EP1019625B1 - Procede de surveillance d'un systeme d'injection - Google Patents

Procede de surveillance d'un systeme d'injection Download PDF

Info

Publication number
EP1019625B1
EP1019625B1 EP98958164A EP98958164A EP1019625B1 EP 1019625 B1 EP1019625 B1 EP 1019625B1 EP 98958164 A EP98958164 A EP 98958164A EP 98958164 A EP98958164 A EP 98958164A EP 1019625 B1 EP1019625 B1 EP 1019625B1
Authority
EP
European Patent Office
Prior art keywords
sound signal
borne sound
injection
injection system
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98958164A
Other languages
German (de)
English (en)
Other versions
EP1019625A1 (fr
Inventor
Andreas Hartke
Klaus Wenzlawski
Achim Przymusinski
Detlev SCHÖPPE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1019625A1 publication Critical patent/EP1019625A1/fr
Application granted granted Critical
Publication of EP1019625B1 publication Critical patent/EP1019625B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/025Engine noise, e.g. determined by using an acoustic sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/14Timing of measurement, e.g. synchronisation of measurements to the engine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections

Definitions

  • the invention describes a method for monitoring a Injection system according to the preamble of patent claim 1.
  • An injection system of an internal combustion engine is in particular at a high injection pressure to a correct one Monitor how it works.
  • DE 195 48 279 A1 describes a method and a device for monitoring a fuel metering system in which a defect in the metering system is detected when a Output signal of a structure-borne noise sensor from one specified value deviates.
  • the amplitude or the Duration of the output signal from the structure-borne noise sensor compared with a reference signal and in the event of a deviation a defective injector detected. This procedure is however relatively inaccurate.
  • EP 0 326 898 A1 describes a method for recognizing a faulty combustion in an internal combustion engine, where a sensor signal, which is a measure of the vibration of a Internal combustion engine represents, filtered and integrated and is compared with reference values, whereby the Internal combustion engine monitored for faulty combustion becomes. (Compare with claim 1 or 2, part 1.)
  • the object of the invention is to provide a more precise Method for monitoring an injection system using the To provide evaluation of the structure-borne noise signal.
  • a major advantage of The invention is based on the structure-borne sound signal being Measuring window is integrated, and that the integrated Structure-borne noise signal as a measure of the functionality of the Injection system is used.
  • the structure-borne noise signal is preferably with a predetermined frequency band filtered, which is between 1 Hz and 10 kHz. Thereby a signal is generated that gives a precise statement about the functionality of the injection system enables.
  • FIG. 1 shows schematically an injection system for an internal combustion engine.
  • a fuel reservoir 6 has a Pre-feed pump 2, a fuel filter 3 and a high pressure pump 4 fuel supplied from a fuel tank 1 is removed.
  • the fuel reservoir 6 is on injectors 7 connected to the fuel in the internal combustion engine Inject 11.
  • For setting the fuel pressure im.Fuel reservoir 6 is a pressure control valve 5 after the high pressure pump 4 connected to a high pressure line 16, the high-pressure pump 4 with the fuel reservoir 6 connects.
  • a pressure sensor 10 is arranged on the fuel accumulator 6, the one via a third signal line 18 Control unit 12 is connected.
  • the internal combustion engine 11 are also assigned a structure-borne noise sensor 14 and a speed sensor 13, via a first and second signal line 8, 9 are connected to the control unit 12.
  • the speed sensor 13 is implemented, for example, as an angular velocity sensor, that of a toothed washer and an associated Hall sensor is constructed.
  • the control device 12 is also a first control line 15 with the pressure control valve 5 and over further control lines 17 with the injectors 7 in connection. Furthermore, the control unit 12 has a data memory 19 in connection, in the characteristic curves and control method to control the injectors 7 and to control the pressure control valve 5 are filed.
  • the control device 12 is also connected to an accelerator pedal sensor 20.
  • the control unit 12 controls depending on the accelerator pedal position and the speed of the internal combustion engine 11 according to the programs stored in the data memory 19 the fuel pressure in the fuel reservoir 6 and the injection processes of the injectors 7.
  • the control device 12 also uses a method for Detect a defect in the injection system in the form of a Programs is stored in the data memory 19.
  • FIG. 2 schematically shows the structure of the control device 12, with which the method for recognizing a defective injection system is carried out.
  • the structure-borne noise signal is over the first signal line 8, the speed signal via the second Signal line 9 and the fuel pressure signal via the third Signal line 18 fed to a signal processing unit 101.
  • the structure-borne sound signal is in the signal processing unit 101 with a bandpass filter, preferably with a Second order Butterworth filter filtered. Doing so the frequency range from the measured structure-borne noise signal between 1 Hz and 30 kHz, preferably between 10 Hz and 1 kHz filtered out and used for further evaluation.
  • the internal combustion engine is 11 for each cylinder a bandpass filter function is stored in the data memory 19, so that the structure-borne sound signal of each cylinder preferably with an adapted filter is filtered.
  • the frequency band of the bandpass filter depending on the distance between the structure-borne noise sensor and the cylinder, which Frequency band with increasing distance to lower frequencies is moved.
  • the frequency band is also preferably dependent on a map stored by the speed of the internal combustion engine.
  • the Map is experimentally determined in such a way that interference signals, filtered out that occur in certain frequency ranges become.
  • the map is preferably for everyone Customized cylinder.
  • the structure-borne noise signal is preferred for the individual Cylinder is selectively reinforced so that the differences in the damping, which is due to the different location of the individual cylinders with respect to the structure-borne noise sensor 14 result, be balanced.
  • the data memory 19 a gain factor is stored for each cylinder with which the structure-borne noise signal of the corresponding cylinder is amplified becomes.
  • the greater the amplification the greater the distance between the cylinder and the structure-borne noise sensor is.
  • a structure-borne noise signal is generated for all cylinders get that regardless of the location of the cylinders is so that the structure-borne noise signals of the cylinders with each other can be compared or with a single Comparative value can be compared.
  • the signal of the Hall sensor determined a speed signal according to known methods.
  • the signal processing unit 101 carries the structure-borne noise signal KS, the speed signal N and the fuel pressure signal P to an evaluation unit 102.
  • the evaluation unit 102 is integrated the structure-borne noise signal KS via a first crank angle window F1 and a second crank angle window F2 on.
  • the first crank angle window corresponds to the crank angle range the pre-injection and the second crank angle window corresponds to the crank angle range of the main injection.
  • the first and second crank angle windows F1, F2 are specified by the control unit 12 and by the target time, at which the injection is to start and the setpoint for the end of the combustion, which depends on the Speed and the injection quantity results.
  • FIG. 3 shows the structure-borne noise signal KS fed from the signal processing unit 101 to the evaluation unit 102, plotted over the crank angle ⁇ of the crankshaft of the internal combustion engine 11.
  • the structure-borne noise signal KS1 integrated by the evaluation unit 102 for the first crank angle window F1 and the integrated structure-borne noise signal KS2 for the second crank angle window F2 are shown.
  • the evaluation unit 102 calculates the first integrated structure-borne noise signal KS1 using the following formula:
  • the evaluation unit 102 calculates the second integrated structure-borne noise signal KS2 using the following formula:
  • crank angle window that the Pre and main injection included.
  • the structure-borne noise signal integrated via the pre and main injection.
  • crank angle at which the energy conversion for the pre-injection and the energy conversion for the main injection starts as the first start angle SP or as designated second starting angle SM.
  • Figure 4 shows a method with which the first starting angle SP and the second starting angle SM can be determined.
  • This will the structure-borne noise signal KS after the start of the first cube angle window F1 or after the start of the second crank angle window F2 then checks at which crank angle the structure-borne noise signal KS reaches a predetermined amplitude value A.
  • This crank angle corresponds to the first or that second starting angle SV, SM, at which the energy conversion of the Pre-injection or the main injection starts.
  • the evaluation unit 102 also determines from the signal of the Pressure sensor the minimum fuel pressure F_MIN, the maximum Fuel pressure F_MAX and the difference ⁇ F between the minimum and maximum fuel pressure F_MIN, F_MAX. The method is explained below with reference to FIG. 5.
  • FIG. 5 shows the fuel pressure P, the needle stroke of the injection needle, which releases the injectors and the combustion chamber pressure about the crank angle for a combustion process a cylinder applied.
  • the evaluation unit 102 determines the minimum in a predetermined crank angle range KB Fuel pressure F_MIN and the maximum fuel pressure F_MAX.
  • the crank angle range KB is controlled by the control unit 12 fixed and corresponds to the crank angle range in which the Fuel supplied to a cylinder for a combustion process becomes.
  • the data memory 19 there is a setpoint SP for the fuel pressure stored in fuel storage 6. Starting from the setpoint SP of the fuel pressure is also a permissible maximum range ⁇ FM and a permissible minimum range ⁇ FN for the Fuel pressure P stored in the data memory 19.
  • the evaluation unit 102 also evaluates the speed signal N der Internal combustion engine 11. As shown in Figure 6 is the maximum value during an analysis period AZ the speed DX and the minimum value of the speed DN determined. FIG. 6 shows the speed signal over several segments, the crank angle range being determined with a segment is a cylinder for processing a complete Combustion process needed. One segment is one Four-cylinder engine with a crank angle range of 720 ° / 4. The Segment is determined by the control unit.
  • the derivation of the speed over time is preferred determined for an analysis period AZ or for each segment.
  • the time derivative ⁇ N of the speed within a Subsection of a segment determined and thus the Gradient of the compression speed during the compression process of the cylinder or the gradient of the expansion speed determined during the expansion process of the cylinder.
  • the integration constant C MF is determined experimentally.
  • the integration constant C MF is preferably stored as a characteristic curve as a function of the engine speed and / or as a function of the fuel pressure.
  • the evaluation unit 102 outputs the speed N, the speed gradient ⁇ N for each segment, the speed gradient for the Analysis period, and the speed gradient during the compression process and during the expansion process, the minimum fuel pressure F_MIN, the maximum fuel pressure F_MAX, the difference value ⁇ F between the minimum and the maximum fuel pressure, the first starting angle SV the Pre-injection and the second starting angle SM of the main injection to a state machine 201.
  • the energy calculation unit 104 outputs the pilot injection quantity MP, the main injection quantity MM and the total injection quantity MT for the combustion processes of the cylinders on the state machines 201 further.
  • the state machine 201 is connected via an input interface 103 the target values for the pilot injection quantity MP, the main injection quantity MM, the total injection quantity MT, the start of injection SV for the pre-injection, the start of injection SM for the Main injection, the setpoint SP for the fuel pressure in the Fuel storage 6 and the speed SN of the internal combustion engine 11 fed.
  • the state machine 201 with the data memory 19 is also located in connection, in the permissible value ranges for the pre-injection quantity ⁇ MP, the main injection quantity ⁇ MM, the total injection quantity ⁇ MT are stored.
  • the data store 19 permissible value ranges ⁇ SV for the first starting angle SV and permissible value ranges ⁇ SM for the second starting angle SM on.
  • FIG. 7 shows a schematic program sequence, after which the state machine 201 performs the function of the injection system checked.
  • the state machine 201 compares after the start of the internal combustion engine at program point 100 that from the energy calculation unit 104 calculated total injection quantity MT with the permissible value range ⁇ MT for the total injection quantity. If the comparison shows that the difference is greater than the specified one permissible value range is ⁇ MT, then according to the program item 101 branches. The state machine saves at program point 101 a malfunction for the total injection in the State memory 202.
  • the state machine 201 preferably compares at the program point 100 instead of the total injection quantity, the pre-injection quantity and / or the main injection quantity with corresponding permissible Value ranges. The comparison shows that the determined Pre-injection quantity of the corresponding permissible If the value range deviates, there will be a malfunction in the injection system recognized during pre-injection and according to program point 101 branches.
  • the determined main injection quantity deviates from the corresponding one permissible range of values, then a malfunction detected in the injection system during the main injection.
  • the program then branches to program item 102.
  • Integrated structure-borne noise signal KS1, KS2 with a corresponding Value range compared. Lie the first and / or the second integrated structure-borne noise signal KS1, KS2 outside the permissible value ranges, then at program point 101 a corresponding error entry in the status memory performed.
  • the permissible value ranges are e.g. b. in the Data memory 19 depending on the speed and the Target fuel quantity stored.
  • state machine 201 compares the first starting angle calculated by the evaluation unit 102 SV of the pre-injection with a predetermined permissible value range. If the comparison shows that the first starting angle, i.e. the calculated start of injection of the pre-injection, outside of the permissible value range, then according to the program item 103 branches. The state machine sets at program point 103 201 an error entry about a malfunction the pre-injection in the state memory 202. Subsequently the program branches to program item 104.
  • the state machine 201 compares the second starting angle calculated by the evaluation unit 102, i.e. the start of injection of the main injection SM, with a specified permissible value range. If the comparison shows that the calculated start of injection of the main injection SM outside of the permissible value range, then the State machine 201 malfunctioned in the main injection and puts a hint for a at program point 105 Malfunction for the start of main injection in the State memory 202. Then after the program point 106 branches.
  • the state machine 201 checks the Fuel pressure required for the checked injection process in the Fuel storage 6 is present. To do this, the state machine compares 201 the minimum measured by the evaluation unit 102 Fuel pressure F_MIN with an allowable minimum Fuel pressure. State machine 201 also compares the maximum fuel pressure measured by the evaluation unit 102 F_MAX with a predetermined maximum fuel pressure.
  • the comparison shows that the measured minimum fuel pressure F_MIN or the measured maximum fuel pressure more than a predetermined range of values from the setpoint of the If the fuel pressure deviates, a malfunction in the Pressure system of the injection system recognized and after program point 107 branches. At program point 107 there is an error entry stored in the state memory 202 for the printing system. The program then branches to program item 108.
  • the state machine evaluates the speed the internal combustion engine 11 to make a statement about a Malfunction. To do this, the state machine compares 201 the speed measured by the evaluation unit 102 averaged over an analysis period with a given Range of values. The comparison shows that the measured Speed is outside the permissible value range, see above a malfunction in the injection system is detected and after Program item 109 branches. At program point 109 a Error entry made in the state memory 202 for the speed.
  • the time derivative of the speed is preferably used for an analysis period with a corresponding permissible Value range compared and in the event of a deviation from the permissible Malfunction detected.
  • Time derivative of the speed for an analysis period can also derive the speed of rotation for a segment compared with a corresponding permissible value range become. The comparison shows that the time derivative the speed for a segment outside the permissible Value range, there will be a malfunction for the segment recognized and a corresponding one in the state memory 202 Error entry filed.
  • a particularly accurate assessment of the injection system will thereby achieved that the gradient in individual segment areas the speed with a corresponding permissible value range is compared. This is done for example for one Compression process or for an expansion process Cylinders. If the measured speed gradient is outside of the permissible value range, a malfunction for recognized the compression process or for the expansion process.
  • the state machine 201 then checks at the program point 110 whether an error entry is stored in the state memory 202 is. If this is the case, the Injection system detected.
  • the state machine 201 preferably detects at the program point 110 only then a malfunction in the injection system, if at least one malfunction due to the evaluation of the Structure-borne noise signal and at least one other malfunction when evaluating the fuel pressure signal or when Evaluation of the speed was determined. That way Wrong decisions about fault detection in the injection system avoided.
  • the program then branches back to program point 100 and the program is restarted after a specified period of time.
  • An error will preferably only be recognized when an error was detected in several runs of the program has been.
  • an error debouncing can be provided in which only the error entries of four program runs be saved and only then an error in the injection system is recognized if at least two program runs an error was detected.
  • An improvement of the method is achieved in that the basic noise of the internal combustion engine in a time range is detected by the structure-borne noise sensor in which no combustion takes place.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Claims (11)

  1. Procédé pour surveiller un système d'injection d'un moteur à combustion interne dans lequel un signal de sons dans les solides est détecté et dans lequel le signal de sons dans les solides est utilisé pour évaluer le système d'injection,
    le signal de sons dans les solides étant intégré sur une fenêtre de mesure prédéterminée,
    le signal de sons dans les solides intégré étant utilisé comme mesure pour la capacité de fonctionnement du système d'injection,
       caractérisé
       en ce que le signal de sons dans les solides mesuré est corrigé par le bruit de fond que le moteur à combustion interné produit en l'absence de combustion.
  2. Procédé pour surveiller un système d'injection d'un moteur à combustion interne dans lequel un signal de sons dans les solides est détecté et dans lequel le signal de sons dans les solides est utilisé pour évaluer le système d'injection,
    le signal de sons dans les solides étant intégré sur une fenêtre de mesure prédéterminée,
    le signal de sons dans les solides intégré étant utilisé comme mesure pour la capacité de fonctionnement du système d'injection,
       caractérisé
       en ce que le signal de sons dans les solides intégré est corrigé par un coefficient de correction pour le calcul de la quantité de carburant injectée.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le signal de sons dans les solides est filtré avec une bande de fréquences de 1 Hz à 10 kHz, en particulier avec une bande de fréquence de 10 Hz à 1 kHz et en ce que le signal de sons dans les solides qui se trouve dans la bande de fréquences est soumis à un traitement ultérieur.
  4. Procédé selon la revendication 1 ou 2, caractérisé en ce que le signal de sons dans les solides est filtré avec un filtre de Butterworth de deuxième ordre.
  5. Procédé selon la revendication 2, caractérisé en ce que le coefficient de correction dépend de la pression du carburant qui règne dans l'accumulateur de carburant pendant le processus d'injection considéré ou en ce que le coefficient de correction dépend de la vitesse de rotation du moteur à combustion interne qui est présente pendant le processus d'injection considéré.
  6. Procédé selon la revendication 1 ou 2, caractérisé en ce que le signal de sons dans les solides est intégré pour une pré-injection ou pour une injection principale, en ce que le signal de sons dans les solides intégré de la pré-injection ou de l'injection principale est comparé à des valeurs de comparaison et en ce que la comparaison est utilisée pour l'évaluation du système d'injection.
  7. Procédé selon la revendication 1 ou 2, caractérisé en ce que le signal de sons dans les solides est détecté pour une pré-injection ou pour une injection principale, en ce que le début de la pré-injection ou de l'injection principale est obtenu à partir du signal de sons dans les solides, en ce que le début de la pré-injection ou de l'injection principale est comparé à une plage de valeurs admissible de plages de valeurs de consigne et en ce que la comparaison est utilisée pour l'évaluation du système d'injection.
  8. Procédé selon la revendication 2, caractérisé en ce que
    la quantité de carburant injectée dans le moteur à combustion interne est calculée à partir du signal de sons dans les solides intégré, et
    en ce que la quantité de carburant calculée est comparée à une quantité de carburant prédéterminée pour le processus d'injection considéré et en ce que la capacité de fonctionnement du système d'injection est évaluée sur la base de la comparaison.
  9. Procédé selon la revendication 1 où 2, caractérisé en ce qu'en supplément du signal de sons dans les solides, la pression du carburant est mesurée pour le processus de combustion considéré, en ce que la pression de carburant mesurée est comparée à une plage de valeurs admissibles et en ce que la comparaison est utilisée pour juger de la capacité de fonctionnement du système d'injection.
  10. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'en supplément du signal de sons dans les solides, le signal de vitesse de rotation est mesuré pour le processus d'injection considéré, en ce que le signal de vitesse de rotation mesuré est comparé à une plage de valeurs admissible et en ce que la comparaison est utilisée pour juger de la capacité de fonctionnement du système d'injection.
  11. Procédé selon la revendication 9 ou 10, caractérisé en ce qu'une fonction de défaut du système d'injection n'est détectée que lorsque l'analyse du signal de sons dans les solides et l'analyse du signal de pression du carburant ou l'analyse du signal de sons dans les solides et l'analyse du signal de vitesse de rotation indiquent une fonction de défaut.
EP98958164A 1997-09-29 1998-09-23 Procede de surveillance d'un systeme d'injection Expired - Lifetime EP1019625B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19742991 1997-09-29
DE19742991 1997-09-29
PCT/DE1998/002841 WO1999017010A1 (fr) 1997-09-29 1998-09-23 Procede de surveillance d'un systeme d'injection

Publications (2)

Publication Number Publication Date
EP1019625A1 EP1019625A1 (fr) 2000-07-19
EP1019625B1 true EP1019625B1 (fr) 2001-07-18

Family

ID=7844008

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98958164A Expired - Lifetime EP1019625B1 (fr) 1997-09-29 1998-09-23 Procede de surveillance d'un systeme d'injection

Country Status (4)

Country Link
US (1) US6390068B1 (fr)
EP (1) EP1019625B1 (fr)
DE (1) DE59801054D1 (fr)
WO (1) WO1999017010A1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19844746C1 (de) * 1998-09-29 2000-04-20 Siemens Ag Verfahren und Vorrichtung zum Detektieren einer Voreinspritzung bei einer Brennkraftmaschine
JP3866899B2 (ja) * 2000-04-06 2007-01-10 株式会社日立製作所 内燃機関のスロットル弁制御装置及び自動車
DE50308657D1 (de) * 2002-07-02 2008-01-03 Bosch Gmbh Robert Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
DE10343069B4 (de) * 2003-09-17 2005-09-29 Siemens Ag Verfahren zur Quantifizierung einer Voreinspritzung bei einem Kraftstoffeinspritzsystem einer Brennkraftmaschine
DE10350180B4 (de) * 2003-10-28 2008-03-27 Siemens Ag Verfahren und Vorrichtung zur Analyse des Verbrennungsgeräusches bei der Kraftstoffeinspritzung in einen Zylinder einer Brennkraftmaschine
DE102004031239A1 (de) * 2004-06-29 2006-01-19 Daimlerchrysler Ag Sensorsystem für ein Fahrzeug
EP1812701A4 (fr) * 2004-11-18 2008-01-23 Westport Power Inc Systeme et procede de traitement d'un signal accelerometre afin d'apporter une aide dans le controle de la qualite de la combustion dans un moteur a combustion interne
DE102004058682A1 (de) * 2004-12-06 2006-06-08 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung und Steuerung einer Brennkraftmaschine
DE102005005351A1 (de) * 2005-02-05 2006-08-17 L'orange Gmbh Verfahren und Einrichtung zur Erfassung des Einspritzvorgangs eines Kraftstoffinjektors einer Brennkraftmaschine mittels eines Schallsensors
DE102006015967A1 (de) * 2006-04-05 2007-10-18 Siemens Ag Adaptionsverfahren einer Einspritzanlage einer Brennkraftmaschine
JP2008175107A (ja) * 2007-01-17 2008-07-31 Yamaha Marine Co Ltd エンジンの故障診断装置、船舶
GB0705026D0 (en) * 2007-03-15 2007-04-25 Delphi Tech Inc Vehicle diagnosis system and method
DE102007012769A1 (de) * 2007-03-16 2008-09-18 Audi Ag Verfahren zum Erkennen eines Betriebszustandes einer Brennkraftmaschinen-Einrichtung mit Hilfe eines Körperschallsensors
US7533563B2 (en) * 2007-07-16 2009-05-19 Horak Michael N System and method for testing fuel injectors
US8099231B1 (en) 2010-08-18 2012-01-17 GM Global Technology Operations LLC System and method for detecting fuel injector malfunction based on engine vibration
US8857412B2 (en) * 2011-07-06 2014-10-14 General Electric Company Methods and systems for common rail fuel system dynamic health assessment
DE102017115757A1 (de) * 2017-07-13 2019-01-17 Man Diesel & Turbo Se Verfahren und Steuerungseinrichtung zum Betreiben einer Brennkraftmaschine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664621A (en) * 1979-11-01 1981-06-01 Nissan Motor Co Ltd Detecting device of knocking in internal combustion engine
ES2021165B3 (es) * 1988-02-04 1991-10-16 Siemens Ag Procedimiento con instalacion para el reconocimiento de una combustion defectuosa en un motor de combustion interna
EP0458993B1 (fr) * 1990-05-28 1995-02-22 Siemens Aktiengesellschaft Réglage du cliquetis cylindre par cylindre dans un moteur à combustion interne
JPH08210168A (ja) * 1995-02-02 1996-08-20 Sanshin Ind Co Ltd エンジンの運転制御装置
DE19548279B4 (de) 1995-09-28 2006-12-14 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung eines Kraftstoffzumeßsystems
IT1284328B1 (it) * 1996-01-19 1998-05-18 Fiat Ricerche Metodo e unita' di diagnosi di guasti di iniettori di impianti di iniezione ad alta pressione per motori a combustione interna
US5934256A (en) * 1997-03-04 1999-08-10 Siemens Aktiengesellschaft Method for detecting irregular combustion processes in a multicylinder diesel internal combustion engine
WO1999018343A1 (fr) * 1997-10-07 1999-04-15 Siemens Aktiengesellschaft Procede et dispositif pour controler un moteur a combustion interne
DE19844746C1 (de) * 1998-09-29 2000-04-20 Siemens Ag Verfahren und Vorrichtung zum Detektieren einer Voreinspritzung bei einer Brennkraftmaschine

Also Published As

Publication number Publication date
DE59801054D1 (de) 2001-08-23
WO1999017010A1 (fr) 1999-04-08
US6390068B1 (en) 2002-05-21
EP1019625A1 (fr) 2000-07-19

Similar Documents

Publication Publication Date Title
EP1019625B1 (fr) Procede de surveillance d'un systeme d'injection
DE10015162B4 (de) Anordnung und Verfahren zum Kalibrieren und/oder Überwachen des Verbrennungsablaufes in einem Verbrennungsmotor
EP0795077B1 (fr) Procede et dispositif permettant de surveiller un systeme de dosage de carburant
DE69829142T2 (de) Kraftstoffeinspritzverfahren und Vorrichtung für Brennkraftmaschinen
DE102007045606B3 (de) Verfahren zur Steuerung und Regelung einer Brennkraftmaschine mit Common-Railsystem einschließlich Einzelspeichern
DE69906861T2 (de) Steuermethode
EP1613853B1 (fr) Procede pour determiner une duree d'injection dans un moteur a combustion interne avec une valeur de caracteristiques et une valeur de correction, et procede pour determiner la valeur de correction
DE19548279B4 (de) Verfahren und Vorrichtung zur Überwachung eines Kraftstoffzumeßsystems
EP2094960A2 (fr) Procédé et dispositif de commande du mode de fonctionnement d'un moteur à combustion interne
EP0795076B1 (fr) Procede et dispositif permettant de surveiller un systeme de dosage de carburant
DE102004056893A1 (de) Vorrichtung und Verfahren zur Ermittlung von Druckschwankungen in einem Kraftstoffversorgungssystem
DE102012218176A1 (de) Verfahren zum Betreiben eines Kraftstoffeinspritzsystems
DE10056477A1 (de) Brennstoffeinspritzvorrichtung für eine Brennkraftmaschine
EP1639250A1 (fr) Procede de diagnostic d'une soupape de regulation de debit volumetrique dans un moteur a combustion equipe d'un systeme d'injection a accumulateur haute pression
DE102005059909B4 (de) Verfahren zur Steuerung eines Verbrennungsmotors
DE102012217741A1 (de) Verfahren zur Plausibilisierung des Ausgangssignals eines Raildrucksensors
DE102004054778A1 (de) Einspritzmengensteuerungsvorrichtung für eine Brennkraftmaschine
DE102006042098B3 (de) Verfahren zur Ermittlung einer Korrektur einer Teileinspritzmenge einer Brennkraftmaschine
EP1882841A2 (fr) Procédé de détection d'une pré-injection
DE69822090T2 (de) Steuerungsverfahren für luftverdichtende Brennkraftmaschinen
DE102006033459B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102007057311B3 (de) Verfahren und Vorrichtung zur Fehlererkennung bei emissionsrelevanten Steuereinrichtungen in einem Fahrzeug
DE102014016799A1 (de) Verfahren und Vorrichtung zur Prüfung eines einen Kraftstoffdrucksensor aufweisenden Kraftstoffdrucksystems einer verbrennungsgeregelten Brennkraftmaschine eines Kraftfahrzeugs
EP1698777B1 (fr) Procédé pour faire fonctionner un injecteur pour moteur à combustion interne
EP3631398B1 (fr) Procédé de surveillance d'un capteur de pression de cylindre

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000317

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20001130

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010718

REF Corresponds to:

Ref document number: 59801054

Country of ref document: DE

Date of ref document: 20010823

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080912

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080918

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090923

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120930

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59801054

Country of ref document: DE

Effective date: 20140401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140401