EP1166290A1 - Weakly-magnetic sintered composite-material and a method for production thereof - Google Patents

Weakly-magnetic sintered composite-material and a method for production thereof

Info

Publication number
EP1166290A1
EP1166290A1 EP00987036A EP00987036A EP1166290A1 EP 1166290 A1 EP1166290 A1 EP 1166290A1 EP 00987036 A EP00987036 A EP 00987036A EP 00987036 A EP00987036 A EP 00987036A EP 1166290 A1 EP1166290 A1 EP 1166290A1
Authority
EP
European Patent Office
Prior art keywords
starting
composite material
powder
component
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00987036A
Other languages
German (de)
French (fr)
Inventor
Waldemar Draxler
Thomas Christmann
Horst Boeder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1166290A1 publication Critical patent/EP1166290A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin

Definitions

  • the invention relates to a sintered soft magnetic composite material, in particular for use in solenoid valves, and a method for producing such a composite material according to the type of the independent claims.
  • Known fast-switching magnetic injection valves are made from soft magnetic materials such as FeCr or FeCo alloys or from powder composite materials with the highest possible specific electrical resistance.
  • the sintered soft magnetic composite material according to the invention and the method for its production have the advantage over the prior art that specific electrical resistances of more than 2 ⁇ m can be achieved. Furthermore, the composite material according to the invention is very temperature-resistant and at the same time also fuel-resistant. In addition, it can be machined at least to a limited extent.
  • the composite material according to the invention further achieves a saturation polarization of approximately 1.6 Tesla, which is comparable to known materials made of iron powder and organic binder.
  • a large number of known soft or hard magnetic ferrite powders are also suitable for the second, ferrimagnetic starting component.
  • the use of oxidic powders such as Fe 2 0 3 is particularly advantageous.
  • known strontium or barium hard ferrites or known soft ferrites such as MnZn or NiZn.
  • the average grain size the powder particles of the ferromagnetic starting component is significantly larger than the average grain size of the powder particles of the ferrite powder.
  • silicon or silicon dioxide can advantageously be used to increase the specific electrical resistance and the permeability of the composite material.
  • Aluminum or aluminum oxide is suitable, for example, for increasing the specific electrical resistance.
  • the pressing aid which is more preferably added to the starting mixture, facilitates the compression and shaping of the starting mixture in a die. It is advantageous that this pressing aid is completely removed or evaporated again during debinding, so that it has no direct influence on the achievable material characteristics of the sintered soft magnetic composite material obtained.
  • the invention is explained in more detail with reference to the drawing and in the description below.
  • the figure shows a basic sketch of an initial mixture.
  • a sintered soft magnetic composite material by combining a powdery, ferromagnetic first starting component 11 with a ferrite powder as the ferritic second starting component 12, the ferrite powder being present at least largely as a grain boundary phase in the composite material after sintering.
  • the first starting component 11 pure iron powder or a powder alloyed with 0.1 to 1% by weight phosphorus (phosphated iron powder) is specified as the main constituent.
  • This powder has a grain size distribution of 60 ⁇ m to 200 ⁇ m.
  • a ferrite powder in the form of a powder with a very fine grain size is then added to this ferromagnetic starting component 11 as the second starting component 12.
  • a suitable ferrite powder is, for example, a powdery soft ferrite such as MnZn or NiZn ferrite, a powdery hard ferrite such as strontium ferrite (6Fe 2 0 3 : SrO) or barium ferrite (6Fe 2 0 3 : BaO), or iron oxide powder
  • the average particle size of the powder particles of the second starting component 12 is preferably less than 20 ⁇ m.
  • the respective weight ratios between the ferromagnetic first output component 11 and the added second output component 12 result in the individual case from the required magnetic properties of the composite material to be produced and the desired specific electrical resistance.
  • the proportion of the ferromagnetic starting component 11 as the main constituent is between 88 and 98% by weight and the proportion of the second starting component 12 is between 2 and 12% by weight.
  • further additives can be added to achieve or fine-tune the magnetic or electrical properties of the composite material to be produced.
  • silicon and / or aluminum and their oxides are particularly suitable, both of which are added as powders with a preferred grain size of less than 50 ⁇ m.
  • Micro wax is also expediently added to the starting mixture as a pressing aid.
  • the achievable specific electrical resistance of the sintered composite material finally obtained is determined primarily by the amount of the ferrite powder added.
  • composition of the starting mixture can be varied within the following limits:
  • the materials mentioned in the starting mixture are then first mixed with one another, the mixing time depending on the composition being between 30 minutes and 240 minutes.
  • the starting mixture is then shaped and compressed by uniaxial pressing in a die, so that a green body is formed.
  • the pressure during uniaxial pressing is preferably 500 MPa to 750 MPa.
  • the green bodies obtained are first debindered in a nitrogen atmosphere at a temperature between 450 ° C. and 500 ° C. over a period of 30 minutes to 45 minutes before sintering.
  • the micro wax added as a pressing aid is removed again by essentially evaporating it.
  • This debinding is followed by a two-stage sintering process.
  • the first stage of the sintering process at a temperature between 500 ° C. and 700 ° C. for a period of 30 minutes to 12 hours in a gas atmosphere with the composition 50% by volume to 100% by volume nitrogen and 0% by volume to 50 vol. % Oxygen sintered.
  • the gas atmosphere preferably contains 5 vol. % to 30 vol.% oxygen.
  • This first stage of the sintering process is followed by a second stage at temperatures between 900 ° C and 1150 ° C.
  • This second sintering stage extends over a period of 5 minutes to 2 hours, with the heating rate between 10 to 40 K / min and the cooling rate between 5 to 40 K / min is selected.
  • the sintering is carried out in a gas atmosphere which initially consists of 50 vol. % up to 100 vol.% embroidery Fabric and 0 vol. % to 50 vol.% oxygen.
  • the gas atmosphere preferably contains 5 vol.
  • % up to 30 vol. % Oxygen At the beginning of the second stage of the sintering process.
  • the oxygen content of the gas atmosphere is then gradually or continuously reduced.
  • the oxygen content can be reduced to up to 0% by volume, ie the gas atmosphere at the end of the second sintering stage can consist only of nitrogen. In this case, too, another inert gas can be used instead of nitrogen.
  • a thermal aftertreatment of the soft magnetic composite material is then carried out, if necessary, which extends over a period of 30 minutes to 3 hours.
  • the sintered body is subjected to a gas atmosphere at temperatures of 600 ° C to 800 ° C, 50% by volume to 100% by volume.
  • % of nitrogen and 0 vol. % up to 50 vol. % consists of oxygen.
  • the gas atmosphere preferably has an oxygen content of 10 to 30% by volume during the thermal aftertreatment.
  • This thermal aftertreatment serves to improve the physical properties of the sintered composite body obtained and, depending on the qualitative requirements for the composite material and the starting components used, can therefore also be omitted in order to save costs.
  • the debinding of the compressed starting mixture and the sintering of the compressed, debindered starting mixture to form the composite material can take place in succession in one work step. After completion of the sintering, the soft magnetic composite material obtained can then, if necessary, be reworked mechanically.
  • the composite material finally obtained has a typical saturation polarization of approximately 1 Tesla to 1.6 Tesla, in particular more than 1.5 Tesla, with a specific electrical resistance of more than 2 ⁇ m. It is also fully fuel and temperature resistant for use in solenoid valves under typical conditions.
  • a further exemplary embodiment of the invention provides, in a slight modification of the above exemplary embodiment, to first mix the first ferromagnetic starting component 11 and the second starting component 12 in the form of a ferrite powder, optionally with the addition of silicon, aluminum or their oxides, and this mixture then first, ie to undergo heat treatment before pressing or compacting.
  • This heat treatment is carried out at 400 ° C to 700 ° C for 15 min to 45 min under a gas atmosphere of the composition 50 vol.% To 100 vol. % Nitrogen and 0 vol. % to 50 vol.% oxygen.
  • the gas atmosphere preferably has a proportion of 10% by volume to 30% by volume of oxygen.
  • Another inert gas is also suitable instead of nitrogen.

Abstract

The invention relates to a weakly-magnetic, sintered, composite-material, in particular for use in magnetic valves, and a method for production of said composite-material. According to the invention, firstly, a starting mixture is produced, which, after sintering, will form the weakly-magnetic composite-material, comprising a ferromagnetic first starting component (11), which is, in particular, a powder, as main constituent and a ferritic second starting component (12), as a minor constituent, as well as, optionally, an auxiliary pressing agent. In the composite-material produced after sintering the starting mixture, the second starting component (12), forms at least essentially, the grain boundary phase. According to the invention, the production method comprises the following method steps: preparation of the starting mixture, mixing the starting mixture, compressing the starting mixture in a matrix under elevated pressure, removing the binder from the compressed starting material and sintering the compressed starting material to give the composite-material.

Description

Gesinterter weichmagnetischer Verbundwerkstoff und Verfahren zu dessen HerstellungSintered soft magnetic composite and method for its production
Die Erfindung betrifft einen gesinterten weichmagnetischen Verbundwerkstoff, insbesondere zur Verwendung in Magnetventilen, und ein Verfahren zur Herstellung eines derartigen Verbundwerkstoffes nach der Gattung der unabhängigen Ansprüche .The invention relates to a sintered soft magnetic composite material, in particular for use in solenoid valves, and a method for producing such a composite material according to the type of the independent claims.
Stand der TechnikState of the art
Moderne Benzin- und Dieselmotoren benotigen immer leistungsfähigere Magneteinspritzventile um beispielsweise den Forderungen nach Verbrauchsreduzierung und Schadstoffreduzierung nachzukommen. Bekannte schnellschaltende Magneteinspritzventile werden dazu aus weichmagnetischen Werkstoffen wie bei- spielsweise FeCr- oder FeCo-Legierungen oder aus Pulververbundwerkstoffen mit möglichst hohem spezifischen elektrischen Widerstand hergestellt.Modern gasoline and diesel engines require ever more powerful magnetic injectors, for example to meet the demands for reduced consumption and reduced pollutants. Known fast-switching magnetic injection valves are made from soft magnetic materials such as FeCr or FeCo alloys or from powder composite materials with the highest possible specific electrical resistance.
Durch legierungstechnische Maßnahmen ist bei den metalli- sehen Werkstoffen jedoch nur ein spezifischer elektrischer Widerstand von maximal 1 μΩm erreichbar.With alloying measures, however, only a specific electrical resistance of maximum 1 μΩm can be achieved with the metallic materials.
Weiterhin ist auch bereits bekannt, einen Magnetwerkstoff aus Eisenpulver und organischem Binder in Ventilen für die Dieseleinspritzung (Common Rail System) einzusetzen. Diese Werkstoffe weisen zwar höhere spezifische elektrische Widerstände als die vorgenannten weichmagnetische Legierungswerkstoffe auf, sie sind jedoch vielfach nur eingeschränkt treibstoff- und temperaturbeständig und zudem schlecht bear- beitbar.Furthermore, it is also already known to use a magnetic material made of iron powder and organic binder in valves for diesel injection (common rail system). This Although materials have higher specific electrical resistances than the aforementioned soft magnetic alloy materials, they are often only to a limited extent resistant to fuel and temperature and, moreover, are difficult to machine.
Vorteile der ErfindungAdvantages of the invention
Der erfindungsgemaße gesinterte weichmagnetische Verbund- werkstoff und das Verfahren zu dessen Herstellung hat gegenüber dem Stand der Technik den Vorteil, daß damit spezifische elektrische Widerstände von mehr 2 μΩm erreicht werden können. Weiterhin ist der erfindungsgemaße Verbundwerkstoff sehr gut temperatur- und gleichzeitig auch kraftstoffbestan- dig. Daneben ist er zumindest in beschranktem Umfang mechanisch bearbeitbar.The sintered soft magnetic composite material according to the invention and the method for its production have the advantage over the prior art that specific electrical resistances of more than 2 μΩm can be achieved. Furthermore, the composite material according to the invention is very temperature-resistant and at the same time also fuel-resistant. In addition, it can be machined at least to a limited extent.
Der erfindungsgemaße Verbundwerkstoff erreicht weiter eine Sattigungspolarisation von ca. 1,6 Tesla, die mit bekannten Werkstoffen aus Eisenpulver und organischem Binder vergleichbar ist.The composite material according to the invention further achieves a saturation polarization of approximately 1.6 Tesla, which is comparable to known materials made of iron powder and organic binder.
Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den in den Unteranspruchen genannten Maßnahmen.Advantageous developments of the invention result from the measures mentioned in the subclaims.
So ist es vorteilhaft, daß als ferromagnetische pulverformige Ausgangskomponente eine Vielzahl bekannter, kommerziell erhaltlicher Pulver, insbesondere Reineisenpulver, phospha- tierte Eisenpulver, Eisen-Chrom-Legierungspulver oder Eisen- Cobalt-Legierungspulver eingesetzt werden können.It is advantageous that a large number of known, commercially available powders, in particular pure iron powder, phosphated iron powder, iron-chromium alloy powder or iron-cobalt alloy powder, can be used as the ferromagnetic powder-form starting component.
Ebenso kommen auch für die zweite, ferrimagnetische Ausgangskomponente eine Vielzahl von bekannten weich- oder hartmagnetischen Ferritpulvern in Frage. Besonders vorteil- haft ist die Verwendung von oxidischen Pulvern wie Fe203, von bekannten Strontium- oder Barium-Hartferriten oder bekannten Weichferriten wie MnZn oder NiZn.A large number of known soft or hard magnetic ferrite powders are also suitable for the second, ferrimagnetic starting component. The use of oxidic powders such as Fe 2 0 3 is particularly advantageous. of known strontium or barium hard ferrites or known soft ferrites such as MnZn or NiZn.
Um zu gewahrleisten, daß das als zweite Ausgangskomponente bevorzugt eingesetzte Ferrit-Pulver nach dem Sintern in dem Verbundwerkstoff zumindest weitgehend als Korngrenzenphase vorliegt, bzw. daß diese Korngrenzenphase nach dem Sintern die erste Ausgangskomponente zumindest bereichsweise umgibt, ist es weiter vorteilhaft, wenn die mittlere Korngroße der Pulverteilchen der ferromagnetischen Ausgangskomponente deutlich großer ist, als die mittlere Korngroße der Pulverteilchen des Ferrit-Pulvers.In order to ensure that the ferrite powder which is preferably used as the second starting component after sintering is present in the composite material at least largely as a grain boundary phase, or that this grain boundary phase surrounds the first starting component at least in regions after sintering, it is further advantageous if the average grain size the powder particles of the ferromagnetic starting component is significantly larger than the average grain size of the powder particles of the ferrite powder.
Weiter ist es zur Erhöhung des Widerstandes vorteilhaft, daß dem gesinterten weichmagnetischen Verbundwerkstoff weitere Zusatzstoffe, beispielsweise Silizium, Siliziumdioxid (Si02) , Aluminium oder Aluminiumoxid (A1203) zugesetzt werden können, um damit, innerhalb gewisser Grenzen, eine Anpassung der physikalischen Eigenschaften des hergestellten Verbund- Werkstoffes zu ermöglichen.It is also advantageous to increase the resistance that further additives, for example silicon, silicon dioxide (Si0 2 ), aluminum or aluminum oxide (A1 2 0 3 ), can be added to the sintered soft magnetic composite material in order to adapt the physical properties within certain limits To enable properties of the composite material produced.
So kann Silizium oder Siliziumdioxid vorteilhaft zur Erhöhung des spezifischen elektrischen Widerstandes und der Permeabilität des Verbundwerkstoffes eingesetzt werden. Alumi- nium oder Aluminiumoxid eignet sich beispielsweise zur Erhöhung des spezifischen elektrischen Widerstandes.For example, silicon or silicon dioxide can advantageously be used to increase the specific electrical resistance and the permeability of the composite material. Aluminum or aluminum oxide is suitable, for example, for increasing the specific electrical resistance.
Das der Ausgangsmischung weiter bevorzugt zugesetzte Preßhilfsmittel erleichtert die Verdichtung und Formgebung der Ausgangsmischung in einer Matrize. Dabei ist vorteilhaft, daß dieses Preßhilfsmittel beim Entbindern wieder vollständig entfernt bzw. verdampft wird, so daß es keinen direkten Einfluß auf die erreichbaren Materialkennwerte des erhaltenen gesinterten weichmagnetischen Verbundwerkstoffes hat. ZeichnungThe pressing aid, which is more preferably added to the starting mixture, facilitates the compression and shaping of the starting mixture in a die. It is advantageous that this pressing aid is completely removed or evaporated again during debinding, so that it has no direct influence on the achievable material characteristics of the sintered soft magnetic composite material obtained. drawing
Die Erfindung wird anhand der Zeichnung und in der nachfolgenden Beschreibung naher erläutert. Die Figur zeigt eine Prinzipskizze einer Ausgangsmischung.The invention is explained in more detail with reference to the drawing and in the description below. The figure shows a basic sketch of an initial mixture.
AusfuhrungsbeispieleExemplary embodiments
Zur Herstellung eines gesinterten weichmagnetischen Verbund- Werkstoffes durch Kombination einer pulverformigen, ferroma- gnetischen ersten Ausgangskomponente 11 mit einem Ferrit- Pulver als ferritischer zweiter Ausgangskomponente 12, wobei das Ferrit-Pulver nach dem Sintern zumindest weitgehend als Korngrenzenphase in dem Verbundwerkstoff vorliegt, wird zu- nächst als erste Ausgangskomponente 11 reines oder mit 0,1 bis 1 Gew.% Phosphor vorlegiertes Eisenpulver (phosphatier- tes Eisenpulver) als Hauptbestandteil vorgegeben. Dieses Pulver weist eine Korngrößenverteilung von 60 μm bis 200 μm auf. Weiterhin wird dieser ferromagnetischen Ausgangskompo- nente 11 als zweite Ausgangskomponente 12 dann ein Ferrit- Pulver in Form eines Pulvers mit sehr feiner Körnung zugegeben. Als Ferrit-Pulver eignet sich beispielsweise ein pulverformiger Weichferrit wie MnZn- oder NiZn-Ferrit, ein pulverformiger Hartferrit wie Strontium-Ferrit (6Fe203:SrO) oder Barium-Ferrit ( 6Fe203 : BaO) , oder EisenoxidpulverTo produce a sintered soft magnetic composite material by combining a powdery, ferromagnetic first starting component 11 with a ferrite powder as the ferritic second starting component 12, the ferrite powder being present at least largely as a grain boundary phase in the composite material after sintering. Next, as the first starting component 11, pure iron powder or a powder alloyed with 0.1 to 1% by weight phosphorus (phosphated iron powder) is specified as the main constituent. This powder has a grain size distribution of 60 μm to 200 μm. Furthermore, a ferrite powder in the form of a powder with a very fine grain size is then added to this ferromagnetic starting component 11 as the second starting component 12. A suitable ferrite powder is, for example, a powdery soft ferrite such as MnZn or NiZn ferrite, a powdery hard ferrite such as strontium ferrite (6Fe 2 0 3 : SrO) or barium ferrite (6Fe 2 0 3 : BaO), or iron oxide powder
(Fe203) . Bevorzugt betragt die mittlere Teilchengroße der Pulverteilchen der zweiten Ausgangskomponente 12 weniger als 20 μm.(Fe 2 0 3 ). The average particle size of the powder particles of the second starting component 12 is preferably less than 20 μm.
Die jeweiligen Gewichtsverhaltnisse zwischen der ferromagne- tischen ersten Ausgangskomponente 11 und der zugegebenen zweiten Ausgangskomponente 12 ergeben sich im Einzelfall anhand der geforderten magnetischen Eigenschaften des zu erzeugenden Verbundwerkstoffes und des gewünschten spezifi- sehen elektrischen Widerstandes. In der Regel liegt der Anteil der ferromagnetischen Ausgangskomponente 11 als Hauptbestandteil zwischen 88 und 98 Gew.% und der Anteil der zweiten Ausgangskomponente 12 zwischen 2 und 12 Gew.%.The respective weight ratios between the ferromagnetic first output component 11 and the added second output component 12 result in the individual case from the required magnetic properties of the composite material to be produced and the desired specific electrical resistance. As a rule, the proportion of the ferromagnetic starting component 11 as the main constituent is between 88 and 98% by weight and the proportion of the second starting component 12 is between 2 and 12% by weight.
Der Ausgangsmischung aus diesen beiden Pulvern können daneben noch weitere Zusatzstoffe zur Erreichung bzw. Feineinstellung der magnetischen bzw. elektrischen Eigenschaften des zu erzeugenden Verbundwerkstoffes zugegeben werden. Konkret eignen sich dazu besonders Silizium und/oder Aluminium sowie deren Oxide, die beide als Pulver mit einer bevorzugten Korngroße von weniger als 50 μm zugegeben werden.In addition to the starting mixture of these two powders, further additives can be added to achieve or fine-tune the magnetic or electrical properties of the composite material to be produced. Specifically, silicon and / or aluminum and their oxides are particularly suitable, both of which are added as powders with a preferred grain size of less than 50 μm.
Weiter wird der Ausgangsmischung als Preßhilfsmittel zweckmäßig Mikrowachs zugesetzt.Micro wax is also expediently added to the starting mixture as a pressing aid.
In diesem Zusammenhang sei betont, daß der erreichbare spezifische elektrische Widerstand des schließlich erhaltenen gesinterten Verbundwerkstoffes vor allem durch die Menge des zugegebenen Ferritpulvers bestimmt wird.In this connection it should be emphasized that the achievable specific electrical resistance of the sintered composite material finally obtained is determined primarily by the amount of the ferrite powder added.
Insgesamt kann die Zusammensetzung der Ausgangsmischung innerhalb folgender Grenzen variiert werden:Overall, the composition of the starting mixture can be varied within the following limits:
75 bis 99 Gew.% reines Eisenpulver oder phosphatiertes Eisenpulver als erste Ausgangskomponente 1175 to 99% by weight of pure iron powder or phosphated iron powder as the first starting component 11
1 bis 25 Gew.% Ferritpulver als zweite Ausgangskomponente 121 to 25% by weight of ferrite powder as the second starting component 12
0 bis 2,5 Gew.% Aluminiumpulver und/oder Siliziumpulver0 to 2.5% by weight of aluminum powder and / or silicon powder
0 bis 0,8 Gew.% Mikrowachs. Die genannten Werkstoffe der Ausgangsmischung werden dann zunächst miteinander vermischt, wobei die Mischdauer je nach Zusammensetzung zwischen 30 min und 240 min betragt.0 to 0.8 wt% micro wax. The materials mentioned in the starting mixture are then first mixed with one another, the mixing time depending on the composition being between 30 minutes and 240 minutes.
Anschließend wird die Ausgangsmischung dann durch uniaxiales Pressen in einer Matrize geformt und verdichtet, so daß ein Grunkorper entsteht. Der Druck beim uniaxialen Pressen betragt bevorzugt 500 MPa bis 750 MPa.The starting mixture is then shaped and compressed by uniaxial pressing in a die, so that a green body is formed. The pressure during uniaxial pressing is preferably 500 MPa to 750 MPa.
Nach dem Verdichten der Ausgangsmischung durch das uniaxiale Pressen werden die erhaltenen Grunkorper vor der Sinterung zunächst in Stickstoffatmosphare bei einer Temperatur zwischen 450°C und 500°C über einen Zeitraum von 30 min bis 45 min entbindert. Dabei wird das als Preßhilfsmittel zuge- setzte Mikrowachs wieder entfernt, indem es im wesentlichen verdampft .After the starting mixture has been compacted by uniaxial pressing, the green bodies obtained are first debindered in a nitrogen atmosphere at a temperature between 450 ° C. and 500 ° C. over a period of 30 minutes to 45 minutes before sintering. The micro wax added as a pressing aid is removed again by essentially evaporating it.
An dieses Entbindern schließt sich ein zweistufiger Sinterprozeß an.This debinding is followed by a two-stage sintering process.
Dazu wird in der ersten Stufe des Sinterprozesses zunächst bei einer Temperatur zwischen 500°C und 700°C über einen Zeitraum von 30 min bis 12 h in einer Gasatmosphare der Zusammensetzung 50 Vol.% bis 100 Vol.% Stickstoff und 0 Vol.% bis 50 Vol . % Sauerstoff gesintert. Bevorzugt enthalt die Gasatmosphare 5 Vol . % bis 30 Vol.% Sauerstoff.For this purpose, in the first stage of the sintering process, at a temperature between 500 ° C. and 700 ° C. for a period of 30 minutes to 12 hours in a gas atmosphere with the composition 50% by volume to 100% by volume nitrogen and 0% by volume to 50 vol. % Oxygen sintered. The gas atmosphere preferably contains 5 vol. % to 30 vol.% oxygen.
Nach dieser ersten Stufe des Sinterprozesses folgt dann eine zweite Stufe bei Temperaturen zwischen 900° C und 1150° C. Diese zweite Sinterstufe erstreckt sich über einen Zeitraum von 5 Minuten bis 2 h, wobei die Aufheizrate zwischen 10 bis 40 K/min und die Abkuhlrate zwischen 5 bis 40 K/min gewählt wird. Gleichzeitig wird wahrend dieser zweiten Stufe des Sinterprozesses die Sinterung in einer Gasatmosphare durch- gefuhrt, die sich anfangs aus 50 Vol . % bis 100 Vol.% Stick- Stoff und 0 Vol . % bis 50 Vol.% Sauerstoff zusammensetzt. Bevorzugt enthalt die Gasatmosphare zu Beginn der zweiten Stufe des Sinterprozesses 5 Vol . % bis 30 Vol . % Sauerstoff. Im Laufe der zweiten Stufe des Sinterprozesses wird dann der Sauerstoffgehalt der Gasatmosphare schrittweise oder kontinuierlich reduziert. Je nach Anwendung kann diese Reduzierung des Sauerstoffgehaltes auf bis zu 0 Vol.% erfolgen, d.h. die Gasatmosphare kann am Ende der zweiten Sinterstufe lediglich aus Stickstoff bestehen. Auch in diesem Fall kann anstelle von Stickstoff jedoch auch ein anderes Inertgas eingesetzt werden.This first stage of the sintering process is followed by a second stage at temperatures between 900 ° C and 1150 ° C. This second sintering stage extends over a period of 5 minutes to 2 hours, with the heating rate between 10 to 40 K / min and the cooling rate between 5 to 40 K / min is selected. At the same time, during this second stage of the sintering process, the sintering is carried out in a gas atmosphere which initially consists of 50 vol. % up to 100 vol.% embroidery Fabric and 0 vol. % to 50 vol.% oxygen. The gas atmosphere preferably contains 5 vol. At the beginning of the second stage of the sintering process. % up to 30 vol. % Oxygen. In the course of the second stage of the sintering process, the oxygen content of the gas atmosphere is then gradually or continuously reduced. Depending on the application, the oxygen content can be reduced to up to 0% by volume, ie the gas atmosphere at the end of the second sintering stage can consist only of nitrogen. In this case, too, another inert gas can be used instead of nitrogen.
Nach dem Sintern folgt bei Bedarf dann eine thermische Nachbehandlung des erhaltenen weichmagnetischen Verbundwerkstof- fes, die sich über einen Zeitraum von 30 min bis 3 h erstreckt. Wahrend dieser thermischen Nachbehandlung wird der Sinterkorper bei Temperaturen von 600°C bis 800°C mit einer Gasatmosphare beaufschlagt, die zu 50 Vol.% bis 100 Vol . % aus Stickstoff und 0 Vol . % bis 50 Vol . % aus Sauerstoff be- steht. Bevorzugt weist die Gasatmosphare wahrend der thermischen Nachbehandlung einen Sauerstoffgehalt von 10 bis 30 Vol.% auf.After sintering, a thermal aftertreatment of the soft magnetic composite material is then carried out, if necessary, which extends over a period of 30 minutes to 3 hours. During this thermal aftertreatment, the sintered body is subjected to a gas atmosphere at temperatures of 600 ° C to 800 ° C, 50% by volume to 100% by volume. % of nitrogen and 0 vol. % up to 50 vol. % consists of oxygen. The gas atmosphere preferably has an oxygen content of 10 to 30% by volume during the thermal aftertreatment.
Diese thermische Nachbehandlung dient der Verbesserung der physikalischen Eigenschaften des erhaltenen gesinterten Ver- bundkorpers und kann somit in Abhängigkeit von den qualitativen Anforderungen an den Verbundwerkstoff und von den eingesetzten Ausgangskomponenten zur Kostenersparnis auch entfallen.This thermal aftertreatment serves to improve the physical properties of the sintered composite body obtained and, depending on the qualitative requirements for the composite material and the starting components used, can therefore also be omitted in order to save costs.
Im übrigen sei betont, daß das Entbindern der verdichteten Ausgangsmischung und das Sintern der verdichteten, entbinderten Ausgangsmischung zu dem Verbundwerkstoff innerhalb eines Arbeitsschrittes nacheinander erfolgen kann. Nach Abschluß des Sinterns kann der erhaltene weichmagnetische Verbundwerkstoff dann, sofern erforderlich, mechanisch nachbearbeitet werden.It should also be emphasized that the debinding of the compressed starting mixture and the sintering of the compressed, debindered starting mixture to form the composite material can take place in succession in one work step. After completion of the sintering, the soft magnetic composite material obtained can then, if necessary, be reworked mechanically.
Der schließlich erhaltene Verbundwerkstoff weist eine typische Sattigungspolarisation von etwa 1 Tesla bis 1,6 Tesla, insbesondere mehr als 1,5 Tesla, bei einem spezifischen elektrischen Widerstand von mehr als 2 μΩm auf. Außerdem ist er für den Einsatz in Magnetventilen unter typischen Be- dingungen uneingeschränkt treibstoff- und temperaturbeständig.The composite material finally obtained has a typical saturation polarization of approximately 1 Tesla to 1.6 Tesla, in particular more than 1.5 Tesla, with a specific electrical resistance of more than 2 μΩm. It is also fully fuel and temperature resistant for use in solenoid valves under typical conditions.
Ein weiteres Ausfuhrungsbeispiel der Erfindung sieht in leichter Abwandlung des vorstehenden Ausfuhrungsbeispiels vor, zunächst die erste ferromagnetische Ausgangskomponente 11 und die zweite Ausgangskomponente 12 in Form eines Ferrit-Pulvers, gegebenenfalls unter Zugabe von Silizium, Aluminium oder deren Oxide, miteinander zu vermischen, und diese Mischung dann zunächst, d.h. vor dem Verpressen bzw. Ver- dichten, einer Wärmebehandlung zu unterziehen.A further exemplary embodiment of the invention provides, in a slight modification of the above exemplary embodiment, to first mix the first ferromagnetic starting component 11 and the second starting component 12 in the form of a ferrite powder, optionally with the addition of silicon, aluminum or their oxides, and this mixture then first, ie to undergo heat treatment before pressing or compacting.
Diese Wärmebehandlung erfolgt bei 400°C bis 700°C für 15 min bis 45 min unter einer Gasatmosphare der Zusammensetzung 50 Vol.% bis 100 Vol . % Stickstoff und 0 Vol . % bis 50 Vol.% Sauerstoff. Bevorzugt weist die Gasatmosphare einen Anteil von 10 Vol.% bis 30 Vol.% Sauerstoff auf. Anstelle des Stickstoffes eignet sich auch ein anderes Inertgas.This heat treatment is carried out at 400 ° C to 700 ° C for 15 min to 45 min under a gas atmosphere of the composition 50 vol.% To 100 vol. % Nitrogen and 0 vol. % to 50 vol.% oxygen. The gas atmosphere preferably has a proportion of 10% by volume to 30% by volume of oxygen. Another inert gas is also suitable instead of nitrogen.
Erst nach dieser Wärmebehandlung wird dann der Ausgangsmi- schung das Microwachs entsprechend dem ersten Ausfuhrungsbeispiel zugesetzt und es folgt das uniaxiale Verpressen, Entbindern und Sintern völlig analog dem ersten Ausfuhrungsbeispiel . Abschließend sei betont, daß es prinzipiell auch möglich ist, die Wärmebehandlung der Ausgangsmischung vor dem Verdichten bzw. Verpressen gemäß dem zweiten Ausfuhrungsbeispiel auch in einer reinen Stickstoff- oder Inertgasatmo- sphare durchzufuhren. Gleiches gilt auch für die beiden Stufen des erläuterten Sinterprozesses. Die Zugabe von Sauerstoff zu der Gasatmosphare in der angegebenen Weise ist jedoch bevorzugt und fuhrt zu deutlich besseren Ergebnissen. Only after this heat treatment is the microwax added to the starting mixture in accordance with the first exemplary embodiment, and is followed by the uniaxial pressing, debinding and sintering completely analogous to the first exemplary embodiment. In conclusion, it should be emphasized that, in principle, it is also possible to carry out the heat treatment of the starting mixture in a pure nitrogen or inert gas atmosphere before compression or compression according to the second exemplary embodiment. The same applies to the two stages of the sintering process explained. However, the addition of oxygen to the gas atmosphere in the manner indicated is preferred and leads to significantly better results.

Claims

Patentansprüche claims
1. Gesinterter weichmagnetischer Verbundwerkstoff, insbesondere zur Verwendung in Magnetventilen, mit einer Ausgangsmischung, aus der sich nach dem Sintern der weichmagne- tische Verbundwerkstoff bildet, die eine ferromagnetische erste Ausgangskomponente (11) als Hauptbestandteil und eine ferritische zweite Ausgangskomponente (12) als Nebenbestandteil aufweist, dadurch gekennzeichnet, daß die zweite Ausgangs omponente (12) nach dem Sintern in dem Verbundwerk- stoff zumindest weitgehend als Korngrenzenphase vorliegt.1. Sintered soft magnetic composite material, in particular for use in solenoid valves, with an initial mixture from which, after sintering, the soft magnetic composite material is formed, which has a ferromagnetic first output component (11) as the main component and a ferritic second output component (12) as a secondary component , characterized in that the second starting component (12) after sintering is present in the composite material at least largely as a grain boundary phase.
2. Gesinterter weichmagnetischer Verbundwerkstoff nach Anspruch 1, dadurch gekennzeichnet, daß die erste Ausgangskomponente (11) eine pulverförmige Ausgangskomponete in Form eines Reineisenpulvers, eines phosphatierten Eisenpulvers, eines FeCr-Legierungspulvers, eines FeCo-Legierungspulvers oder einer Mischung dieser Pulver ist.2. Sintered soft magnetic composite material according to claim 1, characterized in that the first starting component (11) is a powdery starting component in the form of a pure iron powder, a phosphated iron powder, an FeCr alloy powder, an FeCo alloy powder or a mixture of these powders.
3. Gesinterter weichmagnetischer Verbundwerkstoff nach Anspruch 1, dadurch gekennzeichnet, daß die zweite Ausgangskomponente (12) ein Ferrit-Pulver, insbesondere ein weich- oder hartferritisches Pulver wie Strontium-Ferrit, Barium- Ferrit, MnZn-Ferrit oder NiZn-Ferrit oder ein oxidisches Ferrit-Pulver wie Fe203 ist. 3. Sintered soft magnetic composite material according to claim 1, characterized in that the second starting component (12) is a ferrite powder, in particular a soft or hard ferritic powder such as strontium ferrite, barium ferrite, MnZn ferrite or NiZn ferrite or an oxidic Ferrite powder such as Fe 2 0 3 is.
4. Gesinterter weichmagnetischer Verbundwerkstoff nach Anspruch 1, dadurch gekennzeichnet, daß die Ausgangsmischung ein Preßhilfsmittel, insbesondere ein Mikrowachs oder einen organischen Binder, enthalt.4. Sintered soft magnetic composite material according to claim 1, characterized in that the starting mixture contains a pressing aid, in particular a micro wax or an organic binder.
5. Gesinterter weichmagnetischer Verbundwerkstoff nach Anspruch 1, dadurch gekennzeichnet, daß die Ausgangsmischung weiterhin mindestens ein weiteres Ausgangspulver, ausgewählt aus der Gruppe Siliziumpulver, Aluminiumpulver oder deren Oxide enthalt.5. Sintered soft magnetic composite material according to claim 1, characterized in that the starting mixture further contains at least one further starting powder selected from the group consisting of silicon powder, aluminum powder or their oxides.
6. Gesinterter weichmagnetischer Verbundwerkstoff nach Anspruch 1, dadurch gekennzeichnet, daß die mittlere Korngroße der Pulverteilchen der ersten pulverformigen Ausgangs- komponente (11) zwischen 10 μm und 200 μm, insbesondere zwischen 60 μm bis 200 μm, liegt, und daß die mittlere Korngroße der Pulverteilchen der zweiten Ausgangskomponente (12) unterhalb 20 μm, insbesondere unterhalb 10 μm liegt.6. Sintered soft magnetic composite material according to claim 1, characterized in that the average grain size of the powder particles of the first powdery starting component (11) is between 10 microns and 200 microns, in particular between 60 microns to 200 microns, and that the average grain size Powder particles of the second starting component (12) are below 20 μm, in particular below 10 μm.
7. Gesinterter weichmagnetischer Verbundwerkstoff nach Anspruch 5, dadurch gekennzeichnet, daß die mittlere Korngroße der Pulverteilchen des weiteren Ausgangspulvers unterhalb 50 μm liegt.7. Sintered soft magnetic composite material according to claim 5, characterized in that the average grain size of the powder particles of the further starting powder is below 50 microns.
8. Gesinterter weichmagnetischer Verbundwerkstoff nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die zumindest weitgehend durch die zweite Ausgangskomponente (12) gebildete Korngrenzenphase nach dem Sintern die Pulverteilchen der ersten Ausgangskomponente (11) zumindest bereichsweise umgibt.8. Sintered soft magnetic composite material according to at least one of the preceding claims, characterized in that the grain boundary phase at least largely formed by the second starting component (12) surrounds the powder particles of the first starting component (11) at least in regions after sintering.
9. Gesinterter weichmagnetischer Verbundwerkstoff nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Ausgangsmischung 75 bis 99 Gew.% der ersten pulverformigen Aυsgangskomponente (11), 1 bis 25 Gew.% der zweiten Ausgangskomponente (12), 0 bis 2,5 Gew.% des weiteren Ausgangspulvers und 0 bis 0,8 Gew.% des Preßhilfsmittels enthalt.9. Sintered soft magnetic composite material according to at least one of the preceding claims, characterized in that the starting mixture 75 to 99 wt.% Of contains the first powdery output component (11), 1 to 25% by weight of the second starting component (12), 0 to 2.5% by weight of the further starting powder and 0 to 0.8% by weight of the pressing aid.
10. Verfahren zur Herstellung eines gesinterten weichmagnetischen Verbundwerkstoffes, insbesondere eines weichmagnetischen Verbundwerkstoffes nach mindestens einem der vorangehenden Ansprüche, mit folgenden Verfahrensschritten: a) Bereitstellen einer Ausgangsmischung mit einer ferromagneti- schen ersten Ausgangskomponente (11) als Hauptbestandteil und einer ferritischen zweiten Ausgangskomponente (12) als Nebenbestandteil, b) Mischen der Ausgangsmischung, c) Verdichten der Ausgangsmischung in einer Matrize unter erhöhtem Druck, d) Entbindern der verdichteten Ausgangsmischung und e) Sintern der verdichteten Ausgangsmischung zu dem Verbundwerkstoff .10. A method for producing a sintered soft magnetic composite material, in particular a soft magnetic composite material according to at least one of the preceding claims, with the following method steps: a) providing an initial mixture with a ferromagnetic first starting component (11) as the main component and a ferritic second starting component (12) as a minor component, b) mixing the starting mixture, c) compacting the starting mixture in a die under increased pressure, d) debinding the compressed starting mixture and e) sintering the compressed starting mixture to form the composite material.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß der Ausgangsmischung vor dem Mischen gemäß Verfahrensschritt b) ein Preßhilfsmittel, insbesondere ein Microwachs, zugesetzt wird.11. The method according to claim 10, characterized in that a pressing aid, in particular a micro wax, is added to the starting mixture before mixing in step b).
12. Verfahren nach Anspruch 10 oder 11, dadurch gekenn- zeichnet, daß nach dem Sintern gemäß Verfahrensschritt e) eine thermische Nachbehandlung des gesinterten Verbundwerkstoffes, insbesondere bei einer Temperatur von 600°C bis 800°C über eine Zeitdauer von 20 min bis 4 h, erfolgt.12. The method according to claim 10 or 11, characterized in that after the sintering in step e), a thermal aftertreatment of the sintered composite material, in particular at a temperature of 600 ° C to 800 ° C over a period of 20 minutes to 4 hours , he follows.
13. Verfahren nach mindestens einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß vor dem Verdichten gemäß Verfahrensschritt c) eine Wärmebehandlung der Ausgangsmischung über eine Zeitdauer von 10 Minuten bis 60 Minuten bei einer Temperatur von 400°C bis 700°C erfolgt. 13. The method according to at least one of claims 10 to 12, characterized in that before the compression according to process step c), a heat treatment of the starting mixture over a period of 10 minutes to 60 minutes at a temperature of 400 ° C to 700 ° C.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß die Wärmebehandlung in einer Inertgasatmosphare, insbesondere einer Stickstoffatmosphare, oder einer sauerstoff- haltigen Gasatmosphare, insbesondere einem Sauerstoff- Stickstoff-Gemisch mit 5 bis 30 Vol . % Sauerstoff, erfolgt.14. The method according to claim 13, characterized in that the heat treatment in an inert gas atmosphere, in particular a nitrogen atmosphere, or an oxygen-containing gas atmosphere, in particular an oxygen-nitrogen mixture with 5 to 30 vol. % Oxygen.
15. Verfahren nach mindestens einem der Ansprüche 10 bis15. The method according to at least one of claims 10 to
14, dadurch gekennzeichnet, daß das Verdichten gemäß Verfah- rensschritt c) durch uniaxiales Pressen bei einem Druck von14, characterized in that the compression according to process step c) by uniaxial pressing at a pressure of
500 MPa bis 750 MPa erfolgt.500 MPa to 750 MPa.
16. Verfahren nach mindestens einem der Ansprüche 10 bis16. The method according to at least one of claims 10 to
15, dadurch gekennzeichnet, daß das Entbindern gemäß Verfah- rensschritt d) bei einer Temperatur von 450°C bis 500°C über eine Zeitdauer von 20 Minuten bis 1 h in einer Inertgasatmosphare, insbesondere einer Stickstoffatmosphare, erfolgt.15, characterized in that the debinding according to process step d) is carried out at a temperature of 450 ° C to 500 ° C over a period of 20 minutes to 1 h in an inert gas atmosphere, in particular a nitrogen atmosphere.
17. Verfahren nach mindestens einem der Ansprüche 10 bis 16, dadurch gekennzeichnet, daß die thermische Nachbehandlung in einer Inertgasatmosphare, insbesondere einer Stickstoffatmosphare, oder einer sauerstoffhaltigen Gasatmosphare, insbesondere einem Sauerstoff-Stickstoff-Gemisch mit17. The method according to at least one of claims 10 to 16, characterized in that the thermal aftertreatment in an inert gas atmosphere, in particular a nitrogen atmosphere, or an oxygen-containing gas atmosphere, in particular an oxygen-nitrogen mixture
5 bis 30 Vol.% Sauerstoff, erfolgt.5 to 30 vol% oxygen.
18. Verfahren nach mindestens einem der Ansprüche 10 bis 17, dadurch gekennzeichnet, daß das Sintern gemäß Verfahrensschritt e) in einem zweistufigen Sinterprozeß erfolgt, wobei die erste Stufe des Sinterprozesses bei einer Tempera- tur von 500°C bis 700°C über eine Zeitdauer von 30 min bis 12 h in einer Inertgasatmosphare, insbesondere einer Stickstoffatmosphare, oder einer sauerstoffhaltigen Gasatmosphare, insbesondere einem Sauerstoff-Stickstoff-Gemisch mit 5 bis 30 Vol . % Sauerstoff, erfolgt, und wobei die zweite Stufe des Sinterprozesses bei einer Temperatur von 900°C bis 1150°C über eine Zeitdauer von 5 min bis 120 min erfolgt.18. The method according to at least one of claims 10 to 17, characterized in that the sintering according to method step e) takes place in a two-stage sintering process, the first stage of the sintering process at a temperature of 500 ° C to 700 ° C over a period of time from 30 min to 12 h in an inert gas atmosphere, in particular a nitrogen atmosphere, or an oxygen-containing gas atmosphere, in particular an oxygen-nitrogen mixture with 5 to 30 vol. % Oxygen, takes place, and being the second Stage of the sintering process at a temperature of 900 ° C to 1150 ° C over a period of 5 minutes to 120 minutes.
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß die Aufheizrate während der zweiten Stufe des Sinterprozesses 15 bis 40 K/min und die Abkühlrate 5 bis 40 K/min beträgt.19. The method according to claim 18, characterized in that the heating rate during the second stage of the sintering process is 15 to 40 K / min and the cooling rate is 5 to 40 K / min.
20 Verfahren nach Anspruch 18 dadurch gekennzeichnet, daß die zweite Stufe des Sinterprozesses in einer Inertgasatmosphare, insbesondere einer Stickstoffatmosphare, oder einer zumindest anfangs sauerstoffhaltigen Gasatmosphare erfolgt, deren Sauerstoffgehalt wahrend der Zeitdauer der zweiten Stufe des Sinterprozesses kontinuierlich oder schrittweise abnimmt. 20 The method according to claim 18, characterized in that the second stage of the sintering process takes place in an inert gas atmosphere, in particular a nitrogen atmosphere, or an at least initially oxygen-containing gas atmosphere, the oxygen content of which decreases continuously or stepwise during the period of the second stage of the sintering process.
EP00987036A 1999-12-14 2000-10-26 Weakly-magnetic sintered composite-material and a method for production thereof Withdrawn EP1166290A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19960095 1999-12-14
DE19960095A DE19960095A1 (en) 1999-12-14 1999-12-14 Sintered soft magnetic composite and method for its production
PCT/DE2000/003801 WO2001045116A1 (en) 1999-12-14 2000-10-26 Weakly-magnetic sintered composite-material and a method for production thereof

Publications (1)

Publication Number Publication Date
EP1166290A1 true EP1166290A1 (en) 2002-01-02

Family

ID=7932501

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00987036A Withdrawn EP1166290A1 (en) 1999-12-14 2000-10-26 Weakly-magnetic sintered composite-material and a method for production thereof

Country Status (6)

Country Link
US (1) US6726740B1 (en)
EP (1) EP1166290A1 (en)
JP (1) JP2003517195A (en)
KR (1) KR20020005586A (en)
DE (1) DE19960095A1 (en)
WO (1) WO2001045116A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7371271B2 (en) * 2001-04-02 2008-05-13 Mitsubishi Materials Pmg Corporation Composite soft magnetic sintered material having high density and high magnetic permeability and method for preparation thereof
DE10225154B4 (en) * 2002-06-06 2012-06-06 Robert Bosch Gmbh Soft magnetic powder composite, process for its preparation and its use
JP4265358B2 (en) * 2003-10-03 2009-05-20 パナソニック株式会社 Manufacturing method of composite sintered magnetic material
JP4534523B2 (en) * 2004-02-25 2010-09-01 パナソニック株式会社 Method for producing composite sintered magnetic material
US20070036669A1 (en) * 2004-09-03 2007-02-15 Haruhisa Toyoda Soft magnetic material and method for producing the same
KR100898489B1 (en) * 2007-06-22 2009-05-19 주식회사 대우일렉트로닉스 Stator of a motor, method and apparatus for manufacturing thereof
KR100897160B1 (en) * 2007-06-22 2009-05-14 주식회사 대우일렉트로닉스 Rotor of a motor, method and apparatus for manufacturing thereof
EP2380685A1 (en) * 2009-01-22 2011-10-26 Sumitomo Electric Industries, Ltd. Process for producing metallurgical powder, process for producing powder magnetic core, powder magnetic core, and coil component
TWI407462B (en) * 2009-05-15 2013-09-01 Cyntec Co Ltd Inductor and manufacturing method thereof
DE102011101264B4 (en) * 2011-05-11 2022-05-19 Air Liquide Deutschland Gmbh Process for the heat treatment of pressed molded parts
JP6115057B2 (en) * 2012-09-18 2017-04-19 Tdk株式会社 Coil parts
CZ20131026A3 (en) * 2013-12-18 2015-02-04 Vysoké Učení Technické V Brně Magnetorheologic valve
JP6777041B2 (en) 2017-08-02 2020-10-28 株式会社デンソー Powder for dust core and powder magnetic core

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR984544A (en) * 1949-02-11 1951-07-06 Telecommunications Sa Compressed magnetic powder core
GB805710A (en) * 1955-05-31 1958-12-10 Siemens Ag Improvements in or relating to magnetically soft sintered bodies
US2873512A (en) * 1955-10-13 1959-02-17 Sprague Electric Co Ferro magnetic core materials and methods of producing same
US3502584A (en) * 1966-03-31 1970-03-24 Peter A Denes Magnetic composite materials
JPS5391397A (en) * 1977-01-21 1978-08-11 Hitachi Ltd Material with high permeability
DE2812445C2 (en) * 1978-03-22 1983-10-13 Robert Bosch Gmbh, 7000 Stuttgart Process for the production of molding compounds with soft magnetic properties
SE8201678L (en) * 1982-03-17 1983-09-18 Asea Ab SET TO MAKE FORMS OF SOFT MAGNETIC MATERIAL
JPS6413705A (en) * 1987-07-08 1989-01-18 Matsushita Electric Ind Co Ltd Compound magnetic material of high flux density
JPH0647684B2 (en) * 1989-01-20 1994-06-22 川崎製鉄株式会社 Degreasing method for injection molded products
EP0401835B1 (en) * 1989-06-09 1997-08-13 Matsushita Electric Industrial Co., Ltd. A magnetic material
EP0406580B1 (en) 1989-06-09 1996-09-04 Matsushita Electric Industrial Co., Ltd. A composite material and a method for producing the same
JPH04226003A (en) * 1990-05-09 1992-08-14 Tdk Corp Composite soft magnetic material and coated particles for composite soft magnetic material
JPH069273A (en) * 1990-12-25 1994-01-18 Nkk Corp High density sintered product of iron nitride
DE69210954T2 (en) * 1991-08-19 1997-01-16 Tdk Corp Process for producing a soft magnetic composite material and soft magnetic composite material
JPH05109520A (en) * 1991-08-19 1993-04-30 Tdk Corp Composite soft magnetic material
US6136265A (en) * 1999-08-09 2000-10-24 Delphi Technologies Inc. Powder metallurgy method and articles formed thereby

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0145116A1 *

Also Published As

Publication number Publication date
KR20020005586A (en) 2002-01-17
JP2003517195A (en) 2003-05-20
WO2001045116A1 (en) 2001-06-21
DE19960095A1 (en) 2001-07-05
US6726740B1 (en) 2004-04-27

Similar Documents

Publication Publication Date Title
DE10225154B4 (en) Soft magnetic powder composite, process for its preparation and its use
DE69821278T2 (en) Magnetic core and manufacturing process
WO2001045116A1 (en) Weakly-magnetic sintered composite-material and a method for production thereof
DE102005036858A1 (en) Process for producing a soft magnetic material
DE112013003109T5 (en) Sintered magnet
DE10031923A1 (en) Soft magnetic material with a heterogeneous structure and process for its production
EP0470475B1 (en) Method for the preparation of a body from anisotropic magnetic material based on the Sm-Fe-N substance system
DE10255604B4 (en) A method of making an anisotropic magnetic powder and a bonded anisotropic magnet therefrom
DE102006032520B4 (en) Method for producing magnetic cores, magnetic core and inductive component with a magnetic core
EP1133777A1 (en) Soft magnetic material and method for producing same
DE2122977A1 (en) Sintered iron - silicon switching magnet - having superior mech strength - prepn
DE19636284C2 (en) SE-Fe-B permanent magnet and process for its manufacture
DE19636285C2 (en) Process for producing an SE-Fe-B permanent magnet
WO2010066529A1 (en) Pre-product for the production of sintered metallic components, a method for producing the pre-product and the production of components
DE102012211053A1 (en) Soft magnetic component and method for producing such
EP1148520B1 (en) Soft magnetic material and its production process
DE19751367C2 (en) Process for producing a hard magnetic powder consisting of a samarium-cobalt-based alloy
DE3135661C2 (en)
WO2017080935A1 (en) Method for the production of a magnetic material, and electric machine
DE973358C (en) Process for improving the magnetic properties of ferrites
DE102015204617A1 (en) Anisotropic high-performance permanent magnet with optimized nanostructural structure and method for its production
DE19636283A1 (en) Process for manufacturing a SE-FE-B permanent magnet
DE112020001199T5 (en) R-T-B based permanent magnet and method of making the same
EP0499600A1 (en) Sintered permanent magnet or permanent magnetic material and process for production thereof
CH315027A (en) Ferrite core and process for its manufacture

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20011221

17Q First examination report despatched

Effective date: 20040318

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050310