EP1284404A1 - Procédé et dispositif pour la production d'un produit sous pression par séparation cryogénique de l'air - Google Patents

Procédé et dispositif pour la production d'un produit sous pression par séparation cryogénique de l'air Download PDF

Info

Publication number
EP1284404A1
EP1284404A1 EP01128631A EP01128631A EP1284404A1 EP 1284404 A1 EP1284404 A1 EP 1284404A1 EP 01128631 A EP01128631 A EP 01128631A EP 01128631 A EP01128631 A EP 01128631A EP 1284404 A1 EP1284404 A1 EP 1284404A1
Authority
EP
European Patent Office
Prior art keywords
column
pressure
product
fraction
pressure column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01128631A
Other languages
German (de)
English (en)
Inventor
Dietrich Rottmann
Christian Kunz
Horst Corduan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP1284404A1 publication Critical patent/EP1284404A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/0446Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • F25J2200/94Details relating to the withdrawal point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen

Definitions

  • the invention relates to a method for obtaining a printed product by Cryogenic air separation in a rectification system that includes a pressure column and has a low pressure column, this method having the in claim 1 steps a to f listed.
  • the rectification system of the invention can be used as a classic double column system be designed, but also as a three or multi-column system. It can be in addition to the columns for nitrogen-oxygen separation further devices for Obtaining other air components, especially noble gases.
  • a mixing column is used in the process, in which an oxygen-rich fraction from the rectification in direct heat exchange is evaporated with a heat transfer medium.
  • the top gas of the mixing column is used for indirect evaporation of a liquid product pressurized liquid (see above) called internal compression).
  • the oxygen-rich fraction used as the insert for the mixing column points an oxygen concentration higher than that of air and for example 70 to 99.5 mol%, preferably 90 to 98 mol%.
  • Under Mixing column is understood to be a countercurrent contact column in which one is lighter volatile gaseous fraction sent to a less volatile liquid becomes.
  • the method according to the invention is suitable for the extraction of gaseous Pressurized oxygen and / or gaseous pressurized nitrogen, in particular for generation of gaseous impure oxygen under pressure.
  • An impure oxygen is used here Mixture with an oxygen content of 99.5 mol% or less, in particular of 70 to 99.5 mol% understood.
  • the product pressures are, for example, 3 to 25 bar, preferably at 4 to 16 bar.
  • the printed product can be used for Compressed further in gaseous state.
  • the invention has for its object the method mentioned in the introduction to make it economically more economical, in particular by simplifying equipment and / or energy saving.
  • This task is solved in that the indirect heat exchange for Evaporation of the liquid product pressurized liquid no longer in one separate condenser-evaporator is carried out, but in the Main heat exchanger system in which the pressure from the column air is also cooled.
  • the product fraction is preferably immediately after the pressure increase (for Example in a pump) in the cold end of the main heat exchanger system introduced, there first warmed to boiling point temperature and then evaporates, both against the condensing or condensed Top fraction of the mixing column.
  • the main heat exchanger system in the sense of the present invention can, must but not be realized by a single heat exchanger block. It can also come from several blocks connected in parallel or in series. With parallel When interconnected, the blocks have the same inlet and outlet temperatures. In the Usually the evaporation and at least part of the warming up of the liquid takes place on Pressurized product flow takes place in the same heat exchanger block.
  • the mixing column is operated under a pressure sufficient to achieve the Product fraction under the desired pressure against the condensing head gas To evaporate the mixing column, for example below 5 to 17 bar, preferably below 5 to 13 bar.
  • the pressure of the pressure column in the invention is in the range of, for example 5 to 15 bar, preferably 5 to 12 bar, that of the low pressure column for example 1.3 to 6 bar, preferably 1.3 to 4 bar.
  • the overhead product of the mixing column is preferably downstream of the condensation, which takes place in the condenser-evaporator, relaxed and into the low pressure column returned.
  • a second stream of purified feed air is preferably compressed to a pressure, which is significantly higher than the operating pressure of the pressure column in the main heat exchanger system cooled and then introduced as a heat transfer medium in the mixing column.
  • This second air flow simultaneously supplies at least part of the heat Warming up of the liquid product pressurized downstream of it Evaporation.
  • "significantly higher” is understood to mean a pressure difference that is higher than the line losses, in particular higher than 1 bar.
  • This pressure difference can be achieved, for example, that the total air on essentially Pressure column pressure is compressed and then branched into two air streams, the second stream being further compressed, for example by a motor driven compressor.
  • the two air streams can be separated from Atmospheric pressure can be compressed to the required pressures.
  • the pressure on the second airflow is compressed is generally 1.1 to 2.0 times the pressure of the liquid product fraction as it evaporates.
  • the second current at a first intermediate point under a first Intermediate temperature is taken from the main heat exchanger system, where the first intermediate temperature is significantly higher than its dew point.
  • the gaseous The top product of the mixing column is at the first intermediate point in the Main heat exchanger system introduced, on which the second stream from the Main heat exchanger system is removed. This allows the same passage in the Main heat exchanger system for both cooling the second air flow and can also be used for the condensation of the top product of the mixing column.
  • the product fraction is made from the Low pressure column removed.
  • the product fraction and the oxygen-rich fraction for the mixing column can then be withdrawn from the low pressure column together and / or be brought together under pressure in liquid form, which is particularly apparatus-wise is simple.
  • the product fraction and the oxygen-rich Fraction can be removed from the low pressure column at various points. there the oxygen-rich fraction is preferably at least one theoretical or practical floor above the point of withdrawal of the product fraction from the Low pressure column deducted.
  • nitrogen can be used as a printed product be won.
  • the (additional) product fraction is then from the pressure column removed, if necessary, for example in the top condenser of the pressure column liquefied, separated from the oxygen-rich fraction and brought under pressure evaporated and warmed in the main heat exchanger system.
  • the mixing column becomes a liquid fraction, for example Bottom liquid, removed, relaxed and in the pressure column or in the Low pressure column initiated.
  • the Feed point preferably above the removal of the oxygen-rich fraction and the recovery of the top fraction from the mixing column, preferably one to twenty theoretical plates above the introduction of the top fraction of the mixing column.
  • the liquid fraction from the mixing column is removed if necessary cooled, for example by indirect heat exchange with the product fraction and / or the oxygen-rich fraction.
  • the invention also relates to a device for obtaining a printed product by low-temperature separation of air according to claim 10.
  • compressed and cleaned air 1 is branched upstream of a main heat exchanger 2 into three partial flows 50, 60, 70.
  • the air pressure at this point corresponds to the operating pressure of the pressure column 4 plus line losses.
  • a first air flow 50 is approximately in the main heat exchanger 2 against reverse flows Cooled dew point temperature and via line 51 without pressure changing Measures fed into the lower area of a pressure column 3.
  • Crude oxygen 5 from the bottom of the pressure column 3 is - optionally after Subcooling in the subcooling counterflow 6 - in a low pressure column 4 throttled (7).
  • Top nitrogen 8 of the pressure column 3 is via line 9 in a Main condenser 10 out there and against evaporating bottom liquid Low pressure column 4 liquefied.
  • the condensate 11 is at least partially over Line 12 abandoned as a return to the pressure column 3.
  • Another part can be as liquid nitrogen product 13 can be obtained.
  • a part 35 of the top nitrogen 8 of the pressure column 3 is directly to Main heat exchanger 2 guided and as a gaseous pressure nitrogen product 36th won.
  • Nitrogen-rich liquid 14 becomes from an intermediate point of pressure column 3 removed, subcooled in the supercooling counterflow 6 and via throttle valve 15 the low pressure column 4 at the head as a return.
  • a nitrogen-rich residual gas 16 is drawn off and warmed to about ambient temperature in the heat exchangers 6 and 2.
  • the warm residual gas 17 can be used, for example, as a regeneration gas in a not shown Cleaning device for the feed air 1 can be used.
  • the bottom of the low pressure column 4 there is impure oxygen with an oxygen content produced by 95 mol%.
  • At least a portion 19 of the bottom liquid 18 of the Low pressure column 4 forms the product fraction in the sense of the invention. It is by means of a pump 20 brought to about the product pressure of, for example, 7.4 bar and via line 21 to the cold end of the main heat exchanger 2. There she will successively warmed to boiling temperature, evaporated and to about Ambient temperature warmed up.
  • the product fraction at 22 as deducted gaseous pressure product under the product pressure of 7.4 bar.
  • On other part 23 of the bottom liquid 18 of the low pressure column 4 can be a liquid Oxygen product can be obtained.
  • Some (e.g. three theoretical) trays will be above the bottom of the low pressure column an oxygen-rich fraction 24 with an oxygen content of oxygen for example, 88 mol% removed in liquid form, brought to pressure in a pump 25 and after heating in 65 via line 26 to the top of a mixing column 27.
  • the operating pressure of the mixing column is, for example, 9.6 bar at the bottom.
  • the gaseous top product 28 of the mixing column 27 has an oxygen content of 83 mol% and is introduced into the cold part of the main heat exchanger 2. There it supplies the heat for the evaporation of the product stream 21 and for the latter Warming up to boiling temperature. With indirect heat exchange in Main heat exchanger 2, the top product of the mixing column is condensed and supercooled. The liquid flows back via line 29 and throttle valve 30 into the Low pressure column 4.
  • the feed point is about three theoretical floors above the point at which the oxygen-rich fraction 24 is removed.
  • the heat transfer medium for the mixing column 27 is the second partial flow 60 Feed air formed. This is in one (in the example by means of external energy driven) post-compressor 61 with subsequent post-cooling 62 to a little over Mixing column pressure brought and via line 63 to the warm end of Main heat exchanger 2 out.
  • the second partial flow of air is at one Intermediate temperature above the cold end again from the main heat exchanger 2 taken. After further cooling in 65, it is used as heat transfer medium 66 in the Swamp area of the mixing column introduced.
  • Both the swamp fraction 31/32 and an intermediate fraction 33/34 of the mixing column 27 are subcooled in 65 and then at the points corresponding to their respective composition in the Low pressure column 4 throttled.
  • FIG. 1 uses a third part 70/73 for this purpose Feed air at an intermediate temperature from the main heat exchanger 2 led out (74) and relaxed in a turbine 75 to 1.4 bar. to Increasing the cooling capacity or reducing the amount of turbine air
  • the air 70 can be depressurized to a pressure of for example, 8 bar (71).
  • the post-compressor 71 is in the Example driven by the mechanical energy generated in turbine 75, preferably by direct mechanical coupling of turbine 75 and Post-compressor 71.
  • the heat of compression is generated by indirect heat exchange with removed a coolant in an after cooler 72.
  • the work-relaxing air 76, 77 is fed directly into the low pressure column 4.
  • the main heat exchanger system in the sense of the invention is formed by a single block 2, which was referred to above as the main heat exchanger.
  • the main heat exchanger system is formed by two separate blocks 102a, 102b.
  • 102a the main heat exchanger in the narrower sense, the gaseous product streams 35, 16 are heated against the first and third air streams 50, 73.
  • the oxygen heat exchanger 102b only the liquid product stream is heated and evaporated, specifically in countercurrent to the top fraction 28 of the mixing column 27 and to the second air stream 63.
  • FIG. 1A The procedure of FIG. 1A is cheaper in terms of apparatus because only the exchanger Oxygen heat exchanger 102b to the high pressure of the second partial flow 63 Air must be designed. This solution is suitable for smaller plants. The complete one is more economical in terms of energy and therefore more advantageous for large systems Integration of the two heat exchange processes according to FIG. 1.
  • the method of FIG. 2 differs from the process of FIG. 1 in that it saves one pump (25 in FIG. 1). This is achieved by withdrawing the product fraction 21 and the oxygen-rich fraction 224/226 from the bottom of the low-pressure column 4 (218, 218a) and pressurizing them in a pump 220. The high-pressure liquid 218b is then divided into product stream 21 and feed liquid 224 for the mixing column 27. (The apparatus shown in the drawings as individual pumps are regularly designed as a pair of pumps for reasons of redundancy.)
  • Figure 3 also largely corresponds to Figure 1.
  • the gaseous pressurized nitrogen product 336 at a higher pressure won, which is significantly above the operating pressure of the pressure column 3.
  • Line 335 is with the outlet and not the inlet (see 35 in FIG. 1) of the main capacitor 10 connected.
  • the liquid nitrogen 335 is in a further pump 337 on the required product pressure (for example 6 to 25 bar) brought and in Main heat exchanger 2 evaporates and warms up.
  • the other flows are adjusted accordingly, especially the amount of High pressure air 63 can be increased compared to Figure 1.
  • Nitrogen can be produced under high pressure.
  • the pressure nitrogen production 335, 337 according to FIG. 3 is shown in FIG common compression 218a, 220 of oxygenated fraction and Combined product fraction.
  • the Internal nitrogen compression 335/337 carried out without internal oxygen compression, that is, the pump 220 is only used to apply liquid to the head of the Mixing column and not to produce a gaseous oxygen product.
  • the method of the invention is not only suitable for the extraction of impure Oxygen, but also leaves product purities of 98 mol% or more (for example 98 to 99.9%, preferably 98 to 99.5%) in the oxygen product 22 to.
  • argon production can be connected, as in FIG. 5 shows.
  • a common crude argon column 538 with an intermediate point in the Low pressure column connected (539, 540).
  • the argon transition 539/540 lies between the feed points of the two liquids 30, 34 from the mixing column 27.
  • Der Top condenser 541 of the crude argon column can, as usual, with crude oxygen 5 are operated downstream of the subcooling 6 (not shown).
  • the Raw argon product 542 is preferably further cleaned, for example in one also not shown pure argon column.
  • direct blowing of air into the low-pressure column 4 (77 in FIG. 5) can be dispensed with, in that the third partial stream 73 of the feed air in the turbine 75 is expanded to approximately the operating pressure of the pressure column 3, as shown in FIG. 6 .
  • the turbine exhaust gas 676 is then introduced into the pressure column 3 (677), in the example together with the direct air (first partial flow 51 of the air).
  • pure nitrogen 843-844-845 is also obtained in the low-pressure column 4.
  • a portion 814 of the liquid nitrogen 11 from the main condenser 10 in FIG. 6 is subcooled and fed via a throttle valve 815 as a return to the low-pressure column 4.
  • Impure nitrogen (nitrogen-rich residual gas) 816 is taken from an intermediate point of the low pressure column below a pure nitrogen section 846.
  • the liquid nitrogen product 813 is obtained from the low pressure column 4 in FIG. 8 deducted.
  • the methods for obtaining pressurized nitrogen from FIG. 1 are also shown (35 - 36) and Figure 3 (335 - 337 - 338 - 336) realized simultaneously. So that can gaseous nitrogen (845, 36, 336) under a total of three different pressures for Be made available without using an additional gas compressor should be.
  • FIGS. 6 to 8 can in principle also be used without argon extraction (crude argon column 538).
  • Tables 1 and 2 relate to the exemplary embodiment in FIG. 2. They relate to two design cases with different purity of the oxygen product. TABLE 1 No. Quantity in Nm 3 / h Pressure in bar Temperature in K O 2 content in mol% total air 1 183117 5.40 290.0 20.95% 1. Partial flow before introduction into the pressure column 51 113445 5.32 101.9 20.95% 2. Partial flow in front of the main heat exchanger system 63 53540 9.60 290.0 20.95% 2.
  • Figure 9 shows the heat exchange diagram (Q-T diagram) for the Main heat exchanger system 2 of the method according to Figure 2 (Table 1).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)
EP01128631A 2001-08-13 2001-11-30 Procédé et dispositif pour la production d'un produit sous pression par séparation cryogénique de l'air Withdrawn EP1284404A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10139727 2001-08-13
DE10139727A DE10139727A1 (de) 2001-08-13 2001-08-13 Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft

Publications (1)

Publication Number Publication Date
EP1284404A1 true EP1284404A1 (fr) 2003-02-19

Family

ID=7695306

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01128631A Withdrawn EP1284404A1 (fr) 2001-08-13 2001-11-30 Procédé et dispositif pour la production d'un produit sous pression par séparation cryogénique de l'air

Country Status (3)

Country Link
US (1) US6662595B2 (fr)
EP (1) EP1284404A1 (fr)
DE (1) DE10139727A1 (fr)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (fr) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Procédé et dispositif de production d'oxygène sous pression et de crypton/xénon
WO2011116981A2 (fr) 2010-03-26 2011-09-29 Linde Aktiengesellschaft Dispositif pour la décomposition à basse température d'air
DE102010012920A1 (de) 2010-03-26 2011-09-29 Linde Aktiengesellschaft Vorrichtung zur Tieftemperaturzerlegung von Luft
EP2458311A1 (fr) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Procédé et dispositif de production d'un produit d'impression gazeux par décomposition à basse température d'air
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2503269A1 (fr) 2011-03-25 2012-09-26 Linde Aktiengesellschaft Dispositif de décomposition à basse température de l'air
EP2505947A1 (fr) 2011-03-29 2012-10-03 Linde Aktiengesellschaft Procédé et dispositif destinés à la production de verre flotté
DE102011015429A1 (de) 2011-03-29 2012-10-04 Linde Ag Verfahren und Vorrichtung zum Betreiben eines Rebox-Brenners
EP2520886A1 (fr) 2011-05-05 2012-11-07 Linde AG Procédé et dispositif de production d'un produit comprimé à oxygène gazeux par décomposition à basse température d'air
EP2568242A1 (fr) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'acier
EP2600090A1 (fr) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
WO2014067662A2 (fr) 2012-11-02 2014-05-08 Linde Aktiengesellschaft Procédé de séparation d'air à basse température dans une installation de séparation d'air et installation de séparation d'air
DE102013002094A1 (de) 2013-02-05 2014-08-07 Linde Aktiengesellschaft Verfahren zur Produktion von Luftprodukten und Luftzerlegungsanlage
EP2784420A1 (fr) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Procédé de séparation de l'air et installation de séparation de l'air
WO2014154339A2 (fr) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Procédé de séparation d'air et installation de séparation d'air
EP2801777A1 (fr) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Installation de décomposition de l'air dotée d'un entraînement de compresseur principal
EP2963369A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963370A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963371A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air
EP2963367A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable
DE102015015684A1 (de) 2015-12-03 2016-07-21 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft und Luftzerlegungsanlage
EP3179186A1 (fr) 2015-12-07 2017-06-14 Linde Aktiengesellschaft Procede de production d'un produit comprime riche en oxygene, gazeux et liquide dans une installation de decomposition de l'air et installation de decomposition de l'air

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2861841B1 (fr) * 2003-11-04 2006-06-30 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
GB0422635D0 (en) * 2004-10-12 2004-11-10 Air Prod & Chem Process for the cryogenic distillation of air
US8806218B2 (en) * 2005-03-18 2014-08-12 Microsoft Corporation Management and security of personal information
US8640496B2 (en) * 2008-08-21 2014-02-04 Praxair Technology, Inc. Method and apparatus for separating air
DE102012017484A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren und Anlage zur Erzeugung flüssiger und gasförmiger Sauerstoffprodukte durch Tieftemperaturzerlegung von Luft
US20150168056A1 (en) * 2013-12-17 2015-06-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method For Producing Pressurized Gaseous Oxygen Through The Cryogenic Separation Of Air
US9964354B2 (en) 2016-01-19 2018-05-08 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for producing pressurized gaseous oxygen through the cryogenic separation of air
CN116817541B (zh) * 2023-08-31 2023-11-10 齐齐哈尔黎明气体有限公司 医用氧充装过程放空气体回收装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2680114A1 (fr) 1991-08-07 1993-02-12 Air Liquide Procede et installation de distillation d'air, et application a l'alimentation en gaz d'une acierie.
EP0547946A1 (fr) * 1991-12-18 1993-06-23 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation de production d'oxygène impur
EP0660058A2 (fr) * 1993-12-22 1995-06-28 The BOC Group plc Séparation d'air
EP0698772A1 (fr) * 1994-08-25 1996-02-28 The Boc Group, Inc. Procédé et dispositif pour la production d'oxygène
US5655388A (en) * 1995-07-27 1997-08-12 Praxair Technology, Inc. Cryogenic rectification system for producing high pressure gaseous oxygen and liquid product
DE19803437A1 (de) 1998-01-29 1999-03-18 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
FR2778971A1 (fr) * 1998-05-20 1999-11-26 Air Liquide Installation de production d'un gaz, forme d'un constituant ou d'un melange de constituants de l'air sous une haute pression

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5341646A (en) * 1993-07-15 1994-08-30 Air Products And Chemicals, Inc. Triple column distillation system for oxygen and pressurized nitrogen production
US5456083A (en) * 1994-05-26 1995-10-10 The Boc Group, Inc. Air separation apparatus and method
US5628207A (en) * 1996-04-05 1997-05-13 Praxair Technology, Inc. Cryogenic Rectification system for producing lower purity gaseous oxygen and high purity oxygen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2680114A1 (fr) 1991-08-07 1993-02-12 Air Liquide Procede et installation de distillation d'air, et application a l'alimentation en gaz d'une acierie.
EP0547946A1 (fr) * 1991-12-18 1993-06-23 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation de production d'oxygène impur
EP0660058A2 (fr) * 1993-12-22 1995-06-28 The BOC Group plc Séparation d'air
EP0698772A1 (fr) * 1994-08-25 1996-02-28 The Boc Group, Inc. Procédé et dispositif pour la production d'oxygène
US5655388A (en) * 1995-07-27 1997-08-12 Praxair Technology, Inc. Cryogenic rectification system for producing high pressure gaseous oxygen and liquid product
DE19803437A1 (de) 1998-01-29 1999-03-18 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
FR2778971A1 (fr) * 1998-05-20 1999-11-26 Air Liquide Installation de production d'un gaz, forme d'un constituant ou d'un melange de constituants de l'air sous une haute pression

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
EP2015013A2 (fr) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Procédé et dispositif de production d'un gaz sous pression par séparation cryogénique d'air
EP2015012A2 (fr) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Procédé pour la séparation cryogénique d'air
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (fr) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Procédé et dispositif de production d'oxygène sous pression et de crypton/xénon
WO2011116981A2 (fr) 2010-03-26 2011-09-29 Linde Aktiengesellschaft Dispositif pour la décomposition à basse température d'air
DE102010012920A1 (de) 2010-03-26 2011-09-29 Linde Aktiengesellschaft Vorrichtung zur Tieftemperaturzerlegung von Luft
WO2011116871A2 (fr) 2010-03-26 2011-09-29 Linde Aktiengesellschaft Dispositif pour le fractionnement cryogénique de l'air
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2458311A1 (fr) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Procédé et dispositif de production d'un produit d'impression gazeux par décomposition à basse température d'air
DE102010052545A1 (de) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2466236A1 (fr) 2010-11-25 2012-06-20 Linde Aktiengesellschaft Procédé de production d'un produit d'impression gazeux par décomposition à basse température de l'air
EP2503269A1 (fr) 2011-03-25 2012-09-26 Linde Aktiengesellschaft Dispositif de décomposition à basse température de l'air
DE102011015233A1 (de) 2011-03-25 2012-09-27 Linde Ag Vorrichtung zur Tieftemperaturzerlegung von Luft
US9228778B2 (en) 2011-03-25 2016-01-05 Linde Aktiengesellschaft Device for the low-temperature separation of air
EP2505947A1 (fr) 2011-03-29 2012-10-03 Linde Aktiengesellschaft Procédé et dispositif destinés à la production de verre flotté
DE102011015430A1 (de) 2011-03-29 2012-10-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Flachgas
DE102011015429A1 (de) 2011-03-29 2012-10-04 Linde Ag Verfahren und Vorrichtung zum Betreiben eines Rebox-Brenners
EP2520886A1 (fr) 2011-05-05 2012-11-07 Linde AG Procédé et dispositif de production d'un produit comprimé à oxygène gazeux par décomposition à basse température d'air
DE102011112909A1 (de) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2568242A1 (fr) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'acier
EP2600090A1 (fr) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
WO2014067662A2 (fr) 2012-11-02 2014-05-08 Linde Aktiengesellschaft Procédé de séparation d'air à basse température dans une installation de séparation d'air et installation de séparation d'air
DE102012021694A1 (de) 2012-11-02 2014-05-08 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft in einer Luftzerlegungsanlage und Luftzerlegungsanlage
DE102013002094A1 (de) 2013-02-05 2014-08-07 Linde Aktiengesellschaft Verfahren zur Produktion von Luftprodukten und Luftzerlegungsanlage
WO2014154339A2 (fr) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Procédé de séparation d'air et installation de séparation d'air
EP2784420A1 (fr) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Procédé de séparation de l'air et installation de séparation de l'air
EP2801777A1 (fr) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Installation de décomposition de l'air dotée d'un entraînement de compresseur principal
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
EP2963369A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963370A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963371A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air
EP2963367A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable
WO2016005031A1 (fr) 2014-07-05 2016-01-14 Linde Aktiengesellschaft Procédé et dispositif de fractionnement de l'air à basse température à consommation d'énergie variable
DE102015015684A1 (de) 2015-12-03 2016-07-21 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft und Luftzerlegungsanlage
EP3179186A1 (fr) 2015-12-07 2017-06-14 Linde Aktiengesellschaft Procede de production d'un produit comprime riche en oxygene, gazeux et liquide dans une installation de decomposition de l'air et installation de decomposition de l'air
EP3179187A1 (fr) 2015-12-07 2017-06-14 Linde Aktiengesellschaft Procédé de production d'un produit comprime riche en oxygène, gazeux et liquide dans une installation de décomposition de l'air et installation de décomposition de l'air

Also Published As

Publication number Publication date
US6662595B2 (en) 2003-12-16
DE10139727A1 (de) 2003-02-27
US20030051504A1 (en) 2003-03-20

Similar Documents

Publication Publication Date Title
EP1284404A1 (fr) Procédé et dispositif pour la production d'un produit sous pression par séparation cryogénique de l'air
EP1067345B1 (fr) Procédé et dispositif pour la séparation cryogénique des constituants de l'air
EP1308680B1 (fr) Procédé et dispositif de production de krypton et/ou xénon par distillation cryogénique de l'air
DE69509841T2 (de) Verfahren und Vorrichtung zur Herstellung von Sauerstoff
DE69214409T3 (de) Verfahren zur Herstellung unreinen Sauerstoffs
EP1243882B1 (fr) Production d'argon dans un système de séparation d'air à triple pression et une colonne d'argon
DE19803437A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE10013073A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP0948730B1 (fr) Procede et dispositif de production d'azote comprime
EP0716280A2 (fr) Procédés et dispositifs de séparation d'air à basse température
EP1357342A1 (fr) Système de séparation d'air cryogénique à trois colonnes avec production d'argon
EP2026024A1 (fr) Procédé et dispositif pour la production d'argon par séparation cryogénique d'air
DE69209835T2 (de) Einsäulenluftzerlegungszyklus und dessen Integration in Gasturbinen
DE10018200A1 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft
DE10332863A1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
EP0768503B1 (fr) Procédé de séparation d'air à triple colonne
DE60007686T2 (de) Tieftemperaturrektifikationsystem zur Luftzerleggung
EP2551619A1 (fr) Procédé et dispositif destinés à l'obtention d'oxygène pressurisé et d'azote pressurisé par la décomposition à basse température de l'air
DE10153919A1 (de) Verfahren und Vorrichtung zur Gewinnung hoch reinen Sauerstoffs aus weniger reinem Sauerstoff
EP2914913A2 (fr) Procédé de séparation d'air à basse température dans une installation de séparation d'air et installation de séparation d'air
DE19933558A1 (de) Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
EP1189001B1 (fr) Procédé et dispositif de production d'azote de haute pureté par la séparation cryogénique d'air
DE19819263C2 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff
EP1284403B1 (fr) Procédé et appareil de production d'oxygène par séparation d'air cryogénique
EP1209431B1 (fr) Procédé et dispositif de production d'oxygène et d'azote

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030718

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20090407

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110601