EP1206589B1 - Beschleuniger für die phosphatierung von metalloberfächen - Google Patents

Beschleuniger für die phosphatierung von metalloberfächen Download PDF

Info

Publication number
EP1206589B1
EP1206589B1 EP00958432A EP00958432A EP1206589B1 EP 1206589 B1 EP1206589 B1 EP 1206589B1 EP 00958432 A EP00958432 A EP 00958432A EP 00958432 A EP00958432 A EP 00958432A EP 1206589 B1 EP1206589 B1 EP 1206589B1
Authority
EP
European Patent Office
Prior art keywords
phosphating
ions
phosphating solution
carbon atoms
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00958432A
Other languages
English (en)
French (fr)
Other versions
EP1206589A2 (de
Inventor
Bernd Schenzle
Franz-Adolf Czika
Peter Kuhm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP1206589A2 publication Critical patent/EP1206589A2/de
Application granted granted Critical
Publication of EP1206589B1 publication Critical patent/EP1206589B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/364Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/364Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
    • C23C22/365Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations containing also zinc and nickel cations

Definitions

  • the invention relates to a phosphating solution, a phosphating concentrate and a Process for phosphating metal surfaces with aqueous, acidic Phosphating.
  • This can be iron phosphating or act a zinc phosphating.
  • the method particularly concerns one Zinc phosphating, which is used as a pretreatment for the metal surfaces a subsequent painting, in particular an electro-dip painting.
  • the method is applicable for the treatment of surfaces made of steel, galvanized or galvanized steel, aluminum, aluminized or alloy aluminum steel.
  • the phosphating of metals pursues the goal on the metal surface to produce firmly grown metal phosphate layers that are in themselves Improve corrosion resistance and in conjunction with paints and others organic coatings for a significant increase in adhesion and Resistance to infiltration when exposed to corrosion.
  • Such phosphating processes have long been known in the prior art.
  • For pretreatment before painting is particularly suitable for low-zinc phosphating processes, where the phosphating solutions are comparatively low zinc ion contents of e.g. B. 0.5 to 2 g / l.
  • the parameter in these low-zinc phosphating baths is the weight ratio Phosphate ions to zinc ions, which is usually in the range> 12 and values can accept up to 30.
  • DE-A-40 13 483 discloses phosphating processes with which similar good ones Corrosion protection properties as achieved with the trication process can. These processes do without nickel and use copper instead in low concentrations, 0.001 to 0.03 g / l.
  • German Patent application DE 42 10 513 modifies this process in that as modifying agent for the morphology of the phosphate crystals formed hydroxylamine, its salts or complexes in an amount of 0.5 to 5 g / l Hydroxylamine can be added.
  • hydroxylamine and / or its compounds for Influencing the shape of the phosphate crystals is one of a number of Disclosure known.
  • EP-A-315 059 gives the as a special effect Use of hydroxylamine in phosphating baths indicates the fact that Then steel the phosphate crystals in a desired column or Knot-like form arise when the zinc concentration in the phosphating bath exceeds the range customary for low-zinc processes.
  • Hydroxylamine has the great procedural advantage that it is in generally in the phosphating bath and in phosphating concentrates not by themselves decomposed. This makes phosphating bath concentrates and supplementary solutions for Phosphating baths can be produced that directly contain the required accelerator quantities contain. A complex separate replenishment, such as in the use of nitrite or hydrogen peroxide as accelerators is required can be omitted. Contains the phosphating solution, however Copper ions, which is currently a technical trend, is decomposing Hydroxylamine gradually under the catalytic influence of these ions. In this In this case, the accelerator must be separated from the phosphating bath and raised Amounts are added.
  • the object of the invention is to provide further phosphating processes to provide the benefits of hydroxylamine accelerated processes, however not its disadvantages with regard to decomposition in the presence of copper ions exhibit.
  • the phosphating process is said to be in spray, dip or Diving procedures may be applicable.
  • the invention accordingly relates to an acidic, aqueous phosphating solution containing 0.2 to 3 g / l zinc ions 3 to 50 g / l phosphate ions, calculated as PO 4 3- and 0.5 to 5 g / l at least one organic nitro compound as accelerator, characterized in that the organic nitro compound is selected from nitroarginine, its esters with alcohols having 1 to 4 carbon atoms and from 5-nitro-2-furfurylidene dicarboxylates of the general formula (I) where R is an alkyl group having 1 to 3 carbon atoms.
  • this compound is amphoteric, i.e. H. she can both form salts with acids as well as bases.
  • acidic phosphating solution to be expected that the compound is in a cationic form. This is regardless of whether the compound as such, as a salt with a base, for example as an alkali metal salt, or as a salt with an acid, for example was used as the hydrochloride.
  • esters with alcohols with 1 up to 4 carbon atoms can be used.
  • methyl and Ethyl ester preferred. Since the acid function is blocked by the ester formation, the esters cannot exist as salts with a base. Due to the However, amino groups continue to form salts with acids. Therefore the esters in the acid phosphating solution are also largely cations available. They can be used as a neutral compound, but also in salt form the phosphating solution are introduced. For example, hydrochloride be used.
  • the organic nitro compound is selected from 5-nitro-2-furfuryl dicarboxylates of the general formula (I), the diacetate is special prefers. This means that R in the general formula (I) is preferably one Represents methyl group.
  • the phosphating solution preferably contains 0.8 to 3 g / l of the organic Nitro compound.
  • phosphating baths usually contain sodium, potassium and / or Ammonium ions to adjust the free acid.
  • free Acid is familiar to the person skilled in the art of phosphating. The one in this writing selected method of determining free acid and total acid is in Sample part specified. Free acid values between 0 and 1.5 points and the total acidity between about 15 and about 35 points is technically usual range and are suitable in the context of this invention.
  • the zinc contents are preferably in the range from 0.4 to 2 g / l and in particular from 0.5 to 1.5 g / l, as are customary for low-zinc processes.
  • the weight ratio of phosphate ions to zinc ions in the phosphating baths can fluctuate within wide limits, provided it is in the range between 3.7 and 30 lies. A weight ratio between 10 and 20 is particularly preferred
  • the phosphating solution according to the invention preferably additionally contains one or more of the following cations: 0.1 up to 4 g / l manganese (II), 0.2 up to 2.5 g / l magnesium (II), 0.2 up to 2.5 g / l calcium (II), 0,002 up to 0.2 g / l copper (II), 0.1 up to 2 g / l cobalt (II).
  • the phosphating solutions can additionally contain nickel ions contain.
  • the lowest possible levels of nickel ions have or, if desired, can also be nickel-free.
  • the phosphating solution according to the invention in a preferred Embodiment except zinc ions as additional cations 0.1 to 4 g / l Manganese ions and 0.002 to 0.2 g / l copper ions and not more than 0.05 g / l, in particular not more than 0.001 g / l nickel ions.
  • Phosphating baths which in addition to zinc ions 0.1 to 4 g / l Manganese ions and additionally 0.1 to 2.5 g / l nickel ions.
  • the cations are introduced into the phosphating baths without Concern. It is particularly useful as a source of cations oxides and / or To use carbonates.
  • nitrate content of the phosphating bath When phosphating zinc-containing surfaces, it has proven to be advantageous limit the nitrate content of the phosphating bath to a maximum of 0.5 g / l. This suppresses the problem of so-called speck formation and the Corrosion protection especially when using nickel-free phosphating baths improved. Phosphating baths which contain no nitrate are particularly preferred.
  • phosphating baths can be made by dissolving the individual components produced in water in the desired concentration range directly on site become.
  • concentrates that contain individual components in the desired ratio and from which can be used on site by diluting it with water is produced or as a supplementary solution a working phosphating bath be added to compensate for the consumption of the active components.
  • phosphating concentrates are strongly acidic for stabilization set. After dilution with water, the pH value must be checked frequently and / or the free acid can be blunted to the desired range.
  • alkaline substances such as caustic soda are used or sodium carbonate or basic salts or hydroxides of Ca, Mg, Zn added.
  • the invention also relates to an aqueous concentrate according to Dilute with water by a factor between 10 and 100 and if necessary Adjust the pH to a working range between 2.5 and 3.6 a Phosphating solution according to one or more of claims 1 to 6.
  • the invention further comprises a method for phosphating Metal surfaces made of steel, galvanized or alloy galvanized steel and / or made of aluminium.
  • the materials mentioned can be used in automotive engineering is becoming increasingly common to also exist side by side. You bring them Metal surfaces by spraying or dipping or by a combination thereof in contact with the phosphating solution according to the invention.
  • the temperature the phosphating solution is preferably in the range between about 40 and about 60 ° C.
  • the phosphating process can be used to phosphate steel or steel strips galvanized steel can be used in conveyor systems.
  • the phosphating times are thereby in the range from about 3 to about 20 seconds.
  • the procedure can be used especially in automobile construction, where treatment times between 1 and 8 minutes are common. It is particularly used to treat the mentioned metal surfaces before painting, especially before cathodic electrophoretic coating.
  • the phosphating process is as To see part of the technically usual pretreatment chain. In this chain are the steps of cleaning / degreasing, rinsing and activation upstream, the activation usually with titanium phosphate-containing activating agents.
  • the phosphating according to the invention can, if necessary after an intermediate rinse, a passivating Follow-up treatment.
  • the organic nitro compounds to be used as accelerators according to the invention not only have a positive effect on the formation of the corrosion protection layer in the case of the zinc phosphating which forms the layer, but also in the case of the iron phosphating which is termed “non-layering”. Accordingly, in a generalized aspect, the invention relates to the use of organic nitro compounds selected from nitroarginine, its esters with alcohols having 1 to 4 carbon atoms and from 5-nitro-2-furfurylidene dicarboxylates of the general formula (I). where R is an alkyl group with 1 to 3 carbon atoms, as an accelerator in phosphating solutions.
  • the new phosphating accelerators according to the invention have Hydroxylamine has the advantage of not being catalytic in the presence of copper be decomposed. This reduces the consumption of accelerators copper-containing phosphating baths compared to the standard hydroxylamine.
  • Nitroarginine and its esters safer to handle nitroguanidine decomposes explosive at 102 ° C, nitroarginine only at 195 ° C.
  • Nitroarginine methyl ester hydrochloride is good in the acidic range (pH about 3.3) soluble and can therefore be used as an internal accelerator.
  • a corrosion test VDA 621415 over 10 rounds and a stone chip test VDA 621427 were carried out as corrosion tests.
  • the results are summarized in Table 2.
  • Results of the corrosion tests: U paint infiltration (half scratch width, mm), K value phosphating substratum U K value Comp. 1 CRS 1.6 3 Beisp.1 CRS 1.3 3 Ex. 2 CRS 1.2 3 Comp. 2 CRS 1.5 4 Comp. 3 CRS 1.5 4 Ex. 3 CRS 1.7 3-4 Ex. 4 CRS 1.7 4 Comp. 5 CRS 1.0 3 Comp. 6 CRS 1.3 3 Ex. 5 CRS 1.2 3-4 Ex.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

Die Erfindung betrifft eine Phosphatierlösung, ein Phosphatierkonzentrat sowie ein Verfahren zur Phosphatierung von Metalloberflächen mit wäßrigen, sauren Phosphatierlösungen. Dabei kann es sich um eine Eisenphosphatierung oder um eine Zinkphosphatierung handeln. Besonders betrifft das Verfahren eine Zinkphosphatierung, die man einsetzt als Vorbehandlung der Metalloberflächen für eine anschließende Lackierung, insbesondere eine Elektrotauchlackierung. Das Verfahren ist anwendbar zur Behandlung von Oberflächen aus Stahl, verzinktem oder legierungsverzinktem Stahl, Aluminium, aluminiertem oder legierungsaluminiertem Stahl.
Die Phosphatierung von Metallen verfolgt das Ziel, auf der Metalloberfläche festverwachsene Metallphosphatschichten zu erzeugen, die für sich bereits Korrosionsbeständigkeit verbessern und in Verbindung mit Lacken und anderen organischen Beschichtungen zu einer wesentlichen Erhöhung der Haftung und der Resistenz gegen Unterwanderung bei Korrosionsbeanspruchung beitragen. Solche Phosphatierverfahren sind seit langem im Stand der Technik bekannt. Für die Vorbehandlung vor der Lackierung eigenen sich insbesondere die Niedrig-Zink-Phosphatierverfahren, bei denen die Phosphatierlösungen vergleichsweise geringe Gehalte an Zinkionen von z. B. 0,5 bis 2 g/l aufweisen. Ein wesentlicher Parameter in diesen Niedrig-Zink-Phosphatierbädern ist das Gewichtsverhältnis Phosphationen zu Zinkionen, das üblicherweise im Bereich > 12 liegt und Werte bis zu 30 annehmen kann.
Es hat sich gezeigt, daß durch die Mitverwendung anderer mehrwertiger Kationen als Zink in den Phosphatierbädern Phosphatschichten mit deutlich verbesserten Korrosionsschutz- und Lackhaftungseigenschaften ausgebildet werden können.
Beispielsweise finden Niedrig-Zink-Verfahren mit Zusatz von z. B. 0,5 bis 1,5 g/l Manganionen und z. B. 0,3 bis 2,0 g/l Nickelionen als sogenannte Trikation-Verfahren zur Vorbereitung von Metalloberflächen für die Lackierung, beispielsweise für die kathodische Elektrotauchlackierung von Autokarosserien, weite Anwendung.
DE-A-40 13 483 macht Phosphatierverfahren bekannt, mit denen ähnlich gute Korrosionsschutzeigenschaften wie mit den Trikation-Verfahren erzielt werden können. Diese Verfahren verzichten auf Nickel und verwenden statt dessen Kupfer in niedrigen Konzentrationen, 0,001 bis 0,03 g/l. Zur Oxidation des bei der Beizreaktion von Stahloberflächen gebildeten zweiwertigen Eisens in die dreiwertige Stufe dient Sauerstoff und/oder andere gleichwirkende Oxidationsmittel. Als solche werden Nitrit, Chlorat, Bromat, Peroxy-Verbindungen sowie organische Nitroverbindungen, wie Nitrobenzolsulfonat, angegeben. Die deutsche Patentanmeldung DE 42 10 513 modifiziert diesen Prozeß dadurch, daß als modifizierendes Agens für die Morphologie der gebildeten Phosphatkristalle Hydroxylamin, dessen Salze oder Komplexe in einer Menge von 0,5 bis 5 g/l Hydroxylamin zugegeben werden.
Die Verwendung von Hydroxylamin und/oder seinen Verbindungen zum Beeinflussen der Form der Phosphatkristalle ist aus einer Reihe von Offenlegungsschriften bekannt. Die EP-A-315 059 gibt als besonderen Effekt der Verwendung von Hydroxylamin in Phosphatierbädern die Tatsache an, daß auf Stahl auch dann noch die Phosphatkristalle in einer erwünschten säulen- oder knotenartigen Form entstehen, wenn die Zinkkonzentration im Phosphatierbad den für Niedrig-Zink-Verfahren üblichen Bereich übersteigt.
Hydroxylamin weist den großen verfahrenstechnischen Vorteil auf, daß es sich im allgemeinen im Phosphatierbad und in Phosphatierkonzentraten nicht von selbst zersetzt. Damit sind Phosphatierbadkonzentrate und Ergänzungslösungen für Phosphatierbäder herstellbar, die die erforderlichen Beschleunigermengen direkt enthalten. Eine aufwendige getrennte Nachdosierung, wie sie beispielsweise bei der Verwendung von Nitrit oder von Wasserstoffperoxid als Beschleuniger erforderlich ist, kann damit entfallen. Enthält die Phosphatierlösung jedoch Kupferionen, wozu derzeit ein technischer Trend besteht, zersetzt sich Hydroxylamin allmählich unter dem katalytischen Einfluß dieser lonen. In diesem Fall muß der Beschleuniger dem Phosphatierbad getrennt und in erhöhten Mengen zugegeben werden. Daher besteht ein Bedarf an neuen Beschleunigern, die sich ähnlich wie Hydroxylamin in Phosphatierbäder, deren Konzentrate und Ergänzungslösungen einarbeiten lassen, ohne daß sie sich in kurzer Zeit zersetzen. Diese Eigenschaft sollen sie auch dann noch haben, wenn Kupferionen zugegen sind.
Aus der DE-A-197 33 978 sind Zinkphosphatierverfahren bekannt, bei denen als Beschleuniger organische N-Oxide, insbesondere cyclische N-Oxide eingesetzt werden. Ein bevorzugtes Beispiel N-Methylmorpholin-N-oxid. Aus der DE-A-196 34 685 sind Zinkphosphatierlösungen bekannt, bei denen Nitroguanidin als Beschleuniger eingesetzt wird. Bisher konnte sich keine dieser Alternativen zu Hydroxylamin in der Praxis durchsetzen.
Die Erfindung stellt sich die Aufgabe, weitere Phosphatierverfahren zur Verfügung zu stellen, die die Vorteile Hydroxylamin-beschleunigter Verfahren, jedoch nicht dessen Nachteile hinsichtlich Zersetzung in Gegenwart von Kupferionen aufweisen. Das Phosphatierverfahren soll im Spritz-, Spritztauch- oder Tauchverfahren anwendbar sein.
Die Erfindung betrifft demgemäß eine saure, wäßrige Phosphatierlösung, enthaltend
0,2 bis 3 g/l Zinkionen
3 bis 50 g/l Phosphationen, berechnet als PO4 3- und
0,5 bis 5g/l mindestens eine organische Nitroverbindung als Beschleuniger,
dadurch gekennzeichnet, daß die organische Nitroverbindung ausgewählt ist aus Nitroarginin, dessen Estern mit Alkoholen mit 1 bis 4 C-Atomen und aus 5-Nitro-2-furfurylidendicarboxylaten der allgemeinen Formel (I)
Figure 00040001
wobei R eine Alkylgruppe mit 1 bis 3 C-Atomen bedeutet.
Nitroarginin läßt sich durch die chemische Formel (II) beschreiben. O2N-NH-C(=NH)-NH-(CH2)3-CH(NH2)-C(=O)-OH
Wie alle Aminosäuren ist auch diese Verbindung amphoter, d. h. sie kann sowohl mit Säuren als auch mit Basen Salze bilden. In der sauren Phosphatierlösung ist zu erwarten, daß die Verbindung in kationischer Form vorliegt. Dies ist unabhängig davon, ob die Verbindung als solche, als Salz mit einer Base, beispielsweise als Alkalimetallsalz, oder als Salz mit einer Säure, beispielsweise als Hydrochlorid, eingesetzt wurde.
Anstelle der Aminosäure Nitroarginin können auch deren Ester mit Alkoholen mit 1 bis 4 C-Atomen verwendet werden. Dabei sind insbesondere Methyl- und Ethylester bevorzugt. Da durch die Esterbildung die Säurefunktion blockiert ist, können die Ester nicht als Salze mit einer Base vorliegen. Aufgrund der Aminogruppen ist jedoch eine Salzbildung mit Säuren weiterhin möglich. Daher werden auch die Ester in der sauren Phosphatierlösung großteils als Kationen vorliegen. Sie können als neutrale Verbindung, jedoch auch bereits in Salzform in die Phosphatierlösung eingebracht werden. Beispielsweise können Hydrochloride eingesetzt werden.
Wählt man die organische Nitroverbindung aus aus 5-Nitro-2-furfuryldicarboxylaten der allgemeinen Formel (I), so ist das Diacetat besonders bevorzugt. Dies heißt, daß R in der allgemeinen Formel (I) vorzugsweise eine Methylgruppe darstellt.
Die Phosphatierlösung enthält vorzugsweise 0,8 bis 3 g/l der organischen Nitroverbindung.
Phosphatierbäder enthalten außer Zinkionen in der Regel Natrium-, Kaliumund/oder Ammoniumionen zur Einstellung der freien Säure. Der Begriff der freien Säure ist dem Fachmann auf dem Phosphatiergebiet geläufig. Die in dieser Schrift gewählte Bestimmungsmethode der freien Säure sowie der Gesamtsäure wird im Beispielteil angegeben. Werte der freien Säure zwischen 0 und 1,5 Punkten und der Gesamtsäure zwischen etwa 15 und etwa 35 Punkten liegen im technisch üblichen Bereich und sind im Rahmen dieser Erfindung geeignet.
Die Zink-Gehalte liegen vorzugsweise im Bereich von 0,4 bis 2 g/l und insbesondere von 0,5 bis 1,5 g/l, wie sie für Niedrig-Zink-Verfahren üblich sind. Das Gewichtsverhältnis Phosphationen zu Zinkionen in den Phosphatierbädern kann in weiten Grenzen schwanken, sofern es im Bereich zwischen 3,7 und 30 liegt. Ein Gewichtsverhältnis zwischen 10 und 20 ist besonders bevorzugt
Vorzugsweise werden in dem erfindungsgemäßen Phosphatierverfahren Phosphatierlösungen eingesetzt, die weitere ein- oder zweiwertige Metallionen enthalten, die sich erfahrungsgemäß günstig auf die Lackhaftung und den Korrosionsschutz der hiermit erzeugten Phosphatschichten auswirken. Demgemäß enthält die erfindungsgemäße Phosphatierlösung vorzugsweise zusätzlich eines oder mehrere der folgenden Kationen:
0,1 bis 4 g/l Mangan(II),
0,2 bis 2,5 g/l Magnesium(II),
0,2 bis 2,5 g/l Calcium(II),
0,002 bis 0,2 g/l Kupfer(II),
0,1 bis 2 g/l Cobalt(II).
Erwünschtenfalls können die Phosphatierlösungen zusätzlich Nickelionen enthalten. Aus gesundheitlichen und ökologischen Gründen werden jedoch Phosphatierbäder bevorzugt, die möglichst geringe Gehalte an Nickelionen aufweisen oder erwünschtenfalls auch Nickel-frei sein können. Beispielsweise enthält die erfindungsgemäße Phosphatierlösung in einer bevorzugten Ausführungsform außer Zinkionen als zusätzliche Kationen 0,1 bis 4 g/l Manganionen und 0,002 bis 0,2 g/l Kupferionen und nicht mehr als 0,05 g/l, insbesondere nicht mehr als 0,001 g/l Nickelionen. Wünscht man jedoch an der herkömmlichen Trikation-Technologie festzuhalten, können erfindungsgemäße Phosphatierbäder eingesetzt werden, die außer Zinkionen 0,1 bis 4 g/l Manganionen und zusätzlich 0,1 bis 2,5 g/l Nickelionen enthalten. In welcher Form die Kationen in die Phosphatierbäder eingebracht werden ist prinzipiell ohne Belang. Es bietet sich insbesondere an, als Kationenquelle Oxide und/oder Carbonate zu verwenden.
Bei der Phosphatierung zinkhaltiger Oberflächen hat es sich als günstig erwiesen, den Nitratgehalt des Phosphatierbads auf maximal 0,5 g/l zu begrenzen. Hierdurch wird das Problem der sogenannten Stippenbildung unterdrückt und der Korrosionsschutz insbesondere bei Verwendung nickelfreier Phosphatierbäder verbessert. Besonders bevorzugt sind Phosphatierbäder, die kein Nitrat enthalten.
Bei Phosphatierbädem, die für unterschiedliche Substrate geeignet sein sollen, ist es üblich geworden, freies und/oder komplexgebundenes Fluorid in Mengen bis zu 2,5 g/l Gesamtfluorid, davon bis zu 750 mg/l freies Fluorid, jeweils berechnet als F-, zuzusetzen. Die Anwesenheit solcher Fluoridmengen ist auch für die erfindungsgemäßen Phosphatierbäder von Vorteil. Bei Abwesenheit von Fluorid soll der Aluminiumgehalt des Bades 3 mg/l nicht überschreiten. Bei Gegenwart von Fluorid werden infolge der Komplexbildung höhere Al-Gehalte toleriert, sofern die Konzentration des nicht komplexierten Al 3 mg/l nicht übersteigt.
Prinzipiell können Phosphatierbäder durch Auflösen der einzelnen Komponenten im Wasser im erwünschten Konzentrationsbereich direkt vor Ort hergestellt werden. In der Praxis ist es jedoch üblich, Konzentrate einzusetzen, die die einzelnen Bestandteile im erwünschten Mengenverhältnis enthalten und aus denen vor Ort durch Verdünnen mit Wasser das einsatzfähige Phosphatierbad hergestellt wird oder die als Ergänzungslösung einem arbeitenden Phosphatierbad zugegeben werden, um den Verbrauch der Wirkkomponenten auszugleichen. Derartige Phosphatierkonzentrate sind jedoch zur Stabilisierung stark sauer eingestellt. Nach Verdünnen mit Wasser muß daher des öfteren der pH-Wert und/oder die freie Säure auf den erwünschten Bereich abgestumpft werden. Hierzu werden alkalisch wirkende Substanzen wie beispielsweise Natronlauge oder Natriumcarbonat oder basische Salze bzw. Hydroxide von Ca, Mg, Zn zugegeben.
Demgemäß betrifft die Erfindung ebenfalls ein wäßriges Konzentrat, das nach Verdünnen mit Wasser um einen Faktor zwischen 10 und 100 und gegebenfalls Einstellen des pH-Wertes auf einen Arbeitsbereich zwischen 2,5 und 3,6 eine Phosphatierlösung nach einem oder mehreren der Ansprüche 1 bis 6 ergibt.
Weiterhin umfaßt die Erfindung ein Verfahren zur Phosphatierung von Metalloberflächen aus Stahl, verzinktem oder legierungsverzinktem Stahl und/oder aus Aluminium. Die genannten Materialien können, wie es im Automobilbau zunehmend üblich wird, auch nebeneinander vorliegen. Man bringt die Metalloberflächen durch Spritzen oder Tauchen oder durch eine Kombination hiervon mit der erfindungsgemäßen Phosphatierlösung in Kontakt. Die Temperatur der Phosphatierlösung liegt vorzugsweise im Bereich zwischen etwa 40 und etwa 60 °C.
Das Phosphatierverfahren kann zur Phosphatierung von Bändern aus Stahl oder verzinktem Stahl in Bandanlagen eingesetzt werden. Die Phosphatierzeiten liegen dabei im Bereich von etwa 3 bis etwa 20 Sekunden. Das Verfahren kann jedoch insbesondere im Automobilbau eingesetzt werden, wo Behandlungszeiten zwischen 1 und 8 Minuten üblich sind. Es ist insbesondere zur Behandlung der genannten Metalloberflächen vor einer Lackierung, insbesondere vor einer kathodischen Etektrotauchlackierung gedacht. Das Phosphatierverfahren ist als Teilschritt der technisch üblichen Vorbehandlungskette zu sehen. In dieser Kette sind der Phosphatierung in der Regel die Schritte Reinigen/Entfetten, Zwischenspülen und Aktivieren vorgeschaltet, wobei die Aktivierung üblicherweise mit titanphosphat-haltigen Aktiviermitteln erfolgt. Der erfindungsgemäßen Phosphatierung kann, gegebenenfalls nach einer Zwischenspülung, eine passivierende Nachbehandlung folgen. Für eine solche passivierende Nachbehandlung sind chromsäure-haltige Behandlungsbäder weit verbreitet. Aus Gründen des Arbeitsund Umweltschutzes sowie aus Entsorgungsgründen besteht jedoch die Tendenz, diese chromhaltigen Passivierbäder durch chromfreie Behandlungsbäder zu ersetzen. Hierfür sind rein anorganische Bäder, insbesondere auf der Basis von Zirkonverbindungen, oder auch organische Bäder, beispielsweise auf Basis von Poly(vinylphenolen), bekannt. Beim Einsatz von Phosphatierlösungen, die weder Nickel- noch Kupferionen enthalten, kann eine deutliche Verbesserung des Korrosionsschutzes erzielt werden, wenn man den Bädern zur passivierenden Nachbehandlung Kupfer- oder Silberionen zusetzt. Beispielsweise können passivierende Nachspüllösungen eingesetzt werden, die 0,001 bis 10 g/l Kupferionen enthalten und die erwünschtenfalls frei sein können von weiteren passivierend wirkenden Komponenten. Zwischen dieser Nachpassivierung und der sich üblicherweise anschließenden Elektrotauchlackierung wird in der Regel eine Zwischenspülung mit vollentsalztem Wasser durchgeführt.
Die als Beschleuniger erfindungsgemäß einzusetzenden organischen Nitroverbindungen zeigen nicht nur bei der schichtbildenden Zinkphosphatierung, sondern auch bei der als "nichtschichtbildend" bezeichneten Eisenphosphatierung eine positive Wirkung auf die Ausbildung der Korrosionsschutzschicht. Demgemäß betrifft die Erfindung in einem verallgemeinerten Aspekt die Verwendung von organischen Nitroverbindungen, ausgewählt aus Nitroarginin, dessen Estern mit Alkoholen mit 1 bis 4 C-Atomen und aus 5-Nitro-2-furfurylidendicarboxylaten der allgemeinen Formel (I).
Figure 00090001
wobei R eine Alkylgruppe mit 1 bis 3 C-Atomen bedeutet, als Beschleuniger in Phosphatierlösungen.
Für die bevorzugt einzusetzenden Verbindungen sowie die Möglichkeit, daß diese auch in Salzform vorliegen können, gelten die weiter oben am Beispiel der Zinkphosphatierlösung gemachten Ausführungen.
Die erfindungsgemäßen neuen Phosphatierbeschleuniger haben gegenüber Hydroxylamin den Vorteil, daß sie nicht in Gegenwart von Kupfer katalytisch zersetzt werden. Hierdurch verringert sich der Verbrauch an Beschleuniger in kupferhaltigen Phosphatierbädern gegenüber dem Standard Hydroxylamin. Gegenüber Nitroguanidin als chemisch nächstliegender Alternative sind Nitroarginin und dessen Ester sicherer in der Handhabung: Nitroguanidin zersetzt sich bei 102 °C explosionsartig, Nitroarginin erst bei 195 °C. Insbesondere Nitroargininmethylester-hydrochlorid ist im sauren Bereich (pH etwa 3,3) gut löslich und kann daher als interner Beschleuniger eingesetzt werden.
Ausführungsbeispiele
Die erfindungsgemäßen Phosphatierverfahren sowie Vergleichsverfahren wurden an Stahlblechen St 1405 (CRS), elektrolytisch verzinktem Stahl (EG) und schmelztauchverzinktem Stahl (HDG), wie sie im Automobilbau Verwendung finden, überprüft. Dabei wurde folgender, in der Karosseriefertigung üblicher, Verfahrensgang als Tauchverfahren ausgeführt:
  • 1. Reinigen mit einem alkalischen Reiniger (RidolineR 1559, Henkel KGaA), Ansatz 3 % in Stadtwasser, 60 °C, 5 bis 10 Minuten.
  • 2. Spülen mit Stadtwasser, Raumtemperatur, 1 Minute.
  • 3. Aktivieren mit einem Titanphosphat-haltigen Aktiviermittel (FixodineR C 9112, Henkel KGaA), Ansatz 0,2 % in vollentsalztem Wasser, Raumtemperatur, 1 Minute.
  • 4. Phosphatieren mit Phosphatbädern gemäß Tabelle 1
  • Gesamtsäure: 23 Punkte
  • Temperatur: 52 °C; Behandlungszeit: 3 Minuten Tauchen.
  • Unter Punktzahl der freien Säure wird der Verbrauch in ml an 0,1-normaler Natronlauge verstanden, um 10 ml Badlösung bis zu einem pH-Wert von 3,6 zu titrieren. Analog gibt die Punktzahl der Gesamtsäure den Verbrauch in ml bis zu einem pH-Wert von 8,2 an.
  • 5. Spülen mit vollentsalztem Wasser, Raumtemperatur, 1 Minute.
  • 6. Trockenblasen mit Preßluft
  • 7. Kathodische Elektrotauchlackierung mit dem bleifreien kathodischen Elektrotauchlack CathoguradR 400 der Firma BASF.
    Figure 00110001
  • Als Korrosionsprüfungen wurde ein Wechselklimatest VDA 621415 über 10 Runden sowie ein Steinschlagtest VDA 621427 durchgeführt. Die Ergebnisse sind in Tabelle 2 zusammengestellt. Aufgeführt sind die Lackunterwanderung am Ritz (halbe Ritzbreite) in mm sowie für den Steinschlagtest der K-Wert (bester Wert = 1, schlechtester Wert = 10).
    Ergebnisse der Korrosionsprüfungen: U = Lackunterwanderung
    (halbe Ritzbreite, mm), K-Wert
    Phosphatierbad Substrat U K-Wert
    Vergl. 1 CRS 1,6 3
    Beisp.1 CRS 1,3 3
    Beisp. 2 CRS 1,2 3
    Vergl. 2 CRS 1,5 4
    Vergl. 3 CRS 1,5 4
    Beisp. 3 CRS 1,7 3-4
    Beisp. 4 CRS 1,7 4
    Vergl. 5 CRS 1,0 3
    Vergl. 6 CRS 1,3 3
    Beisp. 5 CRS 1,2 3-4
    Beisp. 5 EG 3,8 4
    Beisp. 5 HDG 3,5 3-4
    Beisp. 6 CRS 1,3 3-4
    Beisp. 6 EG 3,9 4
    Beisp. 6 HDG 4,2 3-4
    Beisp. 7 CRS 1,5 3-4
    Beisp. 7 EG 3,4 4
    Beisp. 7 HDG 3,7 3-4

    Claims (9)

    1. Saure, wäßrige Phosphatierlösung, enthaltend 0,2 bis 3 g/l Zinkionen 3 bis 50 g/l Phosphationen, berechnet als PO4 3- und 0,5 bis 5g/l mindestens eine organische Nitroverbindung als Beschleuniger,
      dadurch gekennzeichnet, daß die organische Nitroverbindung ausgewählt ist aus Nitroarginin, dessen Estern mit Alkoholen mit 1 bis 4 C-Atomen und aus 5-Nitro-2-furfurylidendicarboxylaten der allgemeinen Formel (I)
      Figure 00130001
      wobei R eine Alkylgruppe mit 1 bis 3 C-Atomen bedeutet.
    2. Phosphatierlösung nach Anspruch 1, dadurch gekennzeichnet, daß sie 0,8 bis 3 g/l der organischen Nitroverbindung enthält.
    3. Phosphatierlösung nach einem oder beiden der Ansprüche 1 und 2, dadurch gekennzeichnet, daß sie zusätzlich eines oder mehrere der folgenden Kationen enthält: 0,1 bis 4 g/l Mangan(II), 0,2 bis 2,5 g/l Magnesium(II), 0,2 bis 2,5 g/l Calcium(II), 0,002 bis 0,2 g/l Kupfer(II), 0,1 bis 2 g/l Cobalt(II).
    4. Phosphatierlösung nach Anspruch 3, dadurch gekennzeichnet, daß sie 0,1 bis 4 g/l Manganionen und 0,002 bis 0,2 g/l Kupferionen und nicht mehr als 0,05 g/l Nickelionen enthält.
    5. Phosphatierlösung nach Anspruch 3, dadurch gekennzeichnet, daß sie 0,1 bis 4 g/l Manganionen sowie zusätzlich 0,1 bis 2,5 g/l Nickelionen enthält.
    6. Phosphatierlösung nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie 0,4 bis 2 g/l, vorzugsweise 0,5 bis 1,5 g/l Zinkionen enthält.
    7. Wäßriges Konzentrat, das nach Verdünnen mit Wasser um einen Faktor zwischen 10 und 100 und gegebenfalls Einstellen des pH-Wertes auf einen Arbeitsbereich zwischen 2,5 und 3,6 eine Phosphatierlösung nach einem oder mehreren der Ansprüche 1 bis 6 ergibt.
    8. Verfahren zur Phosphatierung von Metalloberflächen aus Stahl, verzinktem oder legierungsverzinktem Stahl und/oder aus Aluminium, bei dem man die Metalloberflächen durch Spritzen oder Tauchen oder durch eine Kombination hiervon für eine Zeit zwischen 3 Sekunden und 8 Minuten mit einer Phosphatierlösung gemäß einem oder mehreren der Ansprüche 1 bis 6 in Berührung bringt.
    9. Verwendung von organischen Nitroverbindungen, ausgewählt aus Nitroarginin, dessen Estern mit Alkoholen mit 1 bis 4 C-Atomen und aus 5-Nitro-2-furfurylidendicarboxylaten der allgemeinen Formel (I)
      Figure 00150001
      wobei R eine Alkylgruppe mit 1 bis 3 C-Atomen bedeutet, als Beschleuniger in Phosphatierlösungen.
    EP00958432A 1999-08-20 2000-08-11 Beschleuniger für die phosphatierung von metalloberfächen Expired - Lifetime EP1206589B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19939519 1999-08-20
    DE19939519A DE19939519A1 (de) 1999-08-20 1999-08-20 Beschleuniger für die Phosphatierung von Metalloberflächen
    PCT/EP2000/007850 WO2001014613A2 (de) 1999-08-20 2000-08-11 Beschleuniger für die phosphatierung von metalloberflächen

    Publications (2)

    Publication Number Publication Date
    EP1206589A2 EP1206589A2 (de) 2002-05-22
    EP1206589B1 true EP1206589B1 (de) 2003-04-16

    Family

    ID=7919027

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00958432A Expired - Lifetime EP1206589B1 (de) 1999-08-20 2000-08-11 Beschleuniger für die phosphatierung von metalloberfächen

    Country Status (5)

    Country Link
    EP (1) EP1206589B1 (de)
    JP (1) JP2003507579A (de)
    AU (1) AU6995000A (de)
    DE (2) DE19939519A1 (de)
    WO (1) WO2001014613A2 (de)

    Families Citing this family (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10155666A1 (de) * 2001-11-13 2003-05-22 Henkel Kgaa Mit Hydroxylamin und organischen Stickstoffverbindungen beschleunigtes Phosphatierverfahren
    DE102014005444A1 (de) * 2014-04-11 2015-10-15 Audi Ag Verfahren zur Passivierung einer metallischen Oberfläche

    Family Cites Families (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2884351A (en) * 1956-01-25 1959-04-28 Parker Rust Proof Co Method of cold rolling ferrous strip stock

    Also Published As

    Publication number Publication date
    DE19939519A1 (de) 2001-02-22
    WO2001014613A2 (de) 2001-03-01
    AU6995000A (en) 2001-03-19
    JP2003507579A (ja) 2003-02-25
    DE50001815D1 (de) 2003-05-22
    EP1206589A2 (de) 2002-05-22
    WO2001014613A3 (de) 2001-12-13

    Similar Documents

    Publication Publication Date Title
    EP2255026B1 (de) Optimierte passivierung auf ti-/zr-basis für metalloberflächen
    DE102005059314B4 (de) Saure, chromfreie wässrige Lösung, deren Konzentrat, und ein Verfahren zur Korrosionsschutzbehandlung von Metalloberflächen
    EP2507408B1 (de) Mehrstufiges vorbehandlungsverfahren für metallische bauteile mit zink- und eisenoberflächen
    EP0633950B1 (de) Nickelfreie phosphatierverfahren
    EP0717787B1 (de) Nickelfreies phosphatierverfahren
    DE4013483A1 (de) Verfahren zur phosphatierung von metalloberflaechen
    DE19834796A1 (de) Verfahren zur Phosphatierung, Nachspülung und kathodischer Elektrotauchlackierung
    DE19511573A1 (de) Verfahren zur Phosphatierung mit metallhaltiger Nachspülung
    EP0656957B1 (de) Verfahren zur phosphatierung von einseitig verzinktem stahlband
    EP1005578B1 (de) Mit n-oxiden beschleunigtes phosphatierverfahren
    DE19705701A1 (de) Verfahren zur Niedrig-Nickel-Phosphatierung mit metallhaltiger Nachspülung
    EP0889977B1 (de) Zinkphosphatierung mit geringen gehalten an kupfer und mangan
    EP1206589B1 (de) Beschleuniger für die phosphatierung von metalloberfächen
    WO2001038605A2 (de) Verfahren zur phosphatierung mit metallhaltiger nachspülung
    DE19718891C2 (de) Verfahren und Mittel zur Phosphatierung von Aluminiumoberflächen
    DE4330104A1 (de) Nickel- und Kupfer-freies Phosphatierverfahren
    EP1019564A1 (de) Verfahren zur phosphatierung von stahlband
    DE4341041A1 (de) Nickelfreies Phosphatierverfahren mit m-Nitrobenzolsulfonat
    DE102005007752A1 (de) Phosphatierlösung und Phosphatierverfahren mit einer Kombination von Beschleunigern
    DE19958192A1 (de) Verfahren zur Phosphatierung, Nachspülung und kathodischer Elektrotauchlackierung
    DE19538778A1 (de) Schichtgewichtssteuerung bei Hydroxylamin-beschleunigten Phosphatiersystemen
    DE19733978A1 (de) Mit N-Oxiden beschleunigtes Phosphatierverfahren
    DE19540085A1 (de) Nitratarme, manganfreie Zinkphosphatierung
    DE19500927A1 (de) Lithiumhaltige Zinkphosphatierlösung
    DE19756735A1 (de) Phosphatierung von einseitig verzinktem Stahlband

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20020209

    AX Request for extension of the european patent

    Free format text: RO;SI

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): DE FR

    REF Corresponds to:

    Ref document number: 50001815

    Country of ref document: DE

    Date of ref document: 20030522

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20030808

    Year of fee payment: 4

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    Ref document number: 1206589E

    Country of ref document: IE

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040119

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20040819

    Year of fee payment: 5

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050429

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060301