of being very cost-effective and on the other hand also being space-neutral integrated in the pump.
  • a pump according to the invention is characterized in that the sheet metal pot has a notched or embossed cold-start ring, which in the cold operating state under the wings leads the wings according to the stroke contour to the outside and directs against the stroke contour. Furthermore, a pump is preferred in which the rotor has grooves or depressions for receiving the cold start ring. Also, a pump is preferred in which the sheet metal lid has a notched or embossed cold-start ring.
  • a pump according to the invention is characterized in that the sheet metal lid has embossed impression impression kidneys, that is to say pressure kidneys without passage openings which only effect an axial pressure surface compensation for the rotor in the pressure region.
  • a pump is preferred in which the one or more radial outlet openings of the switchable delivery region open into a channel which opens directly into the intake region of the second, non-switchable delivery region over a short path.
  • FIG. 9 shows the section C-C from FIG. 7.
  • the pump according to the invention is shown in its housing in plan view without cover.
  • the sheet metal pot 1, in which the Hubkontur is shown, contains the other parts of the rotation group such.
  • the rotor 7 has a recess 9, in which z. B. engages the crankshaft of an internal combustion engine and thus drives the lubricating oil pump.
  • the rotation group is arranged with the sheet metal pot 1 in a plastic housing 11 and is closed by the sheet metal lid, not shown here.
  • the completely encased in steel sheet rotation group has the advantage that here do not change the friction pairings.
  • the sheet metal pot 1 is partially surrounded within the plastic housing 11 by a channel 13, which is acted upon by the suction pressure of the pump.
  • a channel 13 which is acted upon by the suction pressure of the pump.
  • Within the rotation group form by the shape of the stroke contour two pressure areas 15.1 and 15.2, in which the cells between wing, rotor, cam and side plates shrink and thus eject the pressure medium, and two suction 17.1 and 17.2, in which enlarge the corresponding cells and suck in the medium.
  • the function of such a double-stroke vane pump is known and need not be explained further here.
  • a temperature switching valve 19 is further arranged, which has a Dehnscherlement within a housing 21 which can press a valve sealing plate 25 against the force of a return spring 27 against the sheet metal pot 1 with temperature increase of the lubricating oil via a pin 23.
  • the ejected from the pressure kidney 15.1 oil thus passes without pressure through the channel 13 to the suction kidney 17.2 of the second pump half and is thus sucked by the pump without much loss.
  • the tin pot 1 has to 17.2 one or more radial openings in the intake of the suction kidney.
  • the suction kidney 17.1 of the first pump part has not visible here radial openings in the tin pot 1, through which 29 can be sucked oil from the suction channel.
  • the suction channel 29 is as well as the suction channel 13 connected to the suction port 31, from which the oil from the engine compartment, such as. B. the oil pan, can be sucked.
  • the oil is then expelled through the lubricating oil pump in the pressure channel 32 and supplied under pressure via the pressure port 34 to the engine.
  • a pressure limiting valve not shown here, is arranged, which opens when the maximum permissible pressure in the pressure region 32 is exceeded and, via the outflow channel 38, supplies the excess oil to the suction region 29.
  • FIG 2 the section B-B of Figure 1 is shown.
  • the sheet metal pot 1 is embedded in the plastic housing 11.
  • the sheet metal pot 1 contains the rotation group and thus, inter alia, the rotor 7 shown here in cross section.
  • the rotation group is closed by a sheet metal cover 40.
  • the stroke contour, as shown in Figure 1 fed directly into the plate, and the bottom plate 42 of the sheet metal cup forms the first axial side plate of the rotation group.
  • the cover 40 has a shoulder 44, which projects into the upper edge of the sheet metal pot 1, which in its outer contour also has the shape of the Hubkontur and thus represents the second axial side plate of the rotation group.
  • a plurality of radial openings 46 and 48 are introduced into the sheet metal pot 1 in the suction region.
  • the intake ports 46 and 48 open into the intake ports 29 and 13, which are shown in Figure 1 in plan view.
  • FIG 3 the design of the sheet metal pot 1 in the plastic housing 11 and the rotor 7 is shown enlarged. It can be seen that the sheet metal pot 1 at its upper end has a rounding 50, which is due to the deep drawing process manufacturing technology.
  • the rotor 7 has on its side surfaces two grooves 52 into which a so-called cold-start ring 54 engages.
  • the cold start ring 54 is notched or stamped out of the sheet metal pot 1 and also has the shape of the stroke contour on a reduced scale.
  • This cold-start ring thus engages within the rotor grooves 52 under the wings and raise them along the contour so that they glide and seal almost at the contour ring, even if the wings are not pressed out by centrifugal forces or by additional pressure forces under the wing.
  • a secure concern of the wing heads on the contour ring is ensured even at cold start and low speeds.
  • the interaction of the sheet metal pot 1 is shown with the sheet metal cover 40 in particular in detail.
  • the rounding 50 is caused by production, but this would be problematic as a sealing surface or running surface for the wings. Therefore, the metal cover 40, which may be made as a flat component with a manufacturing process other than deep drawing, has a sharp-edged deformation of the shoulder 44, which covers the rounding 50 and thus ensures adequate sealing of the rotation group on the top of the rotor 7 and the wing heads ,
  • the wings are housed within the rectangular rotation group space with its side walls and its wing head sufficiently sealed.
  • FIG. 5 shows in cross section the rotation group and the temperature switching valve.
  • the same components are provided with the same reference numerals and will not be explained again here to avoid repetition.
  • the temperature switching valve is extended in this illustration by increased temperature of the lubricating oil and closes with its valve body 25 an opening 56 in the pressure range.
  • This leads to the pressure kidney 15.1 of Figure 1 can not promote in the non-pressurized circulation of the channel 13 and thus via a check valve 64, which will be shown in more detail later, promotes in the pressure channel 66, whereby both pressure kidneys supply the lubricating oil demand of the engine.
  • the temperature switching valve 19 is housed with the housing of Dehnstoff emotionss 21 in a separate cover 62, wherein the Dehnscherlementgeophuse 21 is supported with a so-called over-stroke spring 58 on a web 60 of the lid 62.
  • the overstroke spring 58 secures the expansion element and the housing against overstretching by further increase in temperature and expansion of the expansion element, which works as follows: First, when the temperature increases the expansion element, the actuating rod 23 extend against the force of the spring 27 and thus with the Valve body 25, the pressure port 56 close.
  • the spring 27, which serves as a return spring after cooling for the expansion element and brings the temperature switching valve back into the open position, is surrounded by a spring cup 68, which also serves as a guide for the rod 23 here. If a further expansion of the expansion element now takes place when the temperature switching valve is closed, then the expansion element can deflect against the stop 60 against the force of the overstroke spring 58 and thus avoid destruction of the expansion element or of the housing part supporting the expansion element.
  • the temperature switching valve is in the open, i. shown in the cooled state.
  • the valve closing body 25 has moved away from the radial pressure opening 56 of the sheet metal pot 1, and the pressure oil from the area 15.1 can now flow via the opening 56 into the channel 13 for pressureless circulation up to the suction kidney 17.2 from FIG.
  • the spring cup 68 also serves to guide the actuating pin 23 of the temperature control valve.
  • the return spring 27 has pushed back on the spring cup 68, the actuating pin and the cooled expansion element.
  • the rotation group is removed from the figure 1, so that one can recognize the arrangement of the check valve 64 in an underlying pressure channel 70.
  • the pressure channel 70 and the spring leaf 72 of the check valve 64 are adapted to the stroke contour, so that the spring leaf 72 of the check valve 64 can close the pressure kidney 15.1 of Figure 1.
  • the check valve 64 is mounted by means of a plastic pin 74 in the housing 11 and is fixed by the latter after insertion of the sheet metal pot against the plastic housing.
  • Figure 8 shows the section D-D of Figure 7 and thus the Hubendanschlag 76 of the valve blade 72.
  • Figure 9 shows in section C-C the plastic pin 74 which supports the spring leaf 72 in the plastic housing 11.
  • FIG. 10 shows in cross-section an alternative of the cold-start ring 54.1 to the illustration of the cold-start ring 54 in FIG.
  • the cold start contour 54.1 is pressed out by stamping out of the sheet metal pot 1 and thus engages under the wing 3, which is mounted in the cam ring 7, and thus guides the wing 3 along the stroke contour of the metal cover 1 along.
  • axial and radial openings are provided in the pressure range of the switched stage.
  • the openings in the radial direction with the temperature switching valve or a pressure switching valve are used for the non-pressurized circulation.
  • the oil from the pressure side is flushed out again into the suction chamber for the suction of the next suction stage. Due to the channel guide thus obtained, only small flow losses result by deflection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Electromagnetic Pumps, Or The Like (AREA)

Description

  • Die Erfindung betrifft eine Pumpe, beispielsweise zur Förderung von Schmieröl eines Verbrennungsmotors, insbesondere eine mehrhubige Flügelzellenpumpe, bei welcher die Rotationsgruppe einen Rotor mit zumindest radial beweglichen Flügeln, eine Hubkontur, an welcher die Flügel mit ihren Flügelköpfen dichtend entlang gleiten, und zwei axiale Seitenabdeckungen, wie Seitenplatten oder Gehäusewände aufweist.
  • Derartige Pumpen sind bekannt. Sie weisen in ihren Seitenplatten axiale Einlassöffnungen und Auslassöffnungen auf, welche entsprechend ihren Druckbereichen beispielsweise durch Dichtungseinrichtungen oder ähnliches getrennt sein müssen und deshalb bei derartigen Flügelzellenpumpen eine große axiale Baulänge verursachen. Auch sind die Bauteile der bekannten Rotationsgruppen, wie z. B. Seitenplatten aus Sinterstahl und Konturringe aus massivem Stahl oder Sinterstahl, entsprechend dickwandig und erfordern somit sowohl einen großen radialen als auch axialen Bauraum.
  • Eine derartige Flügelzellenpumpe wird beispielsweise in der japanischen Offenlegungsschrift JP57097091 dargestellt. Die Pumpengehäuseteile sind aus Druckguss gefertigt und haben in den Gehäuseteilen integrierte Seitenplattenkonturen. Der Konturring selbst ist in einem scheibenförmigen Druckgussgehäuseteil integriert.
  • Die Druckschrift DE19913632A beschreibt eine Flüssigkeitsringpumpe, deren Gehäuse aus einem tiefgezogenen Stahlblech besteht. Allerdings wird innerhalb des Gehäuses eine zusätzliche Seitenplatte 6 eingesetzt.
  • Die Druckschrift FR-A-2660221 offenbart eine Pumpe, bei welcher die Hubkontur und eine erste axiale Seitenplatte durch einen Stahlblechtopf 6 dargestellt sind. Das Pumpengehäuse hat allerdings eine einfache zylinderförmige Kontur und nicht die speziell bei einer doppelhubigen Flügelzellenpumpe notwendige Sonderkontur. Das Blechgehäuse 6 selber wird auf seiner offenen Seite durch einen offensichtlich aus Gussmaterial bestehenden Flansch 7 abgedichtet, wodurch auch hier ein relativ großer axialer Bauraum entsteht.
  • Es ist also Aufgabe der Erfindung, eine Pumpe darzustellen, welche diese Nachteile nicht aufweist.
  • Die Aufgabe wird gelöst durch eine Pumpe, beispielsweise zur Förderung von Schmieröl eines Verbrennungsmotors, insbesondere eine mehrhubige Flügelzellenpumpe, bei welcher die Rotationsgruppe einen Rotor mit zumindest radial beweglichen Flügeln, eine Hubkontur, an welcher die Flügel mit ihren Flügelköpfen dichtend entlanggleiten, und zwei axiale Seitenabdeckungen, wie Seitenplatten oder Gehäusewände aufweist, wobei die Hubkontur und eine erste axiale Seitenplatte durch einen Stahlblechtopf dargestellt sind und bei welcher eine zweite axiale Seitenplatte durch einen Stahlblechdeckel dargestellt ist, welche sich dadurch auszeichnet, dass der Blechdeckel einen eingeprägten Absatz aufweist, dessen Außenkontur die Form der Hubkontur aufweist. Das hat den Vorteil, dass der Blechdeckel nach Einsetzen in den Blechtopf die Abrundungen des Blechtopfes, welche durch den Tiefziehvorgang verursacht sind, überdeckt und damit enge Dichtspalte innerhalb der Rotationsgruppe herstellt. Erfindungsgemäß kann der Blechdeckel durch Feinstanzen oder Feinschneiden herstellbar sein.
  • Eine erfindungsgemäße Pumpe zeichnet sich dadurch aus, dass die Ansaugöffnungen durch radiale Öffnungen im Blechtopf dargestellt sind. Das hat den Vorteil, dass die Rotationsgruppe eine schmale Bauweise aufweist, da der Saugkanal radial um den Blechtopf angeordnet sein kann und nicht axial auf der gegenüberliegenden Seite des Druckkanales angeordnet werden muss.
  • Auch wird eine Pumpe bevorzugt, bei welcher die Auslassöffnungen durch axiale Öffnungen (Drucknieren) und gegebenenfalls mindestens eine radiale Öffnung im Blechtopf dargestellt sind. Erfindungsgemäß ist die radiale Auslassöffnung durch ein Temperaturschaltventil oder ein Druckschaltventil verschließbar und stellt somit einen schaltbaren Förderbereich her. Das hat den Vorteil, dass je nach temperaturabhängigem oder druckabhängigem Schmierölbedarf des Verbrennungsmotors die Pumpe mit beiden Förderbereichen Drucköl fördert oder nur mit einem Förderbereich Drucköl fördert und der zweite Förderbereich ohne Druckaufbau mitläuft, wodurch sich eine beträchtliche Leistungseinsparung ergeben kann.
  • Eine erfindungsgemäße Pumpe zeichnet sich dadurch aus, dass das Temperaturschaltventil eine Überhubfeder aufweist. Das hat den Vorteil, dass nach Verschließen der radialen Auslassöffnung durch das Temperaturschaltventil, wenn sich eine weitere Ausdehnung eines Wärmeausdehnungselements durch Temperaturerhöhung des Schmieröls einstellt, das Ausdehnungselement ohne Verformung oder Zerstörung einen zusätzlichen Ausdehnungsweg gegen die Überhubfeder vollziehen kann.
  • Bevorzugt wird eine Pumpe, bei welcher der Blechtopf der Rotationsgruppe und gegebenenfalls das Temperaturschaltventil oder Druckschaltventil in ein Kunststoffgehäuse integriert sind. Das Kunststoffgehäuse ist vorzugsweise fertig gespritzt und bedarf daher keiner Nachbearbeitung. Der Vorteil besteht darin, dass eine in Blech gekapselte Rotationsgruppe in einem Kunststoffgehäuse integriert ist und so die Vorteile der beiden Materialarten ausgenutzt werden können.
  • Eine weitere erfindungsgemäße Pumpe zeichnet sich dadurch aus, dass die axiale Auslassöffnung des schaltbaren Förderbereiches durch ein Federzungenrückschlagventil verschließbar ist. Dabei weist die Form des Federzungenrückschlagventils die Form der Hubkonturkrümmung auf. Weiterhin ist das Federzungenrückschlagventil auf einem Zapfen aus Kunststoff im Kunststoffgehäuse gelagert. Auch wird das Federzungenrückschlagventil durch einen Hubanschlag im Kunststoffgehäuse vor Überdehnungen geschützt. Diese Ausbildung des Federzungenrückschlagventils hat die Vorteile, zum einen sehr kostengünstig und zum anderen aber auch bauraumneutral in der Pumpe integriert zu sein.
  • Eine erfindungsgemäße Pumpe zeichnet sich dadurch aus, dass der Blechtopf einen ausgeklinkten oder eingeprägten Kaltstartring aufweist, welcher im kalten Betriebszustand unter den Flügeln die Flügel entsprechend der Hubkontur nach außen führt und gegen die Hubkontur lenkt. Weiterhin wird eine Pumpe bevorzugt, bei welcher der Rotor Nuten oder Einsenkungen zur Aufnahme des Kaltstartringes aufweist. Auch wird eine Pumpe bevorzugt, bei welcher der Blechdeckel einen ausgeklinkten oder eingeprägten Kaltstartring aufweist.
  • Eine erfindungsgemäße Pumpe zeichnet sich dadurch aus, dass der Blechdeckel eingeprägte Scheindrucknieren aufweist, also Drucknieren ohne Durchgangsöffnungen, die nur eine axiale Druckflächenkompensation für den Rotor im Druckbereich bewirken.
  • Bevorzugt wird weiterhin eine Pumpe, bei welcher der oder die radialen Auslassöffnungen des schaltbaren Förderbereiches in einen Kanal münden, der direkt auf kurzem Weg in den Ansaugbereich des zweiten, nicht schaltbaren Förderbereichs mündet. Das hat den Vorteil, dass geringe Strömungsverluste und eine günstige Kanalführung zu einem energiearmen drucklosen Umlauf des schaltbaren Förderbereichs führen.
  • Die Erfindung wird nun anhand der Figuren beschrieben.
    • Figur 1 zeigt eine Aufsicht auf die geöffnete Pumpe.
    • Figur 2 zeigt den Schnitt B-B aus Figur 1.
    • Figur 3 zeigt im Querschnitt den Blechtopf und den Rotor.
    • Figur 4 zeigt ein Detail des Blechtopfes und des Blechdeckels.
    • Figur 5 zeigt im Querschnitt die Rotationsgruppe und das Temperaturschaltventil.
    • Figur 6 zeigt im Querschnitt das Temperaturschaltventil im geöffneten Zustand.
    • Figur 7 zeigt das Pumpengehäuse mit dem Rückschlagventil.
    • Figur 8 zeigt den Schnitt D-D aus Figur 7.
    • Figur 9 zeigt im Querschnitt eine Ausführung des Kaltstartrings
    • Figur 10 zeigt im Querschnitt eine weitere Ausführung des Kaltstartrings
  • Figur 9 zeigt den Schnitt C-C aus Figur 7.
  • In Figur 1 ist die erfindungsgemäße Pumpe in ihrem Gehäuse in Aufsicht ohne Abdeckung dargestellt. Der Blechtopf 1, in welchem die Hubkontur abgebildet ist, enthält die anderen Teile der Rotationsgruppe wie z. B. die Flügel 3, welche in radialen Schlitzen 5 verschieblich im Rotor 7 angeordnet sind. Der Rotor 7 hat eine Ausnehmung 9, in welche z. B. die Kurbelwelle eines Verbrennungsmotors eingreift und damit die Schmierölpumpe antreibt. Man spricht in diesem Fall auch von einer so genannten Wellenhalspumpe. Die Rotationsgruppe ist mit dem Blechtopf 1 in einem Kunststoffgehäuse 11 angeordnet und wird durch den hier nicht dargestellten Blechdeckel verschlossen. Die komplett in Stahlblech gekapselte Rotationsgruppe hat damit den Vorteil, dass sich hier die Reibpaarungen nicht ändern. Es gibt keine gleitenden Bewegungen zu Kunststoffteilen, so dass ein verschleißarmer Betrieb möglich ist. Der Blechtopf 1 wird innerhalb des Kunststoffgehäuses 11 teilweise von einem Kanal 13 umgeben, welcher mit dem Ansaugdruck der Pumpe beaufschlagt ist. Innerhalb der Rotationsgruppe bilden sich durch die Form der Hubkontur zwei Druckbereiche 15.1 und 15.2, in denen sich die Zellen zwischen Flügel, Rotor, Hubring und Seitenplatten verkleinern und damit das Druckmedium ausstoßen, und zwei Ansaugbereiche 17.1 und 17.2, in denen sich die entsprechenden Zellen vergrößern und damit Medium ansaugen. Die Funktion einer derartigen doppelhubigen Flügelzellenpumpe ist bekannt und muss hier nicht weiter erläutert werden. Innerhalb des Gehäuses ist weiterhin ein Temperaturschaltventil 19 angeordnet, welches innerhalb eines Gehäuses 21 ein Dehnstoffelement besitzt, welches bei Temperaturerhöhung des Schmieröls über einen Stift 23 eine Ventildichtplatte 25 gegen die Kraft einer Rückholfeder 27 gegen den Blechtopf 1 pressen kann. Im Blechtopf 1 ist in dieser Position, hier nicht dargestellt, eine radiale Öffnung, aus der die Druckniere 15.1 Drucköl in den Ansaugkanal 13 fördern kann, so lange das Temperaturschaltventil in diesem geöffneten Zustand verharrt. Das von der Druckniere 15.1 ausgestoßene Öl gelangt damit drucklos über den Kanal 13 bis zur Saugniere 17.2 der zweiten Pumpenhälfte und wird somit ohne große Verluste von der Pumpe angesaugt. Der Blechtopf 1 besitzt dazu im Ansaugbereich der Saugniere 17.2 eine oder mehrere radiale Öffnungen. Ebenso besitzt die Saugniere 17.1 des ersten Pumpenteils hier nicht sichtbar radiale Öffnungen im Blechtopf 1, durch welche aus dem Saugkanal 29 Öl angesaugt werden kann. Der Saugkanal 29 ist ebenso wie der Saugkanal 13 mit dem Ansauganschluss 31 verbunden, von welchem das Öl aus dem Verbrennungsmotorbereich, wie z. B. der Ölwanne, angesaugt werden kann. Das Öl wird dann durch die Schmierölpumpe im Druckkanal 32 ausgestoßen und unter Druck über den Druckanschluss 34 dem Verbrennungsmotor zugeführt. Im Bereich 36 des Kunststoffgehäuses ist ein hier nicht dargestelltes Druckbegrenzungsventil angeordnet, welches bei Überschreiten des maximal zulässigen Druckes im Druckbereich 32 öffnet und über den Abströmkanal 38 das überflüssige Öl wiederum dem Ansaugbereich 29 zuführt.
  • In Figur 2 ist der Schnitt B-B aus Figur 1 dargestellt. Der Blechtopf 1 ist im Kunststoffgehäuse 11 eingebettet. Der Blechtopf 1 enthält die Rotationsgruppe und damit unter anderem den hier im Querschnitt dargestellten Rotor 7. Die Rotationsgruppe wird durch einen Blechdeckel 40 abgeschlossen. Bei dem Blechtopf 1 ist die Hubkontur, wie in Figur 1 dargestellt, direkt ins Blech eingezogen, und der Blechboden 42 des Blechtopfes bildet die erste axiale Seitenplatte der Rotationsgruppe. Der Deckel 40 besitzt einen Absatz 44, der in den oberen Rand des Blechtopfes 1 hineinragt, der in seiner Außenkontur ebenfalls die Form der Hubkontur hat und der somit die zweite axiale Seitenplatte der Rotationsgruppe darstellt. Zur Verbesserung der Ansaugfähigkeit der Pumpe sind im Saugbereich mehrere radiale Öffnungen 46 und 48 in den Blechtopf 1 eingebracht. Die Ansaugöffnungen 46 und 48 münden dabei in die Ansaugkanäle 29 und 13, welche in Figur 1 in Aufsicht dargestellt sind.
  • In Figur 3 ist vergrößert die Gestaltung des Blechtopfes 1 im Kunststoffgehäuse 11 und der Rotor 7 dargestellt. Man erkennt, dass der Blechtopf 1 an seinem oberen Ende eine Abrundung 50 aufweist, welche durch den Tiefziehvorgang fertigungstechnisch bedingt ist. Der Rotor 7 weist an seinen Seitenflächen zwei Nuten 52 auf, in die ein so genannter Kaltstartring 54 eingreift. Der Kaltstartring 54 ist aus dem Blechtopf 1 ausgeklinkt oder eingeprägt und besitzt in verkleinertem Maßstab ebenfalls die Form der Hubkontur. Dieser Kaltstartring greift damit innerhalb der Rotornuten 52 unter die Flügel und hebt sie entlang des Konturverlaufes soweit an, dass sie annähernd am Konturring gleiten und abdichten, auch wenn die Flügel nicht durch Fliehkräfte oder durch zusätzliche Druckkräfte unter dem Flügel herausgepresst werden. Somit ist schon bei Kaltstart und niedrigen Drehzahlen ein sicheres Anliegen der Flügelköpfe am Konturring gewährleistet.
  • In Figur 4 ist insbesondere im Detail das Zusammenspiel des Blechtopfes 1 mit dem Blechdeckel 40 dargestellt. Fertigungsbedingt ist durch den Tiefziehvorgang beim Blechtopf 1 die Abrundung 50 verursacht, welche aber als Abdichtfläche oder Lauffläche für die Flügel problematisch wäre. Daher besitzt der Blechdeckel 40, der als flaches Bauteil mit einem anderen Fertigungsverfahren als dem Tiefziehen hergestellt sein kann, eine scharfkantigere Umformung des Absatzes 44, welche die Abrundung 50 überdeckt und damit eine hinreichende Abdichtung der Rotationsgruppe auf der Oberseite des Rotors 7 und den Flügelköpfen gewährleistet. Damit sind auch die Flügel innerhalb des rechtwinkligen Rotationsgruppenraumes mit ihren Seitenwänden und ihrem Flügelkopf hinreichend dichtend untergebracht.
  • In Abbildung 5 ist im Querschnitt die Rotationsgruppe und das Temperaturschaltventil dargestellt. Gleiche Bauteile sind mit gleichen Bezugszeichen versehen und sollen hier zur Vermeidung von Wiederholungen nicht noch einmal erläutert werden. Das Temperaturschaltventil ist in dieser Darstellung durch erhöhte Temperatur des Schmieröls ausgefahren und verschließt mit seinem Ventilkörper 25 eine Öffnung 56 im Druckbereich. Das führt dazu, dass die Druckniere 15.1 aus Figur 1 nicht in den drucklosen Umlauf des Kanals 13 fördern kann und damit über ein Rückschlagventil 64, welches später noch genauer dargestellt wird, in den Druckkanal 66 fördert, wodurch beide Drucknieren den Schmierölbedarf des Verbrennungsmotors versorgen. Das Temperaturschaltventil 19 ist mit dem Gehäuse des Dehnstoffkörpers 21 in einem separaten Deckel 62 untergebracht, wobei sich das Dehnstoffelementgehäuse 21 mit einer so genannten Überhubfeder 58 an einem Steg 60 des Deckels 62 abstützt. Die Überhubfeder 58 sichert das Dehnstoffelement und das Gehäuse gegen Überdehnung durch weitere Temperaturerhöhung und Ausdehnung des Dehnstoffelementes, was folgendermaßen funktioniert: Zunächst wird bei Temperaturerhöhung das Dehnstoffelement die Betätigungsstange 23 ausfahren gegen die Kraft der Feder 27 und damit mit dem Ventilkörper 25 die Drucköffnung 56 verschließen. Die Feder 27, welche als Rückstellfeder nach dem Abkühlen für das Dehnstoffelement dient und das Temperaturschaltventil wieder in Öffnungsstellung bringt, ist von einem Federtopf 68 umgeben, der hier gleichzeitig als Führung für die Stange 23 dient. Findet bei geschlossenem Temperaturschaltventil jetzt eine weitere Ausdehnung des Dehnstoffelementes statt, so kann das Dehnstoffelement gegen die Kraft der Überhubfeder 58 nach hinten gegen den Anschlag 60 ausweichen und somit Zerstörungen des Dehnstoffelementes oder des das Dehnstoffelement abstützenden Gehäuseteils vermeiden.
  • In Abbildung 6 ist das Temperaturschaltventil im geöffneten, d.h. im abgekühlten Zustand dargestellt. Der Ventilschließkörper 25 hat sich von der radialen Drucköffnung 56 des Blechtopfes 1 entfernt, und das Drucköl aus dem Bereich 15.1 kann über die Öffnung 56 nun in den Kanal 13 zum drucklosen Umlauf bis zur Ansaugniere 17.2 aus Figur 1 strömen. Der Federtopf 68 dient auch hier zur Führung des Betätigungsstiftes 23 des Temperaturschaltventils. Die Rückstellfeder 27 hat über den Federtopf 68 den Betätigungsstift und das abgekühlte Dehnstoffelement zurückgedrückt.
  • In Figur 7 ist die Rotationsgruppe aus der Figur 1 entfernt, so dass man in einem darunterliegenden Druckkanal 70 die Anordnung des Rückschlagventils 64 erkennen kann. Der Druckkanal 70 und das Federblatt 72 des Rückschlagventils 64 sind der Hubkontur angepasst, so dass das Federblatt 72 des Rückschlagventils 64 die Druckniere 15.1 aus Figur 1 verschließen kann. Das Rückschlagventil 64 ist mittels eines Kunststoffstiftes 74 im Gehäuse 11 gelagert und wird nach Einsetzen des Blechtopfes durch diesen gegen das Kunststoffgehäuse fixiert.
  • Figur 8 zeigt den Schnitt D-D aus Figur 7 und damit den Hubendanschlag 76 des Ventilblattes 72. Figur 9 zeigt im Schnitt C-C den Kunststoffstift 74, welcher das Federblatt 72 im Kunststoffgehäuse 11 lagert.
  • In Figur 10 ist im Querschnitt eine Alternative des Kaltstartrings 54.1 zu der Darstellung des Kaltstartrings 54 in Figur 3 dargestellt. Die Kaltstartkontur 54.1 ist durch Ausprägung aus dem Blechtopf 1 heraus gedrückt und greift somit unter den Flügel 3, welcher im Hubring 7 gelagert ist, und führt den Flügel 3 somit an der Hubkontur des Blechdeckels 1 entlang.
  • In Figur 11 ist eine weitere Variante der Kaltstartkontur 54.2 dargestellt, welche durch Materialverdrängung aus dem Blechtopf 1 hergestellt ist und somit auch hier den Flügel 3 gegen die Kontur führen kann.
  • Bei der Montage wird der Blechdeckel 40 auf den Blechtopf 1 (vgl. Figur 2), aufgeschoben und anschließend durch eine Schweißoperation befestigt. Dieses Vorgehen bietet mehrere Vorteile:
    1. 1. Die axialen Toleranzen der Topftiefe können eliminiert werden, wenn das Aufschieben des Deckels 40 weggesteuert erfolgt.
    2. 2. Durch den Tiefziehvorgang am Blechtopf 1 entsteht beim Übergang von der Hubkontur zum Blechflansch ein Radius 50 (vgl. Figur 3), der für die Volumetrie der Rotationsgruppe schädlich wäre. Bei Aufschieben auf den Absatz 44 des Deckels 40 wird der Radius 50 aus dem Funktionsbereich der Rotationsgruppe entfernt. Ein Vorteil der gekapselten Rotationsgruppe ist, dass nun alle wichtigen Konturen für die Steuerzeiten integriert sind und die Positionierung der kompletten Rotationsgruppe im Kunststoffgehäuse 11 größere Toleranzen zulassen kann.
  • Im Druckbereich der geschalteten Stufe sind axiale und radiale Öffnungen vorgesehen. Die Öffnungen in radialer Richtung mit dem Temperaturschaltventil oder einem Druckschaltventil werden für den drucklosen Umlauf benutzt. Dabei wird das Öl aus der Druckseite wieder in den Saugraum für die Ansaugung der nächsten Saugstufe herausgespült. Aufgrund der so gewonnenen Kanalführung ergeben sich nur geringe Strömungsverluste durch Umlenkung.
  • Der große Vorteil dieses Pumpenaufbaus mit entsprechenden radialen und axialen Öffnungen sind die Reduzierung des benötigten Bauraums sowie die Kostensenkung.

Claims (18)

  1. Pumpe, beispielsweise zur Förderung von Schmieröl eines Verbrennungsmotors, insbesondere mehrhubige Flügelzellenpumpe, bei welcher die Rotationsgruppe einen Rotor (7) mit zumindest radial beweglichen Flügeln (3), eine Hubkontur, an welcher die Flügel (3) mit ihren Flügelköpfen dichtend entlang gleiten, und zwei axiale Seitenabdeckungen, wie Seitenplatten oder Gehäusewände aufweist, wobei die Hubkontur und eine erste axiale Seitenplatte durch einen Stahlblechtopf (1) dargestellt sind und eine zweite axiale Seitenplatte durch einen Stahlblechdeckel (40) dargestellt ist, dadurch gekennzeichnet, dass der Blechdeckel (40) einen eingeprägten Absatz (44) aufweist, dessen Außenkontur die Form der Hubkontur aufweist.
  2. Pumpe nach Anspruch 1, dadurch gekennzeichnet, dass der Blechtopf (1) durch Tiefziehen herstellbar ist.
  3. Pumpe nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass der Blechdeckel (40) durch Feinstanzen oder Feinschneiden herstellbar ist.
  4. Pumpe nach Anspruch 1 bis Anspruch 3, dadurch gekennzeichnet, dass die Ansaugöffnungen durch radiale Öffnungen (46, 48) im Blechtopf (1) dargestellt sind.
  5. Pumpe nach Anspruch 1 bis Anspruch 4, dadurch gekennzeichnet, dass die Auslassöffnungen durch axiale Öffnungen (15.1, 15.2) (Drucknieren) und gegebenenfalls mindestens eine radiale Öffnung (56) im Blechtopf dargestellt sind.
  6. Pumpe nach Anspruch 5, dadurch gekennzeichnet, dass die radiale Auslassöffnung (56) durch ein Temperaturschaltventil (19) oder ein Druckschaltventil verschließbar ist und somit einen schaltbaren Förderbereich herstellt.
  7. Pumpe nach Anspruch 6, dadurch gekennzeichnet, dass das Temperaturschaltventil (19) eine Überhubfeder (58) aufweist.
  8. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Blechtopf (19) der Rotationsgruppe und gegebenenfalls das Temperaturschaltventil (19) oder Druckschaltventil in ein Kunststoffgehäuse (11) integriert sind.
  9. Pumpe nach Anspruch 8, dadurch gekennzeichnet, dass das Kunststoffgehäuse (11) fertig gespritzt ist und daher keiner Nachbearbeitung bedarf.
  10. Pumpe nach Anspruch 6 bis Anspruch 9, dadurch gekennzeichnet, dass die axiale Auslassöffnung (15.1) des schaltbaren Förderbereichs durch ein Federzungenrückschlagventil (64) verschließbar ist.
  11. Pumpe nach Anspruch 10, dadurch gekennzeichnet, dass das Federzungenrückschlagventil die Form der Hubkonturkrümmung aufweist.
  12. Pumpe nach Anspruch 10 oder Anspruch 11, dadurch gekennzeichnet, dass das Federzungenrückschlagventil (64) auf einem Zapfen (74) aus Kunststoff gelagert ist.
  13. Pumpe nach Anspruch 10 bis Anspruch 12, dadurch gekennzeichnet, dass dem Federzungenrückschlagventil (64) ein Hubanschlag (76) im Kunststoffgehäuse (11) zugeordnet ist.
  14. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Blechtopf (1) einen ausgeklinkten oder eingeprägten Kaltstartring (54, 54.1, 54.2) aufweist.
  15. Pumpe nach Anspruch 14, dadurch gekennzeichnet, dass der Rotor (7) Nuten oder Einsenkungen zur Aufnahme des Kaltstartringes (54, 54.1, 54.2) aufweist.
  16. Pumpe nach Anspruch 14 oder Anspruch 15, dadurch gekennzeichnet, dass der Blechdeckel (40) einen ausgeklinkten oder eingeprägten Kaltstartring aufweist.
  17. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Blechdeckel (40) eingeprägte Scheindrucknieren aufweist.
  18. Pumpe nach einem der Ansprüche 6 bis 17, dadurch gekennzeichnet, dass die radiale Auslassöffnung (56) des schaltbaren Förderbereichs in einen Kanal (13) mündet, der direkt auf kurzem Weg in den Ansaugbereich (17.2) des zweiten, nicht schaltbaren Förderbereichs mündet.
EP04733242A 2003-05-26 2004-05-15 Flügelzellenpumpe mit tiefgezogenem stahlblechtopf Expired - Lifetime EP1631745B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10323572 2003-05-26
PCT/DE2004/001032 WO2004109111A1 (de) 2003-05-26 2004-05-15 Flügelzellenpumpe mit tiefgezogenem stahlblechtopf

Publications (2)

Publication Number Publication Date
EP1631745A1 EP1631745A1 (de) 2006-03-08
EP1631745B1 true EP1631745B1 (de) 2007-11-07

Family

ID=33494749

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04733242A Expired - Lifetime EP1631745B1 (de) 2003-05-26 2004-05-15 Flügelzellenpumpe mit tiefgezogenem stahlblechtopf

Country Status (8)

Country Link
US (1) US20070148011A1 (de)
EP (1) EP1631745B1 (de)
JP (1) JP2007500309A (de)
KR (1) KR20060019557A (de)
CN (1) CN100408858C (de)
AT (1) ATE377710T1 (de)
DE (1) DE502004005440D1 (de)
WO (1) WO2004109111A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009109282A1 (de) * 2008-03-01 2009-09-11 Ixetic Hückeswagen Gmbh Vakuumpumpengehäusedeckel
DE102009055945B4 (de) * 2009-11-26 2018-10-04 HELLA GmbH & Co. KGaA Flügelzellenpumpe
DE102013213051A1 (de) * 2013-06-18 2014-12-18 Continental Automotive Gmbh Fördereinrichtung zur Förderung von Öl aus einem Vorratsbehälter zu einem Getriebe eines Kraftfahrzeuges
DE102014102643A1 (de) * 2014-02-27 2015-08-27 Schwäbische Hüttenwerke Automotive GmbH Rotationspumpe mit Kunststoffverbundstruktur
EP3393702A1 (de) * 2015-12-23 2018-10-31 SABIC Global Technologies B.V. Hybride metall-kunststoffteile und verfahren zur herstellung davon
CN105673485B (zh) * 2016-01-15 2017-09-19 沈阳天朗艾尔压缩机有限公司 一种滑片式空气压缩机
US11396811B2 (en) * 2017-12-13 2022-07-26 Pierburg Pump Technology Gmbh Variable lubricant vane pump
CN117759534B (zh) * 2024-02-22 2024-04-26 苏州英磁新能源科技有限公司 一种自适应可变容量叶片泵

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US940246A (en) * 1908-08-24 1909-11-16 John C Hagerty Rotary engine.
DE2221541A1 (de) * 1972-05-03 1973-11-22 Bosch Gmbh Robert Fluegelzellenkompressor
JPS5797091A (en) * 1981-10-01 1982-06-16 Kayaba Ind Co Ltd Vane pump
SE457010B (sv) * 1983-09-17 1988-11-21 Glyco Antriebstechnik Gmbh Reglerbar smoerjmedelspump
US4656710A (en) * 1985-08-19 1987-04-14 Noman Maciejewski Method of making a hydraulic pump housing
FR2660221B1 (fr) * 1990-03-31 1995-07-13 Barmac Luk Automobiltechnik Gm Procede de fabrication d'un carter en tole par emboutissage profond.
US5310326A (en) * 1992-09-14 1994-05-10 Mainstream Engineering Corporation Rotary compressor with improved bore configuration and lubrication system
CN2148837Y (zh) * 1992-10-07 1993-12-08 大连液压件厂 转向助力泵
DE4331489A1 (de) * 1993-09-16 1995-03-23 Sihi Gmbh & Co Kg Flüssigkeitsringgaspumpe in Blockbauweise
CA2131081C (en) * 1993-09-16 2004-01-20 Udo Segebrecht Liquid ring gas pump
US5642991A (en) * 1996-03-11 1997-07-01 Procon Products Sliding vane pump with plastic housing
DE19927400A1 (de) * 1998-06-24 1999-12-30 Luk Fahrzeug Hydraulik Hydraulische Fördereinrichtung
DE19913632C2 (de) * 1999-03-25 2001-02-08 Siemens Ag Flüssigkeitsringpumpe

Also Published As

Publication number Publication date
ATE377710T1 (de) 2007-11-15
US20070148011A1 (en) 2007-06-28
WO2004109111A1 (de) 2004-12-16
KR20060019557A (ko) 2006-03-03
EP1631745A1 (de) 2006-03-08
DE502004005440D1 (de) 2007-12-20
CN1795333A (zh) 2006-06-28
JP2007500309A (ja) 2007-01-11
CN100408858C (zh) 2008-08-06

Similar Documents

Publication Publication Date Title
EP2690261B1 (de) Nockenwellen-Phasensteller mit Dichtungshülse
DE102008051145A1 (de) Nockenwellenversteller mit Riementrieb
DE10161131B4 (de) Flügelpumpe veränderlicher Verdrängung
EP1749145B1 (de) Spaltverluststromsteuerung einer drehkolben- zahnradmaschine
DE102012201615A1 (de) variable kombinierte Öl-Vakuum-Verdrängerpumpe
EP2754896B1 (de) Gaspumpe mit Druckentlastung zur Reduzierung des Anfahrdrehmoments
DE102007032103B4 (de) Pumpeneinheit mit einer Hauptpumpe und einer in ihrem Fördervolumen verstellbaren Ladepumpe
EP3333381B1 (de) Hydraulikvorrichtung mit dichtelement
EP1631745B1 (de) Flügelzellenpumpe mit tiefgezogenem stahlblechtopf
DE102009011983A1 (de) Hydraulikeinheit für einen Zylinderkopf einer Brennkraftmaschine mit hydraulisch variablem Gaswechselventiltrieb
EP1461533B1 (de) Pumpe
DE10223466A1 (de) Pumpe
DE60301312T2 (de) Treibstoffpumpenanordnung
WO2020136269A1 (de) Rotationspumpe mit axialer kompensation, auslassdichtung für eine pumpe sowie vormontierte pumpeneinheit
DE19927400A1 (de) Hydraulische Fördereinrichtung
DE3303247C2 (de) Flügelzellenverdichter
EP2539555B1 (de) Vorrichtung zur variablen einstellung der steuerzeiten von gaswechselventilen einer brennkraftmaschine
DE102005017834B4 (de) Zellenpumpe
DE19917951A1 (de) Verbrennungsmotor, flachliegend und mit einander gegenüberliegenden Zylindern
EP3903006A1 (de) Rotationspumpe mit axialer kompensation, auslassdichtung für eine pumpe sowie vormontierte pumpeneinheit
EP3903005A1 (de) Rotationspumpe mit axialer kompensation, auslassdichtung für eine pumpe sowie vormontierte pumpeneinheit
DE3444392C2 (de)
WO1995029324A1 (de) Motorbremse für eine mehrzylindrige brennkraftmaschine
DE102014201572A1 (de) Expansionsmaschine
EP3536961B1 (de) Dichtelement vakuumpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20060710

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20060710

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IXETIC HUECKESWAGEN GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004005440

Country of ref document: DE

Date of ref document: 20071220

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080207

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080218

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071107

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071107

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071107

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080207

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071107

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071107

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071107

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080407

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

26N No opposition filed

Effective date: 20080808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071107

BERE Be: lapsed

Owner name: IXETIC HUCKESWAGEN G.M.B.H.

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080208

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080515

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071107

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004005440

Country of ref document: DE

Representative=s name: RAUSCH, GABRIELE, DIPL.-PHYS. DR.RER.NAT., DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004005440

Country of ref document: DE

Owner name: MAGNA POWERTRAIN HUECKESWAGEN GMBH, DE

Free format text: FORMER OWNER: IXETIC HUECKESWAGEN GMBH, 42499 HUECKESWAGEN, DE

Effective date: 20140409

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004005440

Country of ref document: DE

Representative=s name: RAUSCH, GABRIELE, DIPL.-PHYS. DR.RER.NAT., DE

Effective date: 20140409

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140527

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140603

Year of fee payment: 11

Ref country code: FR

Payment date: 20140522

Year of fee payment: 11

Ref country code: IT

Payment date: 20140527

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004005440

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150515

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601