EP1590303A1 - Procede de production de verre de quartz synthetique - Google Patents

Procede de production de verre de quartz synthetique

Info

Publication number
EP1590303A1
EP1590303A1 EP04703768A EP04703768A EP1590303A1 EP 1590303 A1 EP1590303 A1 EP 1590303A1 EP 04703768 A EP04703768 A EP 04703768A EP 04703768 A EP04703768 A EP 04703768A EP 1590303 A1 EP1590303 A1 EP 1590303A1
Authority
EP
European Patent Office
Prior art keywords
silicon compound
mixture
sio
quartz glass
oligomeric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04703768A
Other languages
German (de)
English (en)
Inventor
Martin Trommer
Stefan Ochs
Jürgen Schäfer
Bodo KÜHN
Bruno Uebbing
Heinz Bauscher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Quarzglas GmbH and Co KG
Original Assignee
Heraeus Quarzglas GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Quarzglas GmbH and Co KG filed Critical Heraeus Quarzglas GmbH and Co KG
Publication of EP1590303A1 publication Critical patent/EP1590303A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/30For glass precursor of non-standard type, e.g. solid SiH3F
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/30For glass precursor of non-standard type, e.g. solid SiH3F
    • C03B2207/32Non-halide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/30For glass precursor of non-standard type, e.g. solid SiH3F
    • C03B2207/34Liquid, e.g. mist or aerosol

Definitions

  • the invention relates to a method for producing synthetic quartz glass, which comprises the following steps:
  • Such processes for the production of synthetic quartz glass by oxidation or by flame hydrolysis of silicon-containing starting substances are known under the names VAD process (Vapor Phase Axial Deposition), OVD process (Outside Vapor Phase Deposition), MCVD process (ivlodified Chemical Vapor Deposition) and PCVD process (or also PECVD method; Plasma Enhanced Chemical Vapor Deposition) is generally known.
  • VAD process Vapor Phase Axial Deposition
  • OVD process Outside Vapor Phase Deposition
  • MCVD process ivlodified Chemical Vapor Deposition
  • PCVD process or also PECVD method; Plasma Enhanced Chemical Vapor Deposition
  • SiO 2 particles are generally generated by means of a burner and deposited in layers on a carrier which moves relative to a reaction zone. If the temperature in the region of the carrier surface is sufficiently high, the SiO 2 particles are immediately vitrified (“direct vitrification”).
  • quartz glass blanks are obtained in the form of bars, blocks, tubes or plates, which are further processed into optical components, such as in particular lenses, windows, filters, mask plates, for use in microlithography.
  • SiCI 4 silicon tetrachloride
  • a large number of other organosilicon compounds have also been proposed, from which SiO 2 can be formed by hydrolysis or by oxidation.
  • suitable starting substances and a literature reference are: monosilane (SiH 4 ; DE-C 38 35 208), alkoxysilanes (R 4 - n Si (OH) n , where R is an alkoxy group with one to four C -Atoms represents) and nitrogen-
  • Silicon compounds in the form of silazanes (EP-A 529 189).
  • Particularly interesting starting substances are the so-called polysiloxanes (also referred to as “siloxanes” for short), the use of which for the production of synthetic SiO 2 is proposed, for example, in DE-A1 30 16 010 and in EP-B1 463 045.
  • the group of substances of the siloxanes can be divided into open-chain polysiloxanes (short: chain polysiloxanes) and closed-chain polysiloxanes (short: cycio-polysiloxanes) .
  • the chain polysiloxanes are described by the following chemical formula:
  • n is an integer> 0.
  • the cyclo-polysiloxanes have the following general formula:
  • the radical “R” is in each case, for example, an alkyl group, preferably a methyl group.
  • the optical components made of synthetic quartz glass are used, among other things, for the transmission of high-energy, ultraviolet radiation, for example in the form of optical fibers or as exposure and projection optics in microlithography devices for the production of highly integrated circuits for semiconductor chips.
  • the exposure and projection systems of modern microlithography devices are equipped with excimer lasers that emit high-energy, pulsed UV radiation with a wavelength of 248 nm (KrF laser) or 193 nm (ArF laser).
  • Such short-wave UV radiation can produce defects in optical components made of synthetic quartz glass, which lead to absorption.
  • the type and extent of a defect formation depend on the type and quality of the respective quartz glass, which is essentially determined by structural properties such as density, refractive index curve, homogeneity and chemical composition.
  • the induced absorption may increase linearly or, after an initial increase, one will Saturation reached. It is also observed that an initially existing absorption band disappears within a few minutes after switching off the UV source, but quickly returns to the previous level after the radiation has been resumed. The latter behavior is referred to in the literature as the “rapid damage process” (RDP). Furthermore, a pattern of damage is known in which structural defects appear to accumulate in the quartz glass in such a way that they result in a sudden, strong increase in absorption The strong increase in absorption is referred to in the literature as a "SAT defect".
  • the present invention has for its object to provide an economical method for the production of synthetic quartz glass, which is characterized by a favorable damage behavior compared to short-wave UV radiation, and for the production of an optical component for the transmission of high-energy ultraviolet radiation of a wavelength of 250 nm or shorter is particularly suitable.
  • this object is achieved according to the invention in that a mixture of a monomeric silicon compound containing a singular Si atom and of is used as the starting substance of an oligomeric silicon compound containing several Si atoms is used, with the proviso that the oligomeric silicon compound in the mixture contributes less than 70% to the total silicon content.
  • the invention proposes the use of a mixture of several silicon compounds, with the proviso that it is a of the silicon compounds is one which contains a singular Si atom (hereinafter referred to as “monomeric silicon compound” or also abbreviated as “monomer”) and that another of the silicon compounds is one which contains several Si -Atoms contains (hereinafter referred to as oligomeric silicon compound or abbreviated as "oligomer").
  • oligomeric silicon compound two or more silicon atoms are connected to one another via one or more oxygen bridges.
  • oxygen bridges A typical example of this are the siloxanes.
  • these “oligomers” are also specifically referred to below as “dimers” for two silicon atoms and as “trimers” for three silicon atoms.
  • quartz glass with high radiation resistance to short-wave UV laser radiation is obtained. This is particularly evident in a high transmission of the quartz glass, a low saturation plateau of the induced absorption and a low susceptibility to compaction and decompaction in the case of the energy densities of the laser radiation typical for ivlikrolithography.
  • SiO 2 network that occurs during glass production depends on the starting substance used.
  • a possible explanation for this is that because of the close proximity of the silicon atoms in an oligomer, a comparatively larger part of the SiO 2 primary particles formed during the oxidation or hydrolysis are composed of two or more silicon atoms, these SiO 2 - Primary particles in the reaction zone grow into larger SiO 2 particles, for example by coagulation or by condensation.
  • the SiO 2 particles in a monomeric silicon compound e.g. alkoxysilanes, alkylsilanes, SiCl 4
  • a monomeric silicon compound e.g. alkoxysilanes, alkylsilanes, SiCl 4
  • SiO 2 primary particles initially formed in the reaction zone contains only one silicon atom.
  • the SiO 2 thus formed primary particles behave differently in the clustering of the larger SiO 2 particles other than those produced from oligomers SiO 2 -
  • oligomeric silicon compounds depending on their stoichiometry, there will be more di- or oligomeric SiO 2 primary particles than in the reaction of monomeric silicon compounds.
  • the size of the primary particles and therefore also the size of the resulting SiO 2 particles and their concentration in the reaction zone change. This parameter also has an effect on the temperature within the reaction zone and thus on the entire deposition process in such a way that an oligomer has a network structure which has the above-mentioned disadvantages with regard to radiation resistance.
  • a quartz glass when using a starting substance in the form of a mixture which contains at least one monomeric silicon compound and at least one oligomeric silicon compound, a quartz glass can be obtained which has a radiation resistance comparable to that of a quartz glass produced from a monomeric silicon compound is.
  • the different silicon compounds can in principle be mixed at any stage of the process.
  • a mixture in the liquid phase assumes that there are no reactions between the components which impair evaporation or the reaction in the reaction zone. This is often the case, for example, with mixtures of chlorine-containing and chlorine-free silicon compounds when polymerization reactions occur.
  • mixing is preferably carried out in the gas phase - and also at a late stage in the process, so that at least two evaporator systems are generally required.
  • the silicon compounds can also only be mixed with one another in the reaction zone by feeding them separately to the reaction zone.
  • a quartz glass can be produced in which the use of oligomeric silicon compounds leads to an improvement in the economy of the production process, and its homogenizability and radiation resistance (with regard to its induced absorption and its behavior with regard to compaction and decompaction) are more effective despite the use of oligomeric Silicon compounds does not differ significantly from a quartz glass made from monomeric silicon compounds.
  • the oligomeric silicon compound in the mixture contributes less than 60% to the total silicon content.
  • a contribution of less than 60% to the total silicon content has proven to be a particularly suitable compromise between radiation resistance and homogenizability of the quartz glass on the one hand and the economy of the process on the other.
  • the oligomeric silicon compound in the mixture therefore preferably contributes at least 30% to the total silicon content.
  • ring-shaped oligomers are preferred.
  • the use of an oligomeric silicon compound in the form of a polyalkylsiloxane has proven to be particularly advantageous.
  • Polysiloxanes are characterized by a particularly high proportion of silicon per weight, which contributes to the economics of the process.
  • the weight fraction of silicon is 37.9% for (octamethylcyclotetrasiloxane) OMCTS and for (decamethylcyclopentasiloxane) DMCPS, and 34.6% for hexamethyldisiloxane.
  • the polyalkylsiloxane preferably used in the process according to the invention is octamethylcyclotetrasiloxane (OMCTS) or a decamethylcyclopentasiloxane (DMCPS).
  • Alkoxysilanes are also characterized by their industrial availability and purity. The absence of chlorine can have a favorable effect on radiation resistance. In view of this, the use of an alkoxysilane in the form of methyltrimethoxysilane (MTMS) or a tetramethoxysilane (TMS) is particularly preferred.
  • MTMS methyltrimethoxysilane
  • TMS tetramethoxysilane
  • silicon tetrachloride SiCl
  • SiCl silicon tetrachloride
  • the mixing ratio I refer to the respective proportions of the substances in the gas phase in which the substances are in vaporized form. To set a mixing ratio of 45:55, a gravimetric mixing ratio of MTMS to OMCTS of approximately 1.5: 1 must be set.
  • a chlorine content in the range between 60 and 130 ppm by weight is generally measured.
  • a chlorine-free component such as OMCTS
  • SiCI-j the chlorine-containing component
  • a chlorine-free silicon compound is preferably used as the oligomeric silicon compound.
  • the silicon compounds can be mixed in the liquid phase or in the gaseous phase.
  • a procedure is preferred in which the silicon compounds are evaporated separately from one another and the mixture is produced before or during process step b), that is to say before the gas stream is fed into the reaction zone.
  • the pre-mixing ensures a defined composition of the gas flow when it is introduced into the reaction zone and thus a reproducible and defined reaction sequence.
  • Figure 1 shows a variant of the inventive method for
  • a support tube 1 made of aluminum oxide is provided, along which a plurality of flame hydrolysis burners 2 arranged in a row are arranged.
  • the flame hydrolysis burners 2 are mounted on a common burner block 3, which can be moved back and forth parallel to the longitudinal axis 4 of the support tube 1 and can be displaced perpendicularly thereto, as indicated by the directional arrows 5 and 6.
  • the burner 2 consist of quartz glass; their distance from each other is 15 cm.
  • the flame hydrolysis burners 2 are each assigned a burner flame 7, the main direction of propagation 8 of which is perpendicular to the longitudinal axis 4 of the carrier tube 1.
  • a control device 9 is provided which is connected to the drive 10 for the burner block 3.
  • SiO 2 particles are deposited on the carrier tube 1 rotating about its longitudinal axis 4, so that the blank 11 is built up in layers.
  • the burner block 5 is moved back and forth along the longitudinal axis 4 of the carrier tube 1 between two turning points which are stationary with respect to the longitudinal axis 4.
  • the amplitude of the back and forth movement is characterized by the direction arrow 5. It is 15 cm and thus corresponds to the axial distance of the burners 2 from one another.
  • a temperature of approximately 1200 ° C. is established on the blank surface 12.
  • the flame hydrolysis burners 2 are each supplied with oxygen and hydrogen as burner gases and a gaseous mixture of chlorine-free starting substances is supplied as the starting material for the formation of the SiO 2 particles.
  • a soot tube is obtained, which is subjected to a dehydration treatment and glazed to form a quartz glass tube.
  • a round rod with a diameter of 80 mm and a length of approx. 800 mm is streak-free in three dimensions from the quartz glass tube by repeated twisting at temperatures around 2000 ° C in different directions (homogenization). The behavior of the quartz glass during homogenization is recorded in each case.
  • a circular quartz glass block with an outer diameter of 300 mm and a length of 90 mm is formed from this by hot deformation at a temperature of 1700 ° C. and using a nitrogen-flushed melting mold.
  • the quartz glass block thus obtained is then subjected to a conventional tempering treatment, as described in the EP-A1 401 845 is described.
  • the quartz glass block is heated to 1100 ° C under air and atmospheric pressure and then cooled at a cooling rate of 1 ° C / h.
  • a voltage birefringence of maximum 2 nm / cm is measured.
  • the average OH content is approx. 900 ppm by weight.
  • the quartz glass block thus produced is directly suitable as a blank for the production of an optical lens for a microlithography device.
  • cylindrical measurement samples with the dimensions 10 mm x 10 mm x 40 mm are cut, and the four long sides of each are polished.
  • the behavior of the quartz glass with regard to its compacting and decompacting behavior was determined, as described in "CK Van Peski, R. Morton and Z. Bor (" Behavior of fused silica irradiated by low level 193 nm excimer laser for tens of billions of pulses ", J. Non-Cryst. Solids 265 (2000) pp. 285-289).
  • Table 1 shows qualitatively for different starting substances and mixing ratios, the homogenizability and radiation resistance determined on the quartz glass produced, as well as the economy of the respective production method.
  • the digits of the mixing ratio of the samples indicate the proportion of the total silicon content of the quartz glass that is due to the respective substances. For example, in sample no. 1, the silicon portion from MTMS covers 45% of the total silicon requirement and the silicon from the OMCTS contributes 55% to this.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

L'invention concerne un procédé de production de verre de quartz synthétique. Ce procédé consiste à former un flux gazeux avec une substance de départ évaporable qui peut être convertie en SiO2 par oxydation ou par hydrolyse à la flamme ; à laisser entrer le flux gazeux dans une zone de réaction dans laquelle la substance de départ est convertie en formant des particules amorphes de SiO2 ; à séparer les particules de SiO2 amorphes sur un support en formant une couche de SiO2 et à vitrifier la couche de SiO2 soit par séparation des particules de SiO2 ou, après la séparation, en formant le verre de quartz. L'invention vise à obtenir un tel procédé de production de verre de quartz synthétique qui soit économique et se distingue par un comportement d'endommagement favorable vis-à-vis des rayons ultraviolet à ondes courtes, et qui convienne à la production d'un composant optique destiné à la transmission d'un rayonnement ultraviolet à grande énergie d'une longueur d'onde de 250 nm maximum. A cet effet, on utilise comme substance de départ un mélange constitué d'un composé de silicium monomère contenant un atome de Si singulier et d'un composé de silicium oligomère contenant plusieurs atomes de Si, sous réserve que le composé de silicium oligomère soit présent dans le mélange à hauteur de moins de 70 % de la teneur totale en silicium.
EP04703768A 2003-01-24 2004-01-21 Procede de production de verre de quartz synthetique Withdrawn EP1590303A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10302914A DE10302914B4 (de) 2003-01-24 2003-01-24 Verfahren zur Herstellung von synthetischem Quarzglas
DE10302914 2003-01-24
PCT/EP2004/000442 WO2004065314A1 (fr) 2003-01-24 2004-01-21 Procede de production de verre de quartz synthetique

Publications (1)

Publication Number Publication Date
EP1590303A1 true EP1590303A1 (fr) 2005-11-02

Family

ID=32694962

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04703768A Withdrawn EP1590303A1 (fr) 2003-01-24 2004-01-21 Procede de production de verre de quartz synthetique

Country Status (5)

Country Link
US (1) US20060107693A1 (fr)
EP (1) EP1590303A1 (fr)
JP (1) JP2006516525A (fr)
DE (1) DE10302914B4 (fr)
WO (1) WO2004065314A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4826118B2 (ja) * 2005-03-29 2011-11-30 旭硝子株式会社 合成石英ガラスの製造方法及び光学部材用合成石英ガラス
DE102006061931B3 (de) * 2006-12-21 2008-04-17 Institut für Physikalische Hochtechnologie e.V. Verfahren zur Herstellung von Quarzglas mit geringem OH-Gehalt
US7619227B2 (en) * 2007-02-23 2009-11-17 Corning Incorporated Method of reducing radiation-induced damage in fused silica and articles having such reduction
WO2009121763A1 (fr) * 2008-04-03 2009-10-08 Heraeus Quarzglas Gmbh & Co. Kg Procédé pour produire du verre quartzeux synthétique
DE102008063299B4 (de) 2008-12-29 2012-12-06 J-Fiber Gmbh Verfahren zur Herstellung eines kompakten synthetischen Quarzglases, ein Muffelofen zur Durchführung des Verfahrens, sowie das damit erhaltene Quarzglas
DE102009030234A1 (de) * 2009-06-23 2010-12-30 J-Plasma Gmbh Verfahren zur Herstellung von Glas insbesondere Glaspreform und Smoker zu dessen Herstellung
GB201106015D0 (en) * 2011-04-08 2011-05-25 Heraeus Quartz Uk Ltd Production of silica soot bodies
DE102011119373A1 (de) 2011-11-25 2013-05-29 Heraeus Quarzglas Gmbh & Co. Kg Verfahren zur Herstellung von synthetischem Quarzglas
DE102011119374A1 (de) * 2011-11-25 2013-05-29 Heraeus Quarzglas Gmbh & Co. Kg Verfahren zur Herstellung von synthetischem Quarzglas
DE102011119341A1 (de) 2011-11-25 2013-05-29 Heraeus Quarzglas Gmbh & Co. Kg Verfahren zur Herstellung von synthetischem Quarzglas nach der Sootmethode
DE102011119339A1 (de) * 2011-11-25 2013-05-29 Heraeus Quarzglas Gmbh & Co. Kg Zerstäubungsverfahren zur Herstellung von synthetischem Quarzglas
DE102011121190A1 (de) * 2011-12-16 2013-06-20 Heraeus Quarzglas Gmbh & Co. Kg OMCTS-Verdampfungsverfahren
DE102013202256B3 (de) 2013-02-12 2014-07-17 Heraeus Quarzglas Gmbh & Co. Kg Verfahren zur Herstellung von Titan-dotiertem synthetischen Quarzglas und dessen Verwendung
JP6700095B2 (ja) * 2016-04-27 2020-05-27 株式会社フジクラ ガラス母材の製造方法及び製造装置
JP7463967B2 (ja) * 2018-12-04 2024-04-09 住友電気工業株式会社 ガラス微粒子堆積体の製造装置及び製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1289737A (fr) * 1969-02-26 1972-09-20
DE3016010C2 (de) * 1980-04-25 1985-01-10 Degussa Ag, 6000 Frankfurt Verfahren zur pyrogenen Herstellung von Kieselsäure
JPS60108338A (ja) * 1983-11-15 1985-06-13 Nippon Telegr & Teleph Corp <Ntt> 光フアイバ母材の製造方法
DE3835208A1 (de) * 1988-10-15 1990-05-17 Deutsche Bundespost Verfahren zur herstellung von undotiertem und fluordotiertem quarzglas
GB8905966D0 (en) * 1989-03-15 1989-04-26 Tsl Group Plc Improved vitreous silica products
ATE116448T1 (de) * 1989-06-09 1995-01-15 Heraeus Quarzglas Optische teile und rohlinge aus synthetischem siliziumdioxidglas und verfahren zu ihrer herstellung.
US5043002A (en) * 1990-08-16 1991-08-27 Corning Incorporated Method of making fused silica by decomposing siloxanes
US5152819A (en) * 1990-08-16 1992-10-06 Corning Incorporated Method of making fused silica
DE4026337A1 (de) * 1990-08-21 1992-02-27 Hench Automatik App Masch Vorrichtung zum abkuehlen und granulieren von schmelzfluessigen straengen
ATE272573T1 (de) * 1995-12-19 2004-08-15 Corning Inc Verfahren und vorrichtung zur herstellung eines quarzglases durch verbrennung von flüssigen reagentien
TW440548B (en) * 1997-05-14 2001-06-16 Nippon Kogaku Kk Synthetic silica glass optical member and method of manufacturing the same
JPH1129331A (ja) * 1997-05-14 1999-02-02 Nikon Corp 合成石英ガラス光学部材の製造方法および光学部材
JP4038866B2 (ja) * 1998-03-11 2008-01-30 株式会社ニコン 合成石英ガラス製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004065314A1 *

Also Published As

Publication number Publication date
JP2006516525A (ja) 2006-07-06
DE10302914A1 (de) 2004-08-12
WO2004065314A1 (fr) 2004-08-05
US20060107693A1 (en) 2006-05-25
DE10302914B4 (de) 2005-12-29

Similar Documents

Publication Publication Date Title
DE69613268T2 (de) Verfahren zur Herstellung von hochreinem Quarzglas mit hohem Widerstand gegen optische Beschädigung, und hochreines Quarzglas
DE69600216T2 (de) Silicaglas, optisches Element damit und Verfahren zu dessen Herstellung
DE69219445T2 (de) Synthetisches optisches element aus quarzglas für excimer-laser und seine herstellung
DE602004007637T3 (de) TiO2-enthaltendes Siliciumdioxidglas und Verfahren zu dessen Herstellung
DE69501523T2 (de) Verfahren zur Herstellung von Silikaglas für die Anwendung mit Licht in einem Vakuum-Ultraviolett-Wellenlangebereich, und mit diesem Verfahren hergestelltes Silikaglas und optisches Element
DE112005003308B4 (de) Quarzglas mit hoher Brechungsindex-Homogenität und Verfahren zur Herstellung desselben
DE69123659T2 (de) Verfahren zur Herstellung von hochreinen, porenfreien Quarzglaskörpern
DE602004009553T2 (de) Kieselglas, enthaltend TiO2, und optisches Material für EUV-Lithographie
DE60033481T2 (de) Optischer Werkstoff aus Quarzglas für Excimer Laser und Excimer Lampe, und Verfahren zu dessen Herstellung
DE102005062916B4 (de) Verfahren zur Herstellung von synthetischem Kieselglas mit hoher Transmission
DE10302914B4 (de) Verfahren zur Herstellung von synthetischem Quarzglas
DE102005017739A1 (de) Halter aus Quarzglas für die Prozessierung von Halbleiterwafern und Verfahren zur Herstellung des Halters
DE3105295A1 (de) Halbfabrikat fuer die herstellung von optischen fasern, verfahren zur herstellung des halbfabrikats und die aus dem halbfabrikat hergestellten optischen fasern
EP1327612B1 (fr) Ebauche en verre de silice pour la fabrication d&#39;un element optique ainsi que sa preparation et application de celle-ci
EP1318124B1 (fr) Préforme en verre de silice pour un élément optique, son utilisation et procédé de sa fabrication
DE102007041151A1 (de) F-dotiertes Quarzglas und Verfahren zur Herstellung desselben
DE60036252T2 (de) Quarzglaselemente für Excimer-Laser und Verfahren zu deren Herstellung
DE69209397T2 (de) Verfahren zur Herstellung eines Glasgegenstandes aus Quarzglas zum Gebrauch mit einem Excimerlaser
DE60018493T2 (de) Verfahren zum Herstellen von optischem Quarzglas für Excimerlaser und Heizofen vom verticalem Typ
EP1101741B1 (fr) Corp en verre de quartz pour un élément optique et procédé de sa fabrication
EP1327613B1 (fr) Ebauche en verre de silice pour la fabrication d&#39;un element optique et application de celle-ci
DE10138046A1 (de) Fluorhaltiges Glas
DE69909983T2 (de) Synthetische, optische quarzglas-elemente und verfahren zur herstellung derselben
DE19850736C2 (de) Kernglas für eine Vorform für eine optische Faser, unter Verwendung des Kernglases hergestellte Vorform, sowie Verfahren zur Herstellung des Kernglases einer Vorform für eine optische Faser
DE60022461T2 (de) Verfahren zur Herstellung von Quarzglass und das so erhaltene Produkt

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050715

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): AT DE FR GB NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20080819