EP1214735A1 - Procede de production de couches de silicium-germanium decontractees - Google Patents

Procede de production de couches de silicium-germanium decontractees

Info

Publication number
EP1214735A1
EP1214735A1 EP00974128A EP00974128A EP1214735A1 EP 1214735 A1 EP1214735 A1 EP 1214735A1 EP 00974128 A EP00974128 A EP 00974128A EP 00974128 A EP00974128 A EP 00974128A EP 1214735 A1 EP1214735 A1 EP 1214735A1
Authority
EP
European Patent Office
Prior art keywords
germanium
layer
source gas
gas
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00974128A
Other languages
German (de)
English (en)
Inventor
Eugene A. Fitzgerald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amber Wave Systems Inc
Original Assignee
Amber Wave Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amber Wave Systems Inc filed Critical Amber Wave Systems Inc
Publication of EP1214735A1 publication Critical patent/EP1214735A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Definitions

  • the invention relates to the field of relaxed SiGe layers.
  • CVD is, under most conditions and products, the most economical method of depositing thin layers of crystalline semiconductors.
  • High thin-film growth rates are essential in producing economical relaxed SiGe materials on Si substrates, since the SiGe layers are relatively thick.
  • the highest growth rates known to date, which have been deposited in non-commercial equipment, have been achieved with CVD, with a maximum growth rate of about 6 micrometers per hour.
  • CVD deposition equipment can become too coated with thin film deposit in areas other than the substrate area. If this deposition is too great, it may prevent a large number of consecutive wafer deposition processes, leading to greater cost.
  • An additional problem is that in attempting to deposit films at high growth rates, gas-phase nucleation can occur, in which particles of SiGe, Si, or Ge form in the gas stream and subsequently deposit on the wafer surface.
  • FIG. 1 is a graph showing the growth rate of epitaxial silicon as a function of growth temperature for a variety of Si source gases;
  • FIG. 2 is a graph of the threading dislocation density at the surface of a relaxed
  • FIGs. 3A and 3B are schematic block diagrams of exemplary structures with a uniform cap layer of Si,. x Ge x (0 ⁇ x ⁇ l) and Si 07 Ge 03 , respectively, on a silicon substrate using a relaxed SiGe graded buffer layer in accordance with the invention.
  • FIG. 1 is a graph showing the growth rate of silicon versus temperature for various source gases. Two distinct growth regimes are evident. For low temperatures, the growth rate has an exponential dependence on temperature, indicating that the growth is reaction rate or kinetically limited. For high temperatures, the growth rate has a weak dependence on temperature, indicating that the growth is mass transport or diffusion limited. Epitaxial layers are formed in the mass transport limited regime to minimize the effects of temperature variations during growth.
  • germane-chlorine-based gas used to increase the decomposition temperature.
  • chlorogermanes can be used to extend growth temperatures to more than 200°C over germane growth temperatures without increasing gas phase nucleation. In this way, the decomposition temperatures of the gases can be optimally chosen such that very high growth rates can be achieved at high temperatures.
  • the most readily available germanium-chlorine source gas is germanium tetrachloride, (GeCl 4 ). This gas, unlike germane, can be used at growth temperatures in excess of 800°C to grow thick, relaxed SiGe layers without excessive equipment coating and particle formation. It can be combined with any of the source gases for silicon, such as silane, dichlorosilane, trichlorosilane, and silicon tetrachloride to form high quality SiGe layers.
  • FIGs. 3A and 3B are schematic block diagrams of exemplary structures with a uniform cap layer of Si !.x Ge x (0 ⁇ x ⁇ 1) and Si 07 Ge 03 , respectively, on a silicon substrate using a relaxed SiGe graded buffer layer in accordance with the invention.
  • the structures include a monocrystalline silicon substrate 300, a SiGe graded buffer layer 302, and a uniform concentration SiGe cap layer 304, 306.
  • the SiGe buffer layer 302 is a series of SiGe layers with increasing Ge concentration, usually with a gradient of less than 25% Ge per micron. By increasing the Ge concentration gradually, the strain due to the lattice mismatch between Si and Ge is relieved and the threading dislocation density is minimized.
  • the cap layers are high quality
  • SiGe layer with uniform Ge concentration that can be used as a platform for device fabrication.
  • FIG. 3 A shows a generic structure where the cap layer 304 Ge concentration can vary from 0 ⁇ x ⁇ l.
  • FIG. 3B shows a structure where the cap layer 306 is Si 07 Ge 03 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

L'invention concerne un procédé de fabrication d'un matériau semiconducteur et d'une structure subséquente, qui consiste à mettre en place un substrat de silicium monocristallin. Le procédé consiste ensuite à utiliser une source gazeuse de GexHyClz pour l'élément germanium pour déposer, par croissance épitaxiale, une couche Si1-xGex calibrée sur le substrat de silicium, à une température supérieure à 850 °C, la teneur en germanium augmentant à un gradient inférieur à 25 % Ge par micron, ce qui donne une composition finale de l'ordre de 0,1<=x<=1. Le procédé consiste enfin à déposer, par croissance épitaxiale, une couche de matériau semiconducteur sur la couche calibrée.
EP00974128A 1999-09-20 2000-09-19 Procede de production de couches de silicium-germanium decontractees Withdrawn EP1214735A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15485199P 1999-09-20 1999-09-20
US154851P 1999-09-20
PCT/US2000/040938 WO2001022482A1 (fr) 1999-09-20 2000-09-19 Procede de production de couches de silicium-germanium decontractees

Publications (1)

Publication Number Publication Date
EP1214735A1 true EP1214735A1 (fr) 2002-06-19

Family

ID=22553074

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00974128A Withdrawn EP1214735A1 (fr) 1999-09-20 2000-09-19 Procede de production de couches de silicium-germanium decontractees

Country Status (3)

Country Link
EP (1) EP1214735A1 (fr)
JP (1) JP2003517726A (fr)
WO (1) WO2001022482A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7041170B2 (en) * 1999-09-20 2006-05-09 Amberwave Systems Corporation Method of producing high quality relaxed silicon germanium layers
AU2002341803A1 (en) 2001-09-24 2003-04-07 Amberwave Systems Corporation Rf circuits including transistors having strained material layers
FR2836159B1 (fr) * 2002-02-15 2004-05-07 Centre Nat Rech Scient Procede de formation de couche de carbure de silicium ou de nitrure d'element iii sur un substrat adapte
US7060632B2 (en) * 2002-03-14 2006-06-13 Amberwave Systems Corporation Methods for fabricating strained layers on semiconductor substrates
GB0212616D0 (en) 2002-05-31 2002-07-10 Univ Warwick Formation of lattice-tuning semiconductor substrates
WO2003105206A1 (fr) 2002-06-10 2003-12-18 Amberwave Systems Corporation Croissance d'elements de source et de drain par epitaxie selective
EP2267762A3 (fr) 2002-08-23 2012-08-22 Taiwan Semiconductor Manufacturing Co., Ltd. Hétérostructures semi-conductrices dotées d'une accumulation de dislocation réduite et procédés connexes
US7594967B2 (en) * 2002-08-30 2009-09-29 Amberwave Systems Corporation Reduction of dislocation pile-up formation during relaxed lattice-mismatched epitaxy
JP4949628B2 (ja) 2002-10-30 2012-06-13 台湾積體電路製造股▲ふん▼有限公司 Cmosプロセス中に歪み半導基板層を保護する方法
ATE504082T1 (de) 2003-05-27 2011-04-15 Soitec Silicon On Insulator Verfahren zur herstellung einer heteroepitaktischen mikrostruktur
DE102005000826A1 (de) * 2005-01-05 2006-07-20 Siltronic Ag Halbleiterscheibe mit Silicium-Germanium-Schicht und Verfahren zu deren Herstellung
JP4894390B2 (ja) * 2006-07-25 2012-03-14 信越半導体株式会社 半導体基板の製造方法
EP2104135B1 (fr) * 2008-03-20 2013-06-12 Siltronic AG Plaquette semiconductrice dotée d'une couche hétéroépitaxiale et procédé pour la fabrication de la plaquette
EP4220686B1 (fr) * 2022-01-31 2024-07-10 Siltronic AG Procédé de dépôt d'une couche tampon à gradient de contrainte relaxé en silicium-germanium sur une surface d'un substrat

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3935040A (en) * 1971-10-20 1976-01-27 Harris Corporation Process for forming monolithic semiconductor display
US5221413A (en) * 1991-04-24 1993-06-22 At&T Bell Laboratories Method for making low defect density semiconductor heterostructure and devices made thereby

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0122482A1 *

Also Published As

Publication number Publication date
WO2001022482A9 (fr) 2002-08-08
JP2003517726A (ja) 2003-05-27
WO2001022482A1 (fr) 2001-03-29

Similar Documents

Publication Publication Date Title
JP4417625B2 (ja) トリシランを用いる混合基板への成膜方法、および、ベース構造の製造方法
US4891091A (en) Method of epitaxially growing compound semiconductor materials
US7674335B2 (en) Method of producing high quality relaxed silicon germanium layers
TWI405248B (zh) 沉積摻雜碳之磊晶半導體層之方法、沉積半導體材料的方法與裝置及在反應腔室中之基板上形成電晶體設備之方法
US7785995B2 (en) Semiconductor buffer structures
US6864115B2 (en) Low threading dislocation density relaxed mismatched epilayers without high temperature growth
CN103228827A (zh) 外延碳化硅单晶基板的制造方法
WO2001022482A1 (fr) Procede de production de couches de silicium-germanium decontractees
WO2004081986A2 (fr) Procede de planarisation et de reduction de la densite des defauts du silicium germanium
US7723214B2 (en) Multilayer structure comprising a substrate and a layer of silicon and germanium deposited heteroepitaxially thereon, and a process for producing it
AU651568B2 (en) Method for forming crystalline deposited film
JP4158607B2 (ja) 半導体基板の製造方法
EP0114876B1 (fr) Silicium epitaxial ultra-pur et procede de fabrication
Yakimova et al. On the morphology of Sb-doped GaAs layers grown by MOVPE
Sivaram CVD of Semiconductors
JPH01172295A (ja) エピタキシャル成長によるシリコン結晶薄膜の製造方法
JPH02202017A (ja) シリコン単結晶薄膜の製造方法
JPH084073B2 (ja) 半導体素子の製法
JPH05136065A (ja) 半導体の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020319

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20040406

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040817