WO2003102389A9 - Procede et dispositif de filtration des gaz d'echappement pour moteur diesel a surface de filtration variable par obstruction commandee - Google Patents

Procede et dispositif de filtration des gaz d'echappement pour moteur diesel a surface de filtration variable par obstruction commandee

Info

Publication number
WO2003102389A9
WO2003102389A9 PCT/FR2003/050004 FR0350004W WO03102389A9 WO 2003102389 A9 WO2003102389 A9 WO 2003102389A9 FR 0350004 W FR0350004 W FR 0350004W WO 03102389 A9 WO03102389 A9 WO 03102389A9
Authority
WO
WIPO (PCT)
Prior art keywords
filtration
exhaust gases
filtration means
engine
cartridges
Prior art date
Application number
PCT/FR2003/050004
Other languages
English (en)
Other versions
WO2003102389A2 (fr
Inventor
Jean Claude Fayard
Original Assignee
Jean Claude Fayard
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jean Claude Fayard filed Critical Jean Claude Fayard
Priority to MXPA04012166A priority Critical patent/MXPA04012166A/es
Priority to JP2004509250A priority patent/JP2006515395A/ja
Priority to EP03756052A priority patent/EP1573181A2/fr
Priority to AU2003253083A priority patent/AU2003253083A1/en
Priority to US10/516,369 priority patent/US7314501B2/en
Priority to CA002487942A priority patent/CA2487942A1/fr
Publication of WO2003102389A2 publication Critical patent/WO2003102389A2/fr
Publication of WO2003102389A9 publication Critical patent/WO2003102389A9/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • F01N13/017Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/0214Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters with filters comprising movable parts, e.g. rotating filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/03By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device in case of low temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/10Residue burned
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/30Exhaust treatment

Definitions

  • the present invention relates generally to the field of particulate filters and more particularly to an exhaust gas filtration device for a diesel engine.
  • the present invention relates to a device for filtering exhaust gases for a diesel engine further comprising a means for filtering said gases with variable capacity, in which is arranged a means of catalysis associated or not with a post injection of diesel and an exhaust gas recirculation system.
  • catalytic converters or catalysts generally consisting of a stainless steel casing, an insulator and a honeycomb support impregnated with precious metals such as platinum or rhodium.
  • an oxidation catalysis means allowing the transformation of nitrogen monoxide NO, contained in the exhaust gases, into nitrogen dioxide N0 2 from 250 ° C.
  • This technique called “Continuous Regenerating Trap” (CRT)
  • CRT Continuous Regenerating Trap
  • This means consists of a catalytic support on which the catalyst is fixed, which is generally a precious metal such as platinum or rhodium.
  • the NO 2 produced by the action of the latter has the property of oxidizing the carbon particles from 250 ° C.
  • the proper functioning of the filter depends on the average temperature reached and the ratio of particles emitted relative to the N0 2 formed.
  • this CRT system requires regular regeneration, which limits the pressure drop of the filter by eliminating the risk of uncontrolled and exothermic regeneration.
  • a first drawback of these techniques is the prohibitive cost of the additives used associated with the fact that it is necessary to provide a complementary additivation device.
  • the objective of the present invention is to provide a method of filtering exhaust gases (in particular from diesel engines) which will remedy the drawbacks of the various existing techniques, by optimizing the filtration of exhaust gases.
  • diesel engines in particular in terms of regeneration of the filtration means, so as to provide a satisfactory solution to the problem of clogging of the filtration means with carbon particles.
  • Another objective of the invention is to provide an exhaust gas filtration process incorporating regular, efficient and continuous regeneration, so that this avoids any risk of accumulation of particles in the filtration means and therefore any risk of uncontrolled regeneration.
  • Yet another objective of the invention is to provide a method of filtering exhaust gases in which the integrated regeneration does not entail significant overconsumption of fuel and more generally, does not entail any additional financial cost for the user.
  • Yet another objective of the invention is to provide a method of filtering exhaust gases in which the integrated regeneration does not affect the performance of the engine, in particular by pressure losses, due to the back pressure exerted by the exhaust gas on the engine, due to clogging of the filtration device.
  • Another objective of the invention is to provide a filtration device making it possible to implement the filtration process according to the invention.
  • the present invention which firstly relates to a method of filtering exhaust gases e.g. emitted by a diesel engine.
  • This exhaust gas filtration process in which all or part of the particles contained in said exhaust gases, are retained on filtration means and are burned by the action of a combustion catalyst.
  • This process essentially consists in obstructing at least part of the filtration means as soon as the temperature ⁇ g of the exhaust gases to be filtered becomes less than or equal to a threshold temperature ⁇ s, so as to limit, or even avoid, the cooling of the part.
  • a filtration means consisting for example of at least two cartridges arranged in an envelope, one of the two cartridges being switched off each time the engine is running without load or at idle to maintain in the insulated and flowless cartridge a temperature sufficient to cause a significant continuous regeneration speed each time the engine is operated again with hot exhaust gases.
  • Each cartridge is preferably in turn switched off so that it regenerates continuously.
  • the obstruction of part of the filtration means consists in preventing the circulation of the exhaust gases in at least 30%, preferably in at least 50% and even more preferably in 50 to 75% of the filtration means, this percentage expressing a percentage by volume.
  • ⁇ s 250 ° C or 300 ° C.
  • the filtration means consist of at least two - preferably at least three - filter cartridges, each equipped with a shutter, two of the three cartridges preferably counted by the filtration means constituting the obstructed part of the filtration means when ⁇ g ⁇ s.
  • the invention relates to an exhaust gas filtration device comprising at least one means of catalysis, means of filtering said exhaust gases, arranged in a reaction enclosure in the path of the flow. exhaust gases produced by an engine, said device being characterized in that the filtration means is constituted by at least two assemblies each comprising a catalyst support attached to a filter cartridge fitted with a flow obstruction means.
  • the device comprises a means for recirculating the exhaust gases at the intake of the engine, the operation of which is associated with cutting off. of the flow in one or more of the cartridges each time the engine is not accelerated, so that the increase in back pressure generated automatically opens a valve which allows this recirculation of the exhaust gases.
  • each of the filter cartridges has a flow obstruction means, arranged upstream or downstream, controlled by an electronic computer which will take into account all the engine operating conditions, so as to isolate at least one cartridge each time the accelerator position is at zero (not accelerated).
  • the filtration means consists of at least three cartridges with a means of obstructing the flow rate on each of them, controlled by an electronic computer which will take into account all the engine operating conditions, so as to isolate in turn, at least two cartridges when the engine is not accelerated, and to isolate the cartridge which filters the gases in the non-accelerated position, each time the engine is accelerated.
  • the flow obstruction means arranged on each filter cartridge include a calibrated orifice of small size to maintain a very low flow.
  • the device comprises a post-injection system of diesel fuel in the exhaust gases, by means of a sprayer, preferably upstream of the filtration device and of the catalysts, controlled by an electronic computer which will take into account all engine operating conditions, this diesel post-injection system possibly being associated with an exhaust gas recirculation system.
  • the injected diesel may be appropriate for the injected diesel to contain an organometallic as a combustion catalyst supplied or not supplied from a specific tank.
  • the device may use the use of known organometallic additives which will be injected by the post injection system in place of diesel.
  • the filtration means consists of a set of at least two filtering units each equipped with an obstruction means controlled by a computer which will take into account the engine operating conditions.
  • each of said filter units will include an obstruction means so that they can be switched off in turn.
  • the obstruction means for each of the cartridges used will be disposed downstream of the filtration unit.
  • the obstruction means can also be incorporated upstream of the filtration unit and of the associated catalyst.
  • said filtering units will each integrate upstream a catalyst wafer preferably on a metal support.
  • the catalyst is a conventional oxidation catalyst based on platinum so as to obtain a total oxidation of hydrocarbons and CO.
  • the filtration device comprises a system allowing the recycling of the exhaust gases each time the filtration capacity will be reduced, thus taking advantage of the increase in back pressure caused by this restriction for direct a portion of the unfiltered exhaust gas into the intake duct through a non-return valve.
  • the filtration device comprises more than three cartridges and a sufficient number so that for full load operating conditions one of the cartridges is isolated, this cartridge being reserved for the filtration of gases at partial load or in slow motion.
  • the objective being to maintain at high temperature, the filtering medium and the catalyst of each of the cartridges used at full load.
  • the cartridge used at idle will be swapped with one of the others when a start of clogging is detected.
  • Figure 1 shows a general view of the system comprising the filtration device with two cartridges, each having upstream an oxidation catalyst on a metal support and downstream a valve controlled to obstruct completely when necessary the flow of gases to be filtered.
  • the filtration device being associated with an exhaust gas recycling system with its non-return valve.
  • FIG. 2 represents a general view of the filtration device comprising a catalyst independent of the filtering units associated with an obstruction system arranged upstream.
  • FIG. 3 represents a general view of the filtration device which incorporates a diesel injection system.
  • FIG. 4 represents a variant of the filtration device incorporating three filtration cartridges.
  • FIG. 5 represents a general schematic view of the filtration device with all the variants incorporated in the engine environment.
  • the system which allows the implementation of the filtration device according to the invention is shown in detail in Figure 1, according to a preferred embodiment.
  • various mechanical elements of the vehicle collaborate, which may or may not be part of the filtration device and which contribute to regeneration.
  • the exhaust gases at the outlet of the engine are introduced into the device through the pipe 1, then are directed towards each catalyst wafer on a metal support 2, to be filtered on the two filter cartridges 3, these cartridges will preferably be in silicon carbide, but may also consist of a leaving filter media in cordierite or other ceramic materials. They will be placed inside an enclosure 4 and isolated from the latter by means of an insulator 6, so as not to be cooled by the ambient air.
  • Valves 5 will be arranged at the outlet of these filter cartridges so as to be able to completely isolate each cartridge and completely obstruct the outlet channel. These valves will be controlled by pneumatic cylinders 7, the exhaust gases then being directed towards the outlet 8.
  • the device will operate in the following manner, each time the position of the accelerator returns to the zero position (not accelerated), a position detector not described will send the information to a computer, which will alternately control each cylinder to completely obstruct one of the two cartridges and use only one for these particular operating conditions.
  • the filter medium of the cartridge obstructed by the valve will thus keep the high temperature it had reached during the last acceleration, the valve not disappearing to return to operation only when the engine is again used, so again high exhaust gas temperatures.
  • FIG. 1 Also shown in FIG. 1 is the possibility of associating an exhaust gas recycling system which is implemented automatically, via the duct 16, in the direction of the intake manifold 20, each time one of the valves 5 is obstructed, and that the increase in induced back pressure results in establishing a flow rate through the valve 17, these conditions correspond to a zero accelerator position, therefore a low exhaust gas temperature. Recycling will reduce the flow of filtered exhaust gas through the cartridge which will remain in action under these conditions and therefore reduce its cooling.
  • the valve 17 is of the non-return valve type having a large passage section or better of the type with blades allowing a flow for a few millibars of overpressure.
  • the dimensioning of the valve 17 and of the duct going to the intake manifold 20 is such that this assembly allows recycling of the exhaust gases comprised between 30 to 60% of the flow rate for idling operating conditions.
  • FIG. 2 the variant of the device shown is differentiated by the use of a common catalyst 14 for the two cartridges 3 and by the use of butterflies 15, arranged upstream of the cartridges to obstruct the filters in place of the valves 5 , used in the preferred embodiment of Figure 1.
  • Figures 3 and 5 show the possibility of having in addition a diesel injection system upstream of the filtration device, controlled from the information collected on the pressure 9 and temperature sensors 10, disposed upstream of the filters, the computer will be able to adapt the best strategy to keep each of the filters in perfect condition, even going so far as to cause additional injection of diesel fuel through the sprayer 11, supplying air 12 and diesel fuel 13.
  • These injections are intended to increase the temperature of the exhaust gases when the engine is at full power, so as to raise the filter medium to higher temperature to accelerate the regeneration speed. These injections will only be implemented if a start of clogging of the filter is detected.
  • FIG. 4 is a variant which uses three filter cartridges instead of two and which allows better conservation of the temperature in the filter medium.
  • the computer will trigger the opening of the valve of a first cartridge as soon as a back pressure level of 100 mbar is detected, the opening of the valve of the second cartridge takes place if this level of back pressure of 100 mbar persists.
  • this level of back pressure could be different from the value of 100 mbar that we took as an example.
  • a variant of the strategy described above could be to use the temperature information in addition, for example each time the temperature ⁇ s will be less than 250 ° C or 300 ° C, decide to close one or more cartridges for a level of back pressure and independently of other conditions of use.
  • each of the valves fitted to each cartridge is to be able to isolate them to maintain the high temperature level obtained during the full load of the previous engine and to prevent them from cooling on partial load or the idling which follows, this high temperature favoring the combustion reactions there will be a major advantage in keeping the valve closed a low flow rate of exhaust gas to maintain these combustion reactions which are very exothermic and which will contribute to raising even these temperatures.
  • This operation will be possible by producing valves provided with a calibrated hole of small diameter 24, of less than 1 to a few millimeters, the dimension of which will depend on the engine displacement to allow the necessary flow to pass.
  • a variant of this control for a system comprising at least three cartridges, and the dimensioning of each of which will be provided so that the filtration of the exhaust gases for full load conditions can be carried out on only two of it will consist in specializing two of the cartridges for full load operation and one reserved for idle operation and partial loads so as to maintain the filter medium and the catalyst at high temperature. cartridges used under full load conditions, and obtain a maximum reduction of all pollutants. To allow each of them to be able to regenerate in good conditions, the computer will change the cartridge used exclusively at idle and replace it with a used full load, as soon as a level of back pressure is detected.
  • gas oils having sulfur contents greater than this value of 50 ppm it may be advantageous to use a device such as that described in FIG. 3 in which the gas oil sprayer 11 will be used to inject an organometallic additive solution into diesel from a specific additional tank containing this mixture.
  • this device will apply to diesel engines of passenger vehicles, the management of the opening and closing of the valves on each cartridge being done directly from the computer which equips these common rail direct injection engines.
  • This closure can, in the same way as that described above, be programmed at idle and at low loads. The temperatures reached on this type of engine will make it possible to be able to maintain one of the two cartridges practically permanently a sufficiently rapid regeneration reaction to maintain it at a non-significant level of fouling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

L'invention concerne le domaine des filtres à particules pour gaz d'échappement de moteur diesel. Le but de l'invention est d'optimiser le procédé de filtration, notamment en termes de régénération des moyens de filtration, de façon à apporter une solution satisfaisante au problème de colmatage desdits moyens de filtration par des particules de carbone. Pour ce faire, le procédé selon l'invention dans lequel tout ou partie des particules contenues dans les gaz d'échappement sont retenues sur des moyens de filtration et sont brûlées grâce à l'action d'un catalyseur de combustion, est caractérisé en ce qu'il consiste essentiellement à obstruer au moins une partie des moyens de filtration dès que la température θg des gaz d'échappement à filtrer devient inférieure ou égale une température seuil θs, de manière à limiter, voire à éviter, le refroidissement de la partie obstruée et à la maintenir à une température θo supérieure ou égale à θs jusqu'au moment où θg redeviendra supérieure à θs, et permettre alors une régénération accéléré de cette partie obstruée des moyens de filtration. L'invention a également pour objet un dispositif de filtration de gaz d'échappement permettant la mise en oeuvre du susdit procédé de filtration à régénération continue et régulière des moyens filtrants.

Description

PROCEDE ET DISPOSITIF DE FILTRATION DES GAZ D'ECHAPPEMENT
POUR MOTEUR DD3SEL A SURFACE DE FILTRATION VARIABLE PAR
OBSTRUCTION COMMANDEE
La présente invention concerne de façon générale le domaine des filtres à particules et de façon plus particulière, un dispositif de filtration de gaz d'échappement pour moteur diesel.
De façon plus particulière, la présente invention concerne un dispositif de filtration des gaz d'échappement pour moteur diesel comportant en outre un moyen de filtration desdits gaz à capacité variable, dans lequel est disposé un moyen de catalyse associé ou non à une post injection de gazole et à un système de recirculation des gaz d'échappement.
La réduction des émissions polluantes produites par les moteurs à explosion et en particulier les moteurs diesels, est l'objectif que se sont fixés les pouvoirs publics. A cette fin, l'instauration de normes toujours plus draconiennes impose aux constructeurs automobiles de développer des moteurs présentant des émissions de polluants de plus en plus réduites, afin de limiter les rejets de particules imbrûlées. La modification de la combustion des moteurs n'étant plus suffisante pour atteindre ces faibles niveaux, l'utilisation complémentaire de dispositifs de filtration des gaz d'échappement sera indispensable pour retenir ces particules et satisfaire les normes.
Ainsi, afin de réduire l'émission de gaz polluants imbrûlés et de particules solides, les constructeurs automobiles ont mis au point et ont généralisé l'utilisation des pots catalytiques ou catalyseurs, généralement constitués d'une enveloppe en acier inoxydable, d'un isolant thermique et d'un support en nid d'abeille imprégné de métaux précieux tels que le platine ou le rhodium.
Ces pots catalytiques comportent désormais en plus un filtre à particules qui a pour fonction de retenir les particules de carbone, constituant les particules imbrûlées émises par le moteur. Toutefois, une difficulté supplémentaire est apparue lors de l'utilisation de tels filtres, qui consiste à trouver des solutions pour que ces particules de carbone piégées sur le filtre puissent brûler ou s'oxyder au fur et à mesure qu'elles se déposent afin d'éviter le colmatage de ce dernier.
Toutes les techniques de filtres à particules pour moteur diesel, utilisées aujourd'hui ou en cours de développement, sont toutes confrontées au problème majeur de la combustion incomplète des particules retenues sur le média filtrant. En effet pour des conditions d'utilisations urbaines la température des gaz d'échappement atteinte est insuffisante pour provoquer cette combustion et limiter le colmatage du filtre induit.
Sans assistance chimique, les particules de carbone issues de la combustion du gazole ne commencent à s'oxyder significativement qu'au-dessus de 500°C, ces températures ne sont jamais atteintes dans les conditions de roulage urbain, sur les moteurs d'autobus, il est donc nécessaire de faire appel obligatoirement à un procédé chimique pour réduire cette température d'oxydation.
A défaut d'assistance chimique, il s'ensuit un colmatage du filtre qui, outre le fait qu'il entraîne une perte de charge au niveau du moteur et donc un mauvais fonctionnement de celui-ci, provoquera des réactions violentes liées à la combustion instantanée de ces particules de carbone en concentration excessive dans le filtre, lorsque le dérèglement du moteur entraînera le démarrage violent de cette combustion. La combustion rapide d'une grande masse de particules génère en effet une température supérieure à 1000 °C et conduit généralement à une destruction du filtre par choc thermique, les températures obtenues étant trop élevées localement.
Pour obtenir l'oxydation de ces particules en continu, plusieurs systèmes sont déjà utilisés.
Ainsi, certains systèmes proposent de disposer en amont du filtre à particules, un moyen de catalyse d'oxydation permettant la transformation du monoxyde d'azote NO, contenu dans les gaz d'échappement, en dioxyde d'azote N02 à partir de 250°C. Cette technique, appelée "Continuous Regenerating Trap" (C.R.T.), allie les effets du filtre à particules et du catalyseur d'oxydation du NO.
Ce moyen est constitué par un support catalytique sur lequel est fixé le catalyseur, qui est généralement un métal précieux tels que le platine ou le rhodium. Le N02 produit par l'action de ce dernier possède la propriété d'oxyder les particules de carbone à partir de 250°C. Toutefois le bon fonctionnement du filtre dépend de la température moyenne atteinte et du rapport de particules émises par rapport au N02 formé. Pour assurer un bon fonctionnement des filtres, ce système C.R.T. nécessite une régénération régulière, qui limite la perte de charge du filtre en éliminant le risque de régénération non contrôlé et exothermique.
Un tel fonctionnement n'est obtenu que lorsque les gaz d'échappement ou l'enceinte de combustion présentent une température supérieure à 250°C pendant au moins 30 % du temps de fonctionnement du véhicule. Dans le cas contraire, il se développe des réactions violentes liées à la concentration excessive de particules charbonneuses colmatant le filtre. Ces réactions consistent en la combustion, trop rapide d'une grande masse de particules, ce qui conduit généralement à une destruction du filtre par choc thermique, les températures obtenues étant très élevées localement. II existe un moyen similaire constituant une variante de ce dernier, dans lequel le catalyseur est déposé directement sur le filtre à particules. Toutefois, seuls certains matériaux constituant le filtre à particules sont aptes à fixer les catalyseurs métalliques. C'est le cas notamment de la cordiérite. Or, les matériaux de ce type sont connus pour être particulièrement sensibles à l'augmentation de température et aux chocs thermiques. Il apparaît alors que des augmentations brutales de température qui peuvent se produire dans le filtre à particules lorsqu'il est colmaté, sont susceptibles d'entraîner une détérioration irréversible de ce dernier. Il est alors nécessaire de remplacer le filtre à particules et plus généralement le dispositif d'échappement, ce qui représente un coût tout à fait rédhibitoire.
D'autres techniques de régénération font appel à l'utilisation d'additifs organométalliques rajoutés au gazole tel que le cérium, fer, strontium, calcium ou autres de manière à enrober les particules de carbone former de l'oxyde métallique du catalyseur et d'obtenir ainsi une oxydation de celle-ci à plus basse température.
Ces techniques permettent d'obtenir un effet similaire à celui obtenu avec le N02 en catalysant la combustion des matières charbonneuses à des températures voisines de 300, 350°C.
Un premier inconvénient de ces techniques est le coût prohibitif des additifs utilisés associé au fait qu'il est nécessaire de prévoir un dispositif d'additivation complémentaire.
L'autre inconvénient de ces techniques est qu'elles présentent une tendance encore plus importante au colmatage du filtre et donc aux réactions qui en découlent, si les températures atteintes en fonctionnement ne sont pas suffisamment importantes, les additifs présents dans les matières charbonneuses contribuent à encrasser encore plus rapidement le média filtrant.
D'autres techniques ont consisté à expérimenter des dispositifs basés sur des moyens de chauffage complémentaires du type brûleurs, résistances électriques ou autres. Ces moyens de chauffage complémentaire sont mis en œuvre uniquement lorsque la cartouche présente un début de colmatage, se traduisant par une augmentation de la perte de charge. Un tel dispositif de régénération est mis en œuvre avec le moteur en marche, c'est à dire en présence d'un débit de gaz d'échappement important. Un tel dispositif nécessite donc une puissance de chauffage importante pour simultanément porter à la bonne température les gaz d'échappement et la masse de la cartouche filtrante. Dans un tel contexte technique, l'objectif de la présente invention est de fournir un procédé de filtration de gaz d'échappement (en particulier de moteurs diesel) qui remédiera aux inconvénients des différentes techniques existantes, en optimisant la filtration des gaz d'échappement, par exemple de moteurs diesels, notamment en termes de régénération des moyens de filtration, de façon à apporter une solution satisfaisante au problème du colmatage des moyens de filtration par des particules de carbone.
Un autre objectif de l'invention est de fournir un procédé de filtration de gaz d'échappement intégrant une régénération régulière, performante et continue, de sorte que l'on évite ainsi tout risque d'accumulation de particules dans les moyens de filtration et donc tout risque de régénération incontrôlée.
Encore, un autre objectif de l'invention, est de fournir un procédé de filtration de gaz d'échappement dans lequel la régénération intégrée n'entraîne pas de surconsommation significative de carburant et plus généralement, n'entraîne pas de surcoût financier pour l'utilisateur.
Encore un autre objectif de l'invention est de fournir un procédé de filtration de gaz d'échappement dans lequel la régénération intégrée n'entame pas la performance du moteur, notamment par des pertes de charge, dues à la contre-pression exercée par les gaz d'échappement sur le moteur, du fait d'un colmatage du dispositif de filtration.
Enfin un autre objectif de l'invention est de fournir un dispositif de filtration permettant de mettre en œuvre le procédé de filtration selon l'invention.
Ces objectifs, parmi d'autres, sont atteints par la présente invention qui concerne tout d'abord un procédé de filtration des gaz d'échappement e.g. émis par un moteur diesel. Ce procédé de filtration de gaz d'échappement, dans lequel tout ou partie des particules contenues dans lesdits gaz d'échappement, sont retenues sur des moyens de filtration et sont brûlées grâce à l'action d'un catalyseur de combustion. Ce procédé consiste essentiellement à obstruer au moins une partie des moyens de filtration dès que la température θg des gaz d'échappement à filtrer devient inférieure ou égale à une température seuil θs, de manière à limiter, voire à éviter, le refroidissement de la partie obstruée et à la maintenir à une température θo supérieure ou égale à θs jusqu'au moment où θg redeviendra supérieure à θs, et permettre alors une régénération accélérée de cette partie obstruée des moyens de filtration, du fait des conditions de température qui sont meilleures que celles qui auraient régné si cette partie des moyens de filtration n'avait pas été obstruée.
Il s'agit donc selon l'invention de filtrer les gaz d'échappement sur un moyen de filtration constitué par exemple d'au moins deux cartouches disposées dans une enveloppe, une des deux cartouches étant mise hors circuit chaque fois que le moteur fonctionne sans charge ou au ralenti afin de maintenir dans la cartouche isolée et sans débit, une température suffisante pour provoquer une vitesse de régénération en continu significative, chaque fois que le moteur sera à nouveau sollicité avec des gaz d'échappement chauds. Chaque cartouche est de préférence à tour de rôle mise hors circuit pour qu'elle se régénère en continu.
Dans les unités filtrantes ainsi isolées et maintenues à haute température en l'absence de gaz froid, le processus de régénération continuera de se poursuivre lentement grâce au très léger débit qui sera entretenu, mais surtout ces unités filtrantes seront à une température maintenue à un optimum jusqu'à ce que le moteur soit à nouveau sollicité et que des gaz d'échappement chauds soient à nouveau admis. Le processus de régénération dans ces cartouches ainsi isolées pourra ainsi se dérouler en permanence éliminant tout risque de colmatage.
De préférence, les différentes parties des moyens de filtration sont successivement soumises chacune à la séquence obstruction/régénération pour chaque variation de θg entre une valeur vl supérieure ou égale à θs, une valeur v2 inférieure ou égale à θs et à nouveau une valeur v3 supérieure ou égale à θs, vl = ou ≠ v3, de façon à permettre une régénération régulière et en continu des moyens de filtration.
Suivant une modalité remarquable de l'invention, l'obstruction d'une partie des moyens de filtration consiste à empêcher la circulation des gaz d'échappement dans au moins 30 %, de préférence dans au moins 50 % et plus préférentiellement encore dans 50 à 75 % des moyens de filtration, ce pourcentage exprimant un pourcentage en volume.
De préférence, θs = 250°C ou 300°C.
Avantageusement, les gaz d'échappement provienne d'un moteur diesel suralimenté et les paramètres de référence, à savoir la température θg des gaz d'échappement et la température seuil θs, sont donnés indirectement par la pression de suralimentation et/ou le régime du moteur et/ou par la contre-pression en amont des moyens de filtration, la pression de suralimentation seuil étant de préférence = à 2,5% de la pression de suralimentation maximale du moteur.
Selon un mode préféré de mise en œuvre, les moyens de filtration sont constitués d'au moins deux -de préférence au moins trois- cartouches filtrantes, équipées chacune d'un obturateur, deux des trois cartouches que comptent de préférence les moyens de filtration constituant la partie obstruée des moyens de filtration quand θg < θs.
Selon un autre de ces aspects, l'invention a pour objet un dispositif de filtration de gaz d'échappement comportant au moins un moyen de catalyse, des moyens de filtration desdits gaz d'échappement, disposés dans une enceinte réactionnelle dans la trajectoire du flux des gaz d'échappement produits par un moteur , ledit dispositif étant caractérisé en ce que le moyen de filtration est constitué par au moins deux ensembles comprenant chacun un support de catalyseur accolé à une cartouche filtrante équipée d'un moyen d'obstruction du débit.
Avantageusement, le dispositif comprend un moyen de recirculation des gaz d'échappement à l'admission du moteur dont le fonctionnement est associé à la coupure du débit dans une ou plusieurs des cartouches chaque fois que le moteur est non accéléré, de manière à ce que l'augmentation de contre pression générée ouvre automatiquement un clapet qui permette cette recirculation des gaz d'échappement.
Selon une caractéristique préférée du dispositif de l'invention, chacune des cartouches filtrantes dispose d'un moyen d'obstruction du débit, disposé en amont ou en aval, piloté par un calculateur électronique qui prendra en compte toutes les conditions de fonctionnement moteur, de manière à isoler au moins une cartouche chaque fois que la position d'accélérateur sera à zéro (non accéléré).
Dans un mode de réalisation avantageux du dispositif selon l'invention, le moyen de filtration est constitué d'au moins trois cartouches avec un moyen d'obstruction du débit sur chacune d'elle, piloté par un calculateur électronique qui prendra en compte toutes les conditions de fonctionnement moteur, de manière à isoler à tour de rôle, au moins deux cartouches lorsque le moteur est non accéléré, et d'isoler la cartouche qui filtrait les gaz en position non accélérée, chaque fois que le moteur sera accéléré.
Avantageusement, les moyens d'obstruction du débit disposés sur chaque cartouche filtrante, comportent un orifice calibré de faible dimension pour maintenir un très faible débit.
Selon une variante intéressante, le dispositif comprend un système de post- injection de gazole dans les gaz d'échappement, par l'intermédiaire d'un pulvérisateur, de préférence en amont du dispositif de filtration et des catalyseurs, pilotée par un calculateur électronique qui prendra en compte toutes les conditions de fonctionnement moteur, ce système de post-injection de gazole étant éventuellement associé à un système de recirculation des gaz d'échappement.
Dans cette variante, il peut être opportun que le gazole injecté contienne un organométallique comme catalyseur de combustion alimenté ou non à partir d'un réservoir spécifique.
Enfin dans le cadre de l'invention le dispositif pourra faire appel à l'utilisation d'additifs organométalliques connus qui seront injectés par le système de post injection à la place du gazole.
Dans le mode préféré de réalisation, le moyen de filtration est constitué par un ensemble d'au moins deux unités filtrantes équipée chacune d'un moyen d'obstruction piloté par un calculateur qui prendra en compte les conditions de fonctionnement moteur. Lorsque le dispositif selon l'invention comporte plus de deux unités filtrantes, chacune desdites unités filtrantes comporteront un moyen d'obstruction de manière à pouvoir les mettre hors circuit à tour de rôle.
Le moyen d'obstruction pour chacune des cartouches utilisés sera disposé en aval de l'unité de filtration.
Selon une variante de l'invention, le moyen d'obstruction pourra être aussi incorporé en amont de l'unité de filtration et du catalyseur associé.
Selon une caractéristique remarquable de l'invention, lesdites unités filtrantes intégreront chacune en amont une galette de catalyseur de préférence sur support métallique.
Le catalyseur est un catalyseur d'oxydation conventionnel à base de platine de manière à obtenir une oxydation totale des hydrocarbures et du CO.
Selon une autre variante de l'invention, le dispositif de filtration comporte un système permettant le recyclage des gaz d'échappement chaque fois que la capacité de filtration sera réduite, profitant ainsi de l'augmentation de la contre-pression occasionnée par cette restriction pour diriger à travers un clapet anti-retour une partie des gaz d'échappement non filtré dans le conduit d'admission.
Selon une variante de l'invention, le dispositif de filtration comporte plus de trois cartouches et un nombre suffisant de manière que pour des conditions de fonctionnement pleine charge une des cartouches soit isolée, cette cartouche étant réservée à la filtration des gaz à charge partielle ou au ralenti. L'objectif étant de maintenir à température élevée, le média filtrant et le catalyseur de chacune des cartouches utilisées à pleine charge. La cartouche utilisée au ralenti sera permutée avec une des autres lorsqu'un début de colmatage sera détecté. La présente invention sera mieux comprise à la lecture de la description qui suit, faite en référence aux dessins qui représentent, de façon nullement limitative, un exemple de réalisation du dispositif de filtration selon l'invention et dans lesquels :
La figure 1, selon un mode préféré de réalisation de l'invention, représente une vue générale du système comprenant le dispositif de filtration avec deux cartouches, chacune ayant en amont un catalyseur d'oxydation sur support métallique et en aval un clapet commandé pour obstruer complètement lorsque nécessaire le débit des gaz à filtrer. Le dispositif de filtration étant associé à un système de recyclage des gaz d'échappement avec son clapet anti-retour.
La figure 2 représente une vue générale du dispositif de filtration comprenant un catalyseur indépendant des unités filtrantes associé à un système d'obstruction disposé en amont.
La figure 3 représente une vue générale du dispositif de filtration qui incorpore un système d'injection de gazole. La figure 4 représente une variante du dispositif de filtration incorporant trois cartouches de filtration.
La figure 5 représente une vue générale schématique du dispositif de filtration avec toutes les variantes incorporées dans environnement moteur. Le système qui permet la mise en œuvre du dispositif de filtration selon l'invention est représenté de façon détaillée à la figure 1, selon un mode préférentiel. Dans ce système, collaborent différents éléments mécaniques du véhicule, qui font ou non-partie du dispositif de filtration et qui concourent à la régénération.
Ainsi, les gaz d'échappement en sortie du moteur sont introduits dans le dispositif par la tubulure 1, puis sont dirigés vers chaque galette de catalyseur sur support métallique 2, pour être filtrés sur les deux cartouches de filtration 3, ces cartouches seront de préférence en carbure de silicium, mais pourront aussi être constitué d'un média partant filtrant en cordiérite ou autres matériaux céramiques. Elles seront disposées à l'intérieur d'une enceinte 4 et isolées de celle-ci par l'intermédiaire d'un isolant 6, de manière à ne pas être refroidi par l'air ambiant.
Des clapets 5 seront disposés en sortie de ces cartouches filtrantes de manière à pouvoir isoler totalement chaque cartouche et obstruer totalement le canal de sortie. Ces clapets seront commandés par des vérins pneumatiques 7, les gaz d'échappement étant ensuite dirigés vers la sortie 8. Le dispositif fonctionnera de la manière suivante, chaque fois que la position de l'accélérateur reviendra à la position zéro (non accéléré), un détecteur de position non décrit enverra l'information à un calculateur, celui-ci commandera alternativement chaque vérin pour obstruer totalement une des deux cartouches et n'en utiliser qu'une seule pour ces conditions de fonctionnement particulières. Le média filtrant de la cartouche obstruée par le clapet conservera ainsi la température élevée qu'il avait atteint lors de la dernière accélération, le clapet ne s'effaçant pour la remettre en fonctionnement que lorsque le moteur sera à nouveau sollicité, donc à nouveau à des températures de gaz d'échappement élevées. Pour permettre à chacune d'elles de pouvoir se régénérer dans de bonnes conditions, ce sera la même cartouche qui sera obstruée pendant un temps compris entre 5 et 10 minutes et alternativement, une autre possibilité consistera à mesurer la contre pression au ralenti sur la cartouche utilisée et de commander la rotation chaque fois que niveau prédéterminé sera atteint.
Sur cette figure 1 est aussi représentée la possibilité d'associer un système de recyclage des gaz d'échappement qui se met en œuvre automatiquement, par le conduit 16, en direction du collecteur d'admission 20, chaque fois que l'un des clapets 5 est obstrué, et que l'augmentation de contre pression induite conduit à établir un débit à travers la soupape 17, ces conditions correspondent à une position d'accélérateur zéro donc une température de gaz d'échappement faible. Le recyclage permettra de réduire le débit de gaz d'échappement filtré à travers la cartouche qui restera en action dans ces conditions et donc de réduire son refroidissement. De la même manière, l'introduction de gaz d'échappement chauds en mélange avec l'air d'admission dans le collecteur en 20, après le compresseur du turbo 18, à travers le moteur 21, conduiront à une augmentation importante de la température des gaz d'échappement évacués par la tubulure 22, pouvant la porter au ralenti des 90 à 100 °C habituels à plus de 160 °C à l'entrée du dispositif 23.
La soupape 17 est du type clapet anti-retour présentant une section de passage importante ou mieux du type à lames permettant un débit pour quelques millibars de surpression. Le dimensionnement de la soupape 17 et du conduit allant au collecteur d'admission 20 est tel que cet ensemble permet un recyclage des gaz d'échappement compris entre 30 à 60% du débit pour des conditions de fonctionnement au ralenti.
Dès que le moteur sera sollicité, la pression dans le collecteur d'admission dépassera la contre-pression à l'entrée du filtre, obstruant le clapet 17 et interrompant automatiquement le débit de recyclage des gaz d'échappement.
Sur la figure 2 la variante du dispositif représentée se différencie par l'utilisation d'un catalyseur commun 14 pour les deux cartouches 3 et par l'utilisation de papillons 15, disposés en amont des cartouches pour obstruer les filtres à la place des clapets 5, utilisés dans le mode de réalisation préférentiel de la figure 1.
Les figures 3 et 5 montrent la possibilité de disposer en plus un système d'injection de gazole en amont du dispositif de filtration, commandé à partir des informations collecter sur les capteurs de pression 9 et de température 10, disposé en amont des filtres, le calculateur pourra adapter la meilleure stratégie pour conserver en parfait état de propreté chacun des filtres en pouvant même aller jusqu'à provoquer une injection complémentaire de gazole à travers le pulvérisateur 11, alimenter en air 12 et gazole 13. Ces injections ayant pour but d'augmenter la température des gaz d'échappement lorsque le moteur est à pleine puissance, de manière à porter à plus haute température le média filtrant pour accélérer la vitesse de régénération. Ces injections ne seront mises en œuvre que si un début de colmatage du filtre est détecté.
La figure 4 est une variante qui utilise trois cartouches de filtration au lieu de deux et qui permet une meilleure conservation de la température dans le média filtrant.
En effet avec un dispositif comprenant trois cartouches, il est possible d'introduire une variante supplémentaire dans le pilotage d'isolement de chacune des cartouches en utilisant l'information contre pression et température donnée au calculateur par les sondes suivant une stratégie exposée ci-après.
Par exemple chaque fois que la position de l'accélérateur reviendra à zéro deux des trois cartouches seront obstruées et le débit des gaz dans cette position ne passera que par une cartouche. La remise en débit de ces deux cartouches ne se fera lors de l'accélération suivante que progressivement, l'information contre pression sera prise en compte pour déterminer le moment opportun pour remettre en circuit ces cartouches. Par exemple le calculateur déclenchera l'ouverture du clapet d'une première cartouche dès qu'un niveau de contre pression de 100 mbar sera détecté, l'ouverture du clapet de la deuxième cartouche s'effectuant si ce niveau de contre pression de 100 mbar persiste.
En fonction du type de moteur utilisé ce niveau de contre pression pourra être différent de la valeur de 100 mbar que nous avons pris pour exemple.
Une variante de la stratégie décrite précédemment pourra être d'utiliser en plus l'information température pour par exemple chaque fois que la température θs sera inférieure à 250°C ou à 300°C, décider de la fermeture d'une ou de plusieurs cartouches pour un niveau de contre pression et indépendamment des autres conditions d'utilisation.
Comme on l'a vu l'objectif de chacun des clapets qui équipent chaque cartouche est de pouvoir les isoler pour conserver le niveau de température élevé obtenu lors de la pleine charge du moteur précédente et éviter qu'elles se refroidissent sur la charge partielle ou le ralenti qui suit, cette température élevée favorisant les réactions de combustion il y aura un intérêt majeur à conserver clapet fermé un faible débit de gaz d'échappement pour entretenir ces réactions de combustion qui sont très exothermiques et qui contribueront à élever même ces températures. Ce fonctionnement sera possible en réalisant des clapets pourvus d'un trou calibré de faible diamètre 24, de moins de 1 à quelques millimètres, dont la dimension sera fonction de la cylindrée du moteur pour laisser passer le débit nécessaire.
Il faut savoir que la possibilité de maintenir à plus haute température le média filtrant sur au moins une des deux cartouches, permettra d'obtenir sur celle-ci une efficacité de réduction des oxydes d'azote bien supérieure grâce à la réaction des oxydes d'azote sur le carbone qui aura lieu à plus haute température. Avec ce dispositif des réductions de plus de 30 % des oxydes d'azote ont été constatées suivant les procédures officielles de mesure.
De la même manière, une efficacité supérieure de réduction des hydrocarbures sur les cycles officiels de pollution a été observée grâce au maintien en température d'au moins une des galettes de catalyseur pour les dispositifs où chaque cartouche est équipée de son catalyseur.
Une variante de ce pilotage pour un système comportant au moins trois cartouches, et dont le dimensionnement de chacune d'elle sera prévue pour que la filtration des gaz d'échappement pour des conditions de pleine charge puisse s'effectuer sur seulement deux d'entre elle, consistera à spécialiser deux des cartouches au fonctionnement plein charge et une réservée au fonctionnement au ralenti et aux charges partielles de manière à maintenir à haute température, le média filtrant et le catalyseur des cartouches utilisés aux conditions pleine charge, et obtenir une réduction maximum de tous les polluants. Pour permettre à chacune d'elles de pouvoir se régénérer dans de bonnes conditions, le calculateur changera la cartouche utilisée exclusivement au ralenti et la remplacera par une utilisée pleine charge, dès qu'un niveau de contre pression sera détecté.
Le bon fonctionnement du dispositif associé aux moyens catalytiques et d'assistances décrits précédemment requièrent nécessairement l'utilisation d'un gazole à teneur en soufre limité de 50 ppm, niveau qui sera généralisé à partir de 2005.
Cependant pour des gazoles ayant des teneurs en soufre supérieures à cette valeur de 50 ppm, il pourra être avantageux d'utiliser un dispositif tel que celui décrit figure 3 dans lequel le pulvérisateur de gazole 11 sera utilisé pour injecter une solution d'additif organométallique dans le gazole à partir d'un réservoir supplémentaire spécifique contenant ce mélange.
Le gain de température obtenu grâce à l'isolement de certaines cartouches lorsque les conditions de température des gaz d 'échappement sont trop basses, permettra d'obtenir même avec l'utilisation de tel additif un fonctionnement satisfaisant dans tous les cas de figures.
De la même manière ce dispositif s'appliquera aux moteurs diesel des véhicules de tourisme, la gestion de l'ouverture et de la fermeture des clapets sur chaque cartouche se faisant directement à partir du calculateur qui équipe ces moteurs à injection directe à rampe commune. Cette fermeture pouvant de la même manière que celle décrite précédemment être programmée au ralenti et aux faibles charges. Les températures atteintes sur ce type de moteur permettront de pouvoir maintenir pratiquement en permanence une des deux cartouches une réaction de régénération suffisamment rapide pour la maintenir à un niveau d'encrassement non significatif.

Claims

REVENDICATIONS
1. Procédé de filtration de gaz d'échappement, dans lequel tout ou partie des particules contenues dans lesdits gaz d'échappement, sont retenues sur des moyens de filtration et sont brûlées grâce à l'action d'un catalyseur de combustion, caractérisé en ce qu'il consiste essentiellement à obstruer au moins une partie des moyens de filtration dès que la température θg des gaz d'échappement à filtrer devient inférieure ou égale à une température seuil θs, de manière à limiter, voire à éviter, le refroidissement de la partie obstruée et à la maintenir à une température θo supérieure ou égale à θs jusqu'au moment où θg redeviendra supérieure à θs, et permettre alors une régénération accélérée de cette partie obstruée des moyens de filtration.
2. Procédé selon la revendication 1, caractérisé en ce que les différentes parties des moyens de filtration sont successivement soumises chacune à la séquence obstruction/régénération pour chaque variation de θg entre une valeur vl supérieure ou égale à θs, une valeur v2 inférieure ou égale à θs et à nouveau une valeur v3 supérieure ou égale à θs, vl = ou ≠ v3, de façon à permettre une régénération régulière et en continu des moyens de filtration.
3. Procédé selon la revendication 1, caractérisé en ce que l'obstruction d'une partie des moyens de filtration consiste à empêcher la circulation des gaz d'échappement dans au moins 30 %, de préférence dans au moins 50 % et plus préférentiellement encore dans 50 à 75 % des moyens de filtration, ce pourcentage exprimant un pourcentage en volume.
4. Procédé selon la revendication 1, caractérisé en ce que θs = 250°C ou 300°C.
5. Procédé selon la revendication 1, caractérisé en ce que les gaz d'échappement provienne d'un moteur diesel suralimenté et en ce que les paramètres de référence, à savoir la température θg des gaz d'échappement et la température seuil θs, sont donnés indirectement par la pression de suralimentation et/ou le régime du moteur et/ou par la contre-pression en amont des moyens de filtration, la pression de suralimentation seuil étant de préférence = à 2,5% de la pression de suralimentation maximale du moteur.
6. Procédé selon la revendication 1 caractérisé en ce que les moyens de filtration sont constitués d'au moins deux -de préférence au moins trois- cartouches filtrantes, équipées chacune d'un obturateur, deux des trois cartouches que comptent de préférence les moyens de filtration constituant la partie obstruée des moyens de filtration quand θg < θs.
7. Dispositif de filtration de gaz d'échappement comportant au moins un moyen de catalyse, des moyens de filtration (3) desdits gaz d'échappement, disposés dans une enceinte réactionnelle (4) dans la trajectoire du flux des gaz d'échappement produits par un moteur (21), ledit dispositif étant caractérisé en ce que le moyen de filtration (3) est constitué par au moins deux ensembles comprenant chacun un support de catalyseur (2) accolé à une cartouche filtrante équipée d'un moyen d'obstruction du débit (5).
8. Dispositif selon la revendication 7, caractérisé par la mise en place d'un moyen de recirculation des gaz d'échappement (16) à l'admission du moteur (20) dont le fonctionnement est associé à la coupure du débit dans une ou plusieurs des cartouches chaque fois que le moteur est non accéléré, de manière à ce que l'augmentation de contre pression générée ouvre automatiquement un clapet qui permette cette recirculation des gaz d'échappement.
9. Dispositif selon l'une des revendications 7, 8, caractérisé en ce que chacune des cartouches filtrantes dispose d'un moyen d'obstruction du débit (5), disposé en amont ou en aval, piloté par un calculateur électronique qui prendra en compte toutes les conditions de fonctionnement moteur, de manière à isoler au moins une cartouche chaque fois que la position d'accélérateur sera à zéro (non accéléré).
10. Dispositif selon l'une des revendications 7 à 9, caractérisé en ce que le moyen de filtration est constitué d'au moins trois cartouches avec un moyen d'obstruction du débit (5) sur chacune d'elle, piloté par un calculateur électronique qui prendra en compte toutes les conditions de fonctionnement moteur, de manière à isoler à tour de rôle, au moins deux cartouches lorsque le moteur est non accéléré, et d'isoler la cartouche qui filtrait les gaz en position non accélérée, chaque fois que le moteur sera accéléré.
11. Dispositif selon l'une des revendications 7 à 10, caractérisé en ce que les moyens d'obstruction du débit disposés sur chaque cartouche filtrante comporte un orifice calibré de faible dimension (24) pour maintenir un très faible débit.
12. Dispositif selon l'une des revendications 7 à 11, caractérisé par la mise en place d'un système de post-injection de gazole dans les gaz d'échappement, par rintermédiaire d'un pulvérisateur (11), en amont du dispositif de filtration et des catalyseurs, pilotée par un calculateur électronique qui prendra en compte toutes les conditions de fonctionnement moteur, ce système de post-injection de gazole étant éventuellement associé à un système de recirculation des gaz d'échappement (16), (17).
13. Dispositif selon la revendication 12, caractérisé en ce que le gazole injecté contient un organométallique comme catalyseur de combustion alimenté ou non à partir d'un réservoir spécifique.
PCT/FR2003/050004 2002-06-04 2003-06-03 Procede et dispositif de filtration des gaz d'echappement pour moteur diesel a surface de filtration variable par obstruction commandee WO2003102389A2 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MXPA04012166A MXPA04012166A (es) 2002-06-04 2003-06-03 Metodo y aparato para la filtracion de gases de escape para un motor diesel con una superficie de filtracion que es variable por medio de una obstruccion controlada.
JP2004509250A JP2006515395A (ja) 2002-06-04 2003-06-03 制御された遮断によって可変な濾過面でディーゼル・エンジン用の排気ガスを濾過するための方法及び装置
EP03756052A EP1573181A2 (fr) 2002-06-04 2003-06-03 Procede et dispositif de filtration des gaz d'echappement pour moteur diesel a surface de filtration variable par obstruction commandee
AU2003253083A AU2003253083A1 (en) 2002-06-04 2003-06-03 Methods and device for filtration of exhaust gases for a diesel engine with a filtration surface which is variable by means of controlled obstruction
US10/516,369 US7314501B2 (en) 2002-06-04 2003-06-03 Methods and device for filtration of exhaust gases for a diesel engine with a filtration surface which is variable by means of controlled obstruction
CA002487942A CA2487942A1 (fr) 2002-06-04 2003-06-03 Procede et dispositif de filtration des gaz d'echappement pour moteur diesel a surface de filtration variable par obstruction commandee

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0206835A FR2840354A1 (fr) 2002-06-04 2002-06-04 Dispositif de filtration des gaz d'echappement pour moteur diesel a surface de filtration variable par obstruction commandee
FR0206835 2002-06-04

Publications (2)

Publication Number Publication Date
WO2003102389A2 WO2003102389A2 (fr) 2003-12-11
WO2003102389A9 true WO2003102389A9 (fr) 2004-02-19

Family

ID=29558939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/050004 WO2003102389A2 (fr) 2002-06-04 2003-06-03 Procede et dispositif de filtration des gaz d'echappement pour moteur diesel a surface de filtration variable par obstruction commandee

Country Status (9)

Country Link
US (1) US7314501B2 (fr)
EP (1) EP1573181A2 (fr)
JP (1) JP2006515395A (fr)
CN (1) CN101405486A (fr)
AU (1) AU2003253083A1 (fr)
CA (1) CA2487942A1 (fr)
FR (1) FR2840354A1 (fr)
MX (1) MXPA04012166A (fr)
WO (1) WO2003102389A2 (fr)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7992382B2 (en) * 2003-08-01 2011-08-09 Illinois Valley Holding Company Particulate trap system and method
FR2872199B1 (fr) * 2004-06-25 2006-10-06 Jean Claude Fayard Procede et dispositif de reduction/elimination de la quantite de particules contenues dans les gaz d'echappement d'un moteur a combustion interne
FR2880914B1 (fr) * 2005-01-14 2007-04-06 Peugeot Citroen Automobiles Sa Ligne d'echappement pour moteur de vehicule automobile
AT501042B8 (de) * 2005-02-02 2007-02-15 Pankl Emission Control Systems Vorrichtung zum reinigen von kraftfahrzeugabgasen
DE102005038707A1 (de) * 2005-08-15 2007-03-08 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren und Vorrichtung zur Aufbereitung eines Abgases einer Verbrennungskraftmaschine
FR2902137B1 (fr) * 2006-06-07 2008-08-01 Jean Claude Fayard Bruleur et procede pour la regeneration de cartouches de filtration et dispositifs equipes d'un tel bruleur
US7685814B2 (en) * 2006-07-12 2010-03-30 Cummins Filtration, Inc. Systems, apparatuses, and methods of determining plugging or deplugging of a diesel oxidation catalyst device
US20080022657A1 (en) * 2006-07-28 2008-01-31 Caterpillar Inc. Power source thermal management and emissions reduction system
EP2111279A2 (fr) * 2007-01-30 2009-10-28 Donaldson Company, Inc. Appareil de nettoyage pour dispositifs de post-traitement de gaz d'échappement et procédés
DE202007003597U1 (de) * 2007-03-08 2008-07-17 Mann+Hummel Gmbh Vorrichtung zur Abgasnachbehandlung
JP4910814B2 (ja) * 2007-03-23 2012-04-04 パナソニック株式会社 排ガス浄化装置
US7582141B2 (en) * 2007-05-31 2009-09-01 International Truck Intellectual Property Company, Llc Diesel particulate filter pulse cleaner flow director system and method
US20100037423A1 (en) * 2008-07-10 2010-02-18 Herman John T Apparatus for Cleaning Exhaust Aftertreatment Devices and Methods
EP2344748B1 (fr) * 2008-11-06 2013-01-09 Renault Trucks Système de moteur à combustion interne et ensemble filtre à particules pour un tel système de moteur à combustion interne
US20110067386A1 (en) * 2009-09-22 2011-03-24 Gm Global Technology Operations, Inc. Oxidizing Particulate Filter
US9127581B2 (en) * 2009-11-10 2015-09-08 Jeju National University Industry-Academic Cooperation Foundation Filter assembly and exhaust gas reducing device including same
GB2479362B (en) * 2010-04-07 2012-07-04 Rifat A Chalabi Improvements in gas treatment
US20120285902A1 (en) * 2011-05-10 2012-11-15 Cummins Filtration Ip Inc. Filter with Shaped Flow Path Combinations
US9119976B2 (en) * 2012-06-28 2015-09-01 Zodiac Aerotechnics Oxygen breathing device and method for maintaining an emergency oxygen system
US9010098B2 (en) * 2012-10-24 2015-04-21 Electro-Motive Diesel, Inc. After-treatment device
CN103557057B (zh) * 2013-11-06 2016-01-20 万潇熠 一种多工作模式汽车尾气净化器
CN103557048B (zh) * 2013-11-06 2015-10-28 江苏鑫誉丰环保科技有限公司 一种多腔室汽车尾气净化装置
AT514430B1 (de) * 2013-11-18 2015-01-15 Apf Advanced Particle Filters Gmbh Rauchgasreinigungsanlage zur Abscheidung von Schadstoffen aus Rauchgasen
CN104689649B (zh) * 2015-02-28 2016-12-07 成都易态科技有限公司 恢复滤芯通过性的方法
CN105673141B (zh) * 2016-04-05 2018-10-26 浙江农林大学暨阳学院 一种汽车尾气处理器的净化装置
CN105888792B (zh) * 2016-04-13 2018-07-17 南昌大学 一种基于柴油机尾气处理的可循环使用的后处理装置
CN105736108A (zh) * 2016-04-17 2016-07-06 阮居高 一种农机用烟筒
US11480082B2 (en) 2018-09-28 2022-10-25 Cummins Emission Solutions Inc. Systems and methods for dynamic control of filtration efficiency and fuel economy
CN117231326B (zh) * 2023-11-01 2024-03-08 南京开特环保科技有限公司 一种汽车尾气颗粒捕集装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692318A (en) * 1979-12-25 1981-07-27 Toyota Motor Corp Apparatus for capturing fine particles contained in exhaust gas of internal combustion engine
CH663253A5 (en) * 1984-04-11 1987-11-30 Bbc Brown Boveri & Cie Exhaust particle filter for internal combustion engines
US4840028A (en) * 1987-03-20 1989-06-20 Matsushita Electric Industrial Co., Ltd. Purifier of diesel particulates in exhaust gas
DE3717140A1 (de) * 1987-05-21 1988-12-08 Webasto Ag Fahrzeugtechnik Russfilteranlage im abgastrakt einer diesel-brennkraftmaschine
WO1993000503A2 (fr) * 1991-06-27 1993-01-07 Donaldson Company, Inc. Dispositif piege a element filtre tubulaire
IT1249969B (it) * 1991-07-30 1995-03-30 Iveco Fiat Metodo ed apparecchiatura per la determinazione dell'intasamento di unfiltro, in particolare di un filtro di un impianto di scarico.
US5426936A (en) * 1992-02-21 1995-06-27 Northeastern University Diesel engine exhaust gas recirculation system for NOx control incorporating a compressed air regenerative particulate control system
DE4394868T1 (de) * 1992-09-25 1994-10-20 Toyoda Automatic Loom Works Hitzebeständiges Filter
US5396764A (en) * 1994-02-14 1995-03-14 Ford Motor Company Spark ignition engine exhaust system
JPH09222009A (ja) * 1996-02-15 1997-08-26 Nippon Soken Inc 内燃機関の排気微粒子浄化装置
FR2755623B1 (fr) * 1996-11-12 1998-12-04 Inst Francais Du Petrole Procede et unite de filtration de gaz d'echappement, ayant un chauffage modulable
JPH11182232A (ja) * 1997-12-19 1999-07-06 Sumitomo Electric Ind Ltd 排気ガス浄化装置及び操作方法
US6223926B1 (en) 1999-09-03 2001-05-01 Carl Craven Underground rake storage device
US6233926B1 (en) * 2000-03-01 2001-05-22 Illinois Valley Holding Company Apparatus and method for filtering particulate in an exhaust trap
US6572682B2 (en) * 2001-06-26 2003-06-03 Rypos, Inc. Self-cleaning filter system using direct electrically heated sintered metal fiber filter media

Also Published As

Publication number Publication date
EP1573181A2 (fr) 2005-09-14
US20050257518A1 (en) 2005-11-24
CN101405486A (zh) 2009-04-08
JP2006515395A (ja) 2006-05-25
US7314501B2 (en) 2008-01-01
AU2003253083A1 (en) 2003-12-19
WO2003102389A2 (fr) 2003-12-11
CA2487942A1 (fr) 2003-12-11
MXPA04012166A (es) 2005-09-21
FR2840354A1 (fr) 2003-12-05

Similar Documents

Publication Publication Date Title
WO2003102389A9 (fr) Procede et dispositif de filtration des gaz d&#39;echappement pour moteur diesel a surface de filtration variable par obstruction commandee
EP1588032B1 (fr) Procede de post injection de liquide de regeneration du type hydrocarbure, alcool et/ou agent reducteur (e.g. gazole et/ou uree et/ou solution ammoniacale) pour la regeneration de systemes de filtration des gaz d echappement de moteur diesel
EP1174612B1 (fr) Procédé d&#39;injection de carburant
FR2902137A1 (fr) Bruleur et procede pour la regeneration de cartouches de filtration et dispositifs equipes d&#39;un tel bruleur
WO2007048961A2 (fr) Dispositif de traitement d&#39;oxydes d&#39;azote pour gaz d&#39;échappement de véhicule automobile
FR2907844A1 (fr) Procede de regeneration passive d&#39;un filtre a particules et moteur a combustion interne associe
EP2430294A1 (fr) Circuit de traitement et d&#39;evacuation des gaz d&#39;echappement d&#39;un moteur a combustion a allumage commande
WO2020233976A1 (fr) Système de post-traitement des gaz d&#39;échappement d&#39;une ligne d&#39;échappement d&#39;un moteur à combustion interne à allumage commandé
EP1524425B1 (fr) Procédé de commande pour la régénération d&#39;un filtre à particules
EP3149300B1 (fr) Dispositif de post-traitement des gaz d&#39;échappement d&#39;un moteur a combustion
EP1421267B1 (fr) Procede de regeneration d&#39;un dispositif de filtration des gaz d&#39;echappement pour moteur diesel et dispositif de mise en oeuvre
WO2011128543A1 (fr) Procede de regeneration d&#39;un filtre a particules
EP2411647B1 (fr) Procede de controle des emissions polluantes d&#39;un moteur a combustion, groupe motopropulseur et vehicule equipe de ce groupe motopropulseur
EP1201888A1 (fr) Procédé et système pour controler la température de régénération d&#39;un filtre à particules placé à l&#39;échappement d&#39;un moteur thermique
WO2008047017A1 (fr) Système de traitement des gaz d&#39;échappement d&#39;un moteur diesel à turbocompresseur
FR2924749A1 (fr) Ligne d&#39;echappement de gaz pour moteur de vehicule automobile equipee d&#39;un catalyseur de reduction selective des oxydes d&#39;azote
FR2865239A1 (fr) Dispositif de filtration des gaz d&#39;echappement pour moteur diesel associant un additif de combustion compose de nano-particules et un filtre a particules a surface de filtration variable
WO2006010869A1 (fr) Procede et dispositif de reduction/elimination de la quantite de particules contenues dans les gaz d&#39;echappement d&#39;un moteur a combustion interne
EP1757353A1 (fr) Procédé d&#39;oxydation pour l&#39;épuration de gaz d&#39;échappement d&#39;un moteur à combustion et système d&#39;aide au fonctionnement d&#39;un catalyseur d&#39;oxydation
FR2859240A1 (fr) Procede de traitement d&#39;un filtre a particules pour l&#39;epuration de gaz d&#39;echappement d&#39;un moteur a combustion et dispositif de traitement d&#39;un filtre a particules
WO2006064148A1 (fr) Procede de controle de la regeneration d&#39;un filtre a particules electrostatique
FR3088958A1 (fr) Système optimise de post-traitement des gaz d&#39;echappement d&#39;un moteur thermique
FR2984403A3 (fr) Procede de regeneration controlee du filtre a particules d&#39;un moteur a essence, et dispositif de motorisation d&#39;un vehicule automobile
EP3565959A1 (fr) Procède de protection d&#39;un filtre à particules de moteur à combustion interne lors d&#39;une phase de régénération
FR2927657A3 (fr) Alimentation en carburant du systeme d&#39;admission de reducteurs dans l&#39;echappement et dispositif de depollution des gaz d&#39;echappement d&#39;un vehicule automobile.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
COP Corrected version of pamphlet

Free format text: PAGES 1-11, DESCRIPTION, REPLACED BY CORRECT PAGES 1-11; PAGES 12-14, CLAIMS, REPLACED BY CORRECT PAGES 12-14; PAGES 1/5-5/5, DRAWINGS, REPLACED BY CORRECT PAGES 1/5-5/5

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003756052

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2487942

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003253083

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: PA/a/2004/012166

Country of ref document: MX

Ref document number: 1020047019640

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004509250

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10516369

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003815532X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047019640

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003756052

Country of ref document: EP