EP1003972B1 - Commande a soupapes de freinage et de commande pour dispositif de rotation - Google Patents

Commande a soupapes de freinage et de commande pour dispositif de rotation Download PDF

Info

Publication number
EP1003972B1
EP1003972B1 EP98942618A EP98942618A EP1003972B1 EP 1003972 B1 EP1003972 B1 EP 1003972B1 EP 98942618 A EP98942618 A EP 98942618A EP 98942618 A EP98942618 A EP 98942618A EP 1003972 B1 EP1003972 B1 EP 1003972B1
Authority
EP
European Patent Office
Prior art keywords
control
valve
pressure
valves
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98942618A
Other languages
German (de)
English (en)
Other versions
EP1003972A1 (fr
Inventor
Reinhold Schniederjan
Bernhard Adler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brueninghaus Hydromatik GmbH
Original Assignee
Brueninghaus Hydromatik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brueninghaus Hydromatik GmbH filed Critical Brueninghaus Hydromatik GmbH
Publication of EP1003972A1 publication Critical patent/EP1003972A1/fr
Application granted granted Critical
Publication of EP1003972B1 publication Critical patent/EP1003972B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • E02F9/123Drives or control devices specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • E02F9/128Braking systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/08Regulating by delivery pressure

Definitions

  • the invention relates to a hydraulic control, in particular for controlling the Slewing gear of an excavator.
  • a hydraulic control according to the preamble of claim 1 is known from the DE 196 20 664 C1 known.
  • Slewing gear control is an adjustment device for adjusting one between two Signal pressure chambers arranged on the displacement volume of a hydraulic pump acting piston provided.
  • the adjustment piston is adjusted in Dependence on the pressure difference between two with one each Signal pressure chambers connected signal pressure lines.
  • the signal pressure in the Signal pressure lines are connected to a manual control transmitter by two Control lines specified.
  • There is a separate brake valve in each signal pressure line provided that the return flow of the pressure fluid from the associated with the brake valve Throttling pressure chamber in a pressure fluid tank and thus a slow one After the hand control by the Operator has been returned to its neutral position.
  • each connected to one of the working lines are, which a hydraulic motor driving the slewing gear with the hydraulic pump into one Connect working circuit, it is achieved that the slow braking by the Brake valves is turned off when the slewing gear against resistance, e.g. B. a Heap, swings out.
  • resistance e.g. B. a Heap
  • a disadvantage of the known hydraulic control is that the brake valves in the signal pressure lines are arranged and thus burdened by the signal pressure.
  • the Brake valves therefore from the pressure fluid filling the corresponding signal pressure chamber flows through and therefore exposed to increased pollution.
  • the course of the Pressurized fluids to the pressurized fluid tank take place via the manual control transmitter over a relatively long time Line paths. Therefore, not only the throttle provided in the brake valve acts limiting for the pressure fluid reflux, but also the cross section of the Control lines and the opening cross-section of the manual control transmitter.
  • the invention is therefore based on the object of a hydraulic control, in particular for controlling the slewing gear of an excavator, to specify in which the Throttle cross section for the backflow of pressure fluid through the brake valves more accurate is predeterminable and contamination of the brake valves is also counteracted.
  • the object is in connection with the characterizing features of claim 1 solved with the generic features.
  • the invention is based on the knowledge that it is advantageous to use the brake valves without Interposition of further valves directly between the signal pressure chambers of the Arrange the adjustment device and the pressure fluid tank. This results in short Line paths for the backflow of the pressure fluid from the signal pressure chambers to the Pressurized fluid tank via the brake valve, so that the effective throttle cross section in essentially from the throttle cross section specified by the brake valve and only in depends negligibly on the cable cross-sections. In the return flow path apart from the brake valve, no other valves that cause additional throttling, intended. The fact that the brake valves only from the refluxing pressure fluid however from that to the signal pressure chambers in the event of acceleration of the slewing gear flowing pressure fluid flows through, the pollution of the brake valves significantly reduced.
  • the Control valves and the brake valves are controlled by those in the control lines Control pressure controlled according to the invention so that the control valves in the case of Open the swing out of the hydraulic pump and close the brake valves and vice versa close the control valves and open the brake valves to their throttled valve position, when the pressurized fluid flows back from the actuating pressure chambers to the pressurized fluid tank.
  • the throttle cross section of the brake valves provide adjustable. This is only due to the solution according to the invention, the Brake valves not in the signal pressure lines, but in to the pressure medium tank to arrange branch lines that are subjected to a lower pressure are exposed to less pollution.
  • the brake valves in the known hydraulic control are designed as seat valves to the To withstand signal pressure there and less susceptibility to contamination exhibit.
  • the formation of an adjustable throttle cross section is with seat valves not possible or only with difficulty.
  • An adjustable throttle cross section can be easier a slide valve be formed.
  • a slide valve can, however, in the known hydraulic control can not be used, as it can jam when dirty can and can therefore lead to considerable malfunctions.
  • the control valves can be designed as seat valves and each have a control valve piston, each in a control valve housing is movable.
  • the control valve piston can have a conical section, which cooperates with a valve seat surface to form a sealing seat. Training the Control valves as seat valves is advantageous because it makes them relatively large Have pressure resistance and insensitivity to dirt.
  • each Control valve can have a control valve spring according to claim 7, which Control valve piston presses against the valve seat surface.
  • the control valve piston is according to claim 8 preferably formed as a step piston, a step of Control valve piston is acted upon by the actuating control pressure, so that a hydraulically controlled seat valve is created.
  • the brake valves and the control valves can according to claim 9 Pressure change valve to be connected to the control lines.
  • pressure change valve to be connected to the control lines.
  • the signal pressure lines can each have an assigned pressure control valve be connected to the feed line, the signal pressure in the signal pressure lines is regulated by the control pressure prevailing in the control lines. If according to claim 11, a pressure control valve spring is provided, the signal pressure is set slightly higher than the control pressure, so is at vanishing control pressure there is a low signal pressure, which is used for refilling serves the signal pressure chamber, the volume of which swings back when Hydraulic pump enlarged. A suction device with a relatively large size dimensioning filter is therefore not necessary.
  • control lines can according to claim 12 by a Control pressure supply and the control transmitter connected to the pressure fluid tank alternately can be acted upon with control pressure.
  • Fig. 1 shows a first embodiment of the hydraulic control according to the invention.
  • the hydraulic control generally designated by reference number 1, is used in particular to control the slewing gear of an excavator.
  • the slewing gear of the excavator is driven by a hydraulic motor, not shown, which is connected to the hydraulic pump 4 to form a working circuit via a first working line 2 and a second working line 3.
  • the hydraulic pump 4 is z. B. driven for an internal combustion engine, not shown, via the drive shaft 5.
  • the direction of delivery of the hydraulic pump is reversible, so that either the working line 2 or the working line 3 works as a high-pressure line depending on the desired direction of rotation of the slewing gear.
  • the displacement volume of the hydraulic pump 4 is via an adjusting device 6 adjustable.
  • the adjusting device 6 has an actuating piston 7, which in one Actuating cylinder 8 is movable and without two centering springs 9 and 10 Pressurization in its neutral position shown in Fig. 1 with zero displacement is centered.
  • the actuating piston 7 divides the actuating cylinder 8 into one first signal pressure chamber 11 and a second signal pressure chamber 12.
  • the first Signal pressure chamber 11 is connected to a first signal pressure line 13, while the second signal pressure chamber 12 is connected to a second signal pressure line 14, which supply the signal pressure to the signal pressure chambers 11, 12.
  • a branch 15 in the signal pressure lines 13 and 14 or 16 provided.
  • a secondary line 17 or 18 branches to one Brake valve 19 or 20, so that the first actuating pressure chamber 11 via the brake valve 19th is connected to the pressure fluid tank 21 and the second signal pressure chamber 12 via the Brake valve 20 is connected to the pressure fluid tank 21.
  • the brake valve 19 or 20 has a closed valve position 22 or 23, in which the flow through the respective brake valve 19 or 20 is interrupted, and a throttled valve position 24 or 25 on, in which the flow through the respective brake valve 19 or 20th is throttled.
  • the throttle cross section that the brake valve 19 or 20 in its throttled valve position 24 or 25, is preferably adjustable.
  • the Brake valves 19 and 20 are so through a common control pressure line 26 controlled that they fall below a predetermined threshold value of the control pressure in the control pressure line 26 change over to its throttled valve position 24 or 25 or switch. If the control pressure in the control pressure line 26 is the predetermined Exceeds the threshold value, the brake valves 19 and 20 are in their closed valve position 22 or 23 and are locked. If the control pressure in the Control pressure line 26, however, is less than the predetermined threshold, the Brake valves 19 and 20 pressed into their throttled valve positions 24 and 25, respectively, so that the Brake valves 19 and 20 a throttled, preferably adjustable flow exhibit.
  • the threshold value is preferably set to a very low, almost or completely disappearing control pressure is specified and is via the brake valve springs 29 and 30 adjustable.
  • a control valve 27 or 28 is located in each signal pressure line 13 or 14
  • Control valves 27 and 28 are arranged so that the branches 15 and 16th between the control valves 27 and 28 and the control pressure chambers 11 and 12 respectively Adjustment device 6 are.
  • the brake valves 19 and 20 are therefore on the Branches 15 and 16 directly with the signal pressure chamber 11 assigned to them or 12 connected without the hydraulic line between the Signal pressure chambers 11 and 12 and the pressure fluid tank 21 in addition to the brake valves 19th and 20 other hydraulic valves.
  • the brake valves 19 and 20 in close proximity to the signal pressure chambers 11 and 12 below Use of only small cable routes for the line section of the Signal pressure line 13 or 14 to branch 15 or 16 and for the secondary line 17 or 18 arranged.
  • the control valves 27 and 28 are also through the in the control pressure line 26th prevailing control pressure controlled.
  • the control valves 27 and 28 open when the Control pressure in the control pressure line 26 exceeds a predetermined threshold. In contrast, the control valves 27 and 28 close when the control pressure in the control pressure line 26 falls below the predetermined threshold.
  • the control valves 27 and 28 are preferably as seat valves z. B. formed in the form of check valves while the brake valves 19 and 20 are preferably designed as slide valves.
  • the signal pressure in the signal pressure lines 13 and 14 and thus the deflection of the Hydraulic pump 4 is in the illustrated embodiment by a manual Control transmitter 32 specified, the two control lines 33 and 34 depending on the desired Direction of rotation of the slewing gear alternately with a control pressure feed 35 or Pressurized fluid tank 21 connects. Depending on the intended direction of rotation of the slewing gear either the control line 33 or the control line 34 is subjected to control pressure.
  • the Control lines 33 and 34 are in the exemplary embodiment via throttling points 36 and 37 the control valves 27 and 28 directly connected.
  • the in the signal pressure lines 13th and 14 prevailing signal pressure is therefore from those in the control lines 33 and 34 prevailing control pressures in the embodiment shown in Fig. 1 immediately derived.
  • This embodiment saves a pilot control and is Particularly suitable for slewing gear controls with a small nominal size.
  • the control lines 33 and 34 are via a pressure change valve 38, each of which selects the highest of the control pressures prevailing in the two control lines 33 and 34 connected to the control pressure line 26.
  • the control pressure line 26 therefore prevails the highest of the control pressures prevailing in the control lines 33 and 34.
  • the Control pressure line 26 is via a pressure cut-off valve 39 with the pressure fluid tank 21 connected.
  • the pressure cut-off valve 39 is designed as a pressure limiting valve and limits the pressure in the control pressure line 26 to preferably one electrical transmitter 40 predetermined maximum pressure.
  • the control pressure line 26 is over another pressure relief valve 41 connected to the pressure fluid tank 21, which via a pressure swing valve 42 of the highest in the working lines 2 and 3 prevailing working pressure is controlled and a working pressure dependent Pressure limitation enabled.
  • a feed device 43 is also provided.
  • the feed device 43 includes one Via the common shaft 5 connected to the hydraulic pump 4 feed pump 44, which in a feed line 46 via a feed filter 45 through the pressure relief valve 47 limited feed pressure generated.
  • the feed pressure is in each case the low pressure leading working line 2 or 3 fed via a check valve 48 or 49.
  • the maximum working pressure in the working lines 2 and 3 is the Pressure relief valves 50 and 51 limited.
  • the hydraulic control according to the invention works as follows:
  • the hydraulic pump 4 connected to the hydraulic motor is pivoted out by actuating the control stick 53 of the control transmitter 32.
  • either the control line 33 or the control line 34 is acted upon with a metered control pressure via the control pressure feed 35, while the respective other control line 34 or 33 is connected to the pressure fluid tank 21.
  • the control pressure building up in the control line 33 or 34 is also present in the control pressure line 26 and causes the control valves 27 and 28 to open.
  • the control pressure lines 13 and 14 are therefore via the control valves 27 and 28 in the exemplary embodiment shown in FIG.
  • the time constant required for this by the brake valves 19 and 20 caused throttling depends. Since the restriction of the backflow of the pressure fluid from the signal pressure chambers 11 and 12 to the pressure fluid tank 21 almost exclusively is determined by the throttle cross section of the respective brake valve 19 and 20, respectively this time constant is set very precisely and reproducibly. Since the Throttle cross section of the brake valves 19 and 20 is preferably designed to be variable, a corresponding fine-tuning can be carried out. According to the invention Brake valves 19 and 20 immediately without the interposition of further valves or Longer hydraulic lines connected to the signal pressure chambers 11 and 12, so that the effective throttling of the return flow is determined solely by the brake valves 19 and 20 is. A backflow of the pressure fluid into the control lines 33 and 34 is impossible because block the control valves 27 and 28 in this operating state.
  • the threshold value for switching between the valve positions of the brake valves 19 and 20 and the control valves 27 and 28 is by the brake valve springs 29 and 30 and the control valve springs 54 and 55 adjustable.
  • Fig. 2 shows a second embodiment of the hydraulic according to the invention Control. Elements already described with reference to FIG. 1 are identical Provide reference numerals, so that a repetitive description is unnecessary.
  • FIG. 2 differs from that already based on Embodiment described in FIG. 1 in that two pressure control valves 60th and 61 are provided which are connected to the control pressure lines 13 and 14 at their outputs are connected upstream of the control valves 27 and 28, respectively.
  • One of each Inputs of the pressure control valves 60 and 61 is connected to the pressure fluid tank 21, while another input of the pressure control valves 60 and 61 via a Connection line 62 is each connected to the feed line 46.
  • each Pressure control valve 60 or 61 is at a first control input with an associated Control line 33 or 34 and at a second control input with the control pressure line 13 or 14 connected via a detour line 63 or 64.
  • Each pressure control valve 60 or 61 is therefore assigned by a pressure difference between the control pressure in the Control line 33 or 34 and the signal pressure in the assigned signal pressure line 13 or 14 controlled. This leads to the signal pressure in the signal pressure line 13 or 14 essentially with the control pressure in the associated control line 33 or 34 matches.
  • the pressure control valves 60 and 61 have a pressure control valve spring 66 and 67, respectively are also slightly impacted in the opening direction, is in the Signal pressure line 13 or 14 prevailing signal pressure slightly, for. B. by 1 to 2 bar, higher than the control pressure in the associated control line 33 or 34. In the Signal pressure line is therefore also a slight pressure when in the assigned control line 33 or 34, there is no control pressure.
  • the connecting line 62 and the associated pressure control valve 60 or 61 and the associated control valve 27 or 28 pressure fluid flow into the signal pressure chamber 11 or 12, the volume of which enlarged when the control piston 7 is returned to the neutral position.
  • a After-suction device with a correspondingly large after-suction filter is therefore not necessary.
  • FIG. 3 shows an example of a structural design of the brake valves 19 and 20 and the control valves 27 and 28 in a schematic representation.
  • the hydraulic circuit in accordance with Fig. 1 is also specified. Elements already described with reference to FIG. 1 are identical Provide reference numerals, so that a repetitive description is unnecessary.
  • the brake valves 19 and 20 are preferred in the Fig. 3 shown Embodiment designed as slide valves.
  • a brake valve piston 80 or 81 is arranged axially movable in a brake valve housing 82 and 83, respectively by means of the brake valve spring 29 or 30 against a preferably adjustable one Stop 84 or 85 acted upon.
  • the stop 84 or 85 is in one Cylinder bore 86 and 87, respectively, in the respective brake valve housing 82 and 83 is formed axially in front.
  • the axial board can, for. B. be adjusted in that the stop 84 or 85 has a thread that fits into the brake valve housing 82 or 83 can be screwed in.
  • the position of the stops 84 and 85 can also by a z. B.
  • electromagnetic or hydraulic encoder by the operator of the excavator be adjustable so that the hesitant, soft swiveling of the slewing gear through Changing the throttle cross section of the brake valves 19 and 20 via the stops 84 and 85 can be set flexibly.
  • the brake valve piston 80 or 81 has a chamfer 88 or 89. and works with a control edge 92 or 93 formed on an annular groove 90 or 91.
  • the control pressure line 26 is guided to a pressure chamber 94 or 95, to which the Brake valve pistons 80 and 81 are adjacent. With increasing pressure in the control pressure line 26, the brake valve piston 80 or 81 is therefore against the brake valve spring 29 or 30 shifted and the control edge 92 or 93 is not by the sealed chamfered area of the brake valve piston 80 or 81. With decreasing pressure in the control pressure line 26, the brake valve piston 80 or 81 through the brake valve spring 29 or 30 in Fig.
  • the throttle opening of the brake valve 19 or 20 in the The stop position on the stop 84 or 85 is determined by the position of the stop 84 or 85 and is determined by changing the position of the stop 84 or 85 adjustable.
  • the control valves 27 and 28 are preferred in the one shown in FIG Embodiment designed as seat valves.
  • the control valve pistons 96 and 97 are each movable in a control valve housing 98 or 99.
  • the control valve pistons 96 and 97 each have a tapered portion 100 and 101, respectively.
  • the control valve pistons 96 and 97 are so through the control valve spring 54 and 55, respectively acts on the conical section 100 or 101 against the valve seat surface 102 or 103 is pressed and thus a sealing seat is created. Upstream of the conical Section 100 and 101, a first valve chamber 104 and 105 is formed, the with is connected to the valve inlet. In the embodiment shown in FIG. 3 the valve input is connected directly to the associated control line 33 or 34.
  • valve outlet is connected to the associated signal pressure line 13 or 14 in Connection.
  • a second valve chamber 106 or 107 is from the first Valve chamber 104 or 105 through a sealing stage 108 or 109 of the control valve piston 96 and 97 isolated and connected to the control pressure line 26.
  • the Indian Control pressure line 26 prevailing control pressure engages on a surface 110 or 111 of the Control valve piston 96 or 97 on and moves the control valve piston 96 or 97 against the control valve spring 54 or 55. If one is exceeded by the control valve spring The conical section 100 or 101 raises 54 or 55 predetermined threshold value from the valve seat surface 102 or 103 and gives the flow through the control valve 27 or 28 free.
  • the brake valves 19 and 20 and the seat valves 27 and 28 can also be constructed in be formed in another way.
  • control valves 27 and 28 also form as simple check valves that a return flow of the pressure fluid in prevent the control line 33 and 34 or into the pressure control valves 60 and 61.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

L'invention concerne une commande hydraulique (1) comportant un dispositif de réglage (6) pour régler un piston de régulation (7) disposé entre deux chambres de pression de régulation (11, 12) et agissant sur le volume de déplacement d'une pompe hydraulique (4), en fonction de la différence de pression entre deux conduites de pression de régulation (13, 14) reliées avec respectivement une des chambres de pression de régulation (11, 12). Une soupape de freinage (19, 20) est associée à chaque chambre de pression de régulation (11, 12), cette soupape freinant le reflux du fluide sous pression dans un réservoir de fluide sous pression (21) depuis la chambre de pression de régulation (11, 12) associée. Dans chaque conduite de pression de régulation (13, 14) se trouve une soupape de commande (27, 28) qui peut être inversée entre une position ouverte et une position fermée. Dans chaque conduite de pression de régulation (13, 14), une dérivation (15, 16) est également disposée entre la soupape de commande associée (27, 28) et la chambre de pression de régulation associée (11, 12). La soupape de freinage associée (19, 20) est située entre la dérivation (15, 16) et le réservoir de fluide sous pression (21) et peut être inversée entre une position étranglée (24, 25) et une position fermée (22, 23). Les soupapes de freinage (19, 20) et les soupapes de commande (27, 28) sont commandées par des conduites de commande (33, 34), les soupapes de freinage (19, 20) étant étranglées et les soupapes de commande (27, 28) étant fermées lorsque la plus grande des pressions de commande régnant dans les conduites de commande (33, 34) est inférieure à une valeur de seuil prédéfinie.

Claims (12)

  1. Commande hydraulique, en particulier pour piloter le mécanisme de rotation d'un excavateur, comportant
    un dispositif de réglage (6) pour régler un piston de réglage (7) agencé entre deux chambres à pression de réglage (11, 12) agissant sur le volume de refoulement d'une pompe hydraulique (4) en fonction de la différence de pression entre deux conduites à pression de réglage (13, 14) reliées chacune avec l'une des chambres à pression de réglage (11, 12), la pression de réglage régnant dans les conduites à pression de réglage (13, 14) étant prédéterminée par deux conduites de commande (33, 34) et,
    une soupape de freinage (19, 20) respective associée à chaque chambre à pression de réglage (11, 12) qui étrangle le reflux du fluide sous pression depuis les chambres à pression de réglage (11, 12) associées jusque dans un réservoir (21) de fluide sous pression,
    caractérisée en ce que
    dans chaque conduite à pression de réglage (13, 14) est agencée une soupape de commande (27, 28) qui peut être commandée en commutation entre une position de soupape ouverte et une position de soupape fermée,
    dans chaque conduite à pression de réglage (13, 14), entre la soupape de commande associée (27, 28) et la chambre à pression de réglage associée (11, 12), il est prévu une bifurcation (15, 16), la soupape de freinage associée (19, 20) étant agencée entre la bifurcation (15, 16) et le réservoir (21) de fluide sous pression et pouvant être commandée en commutation entre une position de soupape étranglée (24, 25) et une position de soupape fermée (22, 23), et en ce que
    les soupapes de freinage (19, 20) et les soupapes de commande (27, 28) sont pilotées par les conduites de commande (33, 34), les soupapes de freinage (19, 20) étant fermées et les soupapes de commande (27, 28) étant ouvertes lorsque la plus grande des pressions de commande régnant dans les conduites de commande (33, 34) est supérieure à une valeur seuil prédéterminée et les soupapes de freinage (19, 20) occupant leur position de soupape étranglée (24, 25) et les soupapes de commande (27, 28) étant fermées lorsque la plus grande des pressions de commande régnant dans les conduites de commande (33, 34) est inférieure à la valeur seuil prédéterminée.
  2. Commande hydraulique selon la revendication 1, caractérisée en ce qu'on peut régler une section d'étranglement respective que définit chaque soupape de freinage (19, 20) dans sa position de soupape étranglée (24, 25).
  3. Commande hydraulique selon la revendication 2, caractérisée en ce que les soupapes de freinage (19, 20) sont réalisées sous forme de soupapes à tiroir et présentent un piston de soupape de freinage (80, 81) mobile dans un boítier de soupape de freinage (82, 83), ledit piston de soupape de freinage coopérant avec une rampe de commande (92, 93) du boítier de soupape de freinage (82, 83) et présentant un chanfrein (88, 89).
  4. Commande hydraulique selon la revendication 3, caractérisée en ce que le piston de soupape de freinage (80, 81) vient buter contre une butée (84, 85) réglable qui détermine la section d'étranglement qui libère le chanfrein (88, 89) du piston de soupape de freinage (80, 81) sur la rampe de commande (92, 93) lorsque la soupape de freinage (19, 20) occupe sa position de soupape (24, 25) étranglée.
  5. Commande hydraulique selon la revendication 4, caractérisée en ce que chaque soupape de freinage (19, 20) présente un ressort de soupape de freinage (29, 30) qui sollicite le piston de soupape de freinage (80, 81) contre la butée (84, 85).
  6. Commande hydraulique selon l'une quelconque des revendications 1 à 5, caractérisée en ce que les soupapes de commande (27, 28) sont réalisées sous forme de soupapes à siège et présentent chacune un piston de soupape de commande (96, 97) qui est respectivement mobile dans un boítier de soupape de commande (98, 99), chaque piston de soupape de commande (96, 97) présentant sur un étage de soupape (108, 109) d'étanchement un tronçon conique (100, 101) qui coopère avec une surface de siège de soupape (102, 103) pour former un siège d'étanchéité.
  7. Commande hydraulique selon la revendication 6, caractérisée en ce que chaque soupape de commande (27, 28) présente un ressort de soupape de commande (54, 55) qui sollicite le piston de soupape de commande (96, 97) contre la surface de siège de soupape (102, 103).
  8. Commande hydraulique selon l'une ou l'autre des revendications 6 et 7, caractérisée en ce que le piston de soupape de commande (96, 97) est réalisé sous forme de piston étagé, et en ce qu'un étage du piston de soupape de commande (96, 97) est sollicité par la pression de commande pilotante.
  9. Commande hydraulique selon l'une quelconque des revendications 1 à 8, caractérisée en ce que les soupapes de freinage (19, 20) et les soupapes de commande (27, 28) sont reliées aux conduites de commande (33, 34) via une soupape de pression à deux voies (38).
  10. Commande hydraulique selon l'une quelconque des revendications 1 à 9, caractérisée en ce qu'il est prévu un dispositif d'alimentation (43) qui fournit une pression d'alimentation dans une conduite d'alimentation (46), en ce que les conduites de pression de réglage (13, 14) sont reliées à la conduite d'alimentation (46) via une soupape de réglage de pression (60, 61) associée, et en ce que chaque soupape de réglage de pression (60, 61) est sollicitée par la différence de pression entre la pression de commande régnant dans une des conduites de commande (33, 34) et la pression de réglage régnant dans la conduite de pression de réglage (13, 14) associée.
  11. Commande hydraulique selon la revendication 10, caractérisée en ce que chaque soupape de réglage de pression (60, 61) est sollicitée additionnellement par un ressort de soupape de réglage de pression (66, 67) de telle sorte que la pression de réglage régnant dans la conduite de pression de commande (13, 14) associée est légèrement supérieure à la pression de commande régnant dans la conduite de pression de commande (33, 34) associée.
  12. Commande hydraulique selon l'une quelconque des revendications 1 à 11, caractérisée en ce que les conduites de commande (33, 34) peuvent être, en alternance, alimentées via un capteur de commande (32) relié au réservoir (21) de fluide sous pression et à une alimentation en pression de commande (35) ou mises à l'air vers le réservoir (21) de fluide sous pression.
EP98942618A 1997-08-13 1998-07-24 Commande a soupapes de freinage et de commande pour dispositif de rotation Expired - Lifetime EP1003972B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19735111A DE19735111C2 (de) 1997-08-13 1997-08-13 Drehwerksteuerung mit Brems- und Steuerventilen
DE19735111 1997-08-13
PCT/EP1998/004647 WO1999009320A1 (fr) 1997-08-13 1998-07-24 Commande a soupapes de freinage et de commande pour dispositif de rotation

Publications (2)

Publication Number Publication Date
EP1003972A1 EP1003972A1 (fr) 2000-05-31
EP1003972B1 true EP1003972B1 (fr) 2002-06-05

Family

ID=7838875

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98942618A Expired - Lifetime EP1003972B1 (fr) 1997-08-13 1998-07-24 Commande a soupapes de freinage et de commande pour dispositif de rotation

Country Status (5)

Country Link
US (1) US6336324B1 (fr)
EP (1) EP1003972B1 (fr)
JP (1) JP4044283B2 (fr)
DE (2) DE19735111C2 (fr)
WO (1) WO1999009320A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19735111C2 (de) 1997-08-13 1999-06-02 Brueninghaus Hydromatik Gmbh Drehwerksteuerung mit Brems- und Steuerventilen
US6644335B2 (en) * 2000-12-15 2003-11-11 Caterpillar S.A.R.L. Precision orificing for pilot operated control valves
DE10110935C1 (de) * 2001-01-23 2002-11-28 Brueninghaus Hydromatik Gmbh Hydraulische Steuerung, insbesondere zum Ansteuern des Drehwerks eines Baggers
DE10220376B4 (de) * 2002-05-07 2004-07-15 Brueninghaus Hydromatik Gmbh Hydraulische Steuerung mit aktiver Rückstellung
ITPR20020032A1 (it) * 2002-06-13 2003-12-15 Renzo Bompieri Impianto oleodinamico per ruotare gru di autocarri e/o bracci meccanici di escavatori e relativo procedimento.
DE102007056991B4 (de) * 2007-11-27 2014-05-08 Sauer-Danfoss Gmbh & Co. Ohg Hydraulische Schaltungsanordnung mit einer Einrichtung zur Nullhubdruckregelung und Verfahren zur Druckregelung im Nullhubbetrieb
JP5590074B2 (ja) * 2012-06-26 2014-09-17 コベルコ建機株式会社 旋回式作業機械

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4571941A (en) * 1980-12-27 1986-02-25 Hitachi Construction Machinery Co, Ltd. Hydraulic power system
US4554991A (en) * 1984-02-23 1985-11-26 Mud Hog Corporation Auxiliary hydraulic drive system for road graders and the like
DE9404943U1 (de) 1994-03-23 1994-06-01 Wessel-Hydraulik Gmbh, 26384 Wilhelmshaven Bremsventilanordnung für einen reversierbaren hydraulischen Verbraucher
DE19620665C1 (de) * 1996-05-22 1997-06-12 Brueninghaus Hydromatik Gmbh Hydraulische Steuerung, insbesondere zum Ansteuern des Drehwerks eines Baggers
DE19620664C1 (de) * 1996-05-22 1997-06-12 Brueninghaus Hydromatik Gmbh Hydraulische Steuerung, insbesondere zum Ansteuern des Drehwerks eines Baggers
DE19625393A1 (de) 1996-05-22 1998-01-02 Brueninghaus Hydromatik Gmbh Drehwerksteuerung mit doppelseitiger Bremsung
DE19735111C2 (de) 1997-08-13 1999-06-02 Brueninghaus Hydromatik Gmbh Drehwerksteuerung mit Brems- und Steuerventilen

Also Published As

Publication number Publication date
EP1003972A1 (fr) 2000-05-31
US6336324B1 (en) 2002-01-08
DE19735111C2 (de) 1999-06-02
JP4044283B2 (ja) 2008-02-06
DE19735111A1 (de) 1999-02-25
WO1999009320A1 (fr) 1999-02-25
DE59804340D1 (de) 2002-07-11
JP2001515182A (ja) 2001-09-18

Similar Documents

Publication Publication Date Title
EP3519701B1 (fr) Distributeur hydraulique avec un système d'amortissement, pour le contrôle d'un moteur tournant d'un engin de construction
DE2642337B2 (de) Steuereinrichtung für einen doppeltwirkenden hydraulischen Motor
DE60032732T2 (de) Rohrbruch steuerventil vorrichtung
EP0935713B1 (fr) Systeme de soupape et procede de realisation
DE60304663T2 (de) Hydraulische Ventileinrichtung
EP1003972B1 (fr) Commande a soupapes de freinage et de commande pour dispositif de rotation
DE3621854A1 (de) Steuerschaltung fuer ein hydraulisches kraftheber-regelsystem
DE4231399A1 (de) Hydraulische Steuereinrichtung
DE3011088A1 (de) Hydraulische antriebsschaltung
EP0198119B1 (fr) Distributeur hydraulique pour commande indépendamment de la charge
DE4237932A1 (de) Volumenstromsteuerung für Kraftfahrzeughydraulik, insbesondere für Lenkeinrichtungen von Kraftfahrzeugen
DE102016205582A1 (de) Hydraulische Antriebsvorrichtung mit Regenerationsbetrieb
DE10325295A1 (de) Hydraulische Steueranordnung
DE2440555A1 (de) Hydraulischer steuerkreis
DE4136991C2 (de) Hydraulisches Wegeventil
DE3812116C2 (de) Elektrohydraulisches Wegeventil
DE4235698C2 (de) Hydrostatisches Antriebssystem
DE3603811C2 (de) Hydraulisches Wegeventil
EP0491155B1 (fr) Distributeur pour commande d'un moteur hydraulique
DE4026849C2 (de) Ventilanordnung zum Erzeugen eines Steuerdrucks in einer hydraulischen Anlage
EP1225281B1 (fr) Commande hydraulique, notamment pour commander le mécanisme rotatif d'une excavatrice
DE10110935C1 (de) Hydraulische Steuerung, insbesondere zum Ansteuern des Drehwerks eines Baggers
DE3431104A1 (de) Hydraulische steuereinrichtung
DE3629850A1 (de) Hydraulisches wegeventil
EP0763679B1 (fr) Système de commande à compensation de température

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990820

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 20010508

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59804340

Country of ref document: DE

Date of ref document: 20020711

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030306

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20120723

Year of fee payment: 15

Ref country code: GB

Payment date: 20120723

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120803

Year of fee payment: 15

Ref country code: IT

Payment date: 20120725

Year of fee payment: 15

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130724

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130724

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130724

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150925

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59804340

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201