EP1180594B1 - Verfahren zur Überprüfung einer Abgasrückführanlage - Google Patents

Verfahren zur Überprüfung einer Abgasrückführanlage Download PDF

Info

Publication number
EP1180594B1
EP1180594B1 EP01118459A EP01118459A EP1180594B1 EP 1180594 B1 EP1180594 B1 EP 1180594B1 EP 01118459 A EP01118459 A EP 01118459A EP 01118459 A EP01118459 A EP 01118459A EP 1180594 B1 EP1180594 B1 EP 1180594B1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
gas recirculation
recirculation rate
nox concentration
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01118459A
Other languages
English (en)
French (fr)
Other versions
EP1180594A3 (de
EP1180594A2 (de
Inventor
Wolfgang Ludwig
Corinna Pfleger
Hong Dr. Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1180594A2 publication Critical patent/EP1180594A2/de
Publication of EP1180594A3 publication Critical patent/EP1180594A3/de
Application granted granted Critical
Publication of EP1180594B1 publication Critical patent/EP1180594B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/49Detecting, diagnosing or indicating an abnormal function of the EGR system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/48EGR valve position sensors

Definitions

  • the invention relates to a method for checking an exhaust gas recirculation system of an internal combustion engine.
  • exhaust gas recirculation systems In addition to the use of NOx storage catalysts, which are due to their coatings able to absorb NOx compounds from the exhaust gas, which arise during lean combustion, in a storage phase and convert in a regeneration phase with the addition of a reducing agent into harmless compounds are also so-called exhaust gas recirculation systems known. In such exhaust gas recirculation systems, part of the exhaust gas stream is added to the stream of fresh gas flowing into the cylinders. Since exhaust gas for combustion is an inert gas, thereby the NOx raw emissions of the internal combustion engine decreases. The control of the recirculated exhaust gas flow, the so-called exhaust gas recirculation rate, usually takes place via an exhaust gas recirculation valve connected in the return line.
  • Such an exhaust gas recirculation system is an emission-relevant component.
  • Such components are subject to review due to current or future regulations in the operation of an internal combustion engine, as a failure or incorrect operation of the exhaust gas recirculation system could drastically degrade the emission behavior of an internal combustion engine and could lead to exceeding predetermined limits.
  • the exhaust gas recirculation valve via which the exhaust gas recirculation rate is set.
  • the intake air mass is determined via an air mass meter. From the intake air mass can be calculated at a certain position of the exhaust gas recirculation valve expected intake manifold downstream of a throttle valve of an internal combustion engine. If there is a difference between the measured and calculated intake manifold pressure, a faulty exhaust gas recirculation valve is diagnosed. This principle is described for example in DE 44 06 281 A1.
  • the document JP 63 263 258 A describes a diagnostic device for an exhaust gas recirculation device of an internal combustion engine.
  • an exhaust gas recirculation valve is closed. In an intact exhaust gas recirculation, this leads to an increased proportion of fresh air in the exhaust gases, which is measured by means of an O2 sensor. If such a proportion of fresh air is not detected in the exhaust gases, it is concluded that an error has occurred in the exhaust gas recirculation system. With this device can be determined that the exhaust gas recirculation valve does not close properly, an error with respect to a no longer opening exhaust gas recirculation valve can not be determined.
  • the invention has for its object to provide a method for checking an exhaust gas recirculation system, in which no pressure measurement in the intake manifold is required.
  • the invention makes use of the knowledge that changes in the exhaust gas recirculation rate can greatly influence the NOx emissions of an internal combustion engine. If the exhaust gas recirculation rate is changed by a certain amount, it is possible to detect a faulty exhaust gas recirculation system due to a lack of the anticipated change in the NOx emission of the internal combustion engine. This concept is suitable for all equipped with exhaust gas recirculation systems internal combustion engines.
  • This check is particularly easy to perform if the NOx emission of the engine otherwise would be constant, which is the case especially in static operating conditions of the internal combustion engine, especially if so the change over time of load and / or speed of the internal combustion engine below a certain appropriate limit remains.
  • the exhaust gas recirculation system In order to detect a lack of an expected NOx concentration in the exhaust gas of the internal combustion engine, various approaches are conceivable. On the one hand, one can form a concentration difference from the NOx concentration measured in the exhaust gas before and after the change of the exhaust gas recirculation rate. Of course, this concentration difference depends on the change made in the exhaust gas recirculation rate. If an expected concentration difference remains despite a change in the exhaust gas recirculation rate, the exhaust gas recirculation system is defective.
  • the NOx concentration can be measured at any point in the exhaust system, in particular upstream of a catalyst.
  • one of these NOx concentration measurements can also be determined by a model determination replace the NOx raw emissions, which known models can be used, which estimate from operating parameters of the internal combustion engine, the NOx concentration emitted for this operating condition.
  • the concentration difference can be formed together with the measurement of the NOx concentration after the change, and either the model value for the NOx concentration before the EGR rate change or the model value for the operation state after the change of the NOx concentration Use exhaust gas recirculation rate. It is expedient here, however, that otherwise the operating conditions of the internal combustion engine remain largely constant, since then the error in the model determination of the NOx concentration is as low as possible.
  • the internal combustion engine has a NOx storage catalytic converter
  • a NOx concentration sensor for diagnosis, as is conventionally provided for controlling a NOx storage catalytic converter of this catalytic converter.
  • a known arrangement is, for example, a downstream of the catalyst sensor. Since such a NOx storage catalyst but usually absorbs the NOx compounds in the exhaust gas, it must be ensured in this arrangement to carry out the verification that this absorption does not take place temporarily.
  • This can be achieved in a preferred embodiment of the invention in that the catalyst is saturated before the test up to its maximum storage capacity.
  • the saturation state can be achieved with the NOx concentration sensor arranged downstream, for example by comparing a modeled NOx concentration with a measured NOx concentration or by suitable interpretation of the gradient of the NOx concentration downstream of the NOx storage catalytic converter during a storage process.
  • Saturation can be achieved particularly quickly if a high level of raw NOx emission is provided upstream of the NOx storage catalytic converter, for example by setting the exhaust gas recirculation rate below a certain threshold value or particularly preferably close to zero.
  • the exhaust gas recirculation rate is set from a maximum value to a minimum value.
  • the exhaust gas recirculation rate must be increased from the value lying below the minimum value, then subsequently reduced again can be used to form the concentration difference.
  • FIG. 1 shows in the form of a block diagram an Otto internal combustion engine with direct injection, wherein only those components are shown, which are necessary for the understanding of the invention; In particular, the fuel circuit and an exhaust aftertreatment system are not shown.
  • the internal combustion engine of Figure 1 has an intake manifold 1 with an air collector 2, which opens via a suction pipe 3 in a cylinder 6 of the internal combustion engine.
  • an air collector 2 which opens via a suction pipe 3 in a cylinder 6 of the internal combustion engine.
  • a suction pipe 3 for better clarity, only one cylinder 6 is shown; However, the number of cylinders is not important.
  • a control unit 10 injection valve fuel is injected via a controlled by a control unit 10 injection valve.
  • a throttle valve 5 which is actuated by a throttle valve actuator 12, which is also controlled by the control unit 10.
  • an air mass meter 4 is provided upstream of the throttle valve 5 in the intake tract 1.
  • Downstream of the throttle valve 5 opens into the intake 1, an exhaust gas recirculation line 8, on the other hand connected to the exhaust gas tract 7 of the internal combustion engine, in which the combustion gases flow from the cylinder 6.
  • an exhaust gas recirculation line 8 is an exhaust gas recirculation valve 9, which is actuated by an actuator 14, which is controlled by the control unit 10.
  • a bearing feedback is provided, via which the control unit 10 detects the set on the exhaust gas recirculation valve 9 opening degree.
  • crankshaft sensor 13 which senses the rotational speed of the crankshaft 15.
  • NOx sensor 16 which measures the NOx concentration in the exhaust gas flowing through the exhaust tract. Any intended in the exhaust system catalysts, NOx storage or 3-way catalysts are not shown for the sake of clarity.
  • the control unit 10 has a plurality of program modules 11, 17, 19 and 18, which will be discussed later.
  • a first NOx concentration NOx1 is measured. This is done with the aid of the measuring module 11 of the control unit 10, which reads the NOx sensor 16. Subsequently, in a step S2 at the exhaust gas recirculation valve 9, a preset in the memory module 17 change in the exhaust gas recirculation rate is set; This is done by the EGR module 18 of the control unit 10. The change is chosen so that the exhaust gas recirculation rate a predetermined jump from high exhaust gas recirculation rate to small exhaust gas recirculation rate, for example, from a high setpoint to 0%, performs.
  • step S6 After this change in the exhaust gas recirculation rate, the NOx concentration in the exhaust gas of the internal combustion engine is again measured via the NOx sensor 16 and stored as a value NOx2 in the memory module 17 of the control unit 10. This is again done via the measuring module 11 (step S3). Then, in step S4, it is checked whether the difference between NOx1 and NOx2 exceeds a threshold value SW1 likewise stored in the memory module 17. If this is not the case (N branching), an error of the exhaust gas recirculation system (in particular of the exhaust gas recirculation valve 9) is determined in a step S5. Otherwise (J branch), a proper feedback facility is diagnosed in step S6.
  • an NOx concentration determined in a model may also be used.
  • This model determination takes place in the NOx model module 19 of the control unit 10.
  • the NOx model module 19 calculates in a known manner the raw emission of NOx in the exhaust gas of the internal combustion engine.
  • the checking method is performed only when the crankshaft sensor 13 indicates that the speed of the crankshaft 15 and thereby of the internal combustion engine remains within a certain window, preferably constant. The accuracy is further enhanced when, at the same time, the load, i. the indicated by the air mass meter 4, flowing into the engine air mass is constant within certain limits.
  • step S4 takes place between the modeled NOx concentration and the measured NOx concentration NOx2 after the change of the exhaust gas recirculation rate in step S2.
  • the step S1 can be omitted in this modification, since no longer the measured NOx concentration NOx1, but a modeled value in step S4 input.
  • the stored values (SW1, ...) can also be selected depending on the operating parameters.
  • the memory module 17 then contains suitable maps.
  • step S7 the exhaust gas recirculation rate is set to a value below a threshold, in this case to zero.
  • the NOx concentration is measured by means of the NOx sensor 16 and stored in the memory module 17 as the value NOx3.
  • step S9 it is then checked whether the value NOx3 exceeds a threshold value.
  • step S8 a return is made in step S8. Only when the query in step S9 leads to a positive result (J-branch), the NOx storage catalyst is in saturation and it supplied NOx amounts beat to its output. Then, in step S10, the exhaust gas recirculation rate is set to a high value, for example 100%, and the process steps of FIG. 2 follow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Testing Of Engines (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Überprüfung einer Abgasrückführanlage einer Brennkraftmaschine.
  • Um den Kraftstoffverbrauch von Otto-Brennkraftmaschinen weiter zu reduzieren, kommen immer häufiger Brennkraftmaschinen zum Einsatz, die außer mit stöchiometrischem Gemisch auch mit magerer Verbrennung betrieben werden können. Bei Otto-Brennkraftmaschinen mit magerer Verbrennung wird der Luftüberschuß so groß gewählt, wie es die Lastanforderung an die Brennkraftmaschine gestattet; bei geringer Lastanforderung kann in einem Schichtlade-Betrieb das Kraftstoff/LuftGemisch, mit dem die Brennkraftmaschine betrieben wird, Lambda-Werte von 3 und mehr aufweisen.
  • Zur Erfüllung geforderter Abgasemissionsgrenzwerte sind bei solchen Brennkraftmaschinen spezielle Maßnahmen erforderlich, da ansonsten die emittierten NOx-Massen zu groß wären. Dies gilt ebenso für Diesel-Brennkraftmaschinen. Neben dem Einsatz von NOx-Speicherkatalysatoren, die aufgrund ihrer Beschichtungen in der Lage sind, NOx-Verbindungen aus dem Abgas, die bei magerer Verbrennung entstehen, in einer Speicherphase zu absorbieren und in einer Regenerationsphase unter Zugabe eines Reduktionsmittels in unschädliche Verbindungen umzuwandeln, sind auch sogenannte Abgasrückführanlagen bekannt. In solchen Abgasrückführanlagen wird ein Teil des Abgasstroms dem in die Zylinder strömenden Frischgasstrom beigemischt. Da Abgas für die Verbrennung ein Inertgas ist, sinkt dadurch die NOx-Rohemission der Brennkraftmaschine. Die Regelung des rückgeführten Abgasstromes, der sogenannten Abgasrückführrate, erfolgt meist über ein in die Rückführleitung geschaltetes Abgasrückführventil.
  • Es handelt sich bei einer solchen Abgasrückführanlage um ein emissionsrelevantes Bauteil. Solche Bauteile sind aufgrund geltender bzw. zukünftiger Vorschriften im Betrieb einer Brennkraftmaschine einer Überprüfung zu unterziehen, da ein Versagen oder fehlerhafter Betrieb der Abgasrückführanlage das Emissionsverhalten einer Brennkraftmaschine drastisch verschlechtern und zu einer Überschreitung vorgegebener Grenzwerte führen könnte.
  • Ein vom Ausfall besonders bedrohtes bzw. bei Ausfall besonders zu Emissionserhöhungen führendes Bauteil einer Abgasrückführanlage ist das Abgasrückführventil, über das die Abgasrückführrate eingestellt wird. Bislang setzt man zur Diagnose dieses Abgasrückführventils einen im Saugrohr angeordneten Drucksensor ein, der den Saugrohrdruck erfaßt. Zugleich wird die angesaugte Luftmasse über einen Luftmassenmesser ermittelt. Aus der angesaugten Luftmasse kann man den bei einer bestimmten Stellung des Abgasrückführventils zu erwartenden Saugrohrdruck stromab einer Drosselklappe einer Brennkraftmaschine berechnen. Ergibt sich eine Abweichung zwischen gemessenem und berechnetem Saugrohrdruck, wird ein fehlerhaftes Abgasrückführventil diagnositiziert. Dieses Prinzip ist beispielsweise in der DE 44 06 281 A1 beschrieben.
  • In dem Dokument JP 63 263 258 A ist eine Diagnosevorrichtung für eine Abgasrückführeinrichtung einer Brennkraftmaschine beschrieben. Zur Diagnose wird ein Abgasrückführventil geschlossen. Bei einer intakten Abgasrückführung führt dies zu einem erhöhten Frischluftanteil in den Abgasen, was mittels eines O2-Sensors gemessen wird. Wird in den Abgasen ein solcher Frischluftanteil nicht festgestellt, so wird auf einen Fehler der Abgasrückführeinrichtung geschlossen. Mit dieser Vorrichtung kann festgestellt werden, dass das Abgasrückführventil nicht richtig schließt, ein Fehler hinsichtlich eines nicht mehr öffnenden Abgasrückführventils kann damit nicht festgestellt werden.
  • Aus der DE 42 16 044 A1 ist es bekannt, die Funktion einer Abgasrückführanlage anhand der Laufruhe der Brennkraftmaschine zu erkennen, da die Häufigkeiten von Aussetzer bzw. die Laufunruhe einer Brennkraftmaschine mit der Abgasrückführrate steigt.
  • Weiter ist es aus der DE 36 24 441 A1 bekannt, im Leerlauf einer Brennkraftmaschine die Abgasrückführrate zu verändern und die Drehzahlschwankung der Brennkraftmaschine zu überwachen. Ein ähnliches Verfahren ist auch in der EP 0 635 629 A1 offenbart.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Überprüfung einer Abgasrückführanlage anzugeben, bei dem keine Druckmessung im Saugrohr erforderlich ist.
  • Diese Aufgabe wird durch die in Anspruch 1 gegekennzeichnete Erfindung gelöst.
  • Die Erfindung nutzt die Erkenntnis, daß Veränderungen der Abgasrückführrate die NOx-Emissionen eines Verbrennungsmotors stark beeinflussen können. Verändert man nun die Abgasrückführrate um ein bestimmtes Maß, kann an einem Ausbleiben der an und für sich zu erwartenden Änderung der NOx-Emission der Brennkraftmaschine eine fehlerhafte Abgasrückführanlage erkannt werden. Dieses Konzept ist für alle mit Abgasrückführanlagen ausgerüsteten Brennkraftmaschinen geeignet.
  • Diese Überprüfung ist besonders dann einfach durchzuführen, wenn die NOx-Emission der Brennkraftmaschine ansonsten konstant wäre, was insbesondere bei statischen Betriebszuständen der Brennkraftmaschine der Fall ist, insbesondere wenn also die zeitliche Änderung von Last und/oder Drehzahl der Brennkraftmaschine unter einer gewissen, geeigneten Grenze bleibt.
  • Um ein Ausbleiben einer zu erwartenden NOx-Konzentration im Abgas der Brennkraftmaschine zu erkennen, sind verschiedene Ansätze denkbar. Zum einen kann man eine Konzentrationsdifferenz aus der im Abgas gemessenen NOx-Konzentration vor und nach Veränderung der Abgasrückführrate bilden. Diese Konzentrationsdifferenz hängt natürlich von der vorgenommenen Veränderung der Abgasrückführrate ab. Bleibt trotz Veränderung der Abgasrückführrate eine zu erwartende Konzentrationsdifferenz aus, ist die Abgasrückführanlage defekt. Die NOx-Konzentration kann dabei an beliebiger Stelle im Abgastrakt gemessen werden, insbesondere stromauf eines Katalysators.
  • Zur Ermittlung der Konzentrationsdifferenz kann man eine dieser NOx-Konzentrationsmessungen auch durch eine Modellbestimmung der NOx-Rohemissionen ersetzen, wobei dazu bekannte Modelle verwendet werden können, die aus Betriebsparametern der Brennkraftmaschine die für diesen Betriebszustand emittierte NOx-Konzentration schätzen. Mit einem solchen Modellwert für die NOx-Konzentration kann man die Konzentrationsdifferenz zusammen mit der Messung der NOx-Konzentration nach der Veränderung bilden und dafür entweder den Modellwert für die NOx-Konzentration vor der Veränderung der Abgasrückführrate oder den Modellwert für den Betriebszustand nach der Veränderung der Abgasrückführrate heranziehen. Zweckmäßig ist es dabei jedoch, daß im übrigen weitgehend konstante Betriebsbedingungen der Brennkraftmaschine vorliegen, da dann der Fehler bei der Modellermittlung der NOx-Konzentration möglichst gering ist.
  • Verfügt die Brennkraftmaschine über einen NOx-Speicherkatalysator, kann man zur Diagnose auch einen NOx-Konzentrationsmeßaufnehmer verwenden, wie er üblicherweise zur Steuerung eines NOx-Speicherkatalysators dieses Katalysators vorgesehen ist. Ähnliches gilt für Brennkraftmaschinen mit einem 3-Wege-Katalysator im Abgastrakt. Eine bekannte Anordnung ist z.B. ein stromab des Katalysators liegender Meßaufnehmer. Da ein solcher NOx-Speicherkatalysator aber in der Regel die NOx-Verbindungen im Abgas absorbiert, muß bei dieser Anordnung zur Durchführung der Überprüfung dafür gesorgt werden, daß diese Absorption zeitweise nicht stattfindet. Dies kann in einer bevorzugten Weiterbildung der Erfindung dadurch erreicht werden, daß der Katalysator vor der Überprüfung bis zu seiner maximalen Speicherfähigkeit gesättigt wird. Das Erreichen des Sättigungszustandes kann man mit dem stromabwärts angeordneten NOx-Konzentrationsmeßaufnehmer erfassen, z.B. durch Vergleich einer modellierten NOx-Konzentration mit einer gemessenen NOx-Konzentration oder durch geeignete Intepretation des während eines Speichervorgangs anfallenden Gradienten der NOx-Konzentration stromab des NOx-Speicherkatalysators.
  • Ist der NOx-Katalysator gesättigt, schlagen Änderungen der NOx-Konzentration stromauf des Katalysators zum Katalysatorausgang durch, so daß dann eine Überprüfung möglich ist.
  • Die Sättigung kann besonders schnell erreicht werden, wenn für eine hohe NOx-Rohemission stromauf des NOx-Speicherkatalysators gesorgt wird, beispielsweise indem die Abgasrückführrate unter einem bestimmten Schwellwert oder besonders bevorzugte nahe Null gestellt wird.
  • Grundsätzlich erhält man eine besonders gute Diagnose, wenn die Abgasrückführrate von einem Maximalwert auf einen Minimalwert gestellt wird. Um dies in der Variante mit der beschleunigten Sättigung eines NOx-Speicherkatalysators zu erreichen, muß, wenn festgestellt wird, daß der NOx-Speicherkatalysator in der Sättigung ist, zuerst die Abgasrückführrate von dem unter den Minimalwert liegenden Wert erhöht werden, damit sie anschließend wieder verringert werden kann, um die Konzentrationsdifferenz zu bilden.
  • Wie die zur Überprüfung eingestellte Veränderung der Abgasrückführrate zeitlich durchgeführt wird, ist prinzipiell unerheblich. Stellt man eine rampenartige Änderung der Abgasrückführrate ein, verläuft die Diagnose mit besonders geringen Auswirkungen auf den Betrieb der Brennkraftmaschine, da die mit der Änderung der Abgasrückführrate unvermeidlich einhergehende Änderung der Laufruhe der Brennkraftmaschine langsam verläuft. Möchte man die Diagnose möglichst sicher gestalten, bietet es sich an, die Abgasrückführrate sprungartig zu erhöhen. Dieses Vorgehen hat weiter den Vorteil, daß die Überprüfung nur eine sehr kurze Zeitdauer in Anspruch nimmt, mithin nur eine sehr geringe Erhöhung der emittierten NOx-Masse durch die Überprüfung anfällt.
  • Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.
  • Die Erfindung wird nachfolgend unter Bezugnahme auf die Zeichnungen in Ausführungsbeispielen näher erläutert. In der Zeichnung zeigt:
  • Figur 1
    eine schematische Darstellung einer Brennkraftmaschine mit einer Abgasrückführanlage,
    Figur 2
    ein Ablaufdiagramm eines Verfahrens zur Überprüfung einer Abgasrückführanlage und
    Figur 3
    ein weiteres Ablaufdiagramm für ein abgewandeltes Überprüfungsverfahren.
  • In Figur 1 ist in Form eines Blockschaltbildes eine Otto-Brennkraftmaschine mit Direkteinspritzung dargestellt, wobei nur diejenigen Komponenten eingezeichnet sind, die für das Verständnis der Erfindung notwendig sind; insbesondere sind der Kraftstoffkreislauf sowie eine Abgasnachbehandlungsanlage nicht dargestellt.
  • Die Brennkraftmaschine der Figur 1 weist einen Ansaugtrakt 1 mit einem Luftsammler 2 auf, der über ein Saugrohr 3 in einen Zylinder 6 der Brennkraftmaschine mündet. Der besseren Übersichtlichkeit halber ist nur ein Zylinder 6 eingezeichnet; auf die Zahl der Zylinder kommt es jedoch nicht an.
  • In den Zylinder 6 wird über ein von einem Steuergerät 10 gesteuertes Einspritzventil 20 Kraftstoff eingespritzt. Im Luftsammler 2 befindet sich eine Drosselklappe 5, die von einem Drosselklappensteller 12 betätigt wird, der ebenfalls vom Steuergerät 10 angesteuert wird. Weiter ist ein Luftmassenmesser 4 stromauf der Drosselklappe 5 im Ansaugtrakt 1 vorgesehen. Stromab der Drosselklappe 5 mündet in den Ansaugtrakt 1 eine Abgasrückführleitung 8, die andererseits an den Abgastrakt 7 der Brennkraftmaschine angeschlossen ist, in dem die Verbrennungsgase aus dem Zylinder 6 strömen. In der Abgasrückführleitung 8 befindet sich ein Abgasrückführventil 9, das von einem Stellglied 14 betätigt wird, welches vom Steuergerät 10 angesteuert wird. Dabei ist eine Lagerückmeldung vorgesehen, über die das Steuergerät 10 den am Abgasrückführventil 9 eingestellten Öffnungsgrad erfaßt.
  • Weiter ist noch ein Kurbelwellensensor 13 vorgesehen, der die Drehzahl der Kurbelwelle 15 abfühlt.
  • Im Abgastrakt 7 befindet sich schließlich noch ein NOx-Sensor 16, der die NOx-Konzentration im Abgas mißt, das durch den Abgastrakt strömt. Etwaige im Abgastrakt vorgesehene Katalysatoren, NOx-Speicher- oder 3-Wege-Katalysatoren, sind der besseren Übersichtlichkeit halber nicht eingezeichnet.
  • Das Steuergerät 10 weist mehrere Programm-Module 11, 17, 19 und 18 auf, auf die noch eingegangen werden wird.
  • Zur Überprüfung des Abgasrückführventils 9 wird nun folgendes, als Flußdiagramm in Figur 2 dargestellte Verfahren durchgeführt. Dabei bezeichnen die Bezugszeichen, denen der Buchstabe "S" vorangestellt ist, Schritte des Verfahrens.
  • Zuerst wird in einem Schritt S1 eine erste NOx-Konzentration NOx1 gemessen. Dies erfolgt mit Hilfe des Meßmoduls 11 des Steuergerätes 10, das den NOx-Sensor 16 ausliest. Anschließend wird in einem Schritt S2 am Abgasrückführventil 9 eine im Speichermodul 17 voreingestellte Änderung der Abgasrückführrate eingestellt; dies wird vom AGR-Modul 18 des Steuergerätes 10 vorgenommen. Die Änderung ist dabei so gewählt, daß die Abgasrückführrate einen vorbestimmten Sprung von hoher Abgasrückführrate auf kleine Abgasrückführrate, beispielsweise von einem hohen Sollwert auf 0 %, durchführt. Nach dieser Änderung der Abgasrückführrate wird wiederum über den NOx-Sensor 16 die NOx-Konzentration im Abgas der Brennkraftmaschine gemessen und als Wert NOx2 im Speichermodul 17 des Steuergeräts 10 gespeichert. Auch dies erfolgt wieder über das Meßmodul 11 (Schritt S3). Dann wird in Schritt S4 überprüft, ob die Differenz zwischen NOx1 und NOx2 einen ebenfalls im Speichermodul 17 gespeicherten Schwellwert SW1 überschreitet. Ist dies nicht der Fall (N-Verzweigung), wird in einem Schritt S5 ein Fehler der Abgasrückführanlage (insbesondere des Abgasrückführventils 9) festgestellt. Ansonsten (J-Verzweigung) wird in Schritt S6 eine ordnungsgemäße Rückführanlage diagnostiziert.
  • Anstelle der Differenzbildung der gemessenen NOx-Konzentration in NOx1 und NOx2 in Schritt S4 kann als Wert NOx1 auch ein in einem Modell ermittelte NOx-Konzentration verwendet werden. Diese Modellermittlung erfolgt im NOx-Modellmodul 19 des Steuergerätes 10. Das NOx-Modellmodul 19 berechnet auf bekannte Weise die Rohemission an NOx im Abgas der Brennkraftmaschine. Damit diese Modellberechnung möglichst genau ausfällt, wird das Überprüfungsverfahren nur durchgeführt, wenn der Kurbelwellensensor 13 anzeigt, daß die Drehzahl der Kurbelwelle 15 und dabei der Brennkraftmaschine innerhalb eines gewissen Fensters bleibt, vorzugsweise konstant ist. Die Genauigkeit wird weiter gesteigert, wenn zugleich auch die Last, d.h. die vom Luftmassenmesser 4 angezeigte, in die Brennkraftmaschine strömende Luftmasse in bestimmten Grenzen konstant ist.
  • Die Differenzbildung in Schritt S4 erfolgt dann zwischen der modellierten NOx-Konzentration und der gemessenen NOx-Konzentration NOx2 nach der Veränderung der Abgasrückführrate in Schritt S2. Der Schritt S1 kann in dieser Abwandlung entfallen, da nicht mehr die gemessene NOx-Konzentration NOx1, sondern ein modellierter Wert in Schritt S4 Eingang findet.
  • Natürlich können die gespeicherten Werte (SW1, ...) auch betriebsparameterabhängig gewählt werden. Das Speichermodul 17 enthält dann geeignete Kennfelder.
  • Bei einer Brennkraftmaschine mit NOx-Speicherkatalysator stromauf des NOx-Sensors 16 werden vor Durchführung des Verfahrens die in Figur 3 als Flußdiagramm dargestellten Schritte durchgeführt. Zuerst wird in einem Schritt S7 die Abgasrückführrate auf einen unter einem Schwellwert liegenden Wert, in diesem Fall auf Null, gestellt. Dann wird in Schritt S8 mittels des NOx-Sensors 16 die NOx-Konzentration gemessen und als Wert NOx3 im Speichermodul 17 abgelegt. In Schritt S9 wird dann überprüft, ob der Wert NOx3 einen Schwellwert überschreitet.
  • Ist dies nicht der Fall (N-Verzweigung), wird in Schritt S8 zurückgesprungen. Erst wenn die Abfrage in Schritt S9 zu einem positiven Ergebnis (J-Verzweigung) führt, ist der NOx-Speicherkatalysator in der Sättigung und ihm zugeführte NOx-Mengen schlagen zu seinem Ausgang durch. Dann wird in Schritt S10 die Abgasrückführrate auf einen hohen Wert, beipielsweise 100 % gesetzt, und es folgen die Verfahrensschritte der Figur 2.

Claims (9)

  1. Verfahren zur Überprüfung einer Abgas, mit einer Abgasrückführrate vom Abgastrakt (7) zum Ansaugtrakt (1) rückführenden Abgasrückführanlage einer Brennkraftmaschine, bei dem eine bestimmte Veränderung der Abgasrückführrate eingestellt, die NOx-Konzentration im Abgas gemessen und bei Ausbleiben einer bestimmten von der Veränderung der Abgasrückführrate abhängigen NOx-Konzentrationsdifferenz ein Defekt der Abgasrückführanlage festgestellt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeicnet, daß die NOx-Konzentrationsdifferenz aus der vor und nach der Veränderung der Abgasrückführrate im Abgas gemessenen NOx-Konzentration ermittelt wird.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die NOx-Konzentrationsdifferenz aus der nach der Veränderung der Abgasrückführrate im Abgas gemessene NOx-Konzentration und einer mit einem Modell aus Betriebsparametern der Brennkraftmaschine für den vor oder nach der Veränderung der Abgasrückführrate vorliegenden Betriebszustand der Brennkraftmaschine erhaltenen NOx-Konzentration ermittelt wird.
  4. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die NOx-Konzentration stromab eines NOx-Speicherkatalysators gemessen wird und vor der Einstellung der bestimmten Veränderung der Abgasrückführrate der NOx-Speicherkatalysator bis zu seiner maximalen Speicherfähigkeit gesättigt wird.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Sättigung an einer vorbestimmten NOx-Konzentration stromab des Katalysators erkannt wird.
  6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß zum schnellen Erreichen der Sättigung die Abgasrückführrate unter einem bestimmten Minimalwert, vorzugsweise nahe Null, gestellt wird.
  7. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die bestimmte Veränderung der Abgasrückführrate eine rampen- oder stufenförmige Verringerung ist.
  8. Verfahren nach den Ansprüchen 6 und 7, dadurch gekennzeichnet, daß die zum schnellen Erreichen der Sättigung unter einen bestimmten Minimalwert Abgasrückführrate wieder erhöht und anschließend in der bestimmten Veränderung verringert wird.
  9. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Überprüfung nur erfolgt, wenn Betriebsparameter der Brennkraftmaschine, insbesondere Last und/oder Drehzahl, innerhalb eines bestimmten Bereiches liegen und/oder begrenzte Dynamik aufweisen.
EP01118459A 2000-08-16 2001-07-31 Verfahren zur Überprüfung einer Abgasrückführanlage Expired - Lifetime EP1180594B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10039952A DE10039952C2 (de) 2000-08-16 2000-08-16 Verfahren zur Überprüfung einer Abgasrückführanlage
DE10039952 2000-08-16

Publications (3)

Publication Number Publication Date
EP1180594A2 EP1180594A2 (de) 2002-02-20
EP1180594A3 EP1180594A3 (de) 2003-01-02
EP1180594B1 true EP1180594B1 (de) 2006-09-06

Family

ID=7652567

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01118459A Expired - Lifetime EP1180594B1 (de) 2000-08-16 2001-07-31 Verfahren zur Überprüfung einer Abgasrückführanlage

Country Status (3)

Country Link
US (1) US6598470B2 (de)
EP (1) EP1180594B1 (de)
DE (2) DE10039952C2 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304043A (ja) * 2000-04-20 2001-10-31 Hitachi Ltd 排気ガス再循環装置の故障診断装置
US6666201B1 (en) * 2002-05-29 2003-12-23 Ford Global Technologies, Llc System and method for diagnosing EGR performance using NOx sensor
US7263823B2 (en) * 2004-05-27 2007-09-04 Cummins, Inc. System for measuring NOx content of exhaust gas
US20090139210A1 (en) * 2007-11-30 2009-06-04 Rodrigo Lain Sanchez Gas concentration sensor drift and failure detection system
DE102009029257B3 (de) * 2009-09-08 2010-10-28 Ford Global Technologies, LLC, Dearborn Identifikation einer Luft- und/oder Kraftstoffdosierungsabweichung
KR20130063946A (ko) * 2011-12-07 2013-06-17 현대자동차주식회사 배기가스 재순환 진단장치 및 배기가스 재순환 진단방법
FR2999646B1 (fr) * 2012-12-18 2017-10-27 Continental Automotive France Procede de determination du debit d'air recycle et de la quantite d'oxygene disponible a l'entree d'un cylindre d'un moteur a combustion interne
CN111780903B (zh) * 2020-06-30 2022-03-15 东风商用车有限公司 蝶片式egr阀电机力矩特性测量装置及测量方法
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
CN112539121B (zh) * 2020-11-27 2022-03-01 潍柴动力股份有限公司 一种egr***的积碳在线检测方法、检测装置及机动车
CN114183260B (zh) * 2021-10-29 2023-05-12 东风商用车有限公司 EGR故障模式下的NOx控制方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3435465A1 (de) * 1984-08-03 1986-02-13 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und vorrichtung zur eigendiagnose von stellgliedern
JPH0652065B2 (ja) * 1986-01-08 1994-07-06 株式会社日立製作所 エンジンの排気再循環装置
DE3624441A1 (de) * 1986-07-19 1988-01-28 Bosch Gmbh Robert Diagnoseverfahren zur quantitativen ueberpruefung von stellgliedern bei brennkraftmaschinen
JPS63263258A (ja) * 1987-04-20 1988-10-31 Toyota Motor Corp 排気ガス再循環装置のダイアグノ−シス装置
JP2822731B2 (ja) * 1991-10-23 1998-11-11 トヨタ自動車株式会社 内燃機関の排気ガス浄化装置
DE4216044C2 (de) * 1992-05-15 2001-03-15 Bosch Gmbh Robert Abgasrückführungs-Diagnosesystem an einem Verbrennungsmotor
US5426938A (en) * 1992-09-18 1995-06-27 Honda Giken Kogyo Kabushiki Kaisha Control system for internal combustion engines
US5513616A (en) * 1993-03-01 1996-05-07 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Method for determining a failure of an EGR apparatus
EP0635629A1 (de) * 1993-07-21 1995-01-25 Siemens Aktiengesellschaft Verfahren zur Diagnose eines Abgasrückführungssystems einer Brennkraftmaschine
JPH07208272A (ja) * 1994-01-25 1995-08-08 Fuji Heavy Ind Ltd エンジンのegr制御装置
JPH10103161A (ja) * 1996-09-26 1998-04-21 Isuzu Motors Ltd 排気還流制御装置
US6035834A (en) * 1997-02-10 2000-03-14 Industrial Power Generating Corporation Nitrogen oxides reducing aftercooler for turbocharged engines
JP3617240B2 (ja) * 1997-03-14 2005-02-02 日産自動車株式会社 内燃機関の排気還流制御装置
JP2001098989A (ja) * 1999-09-29 2001-04-10 Mazda Motor Corp エンジンの制御装置及びエンジンの制御装置の異常診断装置

Also Published As

Publication number Publication date
US6598470B2 (en) 2003-07-29
DE10039952A1 (de) 2002-02-28
EP1180594A3 (de) 2003-01-02
US20020033045A1 (en) 2002-03-21
DE10039952C2 (de) 2003-04-24
DE50110924D1 (de) 2006-10-19
EP1180594A2 (de) 2002-02-20

Similar Documents

Publication Publication Date Title
EP1180594B1 (de) Verfahren zur Überprüfung einer Abgasrückführanlage
EP1362167B1 (de) Verfahren und vorrichtung zur steuerung eines abgasnachbehandlungssystems
DE102008025452B4 (de) Überwachung der Leistung einer Lambdasonde
DE602004013243T2 (de) Vorrichtung zur Steuerung eines Motors
DE60222226T2 (de) Verfahren zur Bestimmung des Kraftstoff-Schwefelgehalts einer Brennkraftmaschine
DE102005015998A1 (de) Katalysatordiagnoseverfahren
DE102012206033A1 (de) Unterscheidung zwischen AGR-Ventil und Sauerstoffsensor-Funktionsminderung
DE112013006583B4 (de) Vorrichtung zum Erfassen eines Zwischen-Zylinder-Luft-Kraftstoff-Verhältnis-Ungleichgewichts in einer Mehrzylinder-Verbrennungskraftmaschine
DE102014110780A1 (de) System und verfahren zur steuerung einer dosierung von abgasfluid
DE10001133B4 (de) Vorrichtung zum Steuern des Luft-Kraftstoffverhältnisses bei einer Verbrennungskraftmaschine
DE10148663A1 (de) Abgasreinigungsanlage einer Brennkraftmaschine
DE102007062097A1 (de) Diagnoseverfahren für Zusatzventile
EP1204817B1 (de) Verfahren zur überwachung eines sekundärluftsystems in verbindung mit dem abgassystem eines kraftfahrzeugs
DE102010005647B4 (de) Verfahren und System zum Überwachen eines aktiven Kohlenwasserstoffadsorbers
DE102004051747A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE112013007106T5 (de) Motor-NOx-Model
EP1180210B2 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine mit einem abgasnachbehandlungssystem
DE102004038733A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE202014005514U1 (de) Elektronisches Steuergerät für einen Verbrennungsmotor
DE102005046956B3 (de) Verfahren und Vorrichtung zum Erkennen eines Verbrennungsaussetzers
DE102008046719B3 (de) Verfahren und Vorrichtung zum Bestimmen des Ethanol-Anteils des Kraftstoffes in einem Kraftfahrzeug
EP1298302B1 (de) Abgasreinigungsverfahren für Magerbrennkraftmaschinen
DE102012004556A1 (de) Verfahren und Vorrichtung zum Bestimmen eines Verbrennungsluftmassenstroms
DE102006053125A1 (de) Verfahren und Steuergerät zur Diagnose eines Katalysatorsystems eines Verbrennungsmotors
DE102022101084B3 (de) Verfahren zum Betreiben einer Antriebseinrichtung für ein Kraftfahrzeug sowie entsprechende Antriebseinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030317

AKX Designation fees paid

Designated state(s): DE FR GB IT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20060906

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50110924

Country of ref document: DE

Date of ref document: 20061019

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061025

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080715

Year of fee payment: 8

Ref country code: IT

Payment date: 20080723

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080722

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080714

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180731

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50110924

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200201