EP1588032A1 - Procede de post injection de liquide de regeneration du type hydrocarbure, alcool et/ou agent reducteur (e.g. gazole et/ou uree et/ou solution ammoniacale) pour la regeneration de systemes de filtration des gaz d echappement de moteur diesel - Google Patents

Procede de post injection de liquide de regeneration du type hydrocarbure, alcool et/ou agent reducteur (e.g. gazole et/ou uree et/ou solution ammoniacale) pour la regeneration de systemes de filtration des gaz d echappement de moteur diesel

Info

Publication number
EP1588032A1
EP1588032A1 EP03810015A EP03810015A EP1588032A1 EP 1588032 A1 EP1588032 A1 EP 1588032A1 EP 03810015 A EP03810015 A EP 03810015A EP 03810015 A EP03810015 A EP 03810015A EP 1588032 A1 EP1588032 A1 EP 1588032A1
Authority
EP
European Patent Office
Prior art keywords
post
injection
regeneration
gaseous fluid
regeneration liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03810015A
Other languages
German (de)
English (en)
Other versions
EP1588032B1 (fr
Inventor
Jean Claude Fayard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1588032A1 publication Critical patent/EP1588032A1/fr
Application granted granted Critical
Publication of EP1588032B1 publication Critical patent/EP1588032B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • F01N13/017Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0231Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using special exhaust apparatus upstream of the filter for producing nitrogen dioxide, e.g. for continuous filter regeneration systems [CRT]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1493Purging the reducing agent out of the conduits or nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air

Definitions

  • the present invention relates generally to the field of particle filters and, more particularly, to a process for post-injecting regeneration liquid of the hydrocarbon type, alcohol and / or reducing agent (eg diesel and / or urea and / or solution). ammonia) upstream of an exhaust gas filtration device for a diesel engine to regenerate this filter.
  • the hydrocarbon type, alcohol and / or reducing agent eg diesel and / or urea and / or solution.
  • ammonia upstream of an exhaust gas filtration device for a diesel engine to regenerate this filter.
  • the present invention also relates to the management of this injection device which aims to inject a homogeneous mixture of air and regeneration liquid of the hydrocarbon, alcohol and / or reducing agent type (eg diesel and / or urea and / or ammonia solution) on the oxidation catalyst located upstream of the filtration system so as to increase the temperature of the exhaust gases as for combustion.
  • a homogeneous mixture of air and regeneration liquid of the hydrocarbon, alcohol and / or reducing agent type eg diesel and / or urea and / or ammonia solution
  • a high temperature level being necessary to oxidize and burn the carbonaceous particles produced by the engine and retained on this filtration system, in order to avoid their accumulation, this last phase constituting the regeneration, object of the process according to the invention.
  • a special effort has been made on the development of new exhaust systems, intended to reduce the emission of unburnt pollutants and solid particles.
  • catalytic converters or catalysts generally consisting of a stainless steel casing, a thermal insulator and a honeycomb support impregnated with precious metals such as platinum or rhodium.
  • These catalysts make it possible, above all, to reduce the emissions of polycyclic hydrocarbons and CO, and this in a proportion of the order of 90%. However, they have no effect on the emission of solid particles. Thus, in particular in the case of diesel engines which produce numerous solid particles, these catalysts do not bring any significant improvement in the quality of the air.
  • the particle filter allows the total mass of particles emitted by diesel engines to be reduced by more than 90%.
  • the particle filter however requires regeneration to burn the particles that have been trapped.
  • the particles are generally trapped by a filter cartridge that is part of the particle filter.
  • This cartridge in order to withstand the high temperatures encountered, may consist of a porous body of cordierite, quartz or silicon carbide, generally of honeycomb structure to present a maximum filtration surface.
  • a first technique consists in placing upstream of the filter, a catalyst for the oxidation of nitrogen monoxide (NO) contained in the exhaust gases into nitrogen dioxide (N0 2 ), the latter having the property of catalyzing combustion carbonaceous particles from 250 ° C.
  • NO nitrogen monoxide
  • N0 2 nitrogen dioxide
  • this process requires the use of a diesel fuel with a sulfur content of less than 50 ppm (parts per million), in order to keep an efficiency of conversion of NO to N0 2 sufficient.
  • the objective of the present invention is to provide a process for the post-injection of regeneration liquid of the hydrocarbon type, alcohol and / or reducing agent (eg diesel and / or urea and / or ammonia solution) adaptable to all diesel engines allowing regeneration of a filtration device, which overcomes the drawbacks of the various existing techniques consisting in treating carbonaceous particles and soot emitted by diesel engines by increasing, when necessary, the temperature of the exhaust gases to obtain the correct oxidation temperature.
  • the hydrocarbon type, alcohol and / or reducing agent eg diesel and / or urea and / or ammonia solution
  • Another objective of the invention is to provide a process for post-injecting regeneration liquid of the hydrocarbon type, alcohol and / or reducing agent (eg diesel and / or urea and / or ammoniacal solution), thus avoiding any risk of accumulation of particles in the filtration device and therefore any risk of uncontrolled regeneration.
  • reducing agent eg diesel and / or urea and / or ammoniacal solution
  • Yet another objective of the invention is to provide a process for post-injecting regeneration liquid of the hydrocarbon type, alcohol and / or reducing agent (eg diesel and / or urea and / or ammoniacal solution), which is not subject the technical problem of thermal degradation and coking of the regeneration liquid, in particular when it is diesel, and this in particular at the level of the nozzles of the injectors belonging to the post-injection means.
  • a process for post-injecting regeneration liquid of the hydrocarbon type, alcohol and / or reducing agent eg diesel and / or urea and / or ammoniacal solution
  • Yet another objective of the invention is to provide a process for post-injecting regeneration liquid of the hydrocarbon type, alcohol and / or reducing agent (eg diesel and / or urea and / or ammoniacal solution) which does not lead to overconsumption. significant fuel and more generally, not resulting in additional financial cost for the user.
  • reducing agent eg diesel and / or urea and / or ammoniacal solution
  • Yet another objective of the invention is to provide a process for post-injection of regeneration liquid of the hydrocarbon type, alcohol and / or reducing agent (eg diesel and / or urea and / or ammoniacal solution) which does not affect the performance of the engine. , in particular by pressure losses, due to the back pressure exerted by the exhaust gases on the engine, due to clogging of the filtration device.
  • reducing agent eg diesel and / or urea and / or ammoniacal solution
  • a final objective of the invention is to provide a filtration device making it possible to implement the method according to the invention of post-injection of regeneration liquid of the hydrocarbon type, alcohol and / or reducing agent (eg diesel and / or urea and / or ammonia solution).
  • regeneration liquid of the hydrocarbon type, alcohol and / or reducing agent eg diesel and / or urea and / or ammonia solution.
  • the present invention which relates, first of all, to a process for post-injection of a regeneration liquid, in particular for the regeneration of an exhaust gas filtration device produced by a diesel engine, this process being of the type in which particles, after passing over an oxidation catalyst, are retained on a filtration means of said filtration device.
  • the method according to the invention is characterized - in that the regeneration liquid comprises at least one hydrocarbon and / or at least one reducing agent, and in that this post-injection consists essentially of injecting, upstream of the catalyst, using post-injection means : * on the one hand, the regeneration liquid,
  • this regeneration liquid and this gaseous fluid together forming an aerosol making it possible to spray the regeneration liquid in the exhaust gases and to increase their temperature, in order to ultimately accelerate the rate of oxidation of said particles and thus contribute to the regeneration of the filtration device.
  • the method according to the invention makes it possible to obtain a quality aerosol, which guarantees very good regeneration of the exhaust particulate filter.
  • the post-injection flow of the regeneration liquid and the post-injection flow of the gaseous fluid, preferably compressed air emanate from substantially concentric openings.
  • part of the gaseous fluid preferably compressed air, borrows, until the postinjection opening, the same nozzle as the regeneration liquid.
  • part of the gaseous fluid is mixed with the regeneration liquid before the post-injection.
  • One of the advantageous arrangements of the invention for limiting the risks of clogging consists in maintaining the circulation of the gaseous fluid, preferably the compressed air, in the post-injection nozzle, after the interruption of the post-injection. of regeneration liquid through this nozzle, and this for a time necessary to rinse said nozzle.
  • the temperature of at least part of the post-injection means remains less than or equal to 120 ° C., preferably 100 ° C., during engine operation. .
  • At least a portion of the post-injection means is advantageously distant from (or) conduit (s) in (s) which (s) circulate the exhaust gases.
  • the regeneration liquid is chosen: * from the group of hydrocarbons comprising petroleum refining products (preferably gasolines and diesel),
  • the method comprises the following essential steps consisting in:
  • the invention also relates to a device allowing in particular the implementation of the post-injection process as defined above.
  • This device comprises at least one exhaust duct, at least one catalyst and filtration means. It is characterized in that it further comprises:
  • post-injection means communicating with an exhaust gas evacuation pipe and including:
  • - ⁇ - at least one injector preferably electromagnetic -, • ⁇ - at least one injector holder on which said injector is disposed, - ⁇ - at least one capillary or nozzle starting from the injector and opening into at least one conduit exhaust, through at least one opening, upstream of the catalyst,
  • At least one post-injection control computer to which the means for supplying regeneration liquid, the means for supplying gaseous fluid under pressure, preferably compressed air, the post-injection means are subjected, and any temperature or pressure probe (s).
  • the capillary (or nozzle) and the pipe are concentric and coaxial, as are their respective openings, which open into the exhaust duct (s),
  • the capillary (or nozzle) is contained in the pipeline.
  • at least part of the post-injection means, preferably at least the injector is designed in such a way, preferably is placed at a sufficient distance from the exhaust duct (s) so as not to not undergo thermal deterioration, that is to say remain during the operation of the engine at a temperature lower or equal to 120 ° C, preferably at 100 ° C,
  • the post-injection of the regeneration liquid of the hydrocarbon type, alcohol and / or reducing agent is assisted by a gaseous fluid under pressure (for example compressed air).
  • a gaseous fluid under pressure for example compressed air.
  • the injector and its support are located: • geographically at a location distant (for example 200 mm) from the exhaust duct, so as not to be subjected to high temperatures, • and upstream of the oxidation catalyst.
  • the exhaust gas filtration means are themselves downstream of the oxidation (or combustion) catalyst.
  • the catalyst and the filtration means are, in practice, contained in an enclosure, which is located in the path of the flow of the exhaust gases produced by an engine.
  • the means for supplying gaseous fluid under pressure are designed to allow the admission of gaseous fluid to the outlet of the injector, in capillary head or nozzle, so that pressurized gaseous fluid, preferably compressed air, can circulate with the post-injected regeneration liquid, in the capillary or nozzle.
  • the means for supplying gaseous fluid under pressure, preferably compressed air comprise a solenoid valve controlling the admission of the gaseous fluid under pressure, preferably compressed air to the outlet of the injector, at the capillary or nozzle head, to allow said fluid to circulate with the regeneration liquid, and, incidentally, to be able to rinse the capillary or nozzle, after the end of post-injection, maintaining for some time a flow of pressurized gaseous fluid, preferably compressed air, into the capillary or nozzle.
  • the means for supplying gaseous fluid under pressure, preferably with compressed air, as well as the post-injection means - preferably the injector holder are designed such that is provided at least one calibrated orifice allowing to continuously supply a flow of gaseous fluid under pressure, preferably compressed air mixed with the regeneration liquid, at the inlet of the capillary or nozzle, so as to produce an emulsion and to ensure in addition and preferably the rinsing function, while maintaining some time after closing a flow in addition gaseous fluid, in the capillary or nozzle.
  • the means for supplying regeneration liquid are connected to the supply conduit for at least one mechanical injection pump of the engine.
  • the regeneration liquid is preferably chosen: * from the group of hydrocarbons comprising petroleum refining products (preferably gasolines and diesel),
  • the device according to the invention comprises a temperature probe and a pressure probe.
  • the computer which is connected to the temperature probe and to the pressure probe, is to compare the values ⁇ m and possibly P m measured respectively with the reference values ⁇ r and possibly P r , and triggers the post-injection of regeneration liquid into the exhaust duct, via the means for supplying regeneration liquid, means for supplying gaseous fluid under pressure, preferably compressed air , and post-injection means, when the measurements ⁇ m and possibly P m are greater than or equal to the reference values ⁇ r and possibly P r .
  • the temperature probe and the possible pressure probe are located substantially at the same level on the exhaust duct.
  • post-injection is carried out by a conventional electromagnetic injector of the same type as that used on petrol engines, this injector being disposed on an injector holder remote from the exhaust duct.
  • the regeneration liquid of the hydrocarbon, alcohol and / or reducing agent type eg diesel and / or urea and / or ammoniacal solution
  • this injector is brought by a capillary contained in a pipe formed eg by a metal tube to the conduit hot exhaust.
  • This tube is supplied with compressed air so as to arrive concentrically around the capillary to open into the conduit exhaust and cause a good spraying of the regeneration liquid of the hydrocarbon type, alcohol and / or reducing agent (eg diesel and / or ethanol and / or urea and / or ammoniacal solution).
  • the injection of regeneration liquid and the supply of compressed air are controlled by the electronic control unit, which governs the opening / closing of solenoid valves allowing the post-injection of regeneration liquid into the gas evacuation pipe. exhaust.
  • a calibrated orifice in connection with the air inlet and facing the injector nose is arranged so as to generate an air / liquid regeneration emulsion at the inlet of the capillary and allow inject this regeneration liquid in perfectly nebulized form at the outlet, into the gas evacuation pipe.
  • FIG. 1 represents a general schematic view of the system comprising the filtration device with its oxidation catalyst and upstream of this assembly the post-injection system allowing the implementation of the regeneration process.
  • FIG. 2 represents a detailed view of the post-injection device according to a first embodiment.
  • FIG. 3 represents a detailed view of a variant of the postinjection device according to a second embodiment.
  • FIG. 4 represents a general view of the post-injection system integrated into a particle filter engine assembly.
  • various mechanical elements of a particle filter collaborate which may or may not be part of the filtration device and which help to control the regeneration of the filtration system.
  • the exhaust gases at the outlet of the diesel engine on the pipe 1 are controlled in temperature by the probe 2 and in pressure by the probe 3 to then be directed to the oxidation catalyst 4, then to the filtration cartridges 5, the assembly being contained in a metal envelope 6 and insulated by ceramic elements 7.
  • a computer 8 will control when necessary the injections of diesel from the electromagnetic injector 9 mounted on an injector holder block 10, it will be supplied from a bypass of the diesel engine by the pipe 11, the diesel being directed towards the exhaust pipe by the capillary 12.
  • This capillary 12 opens at the center of the piping 13 in the exhaust duct 14 upstream of the oxidation catalyst 4, so as to obtain a good spraying by the air which will arrive concentrically and which will be admitted from the solenoid valve. 15, supplied by a pressure regulator not shown.
  • a second solenoid valve 16 will allow the capillary to be purged to prevent the diesel oil from stagnating inside it and being able to coke and lead to its obstruction near the exhaust duct which is very hot to it.
  • FIG. 2 A detailed view of the post-injection device, in particular of the injector holder according to a first embodiment is shown in FIG. 2.
  • the computer 8 on the basis of the temperature and pressure information collected by the probes 2 and 3 and according to the strategy which has been fixed to it will command a diesel injection from the electromagnetic injector 9 supplied with diesel by the engine circuit at 11 At the outlet of this electromagnetic injector, the volume of diesel fuel injected will be directed by the capillary 12 towards the exhaust duct 1 where it will be sprayed at 14 thanks to the air which will arrive concentrically by the pipe 13.
  • the air flow spraying will be controlled by the solenoid valve 15 powered by a pressure regulator not shown, its opening will be simultaneous with that of the injector 11, so as to obtain a good spraying from the start, on the other hand its closing will be delayed by a few seconds so as to be able to perform the capillary flushing operation with air, which will be supplied from the solenoid valve 16 from the farm ture of the injector, a non-return valve 17 will prevent any accumulation of diesel in the pipe of the injector holder 10 so as to allow effective rinsing.
  • FIG. 3 A variant of this embodiment is shown in FIG. 3.
  • the injector holder 10 and supplied with air by a single solenoid valve the opening will be simultaneous with the diesel injector 9, but the closing of which will be delayed by a few seconds, as for the previous embodiment, so that the capillary rinsing operation is done automatically thanks to the air flow controlled by the calibrated air jet 18.
  • This air flow will also, upon opening the solenoid valve 15, form an emulsion with the diesel from the injector 9 in the chamber 19 and then be directed by the capillary 12 to the outlet in the exhaust duct at 14.
  • This emulsion will open at the center of the tube 13 where it will meet the air flow conveyed by this tube, to be sprayed finely and to obtain a qual ity of nebulization much higher, thanks to the emulsion already formed in the capillary.
  • the injector closes, maintaining the air flow for a few additional seconds allows the capillary 12 to be completely rinsed.
  • This stainless steel capillary eg, of 1/1, 6 mm had a length of 50 cm and was contained in a stainless steel tube of 4/6 mm, eg, the quality of the diesel fog obtained made it possible to carry out injections up to temperatures at l 'catalyst entry of 270 ° C, eg, without observing parasitic hydrocarbon emissions.
  • Figure 4 is shown the post-injection device associated with a particle filtration system, the assembly being mounted on a diesel engine 20 powered by an air compressor 21, and escaping through a turbine 22 to evacuate the exhaust gas through a pipe 23, to the system at 1 where the temperature 2 and pressure 3 probes are arranged before spraying at 14 the diesel fuel with the air coming from the pipe 13.
  • the injector 9 being supplied by a line 11 mounted as a bypass of the diesel fuel supply to the injection pump 24 of the engine.
  • the temperature in the vicinity of the catalyst inlet is measured, using the probe 2, eg of the thermocouple or thermistor type placed at the inlet of the system.
  • the temperature value ⁇ m measured is collected by the computer 8.
  • the computer will compare this value ⁇ m to a reference value ⁇ r , corresponding to the temperature at which the combustion of diesel fuel on the catalyst with excess air , is done completely.
  • ⁇ r is for example ⁇ 300 ° C.
  • the electronic control unit triggers the opening of the injector 9 and of the solenoid valve 15. This opening causes the entry of diesel fuel into the capillary and compressed air in the tube 13. At the outlet of the tube 13 at 14, the diesel fuel mixes with the compressed air and the mixture, thus constituted, is sprayed, in the nebulized form in the gas evacuation pipe d exhaust 1.
  • the fuel injected into the exhaust duct 1 enters the enclosure 6 and undergoes complete combustion at the level of the catalyst 4.
  • This combustion induces a significant increase in temperature up to a temperature ⁇ c at which the combustion of the particles that clog the filtration media.
  • the molecules of N0 2 produced in association with the excess residual oxygen contained in the gases exhaust will catalyze this oxidation reaction. Thus, this reaction occurs at a temperature below the normal combustion temperature.
  • the solid particles are transformed into gases which are evacuated.
  • the filtration means is then found free of deposits and recovers its full filtration capacity.
  • the measurement of ⁇ m can be used by the electronic unit in order to evaluate the temperature of the particles at the level of the filtration means. Indeed, if ⁇ m is close to the temperature at which the combustion of particles can be done without post-injection of diesel, the computer can decide not to trigger this post-injection, which makes it possible to save substantial fuel .
  • Another operational mode consists in simultaneously measuring the temperature and the pressure at the level of the catalyst production means, using the temperature probe 2 and the pressure probe 3.
  • the pressure value P m measured reflects the degree of obstruction means of filtration by particles. In fact, if the filtration means is clogged, the exhaust gases pass more difficultly and then exert a back pressure. Thus, the measurement of the pressure P m corresponds to the best means of controlling the clogging of the filtration means.
  • the probe 3 is a conventional probe for measuring the absolute pressure.
  • the pressure probe 3 can be a differential pressure measurement probe, comprising a sensor located upstream of the filter and another downstream of said filter.
  • the electronic control unit compares the measured value P m with a reference value P r , corresponding to the maximum acceptable degree of obstruction of the filtration means.
  • P r indicative of clogging is made easily and arbitrarily by those skilled in the art. In practice, for example, the pressure P r corresponds to the pressure measured with a new filter increased by 100 mBar.
  • the electronic control unit compares ⁇ m to ⁇ r . If ⁇ m is greater than or equal to ⁇ r , the box then triggers the post-injection of diesel which leads to the regeneration of the filtration means.
  • This operational mode has the advantage of triggering post-injection only when the filtration means has reached a determined degree of clogging, which makes it possible to greatly limit the overconsumption of fuel.
  • the computer always from the values entered in the setpoint, can, depending on the level of back pressure, increase the injection time so as to reach a higher temperature.
  • a filtration device used with an industrial vehicle engine, the supercharged Renault VI 620-45 engine, with a capacity of 10 liters and a power of 180 kW. This engine is fitted to city buses.
  • the filtration device is composed of:
  • a metallic oxidation catalyst based on platinum allowing the total oxidation of CO and hydrocarbons at low temperature as well as the transformation of part of the NO into N0 2 , the platinum content was 90 g per foot cubic.
  • the capillary 12 used was made of stainless steel with an internal diameter of 1 mm by an external diameter of 1.6 mm, as for the air supply tube 13, it was also made of stainless steel and was 4 mm inside by 6 mm outside for a total length of 50 cm.
  • a time delay limits the duration of the post-injection to 20 s and corresponds to an injected quantity of 20 cm 3 then a specific programming of the housing makes it possible to obtain at most one post-injection every 7 minutes.
  • the electromagnetic injector 9 was supplied by line 11 connected by a
  • Tee at the supply line of the engine injection pump, allowing a supply pressure varying from 1 to 1.5 bars.
  • the electronic unit has been adjusted so that post-injection is triggered as soon as the back pressure reaches 150 mb and the temperature of the gases exceeds 300 ° C.
  • the bus has covered more than 45,000 km without any back pressure drift being observed, which shows that the post injection system has done its job by constantly maintaining a sufficient temperature level for regeneration of the filter is done continuously despite the severe conditions of use.
  • the post injection process according to the invention associated with a filtration device using an oxidation catalyst is therefore particularly suitable for the treatment of exhaust gases from urban public transport vehicles.
  • the gases produced by these vehicles are generally at a temperature lower than that necessary to allow the regeneration of conventional filtration devices, which leads to clogging of these devices and therefore their rapid deterioration by brutal combustion reactions.
  • the results obtained with the present technique make it possible to envisage a minimum service life of the filtration device of 100,000 km, on vehicles of this type.
  • the injection device according to the invention does not include new technical elements, the inventors have the merit of having been able to combine and adapt different existing techniques in order to potentiate their effects and to obtain a device having a very high efficiency and robustness to allow a reliable post-injection of diesel fuel generating no parasitic emission of hydrocarbons and making it possible to significantly increase the temperature of the exhaust gases to allow the oxidation of the carbon particles retained on the filter and obtain excellent results in terms of filter regeneration, even in the case of vehicles whose engine speeds do not allow exhaust gases to be obtained with a high temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Treating Waste Gases (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

La présente invention concerne un procédé de post injection pour la régénération de dispositif de filtration des gaz d'échappement produits par un moteur diesel. Ce procédé consiste essentiellement à pouvoir injecter du liquide de régénération du type hydrocarbure, alcool et/ou agent réducteur (e.g. gazole et/ou urée et/ou solution ammoniacale) parfaitement pulvérisé en amont du catalyseur d'oxydation en (14) pour pouvoir augmenter la température des gaz d'échappement lorsqu'un début de colmatage du filtre à particules est détecté. A partir des sondes de température (2) et de pression (3) disposées en amont du dispositif de filtration, le calculateur (8) commande l'injection du liquide de régénération à partir de l'injecteur électromagnétique (9) le liquide de régénération étant dirigé par un capillaire (12) dans le conduit d'échappement (1) à un endroit situé géographiquement à bonne distance de l'injecteur, en amont du catalyseur (5) et pour être pulvérisé finement par de l'air.

Description

PROCÉDÉ DE POST INJECTION DE LIQUIDE DE RÉGÉNÉRATION DU TYPE HYDROCARBURE, ALCOOL ET/OU AGENT RÉDUCTEUR (E.G. GAZOLE ET/OU
URÉE ET/OU SOLUTION AMMONIACALE) POUR LA RÉGÉNÉRATION DE SYSTEMES DE FILTRATION DES GAZ D'ÉCHAPPEMENT DE MOTEUR DIESEL
La présente invention concerne de façon générale le domaine des filtres à particules et de façon plus particulière, un procédé de post-injection de liquide de régénération du type hydrocarbure, alcool et/ou agent réducteur (e.g. gazole et/ou urée et/ou solution ammoniacale) en amont d'un dispositif de filtration de gaz d'échappement pour moteur diesel pour régénérer ce filtre.
En outre, la présente invention vise également la gestion de ce dispositif d'injection qui a pour objectif d'injecter un mélange homogène d'air et de liquide de régénération du type hydrocarbure, alcool et/ou agent réducteur (e.g. gazole et/ou urée et/ou solution ammoniacale) sur le catalyseur d'oxydation situé en amont du système de filtration de manière à augmenter comme pour une combustion la température des gaz d'échappement. Un niveau de température élevé étant nécessaire pour oxyder et brûler les particules charbonneuses produites par le moteur et retenues sur ce système de filtration, afin d'éviter leur accumulation, cette dernière phase constituant la régénération, objet du procédé selon l'invention. Outre la mise au point de nouveaux moteurs ayant une consommation en carburant toujours plus réduite, un effort tout particulier a été fait sur le développement de nouveaux systèmes d'échappement, destinés à réduire l'émission de gaz polluants imbrûlés et de particules solides. Ainsi, les constructeurs automobiles ont mis au point les pots catalytiques ou catalyseurs, généralement constitués d'une enveloppe en acier inoxydable, d'un isolant thermique et d'un support en nid d'abeille imprégné de métaux précieux tels que le platine ou le rhodium. Ces catalyseurs permettent de réduire, avant tout, les émissions d'hydrocarbures polycycliques et de CO, et ceci dans une proportion de l'ordre de 90 %. Toutefois, ils n'ont aucune action sur les émissions de particules solides. Ainsi, notamment en matière de moteurs diesels qui produisent de nombreuses particules solides, ces catalyseurs n'apportent pas d'amélioration notable de la qualité de l'air.
D'autres techniques ont été élaborées afin de limiter l'émission de particules polluantes par les véhicules. C'est le cas du filtre à particules. Ce filtre permet de réduire de plus de 90 % la masse totale des particules émises par les moteurs diesels. Le filtre à particules nécessite toutefois une régénération permettant de brûler les particules qui ont été piégées. Les particules sont généralement piégées par une cartouche filtrante faisant partie du filtre à particules. Cette cartouche pour résister aux températures élevées rencontrées peut être constituée d'un corps poreux de cordiérite, de quartz ou de carbure de silicium, généralement de structure en nid d'abeille pour présenter une surface maximum de filtration.
La difficulté majeure de fonctionnement de tels filtres à particules réside au pilotage de la phase d'oxydation et de combustion des particules retenues par la cartouche filtrante. En effet, pour des conditions d'utilisation urbaine, la température des gaz d'échappement atteinte est insuffisante pour provoquer leur combustion et limiter significativement le colmatage du filtre et donc sa régénération. Sans assistance chimique, les particules charbonneuses issues de la combustion du gazole dans les moteurs diesels ne commencent à s'oxyder significativement qu'au-dessus de 500°C. Ces températures ne sont pratiquement jamais atteintes dans des conditions de roulage urbain.
Il apparaît alors nécessaire de faire appel à un procédé chimique pour éliminer ces particules. Différentes techniques sont utilisées permettant d'obtenir leur combustion. Une première technique consiste à disposer en amont du filtre, un catalyseur d'oxydation du monoxyde d'azote (NO) contenu dans les gaz d'échappement en dioxyde d'azote (N02), ce dernier ayant la propriété de catalyser la combustion des particules charbonneuses à partir de 250°C. Toutefois, ce procédé impose d'utiliser un gazole dont la teneur en soufre est inférieure à 50 ppm (parties par million), pour garder une efficacité de conversion du NO en N02 suffisante.
Cette technique, appelée "Coniinuous Regenerating Trap" (C. .T.), allie les effets du filtre à particules et du catalyseur d'oxydation du NO. Ce système nécessite pour assurer un bon fonctionnement des filtres, une régénération régulière qui limite la perte de charge du filtre en éliminant le risque de régénération non contrôlé et exothermique.
Dans le cas contraire, il se développe des réactions violentes liées à la concentration excessive de particules charbonneuses colmatant le filtre. Ces réactions consistent en la combustion, trop rapide d'une grande masse de particules, ce qui conduit généralement à une destruction du filtre par choc thermique, les températures obtenues étant très élevées localement.
D'autres techniques font appel à l'utilisation d'additifs organométalliques rajoutés au gazole tel que le cérium, fer, strontium, calcium ou autres. Ces techniques permettent d'obtenir un effet similaire à celui obtenu avec le N02 en catalysant la combustion des matières charbonneuses à des températures voisines de 370° C. Un premier inconvénient de ces techniques est le coût prohibitif des additifs utilisés.
Un autre inconvénient majeur réside dans le fait qu'il est nécessaire de prévoir un dispositif d'introduction de l'additif complémentaire. Encore un autre inconvénient de ces techniques est qu'elles présentent une tendance encore plus importante au colmatage du filtre et donc aux réactions qui en découlent, si les températures atteintes en fonctionnement ne sont pas suffisamment importantes, les additifs présents dans les matières charbonneuses contribuant à encrasser encore plus rapidement le média filtrant.
D'autres techniques ont consisté à expérimenter des dispositifs basés sur des moyens de chauffage complémentaires du type brûleurs, résistances électriques ou autres. Ces moyens de chauffage complémentaire sont mis en œuvre uniquement lorsque la cartouche présente un début de colmatage, se traduisant par une augmentation de la perte de charge. Un tel dispositif de régénération est mis en œuvre avec le moteur en marche, c'est à dire en présence d'un débit de gaz d'échappement important. Un tel dispositif nécessite donc une puissance de chauffage importante pour simultanément porter à la bonne température les gaz d'échappement et la masse de la cartouche filtrante. Sur les moteurs diesels récents dit à rampe commune, une technique de post-injection du gazole a été utilisée pour pouvoir augmenter la température des gaz d'échappement et pouvoir ainsi oxyder et brûler significativement les particules charbonneuses retenues sur le filtre, cette technique d'injection directe qui fait appel à des injecteurs électromagnétiques permet effectivement de pouvoir procéder à une nouvelle injection de gazole dans la chambre de combustion au moment où la soupape d'échappement s'ouvre et d'obtenir ainsi un mélange homogène avec les gaz d'échappement et une oxydation complète de ce gazole sur le catalyseur d'oxydation situé entre la sortie moteur et le filtre à particules.
On connaît enfin des procédés de post-injection de liquide de régénération du type gazole et/ou alcool, pour la régénération de moyens filtration disposés en aval de catalyseurs de combustion dans des systèmes d'échappement de moteurs diesel. Ces procédés sont notamment décrits dans les demandes de brevets ou brevets suivants :
US-B-5 207 990, EP-A-1 158 143, US-B-6 023 930, JP-A-07 119444 et US-B-5 522 218.
Ces procédés connus ont en commun, d'une part, de ne pas permettre une régénération optimale, sûre et économique des moyens de filtration, et, d'autre part, de n'apporter aucune solution satisfaisante au problème technique de dégradation thermique et de cokéfaction du liquide de régénération, en particulier lorsqu'il s'agit de gazole, et ce notamment au niveau des buses des injecteurs appartenant aux moyens de post-injection. Les post-injecteurs sont ainsi rapidement endommagés par la chaleur du collecteur d'échappement et ne sont donc ni fiables, ni efficaces.
Dans un tel contexte technique, l'objectif de la présente invention est de fournir un procédé de post-injection de liquide de régénération du type hydrocarbure, alcool et/ou agent réducteur (e.g. gazole et/ou urée et/ou solution ammoniacale) adaptable à tous les moteurs diesel permettant une régénération d'un dispositif de filtration, qui remédie aux inconvénients des différentes techniques existantes consistant à traiter les particules charbonneuses et de suies émises par les moteurs diesels en augmentant, lorsque cela est nécessaire, la température des gaz d'échappement pour obtenir la bonne température d'oxydation.
Un autre objectif de l'invention est de fournir un procédé de post-injection de liquide de régénération du type hydrocarbure, alcool et/ou agent réducteur (e.g. gazole et/ou urée et/ou solution ammoniacale), évitant ainsi tout risque d'accumulation de particules dans le dispositif de filtration et donc tout risque de régénération incontrôlée.
Encore, un autre objectif de l'invention, est de fournir un procédé de postinjection de liquide de régénération du type hydrocarbure, alcool et/ou agent réducteur (e.g. gazole et/ou urée et/ou solution ammoniacale), qui ne soit pas sujet au problème technique de dégradation thermique et de cokéfaction du liquide de régénération, en particulier lorsqu'il s'agit de gazole, et ce notamment au niveau des buses des injecteurs appartenant aux moyens de post-injection.
Encore, un autre objectif de l'invention, est de fournir un procédé de postinjection de liquide de régénération du type hydrocarbure, alcool et/ou agent réducteur (e.g. gazole et/ou urée et/ou solution ammoniacale) n'entraînant pas de surconsommation significative de carburant et plus généralement, n'entraînant pas de surcoût financier, pour l'utilisateur.
Encore un autre objectif de l'invention est de fournir un procédé de postinjection de liquide de régénération du type hydrocarbure, alcool et/ou agent réducteur (e.g. gazole et/ou urée et/ou solution ammoniacale) n'entamant pas les performances du moteur, notamment par des pertes de charge, dues à la contre-pression exercée par les gaz d'échappement sur le moteur, du fait d'un colmatage du dispositif de filtration.
Enfin un dernier objectif de l'invention est de fournir un dispositif de filtration permettant de mettre en œuvre le procédé selon l'invention de post-injection de liquide de régénération du type hydrocarbure, alcool et/ou agent réducteur (e.g. gazole et/ou urée et/ou solution ammoniacale).
Ces objectifs, parmi d'autres, sont atteints par la présente invention qui concerne, tout d'abord, un procédé de post-injection d'un liquide de régénération, notamment pour la régénération d'un dispositif de filtration des gaz d'échappement produits par un moteur diesel, ce procédé étant du type de ceux dans lesquels des particules, après être passées sur un catalyseur d'oxydation, sont retenues sur un moyen de filtration dudit dispositif de filtration. Le procédé selon l'invention est caractérisé - en ce que le liquide de régénération comprend au moins un hydrocarbure et/ou au moins un agent réducteur, et en ce que cette post-injection consiste essentiellement à injecter, en amont du catalyseur, à l'aide de moyens de post-injection : * d'une part, le liquide de régénération,
* et, d'autre part, d'au moins un fluide gazeux, de préférence de l'air comprimé, ce liquide de régénération et ce fluide gazeux formant ensemble un aérosol permettant de pulvériser le liquide de régénération dans les gaz d'échappement et d'augmenter leur température, pour in fine accélérer la vitesse d'oxydation desdites particules et contribuer ainsi à la régénération du dispositif de filtration.
Le procédé selon l'invention permet d'obtenir un aérosol de qualité, gage d'une très bonne régénération du filtre à particules de l'échappement.
Dans ce procédé de post-injection de gazole, on a recours à un dispositif disposé en sortie des gaz d'échappement d'un moteur diesel et en amont d'un catalyseur d'oxydation, en aval duquel sont situés les moyens de filtration des particules charbonneuses émises par un moteur diesel. Dans ce procédé, les particules retenues sur un moyen de filtration, sont brûlées grâce à l'action de l'oxygène résiduel et des oxydes d'azote contenus dans les gaz d'échappement.
Suivant une disposition préférée de l'invention, le flux de post-injection du liquide de régénération et le flux de post-injection du fluide gazeux, de préférence l'air comprimé, émanent d'ouvertures sensiblement concentriques.
Suivant une disposition encore plus préférée de l'invention, une partie du fluide gazeux, de préférence l'air comprimé, emprunte, jusqu'à l'ouverture de postinjection, la même buse que le liquide de régénération.
Pour améliorer encore la qualité de l'aérosol de post-injection, il est prévu selon l'invention, qu'une partie du fluide gazeux soit mélangée au liquide de régénération avant la post-injection.
L'une des dispositions avantageuses de l'invention pour limiter les risques de colmatage, consiste à maintenir la circulation du fluide gazeux, de préférence l'air comprimé, dans la buse de post-injection, après l'interruption de la post-injection de liquide de régénération au travers de cette buse, et ce pendant une durée nécessaire au rinçage de ladite buse. Afin de minimiser le problème de cokéfaction et dégradation thermique, on fait en sorte que la température d'au moins une partie des moyens de post-injection reste inférieure ou égale à 120°C, de préférence 100°C, lors du fonctionnement du moteur.
Pour ce faire, au moins une partie des moyens de post-injection est avantageusement éloignée du (ou des) conduit(s) dans le(s)quel(s) circulent les gaz d'échappement.
De préférence, le liquide de régénération est choisi : * dans le groupe des hydrocarbures comprenant les produits de raffinage du pétrole (de préférence les essences et le gazole),
* dans le groupe des alcools (de préférence le méthanol),
* dans le groupe des agents réducteurs (de préférence l'urée et les solutions ammoniacales), * et leurs mélanges.
Selon un mode préféré de mise œuvre de l'invention, le procédé comprend les étapes essentielles suivantes consistant à :
- mesurer une température θm en amont du catalyseur d'oxydation, - comparer θm à une température θr correspondant à la température à laquelle la combustion du liquide de régénération, en présence du catalyseur de combustion, est complète,
- si θm est supérieure ou égale à θr, déclencher une post-injection de liquide de régénération.
Suivant une variante intéressante de ce mode préféré, il est prévu :
• mesurer une pression Pm en amont du système de filtration par une sonde 3, ladite pression Pm reflétant le degré d'obstruction du moyen de filtration 5 par les particules, • comparer ladite pression Pm à une pression Pr de référence correspondant au degré d'obstruction maximal acceptable,
• si Pm est supérieure ou égale à la pression Pr et si θm est supérieure ou égale à θr, déclencher la post-injection de liquide de régénération.
II est particulièrement intéressant selon l'invention, de piloter les injections de liquide de régénération, à l'aide d'au moins un calculateur, en tenant compte des informations température θm et éventuellement pression Pm, pour obtenir l'augmentation de température recherchée en vue d'une régénération optimale du dispositif de filtration. Selon un autre de ses objets, l'invention vise également un dispositif permettant notamment la mise en œuvre du procédé de post-injection tel que défini ci- dessus. Ce dispositif comprend au moins un conduit d'échappement, au moins un catalyseur et des moyens de filtration. Il est caractérisé en ce qu'il comporte en outre:
• des moyens d'alimentation en liquide de régénération,
• des moyens d'alimentation en fluide gazeux sous pression, de préférence en air comprimé,
• des moyens de post-injection communiquant avec un conduit d'évacuation des gaz d'échappement et incluant :
-Φ- au moins un injecteur -de préférence électromagnétique-, Φ- au moins un porte-injecteur sur lequel est disposé ledit injecteur, -Φ- au moins un capillaire ou buse partant de l'injecteur et débouchant dans au moins un conduit d'échappement, par au moins une ouverture, en amont du catalyseur,
Φ- au moins une canalisation reliée aux moyens d'alimentation en fluide gazeux sous pression, de préférence en air comprimé, et débouchant dans le (ou les) conduit(s) d'échappement, par au moins une ouverture, ° éventuellement au moins une sonde de température de mesure de θm, disposé sur le (ou les) conduil(s) d'échappement, en amont du catalyseur, a éventuellement au moins une sonde de pression de mesure de Pm au sein du (ou des) conduit(s) d'échappement et disposé sur ce(s) dernier(s) en amont du catalyseur,
• au moins un calculateur de pilotage de la post-injection, auquel sont assujettis les moyens d'alimentation en liquide de régénération, les moyens d'alimentation en fluide gazeux sous pression, de préférence en air comprimé, les moyens de post-injection, et l'(ou les) éventuelle(s) sonde(s) de température ou de pression.
Suivant des caractéristiques remarquables du dispositif selon l'invention :
• le capillaire (ou buse) et la canalisation sont concentriques et coaxiales, de même que leurs ouvertures respectives, qui débouchent dans le (ou les) conduit(s) d'échappement,
• et le capillaire (ou buse) est contenu dans la canalisation. De façon avantageuse, au moins une partie des moyens de post-injection, de préférence au moins l'injecteur est conçu de telle sorte, de préférence est disposé à une distance suffisante du (ou des) conduit(s) d'échappement pour ne pas subir de détérioration thermique, c'est à dire rester lors du fonctionnement du moteur à une température inférieure ou égale à 120°C, de préférence à 100°C,
La post-injection du liquide de régénération du type hydrocarbure, alcool et/ou agent réducteur (e.g. gazole et/ou urée et/ou solution ammoniacale) est assisté par un fluide gazeux sous pression (par exemple de l'air comprimé). Grâce à la structure de l'ensemble capillaire (ou buse)/canalisation, L'injecteur et son support sont situés: • géographiquement à un endroit éloigné (par exemple à 200 mm) du conduit d'échappement, pour ne pas être soumis à des températures élevées, • et en amont du catalyseur d'oxydation. Les moyens de filtration des gaz d'échappement sont quant à eux en aval du catalyseur de d'oxydation (ou combustion). Le catalyseur et les moyens de filtration sont, en pratique, contenus dans une enceinte, qui se situe dans la trajectoire du flux des gaz d'échappement produit par un moteur.
Conformément à un mode préféré de réalisation du dispositif selon l'invention, les moyens d'alimentation en fluide gazeux sous pression, de préférence en air comprimé, sont conçus pour permettre l'admission de fluide gazeux à la sortie de l'injecteur, en tête de capillaire ou buse, de sorte que du fluide gazeux sous pression, de préférence de l'air comprimé, peut circuler avec le liquide de régénération post-injecté, dans le capillaire ou buse.
Suivant une variante avantageuse de ce mode préféré de réalisation, les moyens d'alimentation en fluide gazeux sous pression, de préférence en air comprimé, comportent une électrovanne commandant l'admission du fluide gazeux sous pression, de préférence de l'air comprimé à la sortie de l'injecteur, en tête de capillaire ou buse, pour permettre audit fluide de circuler avec le liquide de régénération, et, accessoirement, pour pouvoir effectuer le rinçage du capillaire ou buse, après la fin de la post-injection, en maintenant pendant quelque temps un débit de fluide gazeux sous pression, de préférence d'air comprimé, dans le capillaire ou buse.
Suivant une autre variante de ce mode préféré de réalisation, les moyens d'alimentation en fluide gazeux sous pression, de préférence en air comprimé, ainsi que les moyens de post-injection -de préférence le porte-injecteur, sont conçus de telle sorte que soit prévu au moins un orifice calibré permettant d'amener en continu un débit de fluide gazeux sous pression, de préférence d'air comprimé en mélange avec le liquide de régénération, à l'entrée du capillaire ou buse, de manière à réaliser une émulsion et d'en assurer en plus et de préférence la fonction rinçage, en maintenant quelque temps après la fermeture un débit en susdit fluide gazeux, dans le capillaire ou buse.
Avantageusement, les moyens d'alimentation en liquide de régénération sont reliés au conduit d'alimentation d'au moins une pompe à injection mécanique du moteur.
Le liquide de régénération est de préférence choisi : * dans le groupe des hydrocarbures comprenant les produits de raffinage du pétrole (de préférence les essences et le gazole),
* dans le groupe des alcools (de préférence le méthanol),
* dans le groupe des agents réducteurs (de préférence l'urée et les solutions ammoniacales), * et leurs mélanges.
De façon remarquable, le dispositif selon l'invention comprend une sonde de température et une sonde de pression. En outre, le calculateur (ou boîtier électronique de commande), qui est relié à la sonde de température et à la sonde de pression, est à comparer les valeurs θm et éventuellement Pm mesurées respectivement avec les valeurs de références θr et éventuellement Pr, et déclenche la post-injection de liquide de régénération dans le conduit d'échappement, par l'intermédiaire des moyens d'alimentation en liquide de régénération, des moyens d'alimentation en fluide gazeux sous pression, de préférence en air comprimé, et des moyens de post-injection, lorsque les mesures θm et éventuellement Pm sont supérieures ou égales aux valeurs de référence θr et éventuellement Pr.
Avantageusement, la sonde de température et l'éventuelle sonde de pression sont situées sensiblement au même niveau sur le conduit d'échappement.
En pratique et par exemple, la post-injection est effectuée par un injecteur électromagnétique classique du même type que celui utilisé sur les moteurs à essence, cet injecteur étant disposé sur un porte injecteur éloigné du conduit d'échappement. Le liquide de régénération du type hydrocarbure, alcool et/ou agent réducteur (e.g. gazole et/ou urée et/ou solution ammoniacale) provenant de cet injecteur est amené par un capillaire contenu dans une canalisation constituée e.g. par un tube métallique jusqu'au conduit d'échappement chaud. Ce tube est alimenté par de l'air comprimé de manière à arriver concentriquement autour du capillaire pour déboucher dans le conduit d'échappement et provoquer une bonne pulvérisation du liquide de régénération du type hydrocarbure, alcool et/ou agent réducteur (e.g. gazole et/ou éthanol et/ou urée et/ou solution ammoniacale). L'injection de liquide de régénération et l'alimentation en air comprimé sont commandées par le boîtier électronique de commande, qui régit l'ouverture/fermeture d'électrovannes permettant la post-injection de liquide de régénération dans le conduit d'évacuation des gaz d'échappement.
Avantageusement, dans le porte-injecteur, un orifice calibré en liaison avec l'arrivée d'air et en regard avec le nez d'injecteur est disposé de manière à générer une émulsion air/liquide de régénération à l'entrée du capillaire et permettre d'injecter ce liquide de régénération sous forme parfaitement nébulisee à la sortie, dans le conduit d'évacuation des gaz.
La présente invention sera mieux comprise à la lecture de la description qui suit, faite en référence aux dessins qui représentent, de façon nullement limitative, un exemple de réalisation du dispositif de post-injection intégré dans un système de filtration selon l'invention et dans lesquels :
La figure 1 représente une vue générale schématique du système comprenant le dispositif de filtration avec son catalyseur d'oxydation et en amont de cet ensemble le système de post-injection permettant la mise en œuvre du procédé de régénération.
La figure 2 représente une vue détaillée du dispositif de post-injection selon un premier mode de réalisation.
La figure 3 représente une vue détaillée d'une variante du dispositif de postinjection selon un deuxième mode de réalisation. La figure 4 représente une vue générale du système de post-injection intégré dans un ensemble moteur filtre à particules.
Le système qui permet la mise en œuvre du procédé de régénération selon l'invention est représenté de façon schématique à la figure 1 , selon un mode préférentiel.
Dans ce système, collaborent différents éléments mécaniques d'un filtre à particules qui font ou non partie du dispositif de filtration et qui concourent à permettre de contrôler la régénération du système de filtration.
Ainsi, les gaz d'échappement en sortie du moteur diesel sur le conduit 1, sont contrôlés en température par la sonde 2 et en pression par la sonde 3 pour être ensuite dirigé vers le catalyseur d'oxydation 4, puis vers les cartouches de filtration 5, l'ensemble étant contenu dans une enveloppe métallique 6 et isolé par des éléments céramiques 7.
Un calculateur 8 commandera lorsque cela sera nécessaire les injections de gazole à partir de l'injecteur électromagnétique 9 monté sur un bloc porte-injecteur 10, il sera alimenté à partir d'une dérivation du moteur en gazole par le conduit 11 , le gazole étant dirigé vers le conduit d'échappement par le capillaire 12.
Ce capillaire 12 débouche au centre de la tuyauterie 13 dans le conduit d'échappement 14 en amont du catalyseur d'oxydation 4, de manière à obtenir une bonne pulvérisation par l'air qui arrivera concentriquement et qui sera admis à partir de l'électrovanne 15, alimentée par un régulateur de pression non représenté.
Une deuxième électrovanne 16 permettra la purge du capillaire pour éviter que du gazole stagne à l'intérieur de celui-ci et puisse se cokéfier et entraîner son obstruction à proximité du conduit d'échappement qui lui est très chaud. Une vue détaillée du dispositif de post-injection en particulier du porte- injecteur selon un premier mode de réalisation est représentée sur la figure 2.
Le calculateur 8 à partir des informations température et pression collecté par les sondes 2 et 3 et en fonction de la stratégie qui lui aura été fixée commandera une injection de gazole à parti de l'injecteur électromagnétique 9 alimenté en gazole par le circuit moteur en 11. En sortie de cet injecteur électromagnétique, le volume de gazole injecté sera dirigé par le capillaire 12 vers le conduit d'échappement 1 où il sera pulvérisé en 14 grâce à l'air qui arrivera concentriquement par la canalisation 13. Le débit d'air de pulvérisation sera commandé par l'électrovanne 15 alimenté par un régulateur de pression non représenté, son ouverture sera simultanée à celle de l'injecteur 11 , de manière à obtenir une bonne pulvérisation dès le départ, par contre sa fermeture sera différée de quelques secondes de manière à pouvoir effectuer l'opération de rinçage du capillaire par de l'air, qui sera alimenté à partir de l'électrovanne 16 dès la fermeture de l'injecteur, un clapet anti-retour 17 évitera toute accumulation de gazole dans le conduit du porte-injecteur 10 de manière à permettre un rinçage efficace. Une variante de ce mode de réalisation est représentée sur la figure 3. Selon cette variante, pour améliorer la qualité de pulvérisation du gazole et simplifier la réalisation de cet ensemble, le porte-injecteur 10 et alimenté en air par une seule électrovanne dont l'ouverture sera simultanée à l'injecteur de gazole 9, mais dont la fermeture sera différée de quelques secondes, comme pour le mode de réalisation précédent, pour que l'opération de rinçage du capillaire se fasse automatiquement grâce au débit d'air contrôlé par le gicleur calibré d'air 18. Ce débit d'air permettra aussi, dès l'ouverture de l'électrovanne 15, de former une émulsion avec le gazole issu de l'injecteur 9 dans la chambre 19 puis d'être dirigée par le capillaire 12 jusqu'au débouché dans le conduit d'échappement en 14. Cette émulsion débouchera au centre du tube 13 où elle rencontrera le débit d'air véhiculé par ce tube, pour être pulvérisée finement et d'obtenir une qualité de nébulisation bien supérieure, grâce à l'émulsion déjà formée dans le capillaire. A la fermeture de l'injecteur, le maintien du débit d'air durant quelques secondes supplémentaires, permet de rincer totalement le capillaire 12. Sur cette forme de réalisation, de bons résultats ont été obtenus avec une pression d'alimentation en air, par exemple de 3 bars, alimentée par l'électrovanne 15 par un tube rilsan de 4/6 mm, par exemple, et par une restriction en l'entrée du porte-injecteur 2 mm, e.g., de diamètre et par un gicleur d'air de 0,45 mm, e.g., pour alimenter la chambre 19 à l'entrée du capillaire 12. Ce capillaire en inox, e.g., de 1/1 ,6 mm avait une longueur de 50 cm et était contenu dans un tube d'inox de 4/6 mm, e.g., la qualité du brouillard de gazole obtenue ont permis de réaliser des injections jusqu'à des températures à l'entrée du catalyseur de 270° C, e.g., sans observer d'émissions parasites d'hydrocarbures. Sur la figure 4 est représenté le dispositif de post-injection associé à un système de filtration des particules, l'ensemble étant monté sur un moteur diesel 20 alimenté par un compresseur d'air 21 , et échappant à travers une turbine 22 pour évacuer les gaz d'échappement par une tuyauterie 23, vers le système en 1 où sont disposées les sondes de température 2 et de pression 3 avant de pulvériser en 14 le gazole avec l'air provenant de la canalisation 13. L'injecteur 9 étant alimenté par une ligne 11 montée en dérivation de l'alimentation en gazole de la pompe à injection 24 du moteur.
Dans le procédé de régénération des filtres à particules avec le dispositif de post-injection, si la température n'est pas suffisante pour déclencher la combustion des particules, la régénération se produit grâce à l'injection de gazole.
Pour ce faire, la température au voisinage de l'entrée du catalyseur est mesurée, grâce à la sonde 2, e.g. du type thermocouple ou thermistance disposée à l'entrée du système. La valeur de température θm mesurée est recueillie par le calculateur 8. Le calculateur va comparer cette valeur θm à une valeur de référence θr, correspondant à la température à laquelle la combustion du gazole sur le catalyseur avec l'excès d'air, se fait de façon complète. L'homme de l'art est parfaitement à même de déterminer θr. En pratique, pour des moteurs diesel, θr est par exemple ≥ 300° C.
Si la température θm mesurée est supérieure ou égale à la valeur de référence θr, le boîtier électronique de commande déclenche l'ouverture de l'injecteur 9 et de l'électrovanne 15. Cette ouverture entraîne l'entrée de gazole dans le capillaire et d'air comprimé dans le tube 13. A la sortie du tube 13 en 14, le gazole se mélange à l'air comprimé et le mélange, ainsi constitué, est pulvérisé, sous forme nébulisee dans le conduit d'évacuation des gaz d'échappement 1.
Le carburant injecté dans le conduit d'échappement 1 entre dans l'enceinte 6 et subit une combustion complète au niveau du catalyseur 4. Cette combustion induit une augmentation significative de température jusqu'à une température θc à laquelle va se dérouler la combustion des particules qui colmatent le moyen de filtration. Les molécules de N02 produites en association avec l'excès d'oxygène résiduel contenu dans les gaz d'échappement vont catalyser cette réaction d'oxydation. Ainsi, cette réaction se produit à une température inférieure à la température normale de combustion. Lors de cette oxydation, les particules solides sont transformées en gaz qui sont évacués.
Le moyen de filtration se retrouve alors dépourvu de dépôts et récupère sa pleine capacité de filtration.
Selon un mode de réalisation particulier, la mesure de θm peut être exploitée par le boîtier électronique afin d'évaluer la température des particules au niveau du moyen de filtration. En effet, si θm est voisine de la température à laquelle la combustion de particules peut se faire sans post-injection de gazole, le calculateur peut décider de ne pas déclencher cette post-injection, ce qui permet de faire une économie substantielle de carburant.
Un autre mode opérationnel consiste à mesurer simultanément la température et la pression au niveau du moyen de production de catalyseur, grâce à la sonde de température 2 et à la sonde de pression 3. La valeur de pression Pm mesurée reflète le degré d'obstruction du moyen de filtration par les particules. En effet, si le moyen de filtration est colmaté, les gaz d'échappement passent plus difficilement et exercent alors une contre-pression. Ainsi, la mesure de la pression Pm correspond au meilleur moyen de contrôler le colmatage du moyen de filtration. La sonde 3 est une sonde classique de mesure de la pression absolue. Selon une variante, la sonde de pression 3 peut être une sonde de mesure de pression différentielle, comprenant un capteur situé en amont du filtre et un autre en aval dudit filtre.
Le boîtier électronique de commande compare la valeur Pm mesurée à une valeur de référence Pr, correspondant au degré d'obstruction maximal acceptable du moyen de filtration. La détermination de Pr indicatrice du colmatage est faite aisément et arbitrairement par l'homme de l'art. En pratique et par exemple, la pression Pr correspond à la pression mesurée avec un filtre neuf augmentée de 100 mBar.
Si Pm est supérieure ou égale à Pr, le boîtier électronique de commande compare θm à θr. Si θm est supérieure ou égale θr, le boîtier déclenche alors la postinjection de gazole qui conduit à la régénération du moyen de filtration. Ce mode opérationnel a pour intérêt de ne déclencher de post-injection que lorsque le moyen de filtration a atteint un degré de colmatage déterminé, ce qui permet de fortement limiter la surconsommation de carburant. Avec cette information pression le calculateur, toujours à partir de valeurs rentrées en consigne, peut, en fonction du niveau de contre pression, augmenter la durée d'injection de manière à atteindre une température plus élevée. EXEMPLE :
A titre d'exemple non limitatif, on met en oeuvre un dispositif de filtration utilisé avec un moteur de véhicule industriel, le moteur Renault VI 620-45 suralimenté, de 10 litres de cylindrée et d'une puissance de 180 kW. Ce moteur équipe des bus urbains. Le dispositif de filtration est composé de :
- D'un catalyseur d'oxydation métallique à base de platine permettant l'oxydation totale du CO et des hydrocarbures à basse température ainsi que la transformation d'une partie du NO en N02, la teneur en platine était de 90 g par pied cubique. - De filtres à particules IBIDEN, de type nid d'abeille en carbure silicium, montés en parallèle.
- Un système d'injection de gazole suivant le deuxième mode de réalisation représenté figure 3, le capillaire 12 utilisé était en inox de 1 mm de diamètre intérieur par 1 ,6 mm extérieur, quant au tube d'amené d'air 13, il était aussi en inox et avait pour dimension, 4 mm intérieur par 6 mm extérieur pour une longueur totale de 50 cm.
- Un boîtier électronique 8 commandant la post-injection de gazole. Une temporisation limite la durée de la post-injection à 20 s et correspond à une quantité injectée de 20 cm3 ensuite une programmation spécifique du boîtier permet d'obtenir au plus une post-injection toutes les 7 minutes.
L'injecteur électromagnétique 9 était alimenté par la ligne 11 relié par un
Té à la canalisation d'alimentation de la pompe à injection du moteur, permettant d'avoir une pression d'alimentation variant de 1 à 1 ,5 bars.
Le boîtier électronique a été réglé de manière à ce que la post-injection soit déclenchée dès que la contre-pression atteint 150 mb et que la température des gaz soit supérieure à 300° C.
Dans ces configurations le bus a effectué plus de 45000 km sans que l'on observe de dérive de contre pression, ce qui démontre que le système de post injection à bien effectué son travail en maintenant en permanence un niveau de température suffisant pour que la régénération du filtre se fasse en continu malgré les conditions sévères d'utilisation.
Un test a été effectué après 15000 km de roulage sur un cycle de pollution représentatif des conditions de circulation urbaine au banc à rouleaux à l'UTAC et a donné les résultats remarquables suivants :
Emissions en gramme / kilomètre.
Ces résultats démontrent l'efficacité de ce dispositif aussi bien matière de régénération qu'en matière de dépollution sur tous les polluants.
Le procédé de post injection selon l'invention associé à un dispositif de filtration faisant appel à un catalyseur d'oxydation est donc particulièrement adéquat pour le traitement des gaz d'échappement des véhicules de transport en commun urbain. En effet, les gaz produits par ces véhicules sont généralement à une température inférieure à celle nécessaire pour permettre la régénération des dispositifs de filtration classiques, ce qui entraîne un colmatage de ces dispositifs et donc leur détérioration rapide par de brutales réactions de combustion. Or, les résultats obtenus avec la présente technique permettent d'envisager une durée de vie minimale du dispositif de filtration de 100 000 km, sur des véhicules de ce type.
Ainsi, si le dispositif d'injection selon l'invention, ne comporte pas d'éléments techniques nouveaux, les inventeurs ont le mérite d'avoir su combiner et adapter différentes techniques existantes afin de potentialiser leurs effets et d'obtenir un dispositif ayant une très grande efficacité et robustesse pour permettre une post injection du gazole fiable ne générant aucune émission parasite d'hydrocarbures et permettant d'augmenter de manière significative la température des gaz d'échappement pour permettre l'oxydation des particules de carbone retenue sur le filtre et obtenir d'excellents résultats en terme de régénération des filtres, même dans le cas de véhicules dont les régimes moteurs ne permettent pas d'obtenir des gaz d'échappement avec une température élevée.

Claims

REVENDICATIONS
1. Procédé de post-injection d'un liquide de régénération, notamment pour la régénération d'un dispositif de filtration des gaz d'échappement produits par un moteur diesel, ce procédé étant du type de ceux dans lesquels des particules, après être passées sur un catalyseur d'oxydation, sont retenues sur un moyen de filtration dudit dispositif de filtration, caractérisé :
- en ce que le liquide de régénération comprend au moins un hydrocarbure et/ou au moins un agent réducteur, - et en ce que cette post-injection consiste essentiellement à injecter, en amont du catalyseur, à l'aide de moyens de post-injection :
* d'une part, le liquide de régénération,
* et, d'autre part, d'au moins un fluide gazeux, de préférence de l'air comprimé, ce liquide de régénération et ce fluide gazeux formant ensemble un aérosol permettant de pulvériser le liquide de régénération dans les gaz d'échappement et d'augmenter leur température, pour in fine accélérer la vitesse d'oxydation desdites particules et contribuer ainsi à la régénération du dispositif de filtration.
2. Procédé selon la revendication 1 , caractérisé en ce que le flux de post- injection du liquide de régénération et le flux de post-injection du fluide gazeux, de préférence l'air comprimé, émanent d'ouvertures sensiblement concentriques.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'une partie du fluide gazeux, de préférence l'air comprimé, emprunte, jusqu'à l'ouverture de post- injection, la même buse que le liquide de régénération.
4. Procédé selon la revendication 3, caractérisé en ce qu'une partie du fluide gazeux est mélangée au liquide de régénération avant la post-injection.
5. Procédé selon la revendication 3 ou 4, caractérisé en ce que l'on prévoit de maintenir la circulation du fluide gazeux, de préférence l'air comprimé, dans la buse de post-injection, après l'interruption de la post-injection de liquide de régénération au travers de cette buse, et ce pendant une durée nécessaire au rinçage de ladite buse.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on fait en sorte que la température d'au moins une partie des moyens de post-injection reste inférieure ou égale à 120°C, de préférence 100°C, lors du fonctionnement du moteur.
7. Procédé selon la revendication 6 caractérisé en ce qu' au moins une partie des moyens de post-injection est éloignée du (ou des) conduit(s) dans le(s)quel(s) circulent les gaz d'échappement.
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le liquide de régénération est choisi :
* dans le groupe des hydrocarbures comprenant les produits de raffinage du pétrole (de préférence les essences et le gazole), * dans le groupe des alcools (de préférence du méthanol),
* dans le groupe des agents réducteurs (de préférence l'urée et les solutions ammoniacales),
* et leurs mélanges.
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il consiste également à :
- mesurer une température θm en amont du catalyseur d'oxydation,
- comparer θm à une température θr correspondant à la température à laquelle la combustion du liquide de régénération, en présence du catalyseur de combustion, est complète,
- si θm est supérieure ou égale à θr, déclencher une post-injection de liquide de régénération.
10. Procédé selon la revendication 9, caractérisé en ce qu'il consiste également
• mesurer une pression Pm en amont du système de filtration par une sonde (3), ladite pression Pm reflétant le degré d'obstruction du moyen de filtration (5) par les particules,
• comparer ladite pression Pm à une pression Pr de référence correspondant au degré d'obstruction maximal acceptable,
• si Pm est supérieure ou égale à la pression Pr et si θm est supérieure ou égale à θr, déclencher la post-injection de gazole.
11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on pilote les injections de gazole, à l'aide d'au moins un calculateur, en tenant compte des informations température θm et éventuellement pression Pm, pour obtenir l'augmentation de température recherchée en vue d'une régénération optimale du dispositif de filtration
12. Dispositif permettant notamment la mise en œuvre du procédé de postinjection selon l'une quelconque des revendications précédentes et comprenant au moins un conduit d'échappement (1), au moins un catalyseur (4) et des moyens de filtration, caractérisé en ce qu'il comporte en outre :
• des moyens d'alimentation (11 ) en liquide de régénération,
• des moyens d'alimentation (15, 16, 17) en fluide gazeux sous pression, de préférence en air comprimé,
• des moyens de post-injection incluant : -Φ- au moins un injecteur (9) -de préférence électromagnétique-,
-Φ- au moins un porte-injecteur (10), sur lequel est disposé ledit injecteur, Φ- au moins un capillaire ou buse (12) partant de l'injecteur (9) et débouchant dans au moins un conduit (1) d'échappement, par au moins une ouverture (14), en amont du catalyseur (4),
-Φ- au moins une canalisation (13) reliée aux moyens d'alimentation en fluide gazeux sous pression, de préférence en air comprimé, et débouchant dans le (ou les) conduit(s) d'échappement (1), par au moins une ouverture (14), π éventuellement au moins une sonde de température (2) de mesure de θm, disposé sur le (ou les) conduit(s) d'échappement (1), en amont du catalyseur (4), s éventuellement au moins une sonde de pression de mesure de Pm au sein du (ou des) conduit(s) d'échappement et disposé sur ce(s) dernier(s) en amont du catalyseur (4),
• au moins un calculateur (8) de pilotage de la post-injection, auquel sont assujettis les moyens d'alimentation (11) en liquide de régénération, les moyens d'alimentation (15, 16, 17) en fluide gazeux sous pression, de préférence en air comprimé, les moyens de post- injection, et I' (ou les) éventuelle(s) sonde(s) de température (2) ou de pression (3).
13. Dispositif selon la revendication 12, caractérisé :
• en ce que le capillaire ou buse (12) et la canalisation (13) sont concentriques et coaxiales, de même que leurs ouvertures (14) respectives, qui débouchent dans le
(ou les) conduit(s) d'échappement (1),
• et en ce que le capillaire ou buse (12) est contenu dans la canalisation (13).
14. Dispositif selon la revendication 12 ou 13, caractérisé en ce que au moins une partie des moyens de post-injection, de préférence au moins l'injecteur (9), est conçu de telle sorte, de préférence est disposé à une distance suffisante du (ou des) conduit(s) d'échappement (1) pour ne pas subir de détérioration thermique, c'est à dire rester lors du fonctionnement du moteur à une température inférieure ou égale à 120° C, de préférence à 100° C.
15. Dispositif selon l'une quelconque des revendications 12 à 14, caractérisé en ce que les moyens d'alimentation en fluide gazeux sous pression, de préférence en air comprimé, sont conçus pour permettre l'admission de fluide gazeux à la sortie de l'injecteur (9), en tête de capillaire ou buse (12), de sorte que du fluide gazeux sous pression, de préférence de l'air comprimé, peut circuler avec le liquide de régénération post-injecté dans le capillaire ou buse (12).
16. Dispositif selon la revendication 15, caractérisé en ce que les moyens d'alimentation en fluide gazeux sous pression, de préférence en air comprimé, comportent une électrovanne (16) commandant l'admission du fluide gazeux sous pression, de préférence de l'air comprimé à la sortie de l'injecteur (9), en tête de capillaire ou buse (12), pour permettre audit fluide de circuler avec le liquide de régénération, et, accessoirement, pour pouvoir effectuer le rinçage du capillaire ou buse (12), après la fin de la post-injection, en maintenant pendant quelque temps un débit de fluide gazeux sous pression, de préférence d'air comprimé dans le capillaire ou buse (12).
17. Dispositif selon l'une quelconque des revendications 12 à 16, caractérisé en ce que les moyens d'alimentation en fluide gazeux sous pression, de préférence en air comprimé, ainsi que les moyens de post-injection -de préférence le porte-injecteur (10), sont conçus de telle sorte que soit prévu au moins un orifice calibré (18) permettant d'amener en continu un débit de fluide gazeux sous pression, de préférence d'air comprimé en mélange avec le liquide de régénération, à l'entrée du capillaire ou buse (12), de manière à réaliser une émulsion et d'en assurer en plus et de préférence la fonction rinçage, en maintenant quelque temps après la fermeture un débit en susdit fluide gazeux dans le capillaire ou buse (12).
18. Dispositif selon l'une quelconque des revendications 12 à 17, caractérisé en ce que les moyens d'alimentation (11) en liquide de régénération sont reliés au conduit d'alimentation d'au moins une pompe à injection mécanique (24) du moteur.
19. Dispositif selon l'une quelconque des revendications 12 à 18, caractérisé en ce que le liquide de régénération est choisi :
* dans le groupe des hydrocarbures comprenant les produits de raffinage du pétrole (de préférence les essences et le gazole), * dans le groupe des alcools (de préférence du méthanol),
* dans le groupe des agents réducteurs (de préférence l'urée et les solutions ammoniacales),
* et leurs mélanges.
20. Dispositif selon l'une quelconque des revendications 12 à 19, caractérisé en ce qu'il comprend une sonde de température (2) et une sonde de pression (3) et en ce que le calculateur (8) qui est relié à la sonde de température (2) et à la sonde de pression (3), est à comparer les valeurs θm et éventuellement Pm mesurées respectivement avec les valeurs de références θr et éventuellement Pr, et déclenche la post-injection de liquide de régénération dans le conduit d'échappement (1), par l'intermédiaire des moyens d'alimentation (11) en liquide de régénération, des moyens d'alimentation (15, 16, 17) en fluide gazeux sous pression, de préférence en air comprimé, et des moyens de postinjection, lorsque les mesures θm et éventuellement Pm sont supérieures ou égales aux valeurs de référence θr et éventuellement Pr.
EP03810015A 2003-01-31 2003-12-23 Procede de post injection de liquide de regeneration du type hydrocarbure, alcool et/ou agent reducteur (e.g. gazole et/ou uree et/ou solution ammoniacale) pour la regeneration de systemes de filtration des gaz d echappement de moteur diesel Expired - Lifetime EP1588032B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0301123A FR2850704A1 (fr) 2003-01-31 2003-01-31 Procede de post-injection de gazole pour la regeneration de systemes de filtration des gaz d'echappement de moteur diesel
FR0301123 2003-01-31
PCT/FR2003/050206 WO2004079168A1 (fr) 2003-01-31 2003-12-23 Procede de post injection de liquide de regeneration du type hydrocarbure, alcool et/ou agent reducteur (e.g. gazole et/ou uree et/ou solution ammoniacale) pour la regeneration de systemes de filtration des gaz d'echappement de moteur diesel

Publications (2)

Publication Number Publication Date
EP1588032A1 true EP1588032A1 (fr) 2005-10-26
EP1588032B1 EP1588032B1 (fr) 2008-04-09

Family

ID=32696249

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03810015A Expired - Lifetime EP1588032B1 (fr) 2003-01-31 2003-12-23 Procede de post injection de liquide de regeneration du type hydrocarbure, alcool et/ou agent reducteur (e.g. gazole et/ou uree et/ou solution ammoniacale) pour la regeneration de systemes de filtration des gaz d echappement de moteur diesel

Country Status (11)

Country Link
US (1) US7481045B2 (fr)
EP (1) EP1588032B1 (fr)
JP (1) JP2006514205A (fr)
CN (1) CN1780974A (fr)
AT (1) ATE391839T1 (fr)
AU (1) AU2003302199A1 (fr)
CA (1) CA2514469A1 (fr)
DE (1) DE60320310T2 (fr)
ES (1) ES2306920T3 (fr)
FR (1) FR2850704A1 (fr)
WO (1) WO2004079168A1 (fr)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7954570B2 (en) 2004-02-19 2011-06-07 Baker Hughes Incorporated Cutting elements configured for casing component drillout and earth boring drill bits including same
DE102004025062B4 (de) 2004-05-18 2006-09-14 Hydraulik-Ring Gmbh Gefriertaugliches Dosierventil
FR2879241B1 (fr) 2004-12-14 2007-02-23 Renault Sas Systeme d'injection gas-oil a l'echappement sans pompe a carburant additionnelle
US20060196172A1 (en) * 2005-03-02 2006-09-07 Johnson Jeffery S Injection device for the treatment of exhaust fumes from motor vehicles
DE102006015841B3 (de) * 2006-04-03 2007-08-02 TWK Engineering Entwicklungstechnik (GbR) (vertretungsberechtigte Gesellschafter Herrn Thomas Winter, Jagdhaus am Breitenberg, 56244 Ötzingen und Herrn Waldemar Karsten, Am Merzenborn 6, 56422 Wirges) Verfahren zur Erzeugung von Heißgas
FR2899932A1 (fr) * 2006-04-14 2007-10-19 Renault Sas Procede et dispositif de controle de la regeneration d'un systeme de depollution
FR2902137B1 (fr) * 2006-06-07 2008-08-01 Jean Claude Fayard Bruleur et procede pour la regeneration de cartouches de filtration et dispositifs equipes d'un tel bruleur
US20080034734A1 (en) * 2006-08-14 2008-02-14 Kevin James Karkkainen Fuel supply component cleaning system
US20080034733A1 (en) * 2006-08-14 2008-02-14 Miller Robert L Fuel supply component purging system
JP4787702B2 (ja) * 2006-09-14 2011-10-05 出光興産株式会社 ハニカム触媒の再生方法
DE102006062491A1 (de) * 2006-12-28 2008-07-03 Robert Bosch Gmbh Vorrichtung zur Dosierung von Kraftstoff zum Abgassystem eines Verbrennungsmotors
FR2911643B1 (fr) * 2007-01-19 2009-03-13 Inergy Automotive Systems Res Methode et systeme de controle du fonctionnement d'une pompe
DE102007004687B4 (de) 2007-01-25 2012-03-01 Hydraulik-Ring Gmbh Volumensmengenabgabeeinheit und Verfahren zur Kalibrierung der Druckausgangssignal-Volumensmenge-Charakteristik
DE102007016418A1 (de) * 2007-04-05 2008-10-09 Man Diesel Se Temperierung der Schaltventileinheit in Einspritzsystemen
US7762061B2 (en) * 2007-04-09 2010-07-27 Emcon Technologies Llc Apparatus and method for operating an emission abatement system
WO2008131573A1 (fr) * 2007-04-25 2008-11-06 Hochschule Rapperswil Dispositif et procédé de régénération de filtres à particules, utilisation d'un milieu de régénération de filtres à particules, et garnissage rechargeable avec ledit milieu
KR20080102106A (ko) * 2007-05-18 2008-11-24 에스케이에너지 주식회사 배기정화장치의 재생용 인젝터
DE102007024782B4 (de) * 2007-05-26 2011-08-25 Eichenauer Heizelemente GmbH & Co. KG, 76870 Heizeinsatz und dessen Verwendung in einem Harnstoffversorgungssystem
DE102008012780B4 (de) 2008-03-05 2012-10-04 Hydraulik-Ring Gmbh Abgasnachbehandlungseinrichtung
GB0811144D0 (en) 2008-06-18 2008-07-23 Parker Hannifin U K Ltd A liquid drain system
FR2937082A1 (fr) * 2008-10-10 2010-04-16 Jean Claude Fayard Bruleur pour regeneration des filtres a particules de moteur a combustion interne et la mise en temperature de systeme catalytique et ligne d'echappement integrant un tel bruleur.
US8033167B2 (en) * 2009-02-24 2011-10-11 Gary Miller Systems and methods for providing a catalyst
DE102009032022A1 (de) * 2009-07-07 2011-01-13 Man Nutzfahrzeuge Aktiengesellschaft Verfahren und Vorrichtung zur Regeneration eines im Abgastrakt einer Brennkraftmaschine angeordneten Partikelfilters
DE102009035940C5 (de) 2009-08-03 2017-04-20 Cummins Ltd. SCR-Abgasnachbehandlungseinrichtung
DE102010061222B4 (de) 2010-12-14 2015-05-07 Cummins Ltd. SCR-Abgasnachbehandlungseinrichtung
WO2013022158A1 (fr) * 2011-08-10 2013-02-14 주식회사 코벡이엔지 Appareil mobile de recyclage de catalyseur
KR101317398B1 (ko) 2011-08-10 2013-10-11 (주)코벡이엔지 이동식 촉매 재생 장치
KR101377256B1 (ko) * 2011-12-22 2014-04-18 (주)코벡이엔지 이동식 촉매 재생 장치
US9551248B2 (en) * 2012-07-17 2017-01-24 GM Global Technology Operations LLC Method and apparatus to recover exhaust gas recirculation coolers
US20140116032A1 (en) * 2012-10-31 2014-05-01 Tenneco Automotive Operating Company Inc. Injector with Capillary Aerosol Generator
EP2944777B1 (fr) * 2012-12-10 2018-03-14 Volvo Truck Corporation Injecteur de carburant de tuyau d'échappement
CN107023352A (zh) * 2017-06-15 2017-08-08 北京大学邯郸创新研究院 一种油气混合器
CN109026381A (zh) * 2018-07-29 2018-12-18 合肥市智信汽车科技有限公司 一种运输车辆颗粒清洗***
CN108868974A (zh) * 2018-09-03 2018-11-23 王随朝 柴油发电机尾气处理装置
KR102228605B1 (ko) * 2020-10-05 2021-03-15 정성호 산업용 NOx 저감용 인젝터 구조

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412029A (en) 1977-06-30 1979-01-29 Texaco Development Corp Smoke filter
US4372111A (en) * 1980-03-03 1983-02-08 Texaco Inc. Method for cyclic rejuvenation of an exhaust gas filter and apparatus
JPS601314A (ja) * 1983-06-20 1985-01-07 Nissan Motor Co Ltd 内燃機関の排気微粒子後処理装置
US4589254A (en) 1983-07-15 1986-05-20 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Regenerator for diesel particulate filter
JPS63198717A (ja) 1987-02-13 1988-08-17 Toyota Central Res & Dev Lab Inc 内燃機関の排気粒子除去装置
JPH0441914A (ja) * 1990-06-01 1992-02-12 Nissan Motor Co Ltd 内燃機関の排気処理装置
US5143700A (en) * 1990-10-15 1992-09-01 Anguil Environmental Systems, Inc. Ceramic filter construction for use in catalytic incineration system
JP3028110B2 (ja) * 1993-10-21 2000-04-04 日野自動車株式会社 エンジンの排ガス浄化装置
JP3336750B2 (ja) * 1994-08-08 2002-10-21 トヨタ自動車株式会社 パティキュレート捕集用フィルタの再生方法及びパティキュレート捕集用フィルタを具備する排気浄化装置
US5522218A (en) * 1994-08-23 1996-06-04 Caterpillar Inc. Combustion exhaust purification system and method
JPH08232643A (ja) * 1995-02-28 1996-09-10 Matsushita Electric Ind Co Ltd 排ガス浄化方法及び排ガス浄化装置
JP3089989B2 (ja) * 1995-05-18 2000-09-18 トヨタ自動車株式会社 ディーゼル機関の排気浄化装置
US5943858A (en) * 1995-05-19 1999-08-31 Siemens Aktiengesellschaft Premixing chamber for an exhaust gas purification system
JPH0913946A (ja) * 1995-06-28 1997-01-14 Mitsubishi Heavy Ind Ltd 黒煙除去装置を備えた排ガス浄化装置
US6021639A (en) * 1995-06-28 2000-02-08 Mitsubishi Heavy Industries, Ltd. Black smoke eliminating device for internal combustion engine and exhaust gas cleaning system including the device
EP1410837B1 (fr) * 1995-09-11 2006-03-29 Toyota Jidosha Kabushiki Kaisha Méthode pour purifier des gaz d'échappement d'un moteur à combustion interne
WO1997016632A1 (fr) * 1995-10-30 1997-05-09 Toyota Jidosha Kabushiki Kaisha Appareil de regulation des emissions de l'echappement pour un moteur a combustion interne
JP3645704B2 (ja) * 1997-03-04 2005-05-11 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE19738859A1 (de) * 1997-09-05 1999-03-11 Bosch Gmbh Robert Gemischabgabevorrichtung
DE19856366C1 (de) * 1998-12-07 2000-04-20 Siemens Ag Vorrichtung und Verfahren zum Nachbehandeln von Abgasen einer mit Luftüberschuß arbeitenden Brennkraftmaschine
JP3758389B2 (ja) * 1998-12-09 2006-03-22 三菱ふそうトラック・バス株式会社 ディーゼルエンジンの排気ガス浄化装置
US6526746B1 (en) * 2000-08-02 2003-03-04 Ford Global Technologies, Inc. On-board reductant delivery assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004079168A1 *

Also Published As

Publication number Publication date
WO2004079168A1 (fr) 2004-09-16
US7481045B2 (en) 2009-01-27
EP1588032B1 (fr) 2008-04-09
US20060096274A1 (en) 2006-05-11
JP2006514205A (ja) 2006-04-27
ATE391839T1 (de) 2008-04-15
DE60320310D1 (de) 2008-05-21
DE60320310T2 (de) 2009-04-16
FR2850704A1 (fr) 2004-08-06
ES2306920T3 (es) 2008-11-16
CN1780974A (zh) 2006-05-31
AU2003302199A1 (en) 2004-09-28
CA2514469A1 (fr) 2004-09-16

Similar Documents

Publication Publication Date Title
EP1588032B1 (fr) Procede de post injection de liquide de regeneration du type hydrocarbure, alcool et/ou agent reducteur (e.g. gazole et/ou uree et/ou solution ammoniacale) pour la regeneration de systemes de filtration des gaz d echappement de moteur diesel
FR2902137A1 (fr) Bruleur et procede pour la regeneration de cartouches de filtration et dispositifs equipes d'un tel bruleur
FR2928176A1 (fr) Procede de regeneration d'un filtre a particules pour moteur a essence et ensemble d'echappement associe
WO2003102389A9 (fr) Procede et dispositif de filtration des gaz d'echappement pour moteur diesel a surface de filtration variable par obstruction commandee
CA2458983C (fr) Procede de regeneration d'un dispositif de filtration des gaz d'echappement pour moteur diesel et dispositif de mise en oeuvre
EP2877720B1 (fr) Système de traitement des gaz d'échappement comprenant un filtre à particules catalytiques, et procédé correspondant
FR2931897A1 (fr) Procede de decrassage d'une vanne de recirculation des gaz d'echappement et moteur a combustion interne
EP1223312B1 (fr) Système de traitement des gaz d'échappement d'un moteur à combustion et procédé de pilotage d'un tel système
EP3473840B1 (fr) Procédé de régénération d'un filtre à particules et dispositif de mise en oeuvre
FR2921685A1 (fr) Procede et dispositif de traitement de gaz d'echappement d'un moteur a combustion interne.
FR2937082A1 (fr) Bruleur pour regeneration des filtres a particules de moteur a combustion interne et la mise en temperature de systeme catalytique et ligne d'echappement integrant un tel bruleur.
FR2832756A1 (fr) Dispositif de filtration des gaz d'echappement pour moteur diesel comprenant un support de catalyseur integre dans le moyen de filtration
EP1461515B1 (fr) Procede de regeneration de filtres a particules par injection de nitrate d'ammonium et dispositif de mise en oeuvre
FR2859240A1 (fr) Procede de traitement d'un filtre a particules pour l'epuration de gaz d'echappement d'un moteur a combustion et dispositif de traitement d'un filtre a particules
EP1757353A1 (fr) Procédé d'oxydation pour l'épuration de gaz d'échappement d'un moteur à combustion et système d'aide au fonctionnement d'un catalyseur d'oxydation
FR2900963A1 (fr) Systeme d'aide au fonctionnement d'un dispositif de traitement de gaz d'echappement d'un moteur a combustion interne de vehicule automobile et procede associe
FR2927657A3 (fr) Alimentation en carburant du systeme d'admission de reducteurs dans l'echappement et dispositif de depollution des gaz d'echappement d'un vehicule automobile.
FR2897642A1 (fr) Procede et dispositif de regeneration du filtre a particules de l'echappement d'un moteur a combustion interne
FR2873157A1 (fr) Procede et dispositif de regeneration d'un filtre a particules d'une ligne d'echappement d'un moteur diesel
FR2978203A1 (fr) Bruleur a flux inverse pour la regeneration des filtres a particules de moteur a combustion interne et la mise en temperature de systemes dans une ligne d'echappement integrant un tel bruleur
FR2865239A1 (fr) Dispositif de filtration des gaz d'echappement pour moteur diesel associant un additif de combustion compose de nano-particules et un filtre a particules a surface de filtration variable
FR2808840A1 (fr) Procede de determination du point de montage d'un precatalyseur dans la tubulure d'echappement d'un moteur a combustion interne et installation d'epuration l'utilisant
FR2930289A3 (fr) Procede de commande d'alimentation en carburant d'une ligne d'echappement d'un moteur a combustion et dispositif mettant en oeuvre le procede
EP2174822A1 (fr) Véhicule comportant un réservoir d'additifs carburant et un réservoir d'agent de réduction sélective
WO2010010260A1 (fr) Dispositif d'elimination d'oxydes de soufre dans un systeme de piegeage d'oxydes d'azote

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050804

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070828

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60320310

Country of ref document: DE

Date of ref document: 20080521

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ING. MARCO ZARDI C/O M. ZARDI & CO. S.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080409

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080409

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080409

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2306920

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080409

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080409

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080409

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080409

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080409

26N No opposition filed

Effective date: 20090112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080409

BERE Be: lapsed

Owner name: FAYARD, JEAN CLAUDE

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080409

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20091119

Year of fee payment: 7

Ref country code: ES

Payment date: 20091223

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20091209

Year of fee payment: 7

Ref country code: IT

Payment date: 20091221

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081010

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080710

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101209

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101223

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20120119

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60320310

Country of ref document: DE

Effective date: 20120703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120703

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130118

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231