EP0122534B1 - Verfahren zum Betreiben einer Anlage für die Spaltung von Kohlenwasserstoffen - Google Patents

Verfahren zum Betreiben einer Anlage für die Spaltung von Kohlenwasserstoffen Download PDF

Info

Publication number
EP0122534B1
EP0122534B1 EP84103658A EP84103658A EP0122534B1 EP 0122534 B1 EP0122534 B1 EP 0122534B1 EP 84103658 A EP84103658 A EP 84103658A EP 84103658 A EP84103658 A EP 84103658A EP 0122534 B1 EP0122534 B1 EP 0122534B1
Authority
EP
European Patent Office
Prior art keywords
gas
air
gas turbine
steam
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84103658A
Other languages
English (en)
French (fr)
Other versions
EP0122534A1 (de
Inventor
Klaus Dipl.-Ing. Mikulla
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6196771&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0122534(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0122534A1 publication Critical patent/EP0122534A1/de
Application granted granted Critical
Publication of EP0122534B1 publication Critical patent/EP0122534B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins

Definitions

  • the invention relates to a method for operating a plant for the splitting of hydrocarbons, the hydrocarbons in cracking furnaces being heated indirectly by the heat generated when a heating medium is burned with an oxygen-containing gas.
  • hydrocarbons in cracking furnaces are exposed to the effects of high temperatures in a plant of the type specified.
  • a heating medium is burned with air in the cracking furnaces.
  • the waste heat from the fission gases is used to generate high pressure steam.
  • the steam formed is fed into the steam system of the plant, which consists of several steam rails.
  • the steam is expanded in steam turbines, among other things, by which the plant's large compressors, such as the compressors for the raw gas, for the ethylene and the propylene of the ethylene or propylene circuit, are driven.
  • EP-A-8166 relates to a method and apparatus for the conversion of hydrocarbons in a heated furnace.
  • the furnace is heated by burning a mixture of fuel and preheated air. To preheat the air, it is compressed, heated and then expanded. With this procedure, however, heat exchange and exergy losses cannot be avoided.
  • the invention has for its object to provide a method for operating a plant for the splitting of hydrocarbons, in which the operating cost is lower than in previous methods.
  • the preheating of the combustion air of the cracking furnaces according to the invention, the further use of the gas turbine exhaust gas and the use of a gas turbine as a generator drive can reduce the operating costs of olefin plants, as will be explained elsewhere.
  • Gas turbines for generator drive can be single-shaft gas turbines because of the constant speed during operation.
  • Single-shaft gas turbines including generators are, however, available as standard components and much cheaper than (two-shaft) gas turbines for mechanical drives.
  • the gas turbine is used to generate electrical energy.
  • This energy can be used within the system to drive pumps or compressors, for example. It is therefore not necessary to have a gas turbine installed with an output that is too large for the plant size. Rather, it is possible to be able to select a gas turbine that always works in full load operation for the respective plant and therefore has more favorable consumption figures than a gas turbine with an output that is too large for the plant size and operates in part load operation.
  • a certain current import may be required, which will, however, be less than that for the operation of a system which is part of the prior art.
  • the amount of electricity to be imported depends on whether a more or less well-adapted gas turbine can be found for the system examined and which type of drive (steam turbines or electric motors) the respective system compressor is selected.
  • the gas turbine can continue to be operated.
  • the turbine exhaust gas is introduced into a chimney and the electricity generated is exported if possible.
  • the turbine exhaust gas which still contains a relatively large amount of oxygen (approx. 16%), is used as preheated “combustion air” in the cracking furnaces.
  • the residual oxygen contained in the gas turbine exhaust gas is not sufficient for a complete supply of all furnaces in an olefin plant.
  • air is therefore added to the gas turbine exhaust gas. If air from ambient temperature is mixed into the exhaust gas from the turbine, the relatively high temperature of the exhaust gas is greatly reduced. when mixed with air at ambient temperature, disproportionate exergy losses occur.
  • the air is therefore preheated before being added to the turbine exhaust gas. It is particularly expedient to preheat the air by exchanging heat with steam from the system's steam system. Because of the higher theoretical combustion temperature, the radiation zone efficiency increases, so that the heating medium requirement of the cracking furnaces is reduced.
  • the heat supply in the convection zone becomes smaller. Due to the lower heat supply, the steam production of the cracking furnaces is also reduced. If process pumps and compressors of the system are driven not by steam turbines but by electric motors, the steam export in the process according to the invention increases in comparison to the conventional process despite the lower steam production.
  • the air to be mixed with the exhaust gas is advantageously heated to a temperature compensating for temperature fluctuations in the gas turbine exhaust gas.
  • the temperature of the gas mixture formed from gas turbine exhaust gas and air is always kept constant. Effects of temperature fluctuations in the gas turbine exhaust gas on the furnace operation are avoided.
  • the air is admixed with the exhaust gas of the gas turbine in an amount that compensates for fluctuations in the exhaust gas quantity of the gas turbine.
  • This variant is particularly important in the event of a gas turbine failure, since in this case the cracking furnaces are exclusively supplied with fresh air.
  • the temperature of the turbine exhaust gas is e.g. approx. 550 ° C.
  • the additional air is set to e.g. 200 ° C preheated to achieve a mixing temperature of 400 ° C.
  • the air preheater is expediently designed for normal operation. It is therefore also able to heat the full air volume to approx. 100 ° C in the event of a gas turbine failure, so that there are as few changes as possible in the cracking furnaces with regard to the radiation zone efficiency and thus the heating medium requirement and steam production.
  • compressors and pumps of the system are driven by electric motors which are supplied with electrical energy by the electrical generator driven by the gas turbine.
  • the amount of steam to be condensed drops sharply, the cooling water requirement of the system is also reduced.
  • the cost of equipment and thus the cost-effectiveness of the two processes to be compared are influenced by the heat price and the relationship between the heat price and the steam rating. Depending on the value of these two parameters, the resource costs of the method according to the invention can be reduced by a proportion of up to 12% and more compared to the conventional method.
  • a cracking furnace 1 is supplied with fuel via line 2 and with an oxygen-containing gas via line 3 for the combustion of the fuel.
  • the oxygen-containing gas is normally formed from two components.
  • One component is the exhaust gas from a gas turbine 4, the essential components of which are air compressor 5, gas generator 6 and utility turbine 7.
  • the exhaust gas leaves the turbine via a line 8 leading to an air preheater 9.
  • the second component is air, which is drawn in via a fresh air blower 10 and introduced into the air preheater 9.
  • the air is indirectly heated by steam flowing in heat exchanger elements 11 and then mixed with the gas turbine exhaust gas.
  • the mixture is fed into line 3 leading to the cracking furnace.
  • the cracked gas formed in the cracking furnace 1 leaves the cracking furnace via a line 21. It is cooled in a quench cooler 22 by heat exchange with pressurized water from a steam drum 23 and fed to the oil fractionation, not shown in the sketch. Water evaporated during the heat exchange is returned to the steam drum 23.
  • Steam is withdrawn from the steam drum 23 via a line 25, overheated in a heat exchanger 24 in the heat exchange with flue gases from the cracking furnace 1 and introduced into a steam rail 26.
  • Steam is removed from this steam rail via steam turbines 30, 31, 32, expanded and, depending on the pressure of the expanded steam, fed into a high-pressure steam rail 27, a medium-pressure steam rail 28 or a low-pressure steam rail 29.
  • the raw gas compressor not shown, can be driven by the turbine 30, for example.
  • the steam leaving the turbine 30 and expanded to condensation pressure is condensed in a condenser 34 and fed to a feed water tank 33 in which the condensate is degassed.
  • steam can be exported from the system via the high-pressure steam rail 27, but steam can also be imported.
  • the steam from the two steam rails 28 and 29 is delivered to condensers 35, for example process steam generators or column boilers, and is condensed.
  • the condensate of these steam rails and the condensate formed in the heat exchanger 11 during the heat exchange with the air to be preheated are guided in the feed water tanks 13.
  • Feed water is removed from the feed water tank via a line 36, brought to the pressure of the steam in the steam drum 23 and warmed in the steam system against condensing steam of various pressure levels (heat exchanger 37).
  • the preheated feed water enters the steam drum 23 via line 38.
  • forced air burners are used as burners for the cracking furnace (s).
  • forced air burners offer the option of measuring the amount of air flowing into the burners and keeping the excess air scarce. Since the oxygen content of the gas mixture composed of gas turbine exhaust gas and air in the method according to the invention can change, the amount of oxygen is measured and regulated according to the invention, and not the amount of air. In order to avoid a lack of oxygen, the vehicle is run with air supply and the heating medium is tightened.
  • each of the forced air burners has an air supply and a throttle device for volume regulation.
  • the furnace outlet temperature is measured.
  • the amount of oxygen required for the required heating output (pressure and temperature corrected) is specified via a throttle valve.
  • the amount of fuel that is possible for a certain excess of oxygen is fed in via a ratio divider in which, when the heating medium fluctuates, its wobble number is also used as a correction variable.
  • a pressure regulator 13 in line 3 for the gas mixture flowing to the cracking furnaces acts on a swirl throttle control for the fresh air blower 10 if the pressure is too low. If the pressure in line 3 is too high, part of the gas mixture consisting of turbine exhaust gas and fresh air is discharged into the chimney via a flap 14 .
  • a temperature controller 12 is also installed in line 3. This acts on a control valve 39 in the steam line leading to the heat exchanger 11. By preheating the fresh air, it is possible to keep the temperature of the mixture of gas turbine exhaust gas and fresh air constant even in the event of fluctuations in the gas turbine outlet temperature and to avoid effects on the furnace operation.
  • An essential feature of the method according to the invention is that the turbine 7 drives an electric generator 15.
  • the electrical current generated in the generator 15 is used to drive motors 16, 17 for compressors 18, 19 in which, for example, ethylene and propylene are compressed.
  • the generator 1 supplies the drive energy for other compressors or pumps of the system for splitting hydrocarbons according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Betreiben einer Anlage für die Spaltung von Kohlenwasserstoffen, wobei die Kohlenwasserstoffe in Spaltöfen indirekt durch die bei der Verbrennung eines Heizmittels mit einem sauerstoffhaltigen Gas entstehende Wärme erhitzt werden.
  • Zur Erzegung olefinreicher Spaltgase werden in einer Anlage der angegebenen Art Kohlenwasserstoffe in Spaltöfen der Einwirkung hoher Temperaturen ausgesetzt. Zu diesem Zweck wird in den Spaltöfen ein Heizmittel mit Luft verbrannt. Um das am Ofenaustritt bestehende Reaktionsgleichgewicht des Spaltgases zu erhalten, wird dieses in Quenchkühlern gekühlt. Die Abhitze der Spaltgase wird zur Hochdruckdampferzeugung genutzt. Herkömmlicherweise wird der gebildete Dampf in das aus mehreren Dampfschienen bestehende Dampfsystem der Anlage eingespeist. Der Dampf wird unter anderem in Dampfturbinen entspannt, durch die Grossverdichter der Anlage, wie beispielsweise die Verdichter für das Rohgas, für das Äthylen und das Propylen des Äthylen- bzw. Propylenkreislaufs, angetrieben werden.
  • Die auf ein hohes Niveau gestiegenen Rohstoffpreise verursachen bei der bisherigen Prozessführung hohe Betriebsmittelkosten.
  • Die EP-A-8166 bezieht sich auf ein Verfahren und eine Vorrichtung für die Umwandlung von Kohlenwasserstoffen in einem erhitzten Ofen. Der Ofen wird durch Verbrennen eines Gemisches aus Brennstoff und vorgewärmter Luft erhitzt. Zur Vorwärmung der Luft wird diese komprimiert, erhitzt und nachfolgend entspannt. Bei dieser Verfahrensführung sind jedoch Wärmetausch- und Exergieverluste nicht zu vermeiden.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Betreiben einer Anlage für die Spaltung von Kohlenwasserstoffen anzugeben, bei dem die Betriebsmittelkosten geringer sind als bei bisherigen Verfahren.
  • Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass das Abgas einer Gasturbine mit Luft vermischt und das Gasgemisch dem Spaltofen zur Verbrennung des Heizmittels zugeführt wird, wobei durch die Gasturbine ein Elektrogenerator angetrieben wird.
  • Beim erfindungsgemässen Verfahren ist davon ausgegangen worden, dass das Abgas einer Gasturbine auf einem - im Vergleich zu einem Dampfkreislauf - hohen Temperaturniveau zur Verfügung steht. Wird die Abwärme des Gasturbinenprozesses genutzt, so kann der Gesamtwirkungsgrad eines Gasturbinenprozesses wesentlich verbessert werden.
  • Andererseits ist man bei der Auswahl einer Gasturbine an die Typenliste der Anbieter gebunden, die zur Zeit grosse Leistungssprünge aufweisen. Eine Anpassung an die gewünschte Leistung, wie bei Dampfturbinen ist nicht möglich. Dies führt dazu, dass man für eine Anlagengrösse eventuell eine zu grosse Leistung installieren und ungünstigere Verbrauchszahlen durch ständigen Teillastbetrieb hinnehmen muss.
  • Ist eine Drehzahlregelung der Nutzturbine erforderlich, so muss die Gasturbine zweiwellig ausgelegt werden. Diese Art der Gasturbine ist jedoch relativ kostspielig. Unter Berücksichtigung dieser Eigenschaften von Gasturbinen besitzt das erfindungsgemässe Verfahren entscheidende Vorteile:
  • Durch die erfindungsgemässe Vorwärmung der Verbrennungsluft der Spaltöfen, die Weiterverwendung des Gasturbinenabgases sowie durch den Einsatz einer Gasturbine als Generatorantrieb lassen sich die Betriebsmittelkosten von Olefinanlagen - wie an anderer Stelle noch ausgeführt wird - senken.
  • Gasturbinen für Generatorantrieb können wegen der im Betrieb konstanten Drehzahl einwellige Gasturbinen sein. Einwellige Gasturbinen inklusive Generatoren sind aber als Standardbausteine erhältlich und wesentlich billiger als (zweiwellige) Gasturbinen für mechanische Antriebe.
  • Erfindungsgemäss wird die Gasturbine zur Elektroenergieerzeugung genutzt. Diese Energie kann innerhalb der Anlage beispielsweise zum Antrieb von Pumpen oder von Verdichtern genutzt werden. Es ist daher nicht erforderlich, eine Gasturbine mit einer für die Anlagengrösse zu grossen Leistung installieren zu lassen. Vielmehr ist es möglich, eine Gasturbine auswählen zu können, die der jeweiligen Anlage angemessen stets im Vollastbetrieb arbeitet und daher günstigere Verbrauchszahlen hat, als eine Gasturbine mit einer für die Anlagengrösse zu grossen Leistung, die im Teillastbetrieb arbeitet.
  • Allerdings kann beim erfindungsgemässen Verfahren ein bestimmter Stromimport erforderlich werden, der jedoch geringer sein wird, als der für den Betrieb einer zum Stand der Technik zählenden Anlage. Die zu importierende Strommenge ist davon abhängig, ob sich für die untersuchte Anlage eine mehr oder weniger gut angepasste Gasturbine finden lässt und welche Antriebsart (Dampfturbinen oder E-Motore) der jeweiligen Anlagenverdichter gewählt wird.
  • Ein Ausfall der Gasturbine hat prinzipiell keinen gravierenden Einfluss auf den Anlagenbetrieb, wenn sofort elektrische Leistung in vollem Umfang aus dem Netz bezogen werden kann. In diesem Fall kann die Anlage weiterhin spezifikationsgerechte Produkte liefern. Änderungen der Verbrennungsluftdaten müssen von der Ofenregelung aufgefangen werden.
  • Bei dem Ausfall der Spaltöfen oder der gesamten Olefinanlage kann die Gasturbine weiterbetrieben werden. In diesem Fall wird das Turbinenabgas in einen Kamin eingeleitet, der erzeugte Strom wird nach Möglichkeit exportiert.
  • Erfindungsgemäss wird das Turbinenabgas, das noch relativ viel Sauerstoff (ca. 16%) enthält, als vorgewärmte «Verbrennungsluft» in den Spaltöfen verwendet. Der im Gasturbinenabgas enthaltene Restsauerstoff reicht aber nicht für eine vollständige Versorgung aller Öfen einer Olefinanlage aus. Erfindungsgemäss wird daher dem Gasturbinenabgas Luft zugemischt. Wird dem Abgas der Turbine Luft von Umgebungstemperatur zugemischt, so wird die relativ hohe Temperatur des Abgases stark gesenkt. bei einer Mischung mit Luft von Umgebungstemperatur treten unverhältnismässig grosse Exergieverluste auf.
  • In einer bevorzugten Ausgestaltung des erfindungsgemässen Verfahrens wird daher die Luft vor der Zumischung zum Turbinenabgas vorgewärmt. Besonders zweckmässig ist es dabei, die Luft durch Wärmetausch mit Dampf aus dem Dampfsystem der Anlage vorzuwärmen. Wegen der damit höheren theoretischen Verbrennungstemperatur erhöht sich der Strahlungszonenwirkungsgrad, so dass sich der Heizmittelbedarf der Spaltöfen verringert.
  • Infolge der geringeren Wärmezufuhr zu den Spaltöfen wird das Wärmeangebot in der Konvektionszone kleiner. Wegen des geringeren Wärmeangebotes verringert sich auch die Dampfproduktion der Spaltöfen. Werden Prozesspumpen und Verdichter der Anlage nicht durch Dampfturbinen, sondern durch Elektromotoren angegetrieben, so vergrössert sich der Dampfexport beim erfindungsgemässen Verfahren im Vergleich zum herkömmlichen Verfahren trotz der geringeren Dampfproduktion.
  • In einer weiteren Ausgestaltung des Erfindungsgedankens wird die dem Abgas zuzumischende Luft mit Vorteil auf eine Temperaturschwankungen des Gasturbinenabgases ausgleichende Temperatur erhitzt. Auf diese Weise wird die Temperatur der aus Gasturbinenabgas und Luft gebildeten Gasmischung stets konstant gehalten. Auswirkungen von Temperaturschwankungen des Gasturbinenabgases auf den Ofenbetrieb werden vermieden.
  • In einer vorteilhaften Ausgestaltung der Erfindung wird die Luft dem Abgas der Gasturbine in einer Abgasmengenschwankungen der Gasturbine ausgleichenden Menge zugemischt. Diese Variante ist insbesondere bei einem Ausfall der Gasturbine von Bedeutung, da die Spaltöfen in diesem Fall ausschliesslich mit Frischluft versorgt werden. Im Normalbetrieb beträgt die Temperatur des Turbinenabgases z.B. ca. 550° C. Die Zusatzluft wird auf z.B. 200°C vorgewärmt, um eine Mischtemperatur von 400°C zu erreichen. Der Luftvorwärmer wird zweckmässigerweise für den Normalbetrieb ausgelegt. Er ist damit auch in der Lage, bei Gasturbinenausfall die volle Luftmenge auf ca. 100°C zu erwärmen, so dass sich an den Spaltöfen möglichst geringe Änderungen bezüglich des Strahlungszonenwirkungsgrades und damit des Heizmittelbedarfs und der Dampfproduktion ergeben.
  • Wie bereits ausgeführt, ist es zweckmässig, wenn nach einem Merkmal der Erfindung Verdichter und Pumpen der Anlage von Elektromotoren, die durch den von der Gasturbine angetriebenen Elektrogenerator mit elektrischer Energie versorgt werden, angetrieben werden. Da infolgedessen die zu kondensierende Dampfmenge stark zurückgeht, vermindert sich auch der Kühlwasserbedarf der Anlage.
  • Im folgenden sollen in zwei Tabellen einige wichtige Daten für den Ofenbetrieb und die Betriebsmittelverbräuche einer herkömmlichen Anlage mit den entsprechenden Daten einer nach dem erfindungsgemässen Verfahren arbeitenden Anlage verglichen werden. Als Vergleichsanlage konventioneller Art wird eine Anlage mit einer Kapazität von 250 000 jato Äthylen aus Hydrokonverterrückstand gewählt. Die Grossverdichter (Rohgas, Äthylen, Propylen) und Pumpen (wie Speisewasserpumpen, Kühlwasser, Quenchöl usw.) werden durch Dampfturbinen angetrieben. Die Spaltöfen mit integrierter Abhitze sind mit selbstansaugenden Seitenwandbrennern ausgestattet.
  • Betriebsmittelverbräuche
  • Figure imgb0001
  • Ofenbetrieb
  • Figure imgb0002
  • Die Betriebsmittelkosten und damit die Wirtschaftlichkeit der beiden zu vergleichenden Verfahren werden durch den Wärmepreis und die Relation zwischen Wärmepreis und Dampfbewertung beeinflusst. Je nach Wert dieser beiden Parameter können die Betriebsmittelkosten des erfindungsgemässen Verfahrens gegenüber dem konventionellen Verfahren um einen Anteil von bis zu 12% und mehr gesenkt werden.
  • Gegenüber einer herkömmlichen Anlage müssen in einer Anlage, die nach dem erfindungsgemässen Konzept betrieben wird, Änderungen vorgenommen werden, die mit zusätzlichen Investitionskosten verbunden sind (z.B. Installation einer Gasturbine mit Elektrogenerator, Ersatz der Kältemittelturbinen durch Elektromotoren, Ersatz von Kleinturbinen durch entsprechende Motoren, Installation eines Frischluftgebläses und eines Luftvorwärmers). Aufgrund der hohen Betriebskosteneinsparungen ergibt sich jedoch eine kurze Amortisationszeit.
  • Im folgenden soll anhand einer schematischen Skizze ein Ausführungsbeispiel einer nach dem erfindungsgemässen Verfahren arbeitenden Anlage erläutert werden.
  • Ein Spaltofen 1 wird über Leitung 2 mit Brennstoff und über eine Leitung 3 mit einem sauerstoffhaltigen Gas für die Verbrennung des Brennstoffes versorgt. Das sauerstoffhaltige Gas wird im Normalfall aus zwei Komponenten gebildet. Die eine Komponente ist das Abgas einer Gasturbine 4, deren wesentliche Bauteile Luftverdichter 5, Gaserzeuger 6 und Nutzturbine 7 sind. Das Abgas verlässt die Turbine über eine zu einem Luftvorwärmer 9 führende Leitung 8.
  • Die zweite Komponente ist Luft, die über ein Frischluftgebläse 10 angesaugt und in den Luftvorwärmer 9 eingeleitet wird. Im Luftvorwärmer 9 wird die Luft indirekt durch Dampf, der in Wärmetauscherelementen 11 strömt, erhitzt und anschliessend mit dem Gasturbinenabgas vermischt. Die Mischung wird in die zum Spaltofen führende Leitung 3 eingespeist.
  • Das im Spaltofen 1 gebildete Spaltgas verlässt den Spaltofen über eine Leitung 21. Es wird in einem Quenchkühler 22 im Wärmetausch mit Druckwasser aus einer Dampftrommel 23 gekühlt und der in der Skizze nicht dargestellten Ölfraktionierung zugeführt. Beim Wärmetausch verdampftes Wasser wird in die Dampftrommel 23 zurückgeführt.
  • Aus der Dampftrommel 23 wird über eine Leitung 25 Dampf entnommen, in einem Wärmetauscher 24 im Wärmetausch mit Rauchgasen des Spaltofens 1 überhitzt und in eine Dampfschiene 26 eingeleitet.
  • Über Dampfturbinen 30, 31, 32 wird Dampf dieser Dampfschiene entnommen, entspannt und je nach Druck des entspannten Dampfes in eine Hochdruckdampfschiene 27, eine Mitteldruckdampfschiene 28 oder eine Niederdruckdampfschiene 29 eingespeist. Durch die Turbine 30 kann beispielsweise der nicht dargestellte Rohgasverdichter angetrieben werden. Der die Turbine 30 verlassende, auf Kondensationsdruck entspannte Dampf wird in einem Kondensator 34 kondensiert und einem Speisewasserbehälter 33, in dem das Kondensat entgast wird, zugeführt.
  • Über die Hochdruckdampfschiene 27 kann erfindungsgemäss Dampf aus der Anlage exportiert aber auch Dampf importiert werden. Der Dampf der beiden Dampfschienen 28 und 29 wird an Verbraucher 35, beispielsweise Prozessdampferzeuger oder Kolonnenaufkocher abgegeben und kondensiert. Das Kondensat dieser Dampfschienen sowie das beim Wärmetausch mit der vorzuwärmenden Luft im Wärmetauscher 11 gebildete Kondensat werden in den Speisewasserbehältern 13 geführt.
  • Speisewasser wird dem Speisewasserbehälter über eine Leitung 36 entnommen, auf den Druck des Dampfes in der Dampftrommel 23 gebracht und im Dampfsystem gegen kondensierenden Dampf verschiedener Druckstufen angewärmt (Wärmetauscher 37). Das vorgewärmte Speisewasser tritt über Leitung 38 in die Dampftrommel 23 ein.
  • Erfindungsgemäss werden als Brenner für den bzw. die Spaltöfen Zwangsluftbrenner eingesetzt. Im Gegensatz zu selbstansaugenden Brennern hat man bei Zwangsluftbrennern die Möglichkeit, die den Brennern zuströmende Luftmenge zu messen und den Luftüberschuss knapp zu halten. Da sich der Sauerstoffgehalt der beim erfindungsgemässen Verfahren aus Gasturbinenabgas und Luft zusammensetzenden Gasmischung ändern kann, wird erfindungsgemäss nicht die Luftmenge, sondern die Sauerstoffmenge gemessen und geregelt. Um Sauerstoffmangel zu vermeiden, wird mit Luftvorhalt gefahren und das Heizmittel nachgezogen. Jeder der Zwangsluftbrenner hat zu diesem Zweck eine Luftzuführung und eine Drosseleinrichtung zur Mengenregulierung.
  • Die Ofenaustrittstemperatur wird gemessen. Über eine Drosselklappe wird die für die erforderliche Heizleistung notwendige Sauerstoffmenge (Druck- und Temperaturkorrigiert) vorgegeben. Die für einen bestimmten Sauerstoffüberschuss mögliche Brennstoffmenge wird über einen Verhältnisteiler dazugefahren, in dem bei Schwankungen des Heizmittels auch dessen Wobbezahl als Korrekturgrösse eingeht.
  • Ein Druckregler 13 in Leitung 3 für die den Spaltöfen zuströmende Gasmischung wirkt bei zu geringem Druck auf eine Dralldrosselregelung für das Frischluftgebläse 10. Bei zu hohem Druck in Leitung 3 wird ein Teil des aus Turbinenabgas und Frischluft bestehenden Gasgemisches über eine Klappe 14 in den Kamin abgegeben.
  • In Leitung 3 ist zudem ein Temperaturregler 12 eingebaut. Dieser wirkt auf ein Regelventil 39 in der zum Wärmetauscher 11 führenden Dampfleitung. Durch die Vorwärmung der Frischluft hat man die Möglichkeit, die Temperatur des Gemisches aus Gasturbinenabgas und Frischluft auch bei Schwankungen der Gasturbinenaustrittstemperatur konstant zu halten und Auswirkungen auf den Ofenbetrieb zu vermeiden.
  • Wesentliches Merkmal des erfindungsgemässen Verfahrens ist, dass die Turbine 7 einen Elektrogenerator 15 antreibt. Der im Generator 15 erzeugte elektrische Strom dient zum Antrieb von Motoren 16, 17 für Verdichter 18, 19, in denen beispielsweise Äthylen und Propylen verdichtet werden. In gleicher Weise liefert der Generator 1 die Antriebsenergie für andere Verdichter oder Pumpen der erfindungsgemässen Anlage zur Spaltung von Kohlenwasserstoffen.
  • Zusammenfassend ist festzustellen, dass durch den Einsatz einer Gasturbine als Generatorantrieb und durch die Weiterverwendung des Gasturbinenabgases zusammen mit vorgewärmter Frischluft die Betriebskosten einer Olefinanlage gesenkt werden können.

Claims (6)

1. Verfahren zum Betreiben einer Anlage für die Spaltung von Kohlenwasserstoffen, wobei die Kohlenwasserstoffe in Spaltöfen indirekt über die bei der Verbrennung eines Heizmittels mit einem sauerstoffhaltigen Gas entstehende Wärme erhitzt werden, dadurch gekennzeichnet, dass das Abgas einer Gasturbine mit Luft vermischt und das Gasgemisch dem Spaltofen zur Verbrennung des Heizmittels zugeführt wird, wobei durch die Gasturbine ein Elektrogenerator angetrieben wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Luft vor der Vermischung erwärmt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Luft durch Wärmetausch mit Dampf aus dem Dampfsystem der Anlage vorgewärmt wird.
4. Verfahren nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass die Luft auf eine Temperaturschwankungen des Gasturbinenabgases ausgleichende Temperatur erhitzt wird.
5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Luft dem Abgas der Gasturbine in einer Gas-Mengenschwankungen der Gasturbine ausgleichenden Menge zugemischt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass Verdichter und Pumpen der Anlage von Elektromotoren, die durch den von der Gasturbine angetriebenen Elektrogenerator mit elektrischer Energie versorgt werden, angetrieben werden.
EP84103658A 1983-04-19 1984-04-03 Verfahren zum Betreiben einer Anlage für die Spaltung von Kohlenwasserstoffen Expired EP0122534B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3314132 1983-04-19
DE19833314132 DE3314132A1 (de) 1983-04-19 1983-04-19 Verfahren zum betreiben einer anlage fuer die spaltung von kohlenwasserstoffen

Publications (2)

Publication Number Publication Date
EP0122534A1 EP0122534A1 (de) 1984-10-24
EP0122534B1 true EP0122534B1 (de) 1986-09-17

Family

ID=6196771

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84103658A Expired EP0122534B1 (de) 1983-04-19 1984-04-03 Verfahren zum Betreiben einer Anlage für die Spaltung von Kohlenwasserstoffen

Country Status (4)

Country Link
US (1) US4912282A (de)
EP (1) EP0122534B1 (de)
JP (1) JPS59199792A (de)
DE (2) DE3314132A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4617109A (en) * 1985-12-23 1986-10-14 The M. W. Kellogg Company Combustion air preheating
FR2796078B1 (fr) * 1999-07-07 2002-06-14 Bp Chemicals Snc Procede et dispositif de vapocraquage d'hydrocarbures
GB0204140D0 (en) * 2002-02-22 2002-04-10 Bp Chem Int Ltd Production of olefins
US6896707B2 (en) * 2002-07-02 2005-05-24 Chevron U.S.A. Inc. Methods of adjusting the Wobbe Index of a fuel and compositions thereof
US7488459B2 (en) * 2004-05-21 2009-02-10 Exxonmobil Chemical Patents Inc. Apparatus and process for controlling temperature of heated feed directed to a flash drum whose overhead provides feed for cracking
US20080145805A1 (en) * 2006-12-14 2008-06-19 Towler Gavin P Process of Using a Fired Heater
US7789658B2 (en) * 2006-12-14 2010-09-07 Uop Llc Fired heater
US9296955B2 (en) * 2010-09-20 2016-03-29 Exxonmobil Chemical Patents Inc. Process and apparatus for co-production of olefins and electric power
DE102010050090A1 (de) * 2010-10-29 2012-05-03 Linde Aktiengesellschaft Dampfsystem
ES2833045T3 (es) * 2012-10-22 2021-06-14 Applied Res Associates Inc Sistema de reactor de alta velocidad
US9346721B2 (en) 2013-06-25 2016-05-24 Exxonmobil Chemical Patents Inc. Hydrocarbon conversion
US9914678B2 (en) 2015-11-04 2018-03-13 Exxonmobil Chemical Patents Inc. Fired tube conversion system and process
CN108349841B (zh) 2015-11-04 2021-04-20 埃克森美孚化学专利公司 集成的燃气涡轮和转化***方法
EP3405553A1 (de) * 2016-01-20 2018-11-28 SABIC Global Technologies B.V. Verfahren und systeme zur überhitzung von verdünnungsdampf und erzeugung von elektrizität
US10703985B2 (en) * 2016-07-25 2020-07-07 Sabic Global Technologies B.V. Process for cracking hydrocarbon stream using flue gas from gas turbine
JOP20180091B1 (ar) 2017-10-12 2022-09-15 Red Leaf Resources Inc تسخين المواد من خلال التوليد المشترك للحرارة والكهرباء
CN109026188B (zh) * 2018-09-14 2024-01-16 雷泽永 一种使用蒸汽余压的汽轮机调速油泵
EP4056892A1 (de) * 2021-03-10 2022-09-14 Linde GmbH Verfahren und system zum dampfcracken

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2632689A (en) * 1944-11-03 1953-03-24 Phillips Petroleum Co Process and apparatus for effecting chemical reactions
US2660032A (en) * 1947-10-04 1953-11-24 Rosenthal Henry Gas turbine cycle employing secondary fuel as a coolant
DE898745C (de) * 1949-10-04 1953-12-03 Nat Res Dev Verfahren zur Steuerung von partiellen Oxydationen oder Spaltungen von organischen Stoffen
BE541035A (de) * 1954-09-03
US3233005A (en) * 1962-03-05 1966-02-01 Pullman Inc Production of acetylene
FR1415550A (fr) * 1963-05-29 1965-10-29 Procédé et dispositif pour le craquage des hydrocarbures et produits obtenus
US3329605A (en) * 1963-07-23 1967-07-04 Michikazu Takeyoshi Gaseous phase cracking reaction methods
FR2088026A1 (en) * 1970-05-08 1972-01-07 Oemv Ag Utilization of energy in flue gases fromcata
US3765167A (en) * 1972-03-06 1973-10-16 Metallgesellschaft Ag Power plant process
FR2258443B1 (de) * 1974-01-17 1976-11-26 Spie Batignolles
EP0008166A1 (de) * 1978-08-07 1980-02-20 Imperial Chemical Industries Plc Verfahren und Vorrichtung zur Umwandlung von Kohlenwasserstoffen

Also Published As

Publication number Publication date
DE3460750D1 (en) 1986-10-23
US4912282A (en) 1990-03-27
EP0122534A1 (de) 1984-10-24
JPS59199792A (ja) 1984-11-12
DE3314132A1 (de) 1984-10-25

Similar Documents

Publication Publication Date Title
EP0122534B1 (de) Verfahren zum Betreiben einer Anlage für die Spaltung von Kohlenwasserstoffen
EP0150340B1 (de) Verfahren zum Betreiben einer kombinierten Gas-Dampfturbinen-Kraftwerkanlage
DE69127564T2 (de) Kombiniertes Kraftwerk mit aufgeladener Wirbelschichtfeuerung sowie Verfahren zum Betrieb desselben
DE68907191T2 (de) Verfahren und vorrichtung zum optimieren der temperatur der von einer gasturbine angesaugten luft.
EP0591163B1 (de) Kombinierte gas- und dampfturbinenanlage
DE3101098A1 (de) "verfahren zum betreiben einer kombinierten gasturbinen-dampfturbinen-kraftanlage mit verbesserter steuerung der no(pfeil abwaerts)x(pfeil abwaerts)-emissionen und verbesserte gasturbinen-dampfturbinen-kraftanlage"
DE3503103A1 (de) Verfahren und vorrichtung zur waermerueckgewinnung
DE3319732A1 (de) Mittellastkraftwerk mit integrierter kohlevergasungsanlage zur erzeugung von strom und methanol
DE3702654A1 (de) Verfahren zum betrieb einer gasturbinenanlage mit heizwertschwachem brennstoff
EP0563553A1 (de) Luftkühlung von Turbinen einer Luftspeichergasturbine
DE2826448A1 (de) Verfahren und vorrichtung zur energieerzeugung
EP1023526A1 (de) Gas- und dampfturbinenanlage und verfahren zum betreiben einer derartigen anlage
EP0778397A2 (de) Verfahren zum Betrieb einer mit einem Abhitzedampferzeuger und einem Dampfverbraucher kombinierten Dampfturbogruppe
DE10041413A1 (de) Verfahren zum Betrieb einer Kraftwerksanlage
DE102010060064A1 (de) Verfahren zur Steigerung der Leistungsabgabe eines Gas- und Dampf-Kombikraftwerks während ausgewählter Betriebszeiträume
DE1526897C3 (de) Gas-Dampfturbinenanlage
CH661097A5 (de) Verfahren zum verteilen von restgas in die atmosphaere.
EP0584072B1 (de) Gas- und dampfturbinenanlage
DE102014206474A1 (de) Anlage zum Bereitstellen von Wärmeenergie für Wärmeverbraucher
DE10055202A1 (de) Dampfkraft-/Arbeitsprozeß mit erhöhtem mechanischen Wirkungsgrad für die Elektroenergiegewinnung im Kreisprozeß sowie Anordnung zu seiner Durchführung
DE3524882C1 (de) Verfahren zum Betreiben einer Heizkraftwerksanlage zur Fernwärme- und Stromerzeugung
EP0530519A1 (de) Kraftwerksanlage mit nuklearer und fossiler Feuerung
EP0304827A1 (de) Leistungsregelung von Kombianlagen
DE3419560A1 (de) Verfahren zum betrieb einer gasturbinenanlage sowie anlage zur durchfuehrung des verfahrens
EP0650554B1 (de) Verfahren zum betreiben einer gasturbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT DE FR GB NL

17P Request for examination filed

Effective date: 19841030

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 3460750

Country of ref document: DE

Date of ref document: 19861023

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: COMBUSTION ENGINEERING, INC.

Effective date: 19870612

NLR1 Nl: opposition has been filed with the epo

Opponent name: COMBUSTION ENGINEERING,INC.

26 Opposition filed

Opponent name: EXXON CHEMICAL PATENTS INC.

Effective date: 19870615

NLR1 Nl: opposition has been filed with the epo

Opponent name: EXXON CHEMICAL PATENTS INC.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890519

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900331

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900415

Year of fee payment: 7

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900430

Year of fee payment: 7

27W Patent revoked

Effective date: 19900122

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
NLR2 Nl: decision of opposition
PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO