EP1116862A2 - Verfahren zur Erzeugung von Dampf und eine Dampferzeugeranlage - Google Patents

Verfahren zur Erzeugung von Dampf und eine Dampferzeugeranlage Download PDF

Info

Publication number
EP1116862A2
EP1116862A2 EP00126349A EP00126349A EP1116862A2 EP 1116862 A2 EP1116862 A2 EP 1116862A2 EP 00126349 A EP00126349 A EP 00126349A EP 00126349 A EP00126349 A EP 00126349A EP 1116862 A2 EP1116862 A2 EP 1116862A2
Authority
EP
European Patent Office
Prior art keywords
steam generator
feed water
waste heat
steam
heat boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00126349A
Other languages
English (en)
French (fr)
Other versions
EP1116862B1 (de
EP1116862A3 (de
Inventor
Bernd Gericke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions SE
Original Assignee
MAN Turbomaschinen AG GHH Borsig
MAN Turbomaschinen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Turbomaschinen AG GHH Borsig, MAN Turbomaschinen AG filed Critical MAN Turbomaschinen AG GHH Borsig
Publication of EP1116862A2 publication Critical patent/EP1116862A2/de
Publication of EP1116862A3 publication Critical patent/EP1116862A3/de
Application granted granted Critical
Publication of EP1116862B1 publication Critical patent/EP1116862B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/183Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines in combination with metallurgical converter installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/185Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters using waste heat from outside the plant

Definitions

  • the invention relates to a method for generating steam in a steam generator system with a gas fired with blast furnace gas Steam generator and a steam generator system.
  • the invention is based on the object of the generic type Developing processes in such a way that they are based on support firing with noble fuels in the combustion of the blast furnace gas in Continuous operation can be dispensed with.
  • Waste heat is generated in sinter cooling systems in metallurgical plants, in which at the same time top gas as waste gas from the blast furnace process is produced. From the sintered fine ores to the cooling air emitted heat is over according to the invention Heat exchanger surfaces in the waste heat boiler by Heat transfer system in the high pressure system of the steam generator coupled. So that waste heat with different and especially low temperature level and waste gas with fluctuating and in particular low calorific value for generation exploited by steam.
  • the heat utilization in the area of the sinter cooling systems is designed due to the special temperature and Cooling air quantity ratios are particularly complex.
  • Cooling air is extracted from heat, making heat sources different Temperature levels arise.
  • a special waste heat boiler concept is required.
  • the most interesting part of the waste heat from the Sinter cooling system only makes up a small percentage of the total amount of cooling air. While this is proportionate low cooling air mass flow thanks to its higher gas temperature lends itself particularly to high feed water preheating the larger cooling air mass flow with low temperature remaining feed water preheating used.
  • the temperature of the feed water is checked before entering the Heat exchanger surfaces of the waste heat boiler on the physical lowest possible value lowered. It is advantageous if the feed water through the heat exchange with the recycled steam turbine condensate is cooled. The on this way, lowered temperature of the feed water also allows extract heat from the low-temperature sintered cooling air.
  • the heat transfer system consists of two external ones additional preheaters, some of which is the waste heat Add top gas to all combustion air and fuel. This increases the calorific value of the blast furnace gas to such an extent that in normal operation no support fire over high calorific Noble fuels like natural gas is necessary.
  • FIG. 1 An embodiment of the invention is in the drawing shown and is explained in more detail below.
  • the drawing shows a process scheme for generating steam.
  • a steam generator 1 which works according to the natural circulation principle contains a combustion chamber 2, the one from top to bottom flowed flue gas duct 3 is connected. By doing Flue gas duct 3 are secondary heating surfaces like superheater 4 and the convection evaporator 4a. Instead of one Maturum steam generator can also be a forced circulation or a Forced-flow steam generators are used. It can also another than the flue gas duct shown, e.g. B. according to Art a tower boiler can be used.
  • the steam generator 1 is fired with blast furnace gas.
  • the combustion chamber 2 is shown on the front side with only schematically Provide burners 5.
  • the burners 5 have an air line 6 for supplying combustion air and with a top gas line 7 connected to the supply of blast furnace gas.
  • This emergency fuel is fed to the burners 5 via a gas line 8.
  • a steam line 9 is connected to the superheater 4 of the steam generator 1 connected, which is guided to a steam turbine 10.
  • the Steam turbine 10 has a generator 11 for generating electricity coupled.
  • the steam turbine 10 can be regulated Withdrawal 12 process steam can be extracted into a steam network is fed.
  • the outlet of the steam turbine 10 is connected to an exhaust steam line 13 connected, which is led to a capacitor 14.
  • Condenser 14 the exhaust steam is condensed, and that Steam turbine condensate is in via a condensate line 15 a feed pump 16 is arranged to a degasser 17 promoted.
  • the degasser 17 is operated with bleed steam is removed from the steam turbine 10 via a bleed line 18.
  • a feed water line 19 is connected to the degasser 17 connected in which a feed water pump 20 is arranged, which the pressure of the feed water to the process pressure of the Steam generator 1 increased.
  • the feed water line 19 is between the degasser 17 and the feed water pump 20 Water / water heat exchanger 21 arranged, the at the same time the condensate line 15 is connected.
  • the feed water line 19 is connected in parallel Heat exchanger surfaces 22 performed in a waste heat boiler 23rd are arranged. Downstream from the heat exchanger surfaces 22 is the feed water line 19 with an external air preheater 24, to which the air line 6 is connected, and in parallel for this purpose with a gas preheater 25 to which the top gas line 7 connected, connected. Following the air preheater 24 and the gas preheater 25 is the feed water line 19 a feed water preheater 26 led by the flue gas is flowed through, which leaves the steam generator 1. This Feed water preheater 26 is on the water side with the water-steam cycle of the steam generator 1 connected.
  • the waste heat boiler 23 is a sintering system for sintering Subsequent fine ores on a sintered belt.
  • the Sintering process becomes air that rests on the sintering belt Layer of the sintered mixture or the sinter supplied. Through the Air becomes the sintering process through the combustion of the Maintain sintered mixture of mixed fine coal.
  • To Sintering is carried out by additional fans with cooling air pressed or sucked the sinter. This way it falls lengthways of the sintered cooling belt SK1 in the gas flue 30 with exhaust air different temperatures and in different amounts or, as shown in the throttle cable 31, cooling air with a corresponding mixing temperature on the sintered cooling belt SK2.
  • the waste heat boiler 23 is divided into two and has two throttle cables 30, 31.
  • the heat exchanger surfaces 22 are distributed to these two throttle cables 30, 31.
  • the throttle cables 30, 31 des Waste heat boilers 23 are with connecting pieces for the different exhaust gas flows 27, 28, 29 provided.
  • Both sinter cooling systems SK1 and SK2 can be used to the heat extraction described above also in series be switched.
  • the feed water is before entering the Heat exchanger surfaces 22 of the waste heat boiler 23 on the physically lowest possible temperature cooled. Consists due to the composition of the waste heat boiler 23 exhaust gases flowing through there is no risk that a Below the dew point, the corrosion damage to the Heat exchanger surfaces causes, as described, that Feed water through before entering the heat exchanger surfaces Steam turbine condensate cooled. This usually happens Waste heat boilers in which exhaust air from sintered cooling belts is cooled becomes. However, corrosion damage must be expected, so the temperature of the feed water must be before entering the Heat exchanger surfaces 22 of the waste heat boiler 23 approximately Temperature of the degasser 17 correspond.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Air Supply (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

In einem Verfahren zur Erzeugung von Dampf in einer Dampferzeugeranlage mit einem mit Gichtgas gefeuerten Dampferzeuger (1) wird das entgaste Speisewasser des Dampferzeugers (1) in einem externen Wasser/Wasser-Wärmetauscher (21) im Wärmetausch mit Dampfturbinenkondensat gekühlt. Das gekühlte und anschließend hochgespannte Speisewasser wird in einem von dem Dampferzeuger (1) unabhängigen Abhitzekessel (23) im Wärmetausch mit Abluft vorgewärmt. Das dem Dampferzeuger (1) zugeführte Gichtgas und die dem Dampferzeuger (1) zugeführte Verbrennungsluft werden im Wärmetausch mit dem vorgewärmten Speisewasser in außen liegenden Vorwärmern (24, 25) vorgewärmt. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur Erzeugung von Dampf in einer Dampferzeugeranlage mit einem mit Gichtgas gefeuerten Dampferzeuger und eine Dampferzeugeranlage.
In Hüttenwerken fallen prozessbedingte Abfallgase wie Gicht-, Koksofen- und Konvertergas an. Es besteht Interesse daran, diese Abfallgase in effizienter Weise zur Stromerzeugung auszunutzen. Wegen der erhöhten Investitionen und wegen des technischen Risikos, diese Abfallgase in Gasturbinen für Kombiprozessen einzusetzen, werden konventionelle Lösungen mit Hochdruckdampferzeugern angestrebt. Bei den prozessbedingt starken Heizwertschwankungen, z. B. des Gichtgases muss bei der Verstromung zur Stabilisierung der Verbrennung im Dampferzeuger Erdgas und Heizöl als Stützfeuer eingesetzt werden.
Der Erfindung liegt die Aufgabe zu Grunde, das gattungsgemäße Verfahren derart weiterzuentwickeln, dass auf eine Stützfeuerung mit Edelbrennstoffen bei der Verbrennung des Gichtgases im Dauerbetrieb verzichtet werden kann.
Diese Aufgabe wird bei einem gattungsgemäßen Verfahren erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruches 1 gelöst. Eine Dampferzeugeranlage zur Durchführung des Verfahrens ist Gegenstand des Anspruches 5. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
Durch die Einkopplung von Abwärme in den Verbrennungsprozess kann auch bei abgesenkten Heizwerten im Gichtgas auf Edelbrennstoffe als Stützfeuer verzichtet werden. Derartige Abwärme fällt in Sinterkühlanlagen von Hüttenwerken an, in denen zeitgleich auch Gichtgas als Abfallgas aus dem Hochofenprozess erzeugt wird. Die von den gesinterten Feinerzen an die Kühlluft abgegebene Wärme wird gemäß der Erfindung über Wärmetauscherflächen im Abhitzekessel durch ein Wärmeverschiebesystem in das Hochdrucksystem des Dampferzeugers eingekoppelt. Damit wird Abfallwärme mit unterschiedlichem und insbesondere niedrigem Temperaturniveau und Abfallgas mit schwankendem und insbesondere geringem Heizwert zur Erzeugung von Dampf ausgenutzt.
Die Wärmeausnutzung im Bereich der Sinterkühlanlagen gestaltet sich auf Grund der besonderen Temperatur- und Kühlluftmengenverhältnisse besonders vielschichtig. Längs des Sinterbandes wird an verschiedenen Stellen dem Sintergut über Kühlluft Wärme entzogen, wodurch Wärmequellen unterschiedlichen Temperturniveaus entstehen. Um einen entsprechend hohen Anteil des unterschiedlichen Wärmepotentials sinnvoll ausnutzen zu können, bedarf es eines besonderen Abhitzekesselkonzeptes. Der exergetisch interessanteste Teil der Abwärmemenge aus der Sinterkühlanlage macht nur einen geringen Prozentsatz der gesamten Kühlluftmenge aus. Während dieser verhältnismäßig geringe Kühlluftmassenstrom dank seiner höheren Gastemperatur sich besonders zur hohen Speisewasservorwärmung anbietet, wird der größere Kühlluftmassenstrom mit niedriger Temperatur zur restlichen Speisewasservorwärmung genutzt. Um zusätzliche Temperatursträhnen auf der Kühlluftseite zu vermeiden, werden beide Kühlluftströme erst in der Mitte des zweigeteilten Abhitzekessels bei nahezu gleichem Temperaturniveau zusammengeführt.
Dabei ermöglicht die Absenkung der Temperatur des entgasten Speisewassers durch den Wärmetausch mit dem zurückgeführten Dampfturbinenkondensat die Einkopplung von Abwärme von niedrigem Temperaturniveau.
Die Temperatur des Speisewassers wird vor dem Eintritt in die Wärmetauscherflächen des Abhitzekessels auf den physikalisch niedrigstmöglichen Wert abgesenkt. Vorteilhaft ist es dabei, wenn das Speisewasser durch den Wärmetausch mit dem zurückgeführten Dampfturbinenkondensat gekühlt wird. Die auf diese Weise abgesenkte Temperatur des Speisewassers erlaubt auch aus der niedertemperaturigen Sinterkühlluft Wärme auszukoppeln.
Das Wärmeverschiebesystem besteht aus zwei außen liegenden zusätzlichen Vorwärmern, welche die Abwärme teilweise der gesamten Verbrennungsluft und dem Brennstoff Gichtgas zuführen. Hierdurch wird der Heizwert des Gichtgases so weit erhöht, dass im Normalbetrieb kein Stützfeuer über hochkalorige Edelbrennstoffe wie Erdgas notwendig ist.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im Folgenden näher erläutert. Die Zeichnung zeigt ein Verfahrensschema zur Erzeugung von Dampf.
Ein nach dem Naturumlaufprinzip arbeitender Dampferzeuger 1 enthält eine Brennkammer 2, der ein von oben nach unten durchströmter Rauchgaszug 3 nachgeschaltet ist. In dem Rauchgaszug 3 sind Nachschaltheizflächen wie der Überhitzer 4 und der Konvektionsverdampfer 4a angeordnet. Anstelle eines Maturumlaufdampferzeugers kann auch ein Zwangsumlauf- oder ein Zwangsdurchlaufdampferzeuger eingesetzt werden. Es kann auch eine andere als die dargestellte Rauchgasführung, z. B. nach Art eines Turmkessels verwendet werden.
Der Dampferzeuger 1 wird mit Gichtgas befeuert. Die Brennkammer 2 ist an der Stirnseite mit nur schematisch dargestellten Brennern 5 versehen. Die Brenner 5 sind mit einer Luftleitung 6 zur Zuführung von Verbrennungsluft und mit einer Gichtgasleitung 7 zur Zuführung von Gichtgas verbunden. Bei Störfällen und bei Ausfall des später beschriebenen Abhitzekessels 23 kann zur Absicherung der Dampfleistung Koksofengas oder Erdgas als Notfallbrennstoff eingesetzt werden. Dieser Notfallbrennstoff wird den Brennern 5 über eine Gasleitung 8 zugeführt.
An den Überhitzer 4 des Dampferzeugers 1 ist eine Dampfleitung 9 angeschlossen, die zu einer Dampfturbine 10 geführt ist. Die Dampfturbine 10 ist mit einem Generator 11 zur Stromerzeugung gekopppelt. Der Dampfturbine 10 kann über eine geregelte Entnahme 12 Prozessdampf entnommen werden, der in ein Dampfnetz eingespeist wird.
Der Ausgang der Dampfturbine 10 ist mit einer Abdampfleitung 13 verbunden, die zu einem Kondensator 14 geführt ist. In dem Kondensator 14 wird der Abdampf kondensiert, und das Dampfturbinenkondensat wird über eine Kondensatleitung 15, in der eine Förderpumpe 16 angeordnet ist, zu einem Entgaser 17 gefördert. Der Entgaser 17 wird mit Anzapfdampf betrieben, der über eine Anzapfleitung 18 der Dampfturbine 10 entnommen wird.
An den Entgaser 17 ist eine Speisewasserleitung 19 angeschlossen, in der eine Speisewasserpumpe 20 angeordnet ist, die den Druck des Speisewassers auf den Prozessdruck des Dampferzeugers 1 erhöht. In der Speisewasserleitung 19 ist zwischen dem Entgaser 17 und der Speisewasserpumpe 20 ein Wasser/Wasser-Wärmetauscher 21 angeordnet, der gleichzeitig an die Kondensatleitung 15 angeschlossen ist.
Die Speisewasserleitung 19 ist zu parallel geschalteten Wärmetauscherflächen 22 geführt, die in einem Abhitzekessel 23 angeordnet sind. Stromabwärts von den Wärmetauscherflächen 22 ist die Speisewasserleitung 19 mit einem externen Luftvorwärmer 24, an den die Luftleitung 6 angeschlossen ist, und parallel dazu mit einem Gasvorwärmer 25, an den die Gichtgasleitung 7 angeschlossen ist, verbunden. Im Anschluss an den Luftvorwärmer 24 und den Gasvorwärmer 25 ist die Speisewasserleitung 19 zu einem Speisewasservorwärmer 26 geführt, der von dem Rauchgas durchströmt ist, das den Dampferzeuger 1 verlässt. Dieser Speisewasservorwärmer 26 ist wasserseitig mit dem Wasser-Dampf-Kreislauf des Dampferzeugers 1 verbunden.
Der Abhitzekessel 23 ist einer Sinteranlage zur Sinterung von Feinerzen auf einem Sinterband nachgeschaltet. Während des Sinterprozesses wird Luft der auf dem Sinterband ruhenden Schicht der Sintermischung bzw. des Sinters zugeführt. Durch die Luft wird der Sinterprozess durch die Verbrennung der der Sintermischung beigemischten Feinkohle aufrechterhalten. Nach erfolgter Sinterung wird über zusätzliche Gebläse Kühlluft durch den Sinter gedrückt oder gesaugt. Auf diese Weise fällt längs des Sinterkühlbandes SK1 im Gaszug 30 Abluft mit unterschiedlichen Temperaturen und in unterschiedlichen Mengen oder aber, wie im Gaszug 31 dargestellt, Kühlluft mit einer entsprechenden Mischtemperatur beim Sinterkühlbandes SK2 an. Um diese verschiedenen Abluftströme 27, 28, 29 in dem Abhitzekessel 23 ausnutzen zu können, ist der Abhitzekessel 23 zweigeteilt und weist zwei Gaszüge 30, 31 auf. Die Wärmetauscherflächen 22 sind auf diese beiden Gaszüge 30, 31 verteilt. Die Gaszüge 30, 31 des Abhitzekessels 23 sind mit Anschlussstutzen für die unterschiedlichen Abgasströme 27, 28, 29 versehen. Der Abgasstrom 29, der eine niedrigere Temperatur aufweist als der Abgasstrom 28 wird in den Abhitzekessel 23 an einer Stelle eingespeist, an der der Abgasstrom 28 durch Abkühlung eine Temperatur angenommen hat, die etwa der des Abgasstromes 29 entspricht. Beide Sinterkühlanlagen SK1 und SK2 können in Bezug auf die oben beschriebene Wärmeauskopplung auch in Reihe geschaltet werden.
In dem Wasser/Wasser-Wärmetauscher 21 wird das entgaste Speisewasser aus dem Entgaser 17 im Wärmetausch mit dem Kondensat aus dem Kondensator 14 soweit wie möglich abgekühlt. Durch die Speisewasserpumpe 20 wird der Druck des gekühlten Speisewassers auf den Prozessdruck des Dampferzeugers 1 gebracht. In dem Abhitzekessel 23 wird die Temperatur des gekühlten und hochgespannten Speisewassers entsprechend erhöht. Mit dieser Temperatur tritt das Speisewasser in den Luftvorwärmer 24 und den Gasvorwärmer 25 ein, wodurch die Verbrennungsluft und das Gichtgas jeweils höchstmöglich vorgewärmt werden. Bei Eintritt in den Speisewasservorwärmer 26 weist das Speisewasser dann noch eine Temperatur von wenigen Kelvin oberhalb der Temperatur im Entgaser 17 auf. Die Werte können je nach den Gegebenheiten an den Sinterkühlanlagen SK1, SK2 und je nach den vorliegenden Dampfparametern stark variieren.
Das Speisewasser wird vor dem Eintritt in die Wärmetauscherflächen 22 des Abhitzekessels 23 auf die physikalisch niedrigstmögliche Temperatur abgekühlt. Besteht aufgrund der Zusammensetzung der den Abhitzekessel 23 durchströmenden Abgase nicht die Gefahr, dass eine Taupunktunterschreitung auftritt, die Korrosionsschäden an den Wärmetauscherflächen verursacht, so wird, wie beschrieben, das Speisewasser vor dem Eintritt in die Wärmetauscherflächen durch Dampfturbinenkondensat gekühlt. Das trifft normalerweise auf Abhitzekessel zu, in denen Abluft aus Sinterkühlbändern gekühlt wird. Muss jedoch mit Korrosionsschäden gerechnet werden, so muss die Temperatur des Speisewassers vor dem Eintritt in die Wärmetauscherflächen 22 des Abhitzekessels 23 etwa der Temperatur des Entgasers 17 entsprechen. In diesem Fall wird abweichend von der Zeichnung der Wasser/Wasser-Wärmetauscher 21 in die Speisewasserleitung 19 stromaufwärts von dem Luftvorwärmer 24, und dem Gichtgasvorwärmer 25 und stromabwärts von dem Speisewasservorwärmer 26 verlegt. Dabei wird unter Absenkung der Speisewassertemperatur für den Speisewasservorwärmer 26 das Dampfturbinenkondensat vor dem Eintritt in dem Entgaser 17 vorgewärmt.

Claims (8)

  1. Verfahren zur Erzeugung von Dampf in einer Dampferzeugeranlage mit einem mit Gichtgas gefeuerten Dampferzeuger (1), dadurch gekennzeichnet, dass das entgaste und anschließend hochgespannte Speisewasser des Dampferzeugers (1) in einem von dem Dampferzeuger (1) unabhängigen Abhitzekessel (23) im Wärmetausch mit Abluft vorgewärmt wird und dass das dem Dampferzeuger (1) zugeführte Gichtgas und die dem Dampferzeuger (1) zugeführte Verbrennungsluft im Wärmetausch mit dem vorgewärmten Speisewasser in außen liegenden Vorwärmern (24, 25) vorgewärmt werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das entgaste Speisewasser in einem externen Wasser/Wasser-Wärmetauscher (21) im Wärmetausch mit Dampfturbinenkondensat gekühlt wird, dass der Druck des entgasten Speisewassers erhöht und dass das gekühlte und hochgespannte Speisewasser dem Ahitzekessel zugeführt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Abhitzekessel (23) einer Sinteranlage zur Sinterung von Feinerzen nachgeschaltet ist und dass die in der Sinterkühlanlage mit unterschiedlichen Temperaturen anfallenden Abluftströme (27, 28, 29) entsprechend ihrem jeweiligen Temperaturniveau getrennt voneinander in den Abhitzekessel (23) eingeführt werden.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Speisewasser vor dem Eintritt in den Abhitzekessel (23) auf die physikalisch niedrigstmögliche Temperatur gekühlt wird.
  5. Dampferzeugeranlage zur Durchführung des Verfahrens nach den Ansprüchen 1 bis 4, wobei der Dampferzeuger (1) der Dampferzeugeranlage eine mit Gichtgas befeuerte Brennkammer (2) und Nachschaltheizflächen aufweist, denen eine Dampfturbine (10), ein Kondensator (14) und ein Entgaser (17) nachgeschaltet sind und wobei an den Entgaser (17) eine Speisewasserleitung (19) angeschlossen ist, in der eine Speisewasserpumpe (20) zur Druckerhöhung angeordnet ist, dadurch gekennzeichnet, dass die Speisewasserleitung (19) zu Wärmetauscherflächen (22) geführt ist, die innerhalb eines von dem Dampferzeuger (1) unabhängigen Abhitzekessels (23) angeordnet sind und dass die Wärmetauscherflächen (22) des Abhitzekessels (23) speisewasserseitig mit einem Vorwärmer (24) zur Vorwärmung von Verbrennungsluft und mit einem Vorwärmer (25) zur Vorwärmung von Gichtgas verbunden sind.
  6. Dampferzeugeranlage nach Anspruch 5, dadurch gekennzeichnet, dass in der Speisewasserleitung (19) zwischen dem Entgaser (17) und der Speisewasserpumpe (20) ein Wasser/Wasser-Wärmetauscher (21) angeordnet ist, der an die Kondensatleitung (15) zwischen dem Kondensator (14) und dem Entgaser (17) angeschlossen ist.
  7. Dampferzeugeranlage nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass der Abhitzekessel (23) einer Sinteranlage zur Sinterung von Feinerzen nachgeschaltet ist.
  8. Dampferzeugeranlage nach Anspruch 7, dadurch gekennzeichnet, dass der Abhitzekessel (23) zweigeteilt und mit mehreren Anschlüssen für die Zufuhr von unterschiedlichen Abluftströmen (27, 28, 29) versehen ist.
EP00126349A 2000-01-15 2000-12-02 Verfahren zur Erzeugung von Dampf und eine Dampferzeugeranlage Expired - Lifetime EP1116862B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10001512 2000-01-15
DE10001512A DE10001512A1 (de) 2000-01-15 2000-01-15 Verfahren zur Erzeugung von Dampf und eine Dampferzeugeranlage

Publications (3)

Publication Number Publication Date
EP1116862A2 true EP1116862A2 (de) 2001-07-18
EP1116862A3 EP1116862A3 (de) 2002-09-25
EP1116862B1 EP1116862B1 (de) 2005-02-09

Family

ID=7627638

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00126349A Expired - Lifetime EP1116862B1 (de) 2000-01-15 2000-12-02 Verfahren zur Erzeugung von Dampf und eine Dampferzeugeranlage

Country Status (4)

Country Link
EP (1) EP1116862B1 (de)
AT (1) ATE288997T1 (de)
DE (2) DE10001512A1 (de)
ES (1) ES2235747T3 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9604864B2 (en) 2013-03-12 2017-03-28 Ingenica Ingenierie Industrielle Steam generation method and method for recovering crude oil by steam-assisted gravity drainage (SAGD) including said steam generation method
US10054308B2 (en) 2014-09-11 2018-08-21 Ingenica Ingenierie Industrielle Method for generating steam from raw water, in particular from blow down water coming from a steam generator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101294502B (zh) * 2007-04-23 2010-12-08 张庆玉 多功能真空火力水力双发电和提水调水站

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4327476A1 (de) * 1993-08-16 1995-02-23 Steinmueller Gmbh L & C Verfahren zum Betrieb eines mit fossilen Brennstoffen befeuerten Dampferzeugers und Dampferzeugungsanlage zur Durchführung des Verfahrens
DE29608816U1 (de) * 1996-05-15 1996-08-01 Deutsche Babcock Babcock Lentjes Kraftwerkstechnik GmbH Standort Berlin, 10407 Berlin Anordnung zur Nutzung der Abwärme von Zementklinkerlinien
DE19645322A1 (de) * 1996-11-04 1998-05-07 Asea Brown Boveri Kombinierte Kraftwerksanlage mit einem Zwangsdurchlaufdampferzeuger als Gasturbinen-Kühlluftkühler
JPH11325406A (ja) * 1998-05-07 1999-11-26 Ebara Corp 火力発電設備における給水加熱装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2243380C3 (de) * 1972-09-04 1978-07-20 Kraftwerk Union Ag, 4330 Muelheim Dampfkraftanlage mit rauchgasbeheiztem Speisewasservorwärmer und wasserbeheiztem Luftvorwärmer
DE3324283A1 (de) * 1983-07-06 1985-01-24 Kleinewefers Energie- und Umwelttechnik GmbH, 4150 Krefeld Sinterbandanlage mit einrichtung fuer die abhitzeverwertung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4327476A1 (de) * 1993-08-16 1995-02-23 Steinmueller Gmbh L & C Verfahren zum Betrieb eines mit fossilen Brennstoffen befeuerten Dampferzeugers und Dampferzeugungsanlage zur Durchführung des Verfahrens
DE29608816U1 (de) * 1996-05-15 1996-08-01 Deutsche Babcock Babcock Lentjes Kraftwerkstechnik GmbH Standort Berlin, 10407 Berlin Anordnung zur Nutzung der Abwärme von Zementklinkerlinien
DE19645322A1 (de) * 1996-11-04 1998-05-07 Asea Brown Boveri Kombinierte Kraftwerksanlage mit einem Zwangsdurchlaufdampferzeuger als Gasturbinen-Kühlluftkühler
JPH11325406A (ja) * 1998-05-07 1999-11-26 Ebara Corp 火力発電設備における給水加熱装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 02, 29. Februar 2000 (2000-02-29) & JP 11 325406 A (EBARA CORP), 26. November 1999 (1999-11-26) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9604864B2 (en) 2013-03-12 2017-03-28 Ingenica Ingenierie Industrielle Steam generation method and method for recovering crude oil by steam-assisted gravity drainage (SAGD) including said steam generation method
US10054308B2 (en) 2014-09-11 2018-08-21 Ingenica Ingenierie Industrielle Method for generating steam from raw water, in particular from blow down water coming from a steam generator

Also Published As

Publication number Publication date
EP1116862B1 (de) 2005-02-09
EP1116862A3 (de) 2002-09-25
DE50009474D1 (de) 2005-03-17
DE10001512A1 (de) 2001-07-19
ATE288997T1 (de) 2005-02-15
ES2235747T3 (es) 2005-07-16

Similar Documents

Publication Publication Date Title
DE3240373A1 (de) Verfahren und vorrichtung zur rauchgasentschwefelung von kohlenfeuerungen
EP0191141B1 (de) Verfahren und Anlage zur Reduzierung des NOx-Gehaltes von mittels fossiler Brennstoffe beheizten Grossfeuerungsanlagen
EP2167794B1 (de) Vorrichtung und verfahren zur kraft-wärmeerzeugung
WO2009100881A4 (de) Kohlekraftwerk und verfahren zum betrieb des kohlekraftwerkes
EP0648323B1 (de) Dampfkraftanlage zur erzeugung elektrischer energie
EP0122534B1 (de) Verfahren zum Betreiben einer Anlage für die Spaltung von Kohlenwasserstoffen
DE3731627A1 (de) Verfahren zur leistungsregelung eines kohlekombiblocks mit integrierter kohlevergasung und nach dem verfahren betriebenes kohlekraftwerk
DE3204672A1 (de) Kombinierter gas-/dampfturbinenprozess
EP1099042A2 (de) Gas- und dampfturbinenanlage
DE3225140C2 (de)
EP1116862B1 (de) Verfahren zur Erzeugung von Dampf und eine Dampferzeugeranlage
EP0267206B1 (de) Verfahren und anlage zur verringerung der stickoxidemission bei der verbrennung von mittel-und hochfluechtigen steinkohlen
DE19734862C2 (de) Wärmekraftwerk mit einer Gasturbine und einem Dampferzeuger für eine Mehrdruck-Dampfturbine
DE3617364A1 (de) Kombiniertes gas- und dampfturbinenkraftwerk mit aufgeladener wirbelschichtfeuerung und kohlevergasung
DE4418342C2 (de) Verfahren zum Betrieb eines mit einem trocknungsbedürftigen Brennstoff befeuerten Kraftwerkes
DE3111674A1 (de) &#34;verfahren zur herstellung von kohlenstaub als brennstoff fuer kohlenstaub-zuendbrenner&#34;
DE4327476C2 (de) Verfahren zum Betrieb eines mit fossilen Brennstoffen gefeuerten Dampferzeugers und Dampferzeugungsanlage
EP0618404B1 (de) Verfahren und Vorrichtung zur Dampferzeugung in einem Heizkraftwerk
DE2533169A1 (de) Anlage zur herstellung von zement im trockenverfahren
DE3842325C2 (de) Mehrzug-Abhitzekessel mit Zusatzfeuerung
DE112010005234T5 (de) Energierückgewinnung aus Gasen in einer Hochofenanlage
DE3009237A1 (de) Verfahren zur strom- und waermeerzeugung aus kohle
DE4220489C1 (en) Operating air heater plant - using boiler heated closed circuit to preheat air and fuel feeds to reducing high value combustion fuels
DE970258C (de) Anlage zur Erzeugung von Heissluft und Heisswasser bzw. Dampf zwecks Verwertung der in Abgasen enthaltenen Waerme
DE10056128A1 (de) Verfahren zum Betreiben einer Gasturbinenanlage sowie eine dementsprechende Anlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TURBOMASCHINEN AG

17P Request for examination filed

Effective date: 20020910

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TURBOMASCHINEN AG

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TURBO AG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050209

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050209

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050209

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050209

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50009474

Country of ref document: DE

Date of ref document: 20050317

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050509

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050509

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050509

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2235747

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051202

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

26N No opposition filed

Effective date: 20051110

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050709

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20081217

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090130

Year of fee payment: 9

BERE Be: lapsed

Owner name: *MAN TURBO A.G.

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110329

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50009474

Country of ref document: DE

Owner name: MAN DIESEL & TURBO SE, DE

Free format text: FORMER OWNER: MAN TURBO AG, 46145 OBERHAUSEN, DE

Effective date: 20110325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091203

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151210

Year of fee payment: 16

Ref country code: GB

Payment date: 20151221

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151221

Year of fee payment: 16

Ref country code: AT

Payment date: 20151222

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20151228

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50009474

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 288997

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161202

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161202

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161202

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170102

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161202