EP1341661A1 - Procede pour commander/reguler la distribution d'une matiere a mouler par injection et outil de moulage par injection a plusieurs cavites - Google Patents

Procede pour commander/reguler la distribution d'une matiere a mouler par injection et outil de moulage par injection a plusieurs cavites

Info

Publication number
EP1341661A1
EP1341661A1 EP01980103A EP01980103A EP1341661A1 EP 1341661 A1 EP1341661 A1 EP 1341661A1 EP 01980103 A EP01980103 A EP 01980103A EP 01980103 A EP01980103 A EP 01980103A EP 1341661 A1 EP1341661 A1 EP 1341661A1
Authority
EP
European Patent Office
Prior art keywords
nozzle
nozzles
temperature
guided
regulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01980103A
Other languages
German (de)
English (en)
Inventor
Friedrich Werfeli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Netstal Maschinen AG
Original Assignee
Netstal Maschinen AG
Maschinenfabrik und Giesserei Netstal AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Netstal Maschinen AG, Maschinenfabrik und Giesserei Netstal AG filed Critical Netstal Maschinen AG
Publication of EP1341661A1 publication Critical patent/EP1341661A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C2045/2683Plurality of independent mould cavities in a single mould
    • B29C2045/2687Plurality of independent mould cavities in a single mould controlling the filling thereof

Definitions

  • the invention relates to a method for controlling / regulating the distribution of the injection compound via nozzles into the cavities of multi-cavity injection molding tools, furthermore a multi-cavity injection molding tool with adjustable heating outputs for the individual nozzles and a temperature measurement control and display device.
  • the first parameter group relates to the physical values such as temperature and pressure of the processed melt as well as the mass speed when the mass is injected in the area of the injection screw or the injection cylinder. These parameters can be varied and optimized within relatively large limits.
  • the second group of parameters concerns the specific structural design of the injection mold, especially the individual cavities and their disposition to one another. This also includes the placement of local heating elements and the local changeability of the heating output.
  • the structural part can only be changed by the customer to the extent that the corresponding adjusting devices are provided on the tool.
  • the third parameter group relates to the latter setting devices in order to be able to influence locally with respect to each individual cavity or at least each group of cavities.
  • the production of pet molds is, as it were, a school example for multi-cavity injection molds with a very large number of cavities.
  • a corresponding tool has, for example, 48, 96 or 128 cavities. This means that 48, 96 or 128 pet molds are produced simultaneously in each injection molding cycle.
  • the output parameters of the first parameter group mentioned in the introduction must be specified and with an or several test runs.
  • the result of the finished product is checked.
  • a very important test method is the purely sensory test on the end product, especially through the eye of the installer. Ideally considered, all the individual parts from a spray cycle must be identical and free of defects, provided that each cavity has optimal and identical conditions, especially with regard to the jetting nozzle and the locally effective heating output in the area of each nozzle.
  • each cavity In tool technology, cold runner or hot runner technology is used to distribute the injected material to the cavities.
  • hot runner technology When using hot runner technology to distribute the material, each cavity generally has a nozzle, i.e. a constriction, through which the material enters the cavity.
  • the design ensures that the conditions for all cavities are as equal as possible. This primarily concerns the flow path, the flow resistance and the temperature distribution. It is known that the flow resistance of a constriction can be changed by the temperature of the nozzle. This gives the installer a means of influencing the material distribution in the individual cavities.
  • the expression "as equal as possible" already means that it is a goal that can only be achieved in practice.
  • each nozzle can be equipped with a heater.
  • Each heater is operated by an actuator.
  • the nozzle temperature can be changed by changing the manipulated variable.
  • Control variables do not give the operator a feeling for what is actually going on at the nozzle or how an intervention works. The success of an intervention therefore depends heavily on the experience of the installer, above all on whether the installer has learned to recognize the complex relationships and interpret them correctly.
  • the installer or the operator must decide on the type and size of a corrective intervention for the cavity in question and carry it out using individual defective pet forms.
  • each nozzle receives a temperature sensor and that the manipulated variable for heating is determined by means of a temperature controller. This compensates for disturbances caused by changing environmental conditions. The operator can enter the individual nozzle temperatures in ° C.
  • EP 0 909 628 shows a further solution.
  • the simultaneous filling of the cavities is ensured by a complete pressure monitoring in each individual cavity according to this proposal.
  • the filling process from the start of the filling is detected by the pressure monitor and compared with a reference pressure curve.
  • the heating power of the individual nozzle heaters is intervened so that all individual cavities can be brought into a uniform line.
  • the aim of the proposed pressure control is that the pressure increase over time completely agrees for all cavities or the differences tend towards zero.
  • the individual temperature measurement and control at each nozzle is already a considerable cost factor.
  • a temperature sensor per nozzle is often not possible for tools with limited space.
  • an additional pressure control as proposed according to EP 0 909 628, is only economically sensible and portable if the number of cavities is small.
  • the object of the invention was now to find an economical solution for the control / regulation of the distribution of the molding compound in a multi-cavity injection molding tool, without loss of quality for the control / regulation for each individual cavity, even with a very large number of cavities.
  • the method according to the invention is characterized in that the spray material is distributed over the individual nozzles by influencing the nozzle heating output, the heating output being controlled by at least one master nozzle and the heating output of at least one further nozzle being determined and set on the basis of the master nozzle.
  • the multi-cavity injection molding tool according to the invention is characterized in that the heating power of at least one nozzle can be determined via a temperature sensor and regulated by means of a set / actual comparison in the sense of a master nozzle, and the heating power can be adjusted on the basis of the regulated nozzle via computer means ,
  • the inventors have recognized that when designing the tools, for functional reasons, care is taken to ensure that the cavities and the distributors are designed symmetrically. It can generally be assumed that all nozzles, at least in a similar position, have similar environmental conditions. The new solution takes advantage of this fact, since at least within a recognizable similar environment, only one nozzle needs to be equipped with a complete control system with a target / actual comparison. Any further or all other nozzles in the similar environment can be controlled in the sense of slave nozzles via corresponding model calculations.
  • one or more cavities can be equipped with a nozzle temperature sensor.
  • This nozzle or nozzles is / are regulated.
  • the regulation compensates for changing environmental influences, e.g. even when starting, and keeps the temperature at the nozzle constant. If you place the manipulated variable of the regulated nozzle on a slave nozzle without a temperature sensor, the same temperature will be set, whereby the environmental influences are compensated by the specification of the master nozzle.
  • the manipulated variable of each nozzle In order to ensure that each nozzle temperature can be individually adjusted, the manipulated variable of each nozzle must be able to be influenced. By small temperature differences of e.g. To reach 1 ° C, manipulated variable changes of 0.1 to 0.5% are necessary, which creates very confusing conditions for the operator.
  • the new solution via computer / storage means allows optimum values once found for a particular tool to be recorded for each cavity and to be used again for the next time, or to be continuously improved in the sense of an adaptable intelligence.
  • the deviations found once in a tool can be recorded and used as a basis for later production from the start with the corresponding start programs.
  • the master nozzle primarily optimizes the environmental and changing operating conditions. Thanks to this correction intervention, the slave nozzles can react to the very special conditions of each individual nozzle or they can be programmed for their respective deviations.
  • the correction for slave nozzles is reduced to simple control without the need for temperature sensors, neither in the area of the nozzle nor in the cavity.
  • the invention allows a number of particularly advantageous configurations. Reference is made to claims 2 to 7 and 9 to 12.
  • the nozzles are divided into groups, the heating output of a representative nozzle being regulated in the sense of a master nozzle in each nozzle group and the corrections for other nozzles in the group being determined and set by calculation.
  • the new control concept is based on the basic idea that with the real or classically regulated nozzles with setpoint / actual value comparison of the temperature, above all, changing environmental influences are mastered.
  • the aim of the new solution remains that the manipulated variable for each nozzle is designed for temperature differences of approximately 1 ° C to 5 ° C or 1 ° C to 10 ° C and a manipulated variable change of 0.1 to 0, 5% is targeted.
  • a very important fact according to the new solution is that regardless of whether the heating power of a nozzle is controlled or regulated, temperature values are displayed on the user interface. The installer or operator of injection molding machines knows neither from experience nor from the information provided by the manufacturer of the raw product the optimal temperature for processing.
  • the temperature has the greatest possible plausibility for the management of the process.
  • the temperature is also a basic physical quantity for which humans can develop a "feeling" as it were. It therefore makes the most sense as a display and correction and is quickly adopted by the installer as experience. He can memorize this information himself with reference to individual cavities. This simplifies its task particularly when the target and actual temperature is displayed for each guided or controlled nozzle.
  • the individual nozzles are divided into groups, one group each having a regulated master nozzle and the other slave nozzles in the group being adjustable on the basis of the regulated nozzle via the computer means and a corresponding model calculation.
  • a virtual actual value resulting from the invoice can be displayed.
  • at least one or more temperature sensors are assigned to at least one guided nozzle within a guided zone, in order to check the model calculation on which it is based. This allows the entire control system to be self-checked.
  • the control temperature sensor is not directly part of a control system and therefore only marginally reduces the advantage of the new solution to the question of construction costs.
  • FIG. 2 shows an example of the connections of a multi-cavity injection molding tool
  • FIGS. 3a and 3b show a reduced or enlarged section of the
  • Figure 1 shows the core of the basic structure for the new solution.
  • a master nozzle 1 directly underneath a slave nozzle 2, and indicated below further slave nozzles 2 ', 2 ", etc.
  • Each nozzle is assigned a heater 3, 3', etc., which is connected via a control line 4 "4" receives the corresponding actuating signals from a controller 5 or a control unit 6.
  • the target / actual data is transferred from the controller to a higher-level computer 7, which is at the same time memory and computer and storage location for the required computing models Setpoints as well as the manipulated variables and the slope Sa of the manipulated variable are sent to the slave nozzles.
  • the manipulated variable of the controlled zone (s) is used as the basis for the guided zone (s) used.
  • the guided zones receive a target temperature on the user interface like the controlled zones.
  • Ea the temperature difference between the setpoint of the controlled nozzles (T sr ) and that of the guided nozzle (T sfn ) is determined.
  • Slope (S a ) delta manipulated variable / delta temperature.
  • the temperature of the guided nozzle can be kept very precise, so that hardly any differences in behavior can be determined compared to a fully regulated nozzle.
  • each nozzle is now additionally assigned a temperature setpoint / actual value display. The corresponding temperature is displayed in ° C, regardless of whether it is a regulated or a guided nozzle.
  • FIG. 2 shows schematically the arrangement of forty-eight cavities with the corresponding number of nozzles. All cavities are divided into groups Gr- j to Gr 6 of eight cavities or nozzles each.
  • the master nozzle 1 is marked in black.
  • the nozzle 9, 9 'and all other nozzles (without the black marked) are slave nozzles which are guided by respective master nozzles of the same group.
  • six nozzles have a temperature sensor and are equipped with full control. All others have the same heating, but can only be set for the heating output by means of an adjustment process.
  • FIGS. 3a and 3b show design details for a single nozzle.
  • An injection mold 20 is placed directly on a distribution block 21.
  • a water-cooled mandrel 22 of a second mold half, not shown, which "delimits a preform 23 on the inside" is shown.
  • the outer shape is given by the mold cavity 24, which has a water cooling 25 in the circumference.
  • the nozzle 26 is provided with a heating jacket 27. Inside the nozzle 26 is a needle valve 28. The nozzle 26 is fed by a distribution channel 29.
  • the actual temperature at the nozzle is determined with a temperature sensor 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

La présente invention concerne un procédé et un dispositif pour commander/réguler la distribution d'une matière à mouler par injection dans des outils de moulage par injection présentant plusieurs cavités, notamment un grand nombre de cavités, par exemple de quarante huit à cent vingt huit. Les buses sont divisées en groupes allant de quatre à douze buses. Chaque groupe comprend une buse classique, servant de buse maîtresse, qui est régulée par l'intermédiaire de la puissance de chauffage et de capteurs de température locaux. Toutes les autres buses ou cavités du même groupe servent de buses esclaves dépourvues de capteurs de température. Les températures réelles obtenues virtuellement sont calculées au moyen de calculs modèles enregistrés et sont affichées sur un panneau d'utilisateur. L'utilisateur obtient ainsi l'affichage des températures théoriques/réelles pour chaque buse et peut, en fonction du résultat, exercer une influence sur chaque buse avec des valeurs de température. Cette invention permet de réduire fortement la régulation, tout en maintenant une qualité de distribution de matière à mouler par injection qui équivaut à celle d'une régulation complète de toutes les buses, conduisant ainsi à une production économique et à une exploitation bon marché des systèmes de commande et de régulation.
EP01980103A 2000-12-12 2001-11-09 Procede pour commander/reguler la distribution d'une matiere a mouler par injection et outil de moulage par injection a plusieurs cavites Withdrawn EP1341661A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH241800 2000-12-12
CH24182000 2000-12-12
PCT/CH2001/000659 WO2002047887A1 (fr) 2000-12-12 2001-11-09 Procede pour commander/reguler la distribution d'une matiere a mouler par injection et outil de moulage par injection a plusieurs cavites

Publications (1)

Publication Number Publication Date
EP1341661A1 true EP1341661A1 (fr) 2003-09-10

Family

ID=4569134

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01980103A Withdrawn EP1341661A1 (fr) 2000-12-12 2001-11-09 Procede pour commander/reguler la distribution d'une matiere a mouler par injection et outil de moulage par injection a plusieurs cavites

Country Status (6)

Country Link
US (1) US7507359B2 (fr)
EP (1) EP1341661A1 (fr)
CN (1) CN100406233C (fr)
AU (1) AU2002212031A1 (fr)
CA (1) CA2431385C (fr)
WO (1) WO2002047887A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7020540B2 (en) * 2004-05-14 2006-03-28 D-M-E Company Temperature control
DE102004031546A1 (de) * 2004-06-29 2006-02-09 Priamus System Technologies Ag Verfahren zum Füllen von zumindest einer Kavität
DE102006056722B4 (de) * 2006-12-01 2008-12-04 Incoe International, Inc. Elektrische Regelanordnung für die Heizkörper einer Vielzahl von Düsen und/oder Heißkanal-Verteilerabschnitten einer Spritzgießanlage
KR20090046119A (ko) * 2007-11-05 2009-05-11 현대자동차주식회사 크래쉬 패드 이중 사출성형 시스템 및 방법
DE102010002174A1 (de) 2010-02-22 2011-08-25 Robert Bosch GmbH, 70469 Verfahren zur Regelung eines Spritzgießprozesses
US8377350B2 (en) * 2011-01-31 2013-02-19 Precision Machinery Research Development Center Method for controlling temperatures in hot runners of multi-cavity injection mold, method for warning, and control system based on those methods
DE102017124194A1 (de) * 2017-10-17 2019-04-18 Otto Männer GmbH Überwachungsgerät für eine spritzgussform
US20200290257A1 (en) * 2017-11-29 2020-09-17 Inglass S.P.A. Moulding-parameters processing method for an injection press
DE102018102299A1 (de) 2018-02-01 2019-08-01 INTRAVIS Gesellschaft für Lieferungen und Leistungen von bildgebenden und bildverarbeitenden Anlagen und Verfahren mbH Verfahren und Anordnung zur Steuerung mindestens eines Prozessparameters einer Spritzgießmaschine
EP3860824B1 (fr) * 2018-10-05 2024-01-03 Kistler Holding AG Procédé pour réguler un système de moulage par injection
CN110126142B (zh) * 2019-05-30 2021-09-28 开平市盈光机电科技有限公司 一种通过调节模芯温度来调整双穴模具模流的工艺

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2564373B1 (fr) 1984-05-16 1987-01-23 Denis Sa Albert Procede et dispositif de regulation thermique pour moules a canaux chauds
JPS61115108A (ja) 1984-11-09 1986-06-02 Purasutoron Kk ホツトランナ多点ゲ−トの温度制御方法
US4755126A (en) * 1986-01-08 1988-07-05 Fast Heat Element Manufacturing Co., Inc. Plastic injection molding system with multiple tip torpedo heater
JPS6398007A (ja) 1986-10-14 1988-04-28 Sumitomo Heavy Ind Ltd 電力量調節装置
AT387292B (de) * 1986-10-16 1988-12-27 Stastny & Schroegendorfer Verfahren zum messen und regeln der temperatur sowie vorrichtung zur herstellung von spritzgussteilen mit beheizten und/oder gekuehlten sowie temperaturgeregelten schmelzezufuehrungsleitungen
JPH07125032A (ja) * 1993-11-08 1995-05-16 Fanuc Ltd 射出成形機におけるシリンダ温度制御装置
CH692383A5 (de) 1997-09-16 2002-05-31 Kk Holding Ag Verfahren zur Regelung der Heisskanalheizung eines Mehrkavitäten-Spritzgiesswerkzeugs.
US6529796B1 (en) * 1999-07-21 2003-03-04 Caco Pacific Corporation Closed loop interactive controller

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0247887A1 *

Also Published As

Publication number Publication date
CN100406233C (zh) 2008-07-30
CN1479670A (zh) 2004-03-03
WO2002047887A1 (fr) 2002-06-20
CA2431385C (fr) 2009-01-20
US7507359B2 (en) 2009-03-24
US20040076702A1 (en) 2004-04-22
AU2002212031A1 (en) 2002-06-24
CA2431385A1 (fr) 2002-06-20

Similar Documents

Publication Publication Date Title
EP0909628B1 (fr) Méthode et dispositif pour le réglage du chauffage du canal d'injection d'un moule à cavités multiples
DE4129559C2 (de) Temperaturregelverfahren für eine Spritzgießmaschine
DE102008034934B4 (de) Vorrichtung und Verfahren zum Herstellen von Behältnissen
DE102005019890B3 (de) Vorrichtung und Verfahren zur Temperierung von Formwerkzeugen
DE69029893T2 (de) Vorrichtung zur Regelung einer Heiztemperatur
AT509714B1 (de) Verfahren zum steuern einer kunststoffverarbeitungsmaschine
EP0603244A1 (fr) Procede de commande d'une machine de production, en particulier une machine de moulage par injection.
WO2002047887A1 (fr) Procede pour commander/reguler la distribution d'une matiere a mouler par injection et outil de moulage par injection a plusieurs cavites
DE69125645T2 (de) Spritzgiesssteuereinrichtung mit wählbaren Kontrollfunktionen
DE2855715B2 (de) Getreidemühlenanlage zur Herstellung von Mehl
DE29909535U1 (de) Spritzgießeinrichtung zur Herstellung einer Vielzahl von Kunststoffteilen
EP1173720A1 (fr) Procede et dispositif permettant d'optimiser la gestion et la surveillance des processus dans une installation de fabrication de pates alimentaires
DE3885444T2 (de) Software-servoregler einer spritzgiessmaschine.
EP2687447A1 (fr) Dispositif de rétractation avec gestion optimisée de l'énergie
DE2340220A1 (de) Verfahren zum einstellen und stabilisieren der temperatur von glas
EP0784535B1 (fr) Procede concu pour influer sur des valeurs de consigne de machines, et dispositif de mise en oeuvre dudit procede
DE3016786C2 (de) Verfahren und Einrichtung zur Regelung der Spaltbreite zwischen wenigstens zwei in einem Mehrwalzwerk zusammenarbeitenden parallelen Walzen
WO1996010220A1 (fr) Procede conçu pour influer sur des processus cycliques
EP0522487B1 (fr) Procédé et dispositif pour le réglage de l'épaisseur lors de la fabrication de films soufflés
DE3936301A1 (de) Verfahren zum herstellen von hohlkoerpern aus thermoplastischen kunststoff
EP0077847A1 (fr) Dispositif à mouler par injection pour machines à mouler par injection et/ou outils à mouler par injection
DE3412107C2 (de) Verfahren und Schaltunsanordnung zur Optimierung der Reifung und Trocknung von Wurst, Schinken oder ähnlichen Lebensmitteln
DE19931181B4 (de) Verfahren und Vorrichtung zur Optimierung der Prozessführung sowie Prozessüberwachung in einer Anlage zur Schokoladeherstellung
EP2225953B1 (fr) Machine d'équilibrage des températures destinée au traitement continu de masses contenant des graisses avec un degré d'équilibrage des températures constant
DE102019125946A1 (de) Steuervorrichtung für eine produktionsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030514

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20070919

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100531