EP0952398B1 - Verfahren und Vorrichtung zur Zuführung des Windes zur Verbrennung von stückigem Brennstoff - Google Patents

Verfahren und Vorrichtung zur Zuführung des Windes zur Verbrennung von stückigem Brennstoff Download PDF

Info

Publication number
EP0952398B1
EP0952398B1 EP99107650A EP99107650A EP0952398B1 EP 0952398 B1 EP0952398 B1 EP 0952398B1 EP 99107650 A EP99107650 A EP 99107650A EP 99107650 A EP99107650 A EP 99107650A EP 0952398 B1 EP0952398 B1 EP 0952398B1
Authority
EP
European Patent Office
Prior art keywords
combustion
fuel
grate
cone
combustion grate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99107650A
Other languages
English (en)
French (fr)
Other versions
EP0952398A2 (de
EP0952398A3 (de
Inventor
Fritz Dr.-Ing. Schoppe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0952398A2 publication Critical patent/EP0952398A2/de
Publication of EP0952398A3 publication Critical patent/EP0952398A3/de
Application granted granted Critical
Publication of EP0952398B1 publication Critical patent/EP0952398B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L1/00Passages or apertures for delivering primary air for combustion 
    • F23L1/02Passages or apertures for delivering primary air for combustion  by discharging the air below the fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B1/00Combustion apparatus using only lump fuel
    • F23B1/16Combustion apparatus using only lump fuel the combustion apparatus being modified according to the form of grate or other fuel support
    • F23B1/24Combustion apparatus using only lump fuel the combustion apparatus being modified according to the form of grate or other fuel support using rotating grate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B5/00Combustion apparatus with arrangements for burning uncombusted material from primary combustion
    • F23B5/04Combustion apparatus with arrangements for burning uncombusted material from primary combustion in separate combustion chamber; on separate grate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/20Incineration of waste; Incinerator constructions; Details, accessories or control therefor having rotating or oscillating drums
    • F23G5/22Incineration of waste; Incinerator constructions; Details, accessories or control therefor having rotating or oscillating drums the drums being conically shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • F23L9/02Passages or apertures for delivering secondary air for completing combustion of fuel  by discharging the air above the fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/103Combustion in two or more stages in separate chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2203/00Furnace arrangements
    • F23G2203/20Rotary drum furnace
    • F23G2203/203Rotary drum furnace with conically shaped drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/26Biowaste
    • F23G2209/261Woodwaste

Definitions

  • the invention relates to a method and an apparatus to feed the wind for the combustion of lumpy 3.
  • the method according to the preamble of claim 1 and 3, respectively and device of this type are from the essay "The development of the fuel cone for incineration of waste "by the inventor in the magazine “Fuel-Heat-Power", 19 (1967), No. 10, Pages 469 to 473 known.
  • This essay largely describes an incinerator for the automatic, universal and inexpensive waste incineration for municipalities and small and medium-sized industrial companies.
  • she includes a firing cone that is about an inclined axis rotates, and an afterburner that is vertically above the opening the firing cone is arranged.
  • the firing cone has a frustoconical shape Section, one located at the top larger diameter adjoining cylindrical section and a frustoconical one adjoining its free end Attachment whose small diameter is the free end of the Firing cone and its opening forms.
  • the frustoconical section consists of itself radial / axial extending, mutually spaced bars, the of several outer circumferential rings of different diameters are mutually supported.
  • the frustoconical section of the fuel cone is blown from below by the downwind, which is the Gaps between the bars must pass to the firing material to reach, which is in the firing cone and due to this its orbital movement is circulated.
  • the one above the The afterburner arranged in the opening of the firing cone attachment has one Afterburning chamber which is frusto-conical in the upper section narrowed and provided with a facility there the upper wind leads tangentially into the afterburning chamber so that a turbulent flow forms in it, which the Exhaust gases emerging from the firing cone and burns out.
  • a firing cone firing system of this type is. also in US 3,599,581 A.
  • EP 0 754 907 A2 describes a method for influencing combustion known in a boiler with shaking grate, in which the Supply of primary air and / or fuel during and briefly after shaking the grate is reduced to one by the Shaking causes the burn rate to increase suddenly to avoid. A sudden drop in oxygen levels in the exhaust gas, which would otherwise occur because of the overall control of the Fuel supply too slow due to sudden changes in combustion conditions is avoided.
  • the combustion system shown is the primary air from below blown against the rust and the gaps between the Grate bars pass to the firing material lying on the grate to get to the firing material while secondary air from above is blown, which is fed through nozzles, which at least one of the boiler walls arranged and directed against the grate are.
  • the air volumes supplied depend on the result ongoing measurements of the boiler state variables, the excess air and heat absorption.
  • GB 1,141,562 A describes a domestic or industrial waste incinerator, consisting of a lying, rotating Grid drum made of axially extending and circular tubes trending rings is formed. Inside the drum are on small tubes attached to the tubes, which are radial into the drum protrude and are connected to the interior of the tube to which they are attached.
  • the tubes are on one arranged helically and through plates connected to each other to form a screw conveyor for the firing material to form, which is attached to the drum by a front Pilot burner can be ignited.
  • the tubes are on the face open to allow the entry of air through the Tubes can escape into the interior of the drum.
  • the drum is surrounded by a double-walled jacket, the outer wall is open at the top. Below in the area of one under the drum Ash box are the jacket and its interior completely open.
  • air is introduced into the interior of the jacket from above, that flows through the coat and cools its walls, exits in the ash box at the bottom and from there the bottom Gaps between the tubes of the drum and as primary air in the combustion chamber enclosed by the drum arrives.
  • An external suction fan in the combustion chamber Vacuum generated by this primary air and by the Tubes and secondary air supplied through the tubes, which at the same time cools the pipes, sucks them in.
  • a significant disadvantage is also that in the above Way deflected underwind entrained gas and it contains dusty fuel that burns.
  • the the resulting flame rays overheat and corrode the metallic material of the combustion grate, in particular its consisting of radial arms and circular rings Supporting structure. As the heating value of the fuel increases such overheating and corrosion are more serious.
  • Flame gases are known to supply this upper air. at known method, this was done in such a way that the flame gas flow the upper air sucked in by itself.
  • the invention has for its object a method in The preamble of claim 1 to specify the outlined type sufficient for the complete burnout of the fuel Air supply ensures overheating of the combustion grate avoids and without dust filtering of the combustion exhaust gases gets along.
  • the invention achieves the desired success apparatus in that the support arms of the combustion grate are hollow are executed and flowed through by the downwind, making them be cooled.
  • the downwind is forced on the top the combustion grate, i.e. directly on the fuel, so that the possibility of deflecting the underwind under the combustion grate is greatly reduced.
  • the aim of the post-combustion of the flame gases generated by that on the Burn out burning rust burning fuel special attention given.
  • the flame gases the upper air is supplied in the form of a high-speed flow, which surrounds the flame gases helically and itself propagates towards the combustion grate, the Increased diameter of this vortex.
  • the headwind current describes, for example, the surface of a truncated cone, whose larger diameter faces the combustion grate.
  • the headwind is due to the smaller diameter of this truncated cone blown. This results in a negative pressure in the center, the sucks in the flame gases. Between the center of the towards this vacuum point flowing flame gas flow and this A zone is formed around the toroidal headwind current intense turbulence from where the flame gases with the headwind be mixed thoroughly. This zone of turbulence is outside of surrounded by a cold air flow of fresh head wind.
  • the head wind is at a speed of 40 to 100 m / s, preferably 60 to 80 m / s, which is thus so high, that the thereby acting on the particles in the flame gases Centrifugal force the particles into the cold air flow mentioned ejected, where they are cooled so far that they dry fail. In this way, not only the afterburner becomes escaping exhaust gas flow without the use of filters of particles exempt, but is also a slagging of the incinerator avoided.
  • the air duct described in the afterburner is achieved with the help of a truncated cone-shaped afterburner into which the upper wind at the smaller end facing away from the combustion grate The same diameter is blown in via an introducer which is the upper wind tangential to the wall of the afterburner leads into this, where it is inclined at an angle to the Axis of the afterburning chamber spreads out in this.
  • At the introduction of the headwind into the afterburning chamber can also be from a flow direction obliquely from the outset by means of guide devices to the axis of the afterburning chamber.
  • each hollow support arm at least one further opening on the side facing away from the fuel Side so that it has fallen through the combustion grate Ash or fine amounts of fuel in the combustion air ashes get to burn out completely. Through these openings can also penetrate into the pipes fuel or Ash particles are blown out.
  • the combustion grate is advantageously covered by a jacket hollow (burning) cone, which rotates around a executes an inclined axis.
  • the afterburner is in this Most conveniently arranged coaxially to the axis of rotation of the cone.
  • the coaxial arrangement of the afterburning chamber just above the firing cone also has the consequence that the heat radiation in the Afterburning chamber burning flame gases on the in the burning cone located fuel acts advantageously and the taking place there Smoldering and combustion process supported.
  • the lower diameter of the afterburning chamber should expediently be used slightly larger than the diameter of the top edge of the fuel cone. This will close the afterburner wall downward blown dust from the afterburner past the firing cone into the ash room below blown.
  • Fig. 1 shows a complete incinerator consisting of a firing cone K rotating about an inclined axis O and one coaxial to the exit end of the firing cone K. subsequent afterburner N, which is enclosed by a housing G. are.
  • the fuel cone K has a frustoconical section 1, a cylindrical one adjoining it towards the open end Section 2 and an adjoining one section 3 narrowing in diameter.
  • the combustion grate this fuel cone K consists of grate bars 4 made of heat-resistant cast and from hollow, radial support arms 5 and ring carriers (not shown), that connect the support arms 5 to each other.
  • the firing cone K is smaller in diameter at the end of several hollow axially parallel legs 6 held with an air collection box 7 are connected, which has radial partitions, that each close one air collection chamber per support arm 5.
  • the Air collection box 7 is firmly connected to a race 8, the of several stationary rollers (not shown) is stored.
  • the race 8 has one opening per support arm 5 on.
  • the number of connectors is preferably as large as the number of hollow support arms 5th
  • a shaft 12 is rigidly connected on the side of the race 8 facing away from the firing cone K of this extends away and in its free end area by means of a spherical roller bearing 13 is mounted.
  • a drive motor 14 which has a spur gear Race 8 and thus the burning cone K in rotation on the axis O added.
  • the coaxial is arranged to the firing cone K.
  • Afterburner N has one frustoconical afterburner 15, which is in the direction of the firing cone K extends and the lower edge 16 one has a larger diameter than the free edge of the narrowing Section 3 of the firing cone K.
  • the afterburning chamber 15 closes an air collection space 17, arranged in the radially adjustable guide vanes 18 are. By adjusting the guide vanes 18, the effective one Opening cross section of the air plenum 17 changeable.
  • the Air collecting space 17 has an opening (not shown), through the upper air tangentially into the air collecting space 17 can be blown.
  • a narrowed collar 19 with an outlet cross section 20 leaves free.
  • the frustoconical wall 21 of the afterburning chamber 15 is from surrounded by a jacket 22 with the wall 21 one of coolant flowed through chamber and can be part of the housing G. Through this jacket 22 and the wall 21 extends Feed shaft 23, which is vertically above the opening of the firing cone K lies and the supply of fuel into the fuel cone K serves. Suitable closing flaps (not shown) arranged.
  • the axis of the afterburning chamber 15 against the Axis of the firing cone K can be inclined, especially after above, but the edge 16 of the afterburning chamber 15 should be parallel to the opposite edge of the firing cone K, to avoid the uncontrolled escape of flame gases or at least to decrease.
  • Fig. 2 shows a section through the conical section of the Brennkegels K. You can see the support arms 5, which are hollow are and are arranged at uniform angular intervals. The Reference numerals of the individual support arms 5 are here for later Provide an explanation of the operational sequence with suffixes a to 1. Between the support arms 5 there are the grate bars 4 made of heat-resistant Greetings, which are essentially T-shaped in cross-section, the wide leg of the T being the bearing surface for the fuel B forms while the protruding rib not only stiffening, but also dissipating heat.
  • the Grate bars 4 have a mutual distance, which is chosen is that ash, but not too large pieces of fuel through the the space formed by the distance can fall through. The The distance is expediently of the order of 4 mm.
  • Fig. 3 one of the support arms 5 is enlarged in cross section shown. It can be seen that the same from the hollow interior openings 26 inclined at the top in the from the firing cone K lead enclosed combustion chamber. Another opening 27 can open be formed on the opposite side. Their purpose is still explained.
  • the firing cone K rotates about its axis O.
  • This Orbital movement is shown in Fig. 2 with the arrow.
  • the one in Fuel cone K located fuel B is thereby from the fuel cone entrained so that there is an inclined slope results, as Fig. 2 indicates.
  • This embankment is in circulation around the Brennkegels K ever steeper and then collapses, resulting in The consequence is that the fuel B circulates continuously in the fuel cone becomes.
  • the fuel B is ignited at the beginning of the combustion process by an ignition flame which is supplied by a lance (not shown). If the fuel B burns sufficiently, the combustion flame can be dispensed with. With constant circulation due to the movement of the fuel cone, the fuel B burns in the fuel cone K. Fuel can be added through the shaft 23 at the appropriate time. The metering of the fuel per unit of time is expediently carried out by monitoring the O 2 content contained in the combustion exhaust gases.
  • the flame gases emanating from the firing cone K are replaced by the the negative pressure caused by the upstream flow into the afterburning chamber 15 sucked in, being intense with that there swirling headwind. Flammable components the flame gases are completely burned out. Ash particles are thrown out in the direction of the wall 21 and fall down at the edge 16 into the housing G.
  • the support arms 5k, 5l and 5a to 5d in Fig. 2. This can be controlled in such a way that only those connecting pieces with Air supply can be supplied, which are arranged at the positions are who are currently taking the aforementioned arms.
  • the support arm 5j Upon further rotation of the firing cone in Fig. 2 counterclockwise the support arm 5j then enters the combustion zone a while the support arm 5d leaves it. Then the later arrives Support arm 5i in the combustion zone, while the support arm 5c them leaves, etc.
  • this weak supply serves one certain cooling, but mainly the prevention of particles penetrate through openings 26.
  • the layer thickness of the fuel over the Combustion grate is different. For example, it is on Transition between the conical section 1 and the cylindrical Section 2 largest and near the center of the tapered Section 1, i.e. smallest at its smallest diameter.
  • which is in the different Height of the support arms during the rotation of the firing cone resulting different coverage of the support arms can by appropriately throttling the downwind supply to the something higher connecting pieces are taken into account.
  • the openings 26 and 27 in the support arms 5 are preferably so dimensioned that at full load the speed of the exiting from them Underwind between 20 and 60 m / s, preferably at 40 m / s lies.
  • openings 27 in the support arms 5 serve to on the one hand blow out particles that have penetrated into the support arms 5, and on the other hand, which in the ash receiving room in Housing G particles that may have fallen are not completely burned out, to supply them with combustion air. Therefore, the openings 27 are on the outside of the firing cone K. formed in the support arms 5, expediently on the point at the lowest surface line of the Firing cone is lowest. In the example shown would be that in the area of the transition between the tapered section 1 and the cylindrical section 2 of the firing cone K.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Fuel Combustion (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Combustion Of Fluid Fuel (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren und eine Vorrichtung zu Zuführung des Windes zur Verbrennung von stückigem Brennstoff nach dem Oberbegriff des Anspruchs 1 bzw. 3. Verfahren und Vorrichtung dieser Art sind aus dem Aufsatz "Die Entwicklung des Brennkegels zur Abfallveraschung" des Erfinders in der Zeitschrift "Brennstoff-Wärme-Kraft", 19 (1967), Nr. 10, Seiten 469 bis 473 bekannt.
Dieser Aufsatz beschreibt eine Verbrennungsanlage für die weitgehend selbsttätige, universale und preisgünstige Müllverbrennung für Kommunen und kleine und mittlere Industriebetriebe. Sie umfaßt einen Brennkegel, der um eine schrägstehende Achse rotiert, und eine Nachbrennkammer, die vertikal über der Öffnung des Brennkegels angeordnet ist. Der Brennkegel hat einen kegelstumpfförmigen Abschnitt, einen sich an dessen oben angeordneten größeren Durchmesser anschließenden zylindrischen Abschnitt und einen sich an dessen freies Ende anschließenden kegelstumpfförmigen Aufsatz, dessen kleiner Durchmesser das freie Ende des Brennkegels und dessen Öffnung bildet.
Der kegelstumpfförmige Abschnitt besteht aus sich radial/axial erstreckenden, in gegenseitigem Abstand verlaufenden Stäben, die von mehreren äußeren Umfangsringen unterschiedlicher Durchmesser gegenseitig abgestützt werden. Der kegelstumpfförmige Abschnitt des Brennkegels wird von unten vom Unterwind angeblasen, der die Zwischenräume zwischen den Stäben passieren muß, um das Brenngut zu erreichen, der in dem Brennkegel liegt und von diesem aufgrund seiner Umlaufbewegung umgewälzt wird. Der oberhalb der Öffnung des Brennkegelaufsatzes angeordnete Nachbrenner hat eine Nachbrennkammer, die sich im oberen Abschnitt nach oben kegelstumpfförmig verengt und dort mit einer Einrichtung versehen ist, die Oberwind tangential in die Nachbrennkammer einleitet, so daß sich in ihr eine turbulente Strömung ausbildet, die die aus dem Brennkegel austretenden Abgase aufnimmt und ausbrennt.
Für eine konkret angegebene Brennkegelkonstruktion mit einem größten Durchmesser von 1870 mm, einem kleinsten Durchmesser von 530 mm und einer Länge von 460 mm des kegelstumpfförmigen Abschnitts des Brennkegels, die gemäß dem zitierten Aufsatz für die Verbrennung von 1,2 bis 1,4 t/h Kommunalmüll bestimmt ist - der zum Zeitpunkt der Veröffentlichung des Aufsatzes in Deutschland einen Heizwert von etwa 1,7 bis 1,9 MWh/t hatte - errechnet sich eine Feuerungsleistung von 3,58 MW. Für die Erzielung größerer Leistungen wird wegen der mechanischen Schwierigkeiten, die sich mit einer Vergrößerung der Brennkegeldurchmesser ergeben, in dem Aufsatz eine Parallelschaltung mehrerer Anlagen der beschriebenen Art empfohlen.
Eine Brennkegel-Feuerungsanlage dieser Art ist. auch in US 3,599,581 A beschrieben.
Aus EP 0 754 907 A2 ist ein Verfahren zum Beeinflussen der Verbrennung in einem Kessel mit Schüttelrost bekannt, bei dem die Zuführung von Primärluft und/oder Brennstoff während und kurz nach dem Schütteln des Rostes vermindert wird, um ein durch das Schütteln verursachtes plötzliches Ansteigen der Verbrennungsrate zu vermeiden. Ein plötzlicher Abfall des Sauerstoffgehalts im Abgas, der sonst auftreten würde, weil die Gesamtregelung der Brennstoffzufuhr zu langsam auf plötzliche Änderungen der Verbrennungsbedingungen reagiert, wird dadurch vermieden. Bei der dargestellten Feuerungsanlage wird die Primärluft von unten gegen den Rost geblasen und muß die Zwischenräume zwischen den Roststäben passieren, um zu dem auf dem Rost liegenden Brenngut zu gelangen, während Sekundärluft von oben auf das Brenngut geblasen wird, die durch Düsen zugeführt wird, die an wenigstens einer der Kesselwände angeordnet und gegen den Rost gerichtet sind. Die zugeführten Luftmengen werden abhängig vom Ergebnis laufender Messungen der Kesselzustandvariablen, des Luftüberschusses und der Wärmeabsorption bestimmt.
Die GB 1,141,562 A beschreibt eine Haus- oder Industriemüllverbrennungsvorrichtung, bestehend aus einer liegenden, rotierenden Gittertrommel, die von axial verlaufenden Rohren und zirkular verlaufenden Ringen gebildet ist. Im Inneren der Trommel sind an den Rohren kleine Röhrchen angebracht, die radial in die Trommel vorstehen und mit dem Innenraum des Rohres verbunden sind, an dem sie jeweils angebracht sind. Die Röhrchen sind auf einer wendelförmig verlaufenden Linie angeordnet und durch Platten miteinander verbunden, um eine Förderschnecke für das Brenngut zu bilden, das durch einen stirnseitig an die Trommel angesetzten Zündbrenner gezündet werden kann. Die Rohre sind stirnseitig offen, um den Eintritt von Luft zu ermöglichen, die durch die Röhrchen in den Innenraum der Trommel entweichen kann. Die Trommel ist von einem doppelwandigem Mantel umgeben, dessen Außenwand oben offen ist. Unten im Bereich eines unter der Trommel befindlichen Aschekastens sind der Mantel und sein Innenraum vollständig offen.
Im Betrieb wird Luft von oben in den Innenraum des Mantels eingeleitet, die den Mantel durchströmt und dessen Wände kühlt, unten in den Aschekasten austritt und von dort aus von unten die Zwischenräume zwischen den Rohren der Trommel durchströmt und als Primärluft in den von der Trommel umschlossenen Brennraum gelangt. Im Brennraum ist durch ein äußeres Sauggebläse ein Unterdruck erzeugt, der diese Primärluft und die durch die Röhrchen und durch die Rohre hindurch zugeführte Sekundärluft, die zugleich die Rohre kühlt, ansaugt.
Allen bekannte Verbrennungsanlagen der vorgenannten Art ist gemeinsam, daß bei ihnen der Unterwind aufwärts gegen die Unterseite des Verbrennungsrostes geblasen wird. Der Verbrennungsrost hat Öffnungen zwischen den ihn bildenden Roststäben bzw. -rohren, durch den der Unterwind jedoch nur zum kleinen Teil strömen kann, weil der auf dem Verbrennungsrost liegende Brennstoff diese Öffnungen teilweise versperrt. Der größere Teil des Unterwindes wird daher gewöhnlich seitlich und nach unten abgelenkt. Der auf dem Verbrennungsrost liegende Brennstoff erhält dadurch nicht genügend Verbrennungsluft.
Ein erheblicher Nachteil ist ferner, daß in dem in der vorgenannten Weise abgelenkten Unterwind mitgerissene gas- und staubförmige Brennstoffanteile enthalten sind, die brennen. Die dadurch entstehenden Flammstrahlen überhitzen und korrodieren das metallische Material des Verbrennungsrostes, insbesondere dessen aus radialen Tragarmen und zirkularen Ringen bestehende Tragstruktur. Mit steigendem Heizwert des Brennstoffs werden solche Überhitzungen und Korrosionen gravierender.
Zur Nachverbrennung der vom Verbrennungsrost aufsteigenden Flammgase ist es bekannt, diesen Oberluft zuzuführen. Bei bekannten Verfahren erfolgte dieses in der Weise, daß die Flammgasströmung die Oberluft von selbst ansaugte.
Nachteilig bei solchen Rostfeuerungen war ein noch immer unvollständiger Ausbrand des Brennstoffs, der sich in einem entsprechend hohen CO-Anteil in den Verbrennungsabgasen äußerte. Schließlich enthielten diese auch noch einen erheblichen Anteil mitgerissener Feststoffpartikel, insbesondere Flugasche, die eine Abscheidung mittels Filteranlagen und dgl. erforderlich machten. Rostfeuerungen der beschriebenen Art, insbesondere mit Drehkegeln, haben sich daher in der Praxis nicht durchsetzen können.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der im Oberbegriff des Anspruchs 1 umrissenen Art anzugeben, das eine für den vollständigen Ausbrand des Brennstoffs ausreichende Luftzuführung gewährleistet, eine Überhitzung des Verbrennungsrostes vermeidet und ohne Staubfilterung der Verbrennungsabgase auskommt. Außerdem soll eine zur Durchführung des Verfahrens geeignete Vorrichtung angegeben werden.
Diese Aufgabe wird hinsichtlich des Verfahrens durch die im Anspruch 1, hinsichtlich der Vorrichtung durch die im Anspruch 2 angegebenen Merkmale gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
Die Erfindung erreicht den von ihr angestrebten Erfolg zum einen apparativ dadurch, daß die Tragarme des Verbrennungsrostes hohl ausgeführt und vom Unterwind durchströmt sind, wodurch sie gekühlt werden. Der Unterwind tritt zwangsweise an der Oberseite des Verbrennungsrostes, d.h. direkt am Brennstoff aus, so daß die Möglichkeit einer Ablenkung des Unterwindes unter den Verbrennungsrost stark vermindert ist.
Zum anderen ist zur Erreichung des von der Erfindung angestrebten Ziels der Nachverbrennung der Flammgase, die von dem auf dem Verbrennungsrost brennenden Brennstoff ausgehen, besondere Aufmerksamkeit geschenkt. Gemäß der Erfindung wird den Flammgasen die Oberluft in Form einer Hochgeschwindigkeitsströmung zugeführt, die die Flammgase schraubenlinienförmig umgibt und sich in Richtung auf den Verbrennungsrost fortpflanzt, wobei sich der Durchmesser dieses Strömungswirbels vergrößert. Die Oberwindströmung beschreibt somit etwa den Mantel eines Kegelstumpfes, dessen größerer Durchmesser dem Verbrennungsrost zugewandt ist.
Der Oberwind wird am kleineren Durchmesser dieses Kegelstumpfes eingeblasen. Dadurch ergibt sich im Zentrum ein Unterdruck, der die Flammgase ansaugt. Zwischen dem Zentrum der in Richtung auf diesen Unterdruckpunkt strömenden Flammgasströmung und der diese umgebenden torusförmigen Oberwindströmung bildet sich eine Zone intensiver Turbulenz aus, wo die Flammgase mit dem Oberwind intensiv durchmischt werden. Diese Turbulenzzone ist außen von einer Kaltluftströmung frischen Oberwindes umgeben.
Der Oberwind wird mit einer Geschwindigkeit von 40 bis 100 m/s, bevorzugt 60 bis 80 m/s, zugeführt, die somit derart hoch ist, daß die dadurch auf die Partikel in den Flammgasen einwirkende Zentrifugalkraft die Partikel in die erwähnte Kaltluftströmung ausschleudert, wo sie soweit abgekühlt werden, daß sie trocken ausfallen. Auf diese Weise wird nicht nur die aus dem Nachbrenner austretende Abgasströmung ohne Einsatz von Filtern von Partikeln befreit, sondern ist auch eine Verschlackung der Verbrennungsanlage vermieden.
Tatsächlich ergibt sich eine so weitgehende Heißentstaubung der Flammgase, daß die aus dem Nachbrenner austretenden Abgase - z.B. bei Ausblasen ins Freie - für das Auge klar und optisch staubfrei erscheinen, was beim heutigen Stand der Heißentstaubungstechnik bislang als unmöglich angesehen worden ist.
Versuche mit Abfallholz in Form von Holzschnitzeln als Brennstoff haben gezeigt, daß die vorgenannten Ergebnisse mit einer Luftführung erreicht werden, bei der etwa 30 bis 40% der zur vollständigen Verbrennung des Brennstoffs erforderlichen Luftmenge als Unterwind zugeführt werden, während der notwendige Restanteil von 70 bis 60% der Luftmenge als Oberwind zugeführt wird. Man erkennt hieraus, daß der Nachverbrennung auch unter dem Gesichtspunkt der Brennstoffausnutzung eine wesentliche Bedeutung zukommt.
Apparativ erreicht man die beschriebene Luftführung im Nachbrenner mit Hilfe einer kegelstumpfförmigen Nachbrennkammer, in die der Oberwind am dem Verbrennungsrost abgewandten Ende kleineren Durchmessers derselben über eine Einleitvorrichtung eingeblasen wird, die den Oberwind tangential zur Wand der Nachbrennkammer in diese einleitet, wo er sich unter einem Winkel schräg zur Achse der Nachbrennkammer in dieser ausbreitet. Bei der Einleitung des Oberwindes in die Nachbrennkammer kann diesem auch von vornherein durch Leiteinrichtungen eine Strömungsrichtung schräg zur Achse der Nachbrennkammer vermittelt werden.
Vorteilhafterweise wird im Betrieb nur denjenigen Tragarmen des Verbrennungsrostes Unterluft zugeführt, auf denen Brennstoff liegt, und vorzugsweise nach Maßgabe der Dicke der Brennstoffschicht. Die anderen, nicht von Brennstoff bedeckten Tragarme erhalten keine Luft. Man kann ihnen aber auch eine geringe Luftmenge zuführen, um das Eindringen korrodierender Brenngase und von Brennstoff- oder Aschepartikeln zu verhindern. Eine geringe Durchströmung der nicht von Brennstoff bedeckten Tragarme verbessert auch die Kühlung derselben.
Gemäß einer Weiterbildung der Erfindung hat jeder hohle Tragarm wenigstens eine weitere Öffnung auf der dem Brennstoff abgewandten Seite, so daß durch den Verbrennungsrost hindurchgefallene Asche oder feine Brennstoffanteile im Aschenraum Verbrennungsluft erhalten, um vollständig auszubrennen. Durch diese Öffnungen können außerdem in die Rohre eingedrungene Brennstoff- oder Aschepartikel ausgeblasen werden.
Vorteilhafterweise wird der Verbrennungsrost vom Mantel eines hohlen (Brenn-) Kegels gebildet, der eine Drehbewegung um eine schrägstehende Achse ausführt. Die Nachbrennkammer ist in diesem Falle am günstigsten koaxial zur Drehachse des Kegels angeordnet. Hierdurch werden die aus dem Brennkegel austretenden Flammgase besonders gut in das Zentrum des Nachbrenners geleitet, wo ein gegenüber dem im Brennkegel herrschenden Druck verminderter Druck herrscht, was die Überleitung der aus dem Brennkegel austretenden Flammgase in die Nachverbrennung begünstigt und ein unkontrolliertes Entweichen dieser Flammgase nach außen bzw. in ein die Verbrennungsanlage aus Brennkegel und Nachbrennkammer umschließendes Gehäuse verhindert.
Die koaxiale Anordnung der Nachbrennkammer dicht über dem Brennkegel hat ferner zur Folge, daß die Wärmestrahlung der in der Nachbrennkammer brennenden Flammgase auf den im Brennkegel befindlichen Brennstoff vorteilhaft einwirkt und den dort stattfindenden Verschwelungs- und Verbrennungsvorgang unterstützt.
Dabei sollte zweckmäßigerweise der untere Durchmesser der Nachbrennkammer etwas größer als der Durchmesser des oberen Randes des Brennkegels sein. Dadurch wird der in der Nähe der Nachbrennkammerwand abwärts geblasene Staub aus der Nachbrennkammer am Brennkegel vorbei in den darunter befindlichen Ascheraum geblasen.
Die Erfindung wird nachfolgend unter Bezugnahme auf in den Zeichnungen dargestelltes Ausführungsbeispiel näher erläutert. Es zeigt:
  • Fig. 1 eine teilweise geschnittene Seitenansicht eines kegelförmigen Brenners mit daran angesetztem Nachbrenner;
  • Fig. 2 einen Schnitt durch den konischen Teil des kegelförmigen Verbrennungsrostes des Brenners von Fig. 1, und
  • Fig. 3 einen vergrößerten Schnitt durch einen hohlen Tragarm des Verbrennungsrostes von Fig. 2.
  • Fig. 1 zeigt eine vollständige Verbrennungsanlage, bestehend aus einem um eine schrägstehende Achse O rotierenden Brennkegel K und einem sich an das Austrittsende des Brennkegels K koaxial anschließenden Nachbrenner N, die von einem Gehäuse G umschlossen sind.
    Der Brennkegel K weist einen kegelstumpfförmigen Abschnitt 1, einen sich daran zum offenen Ende hin anschließenden zylindrischen Abschnitt 2 und einen sich an diesen anschließenden, sich im Durchmesser verengenden Abschnitt 3 auf. Der Verbrennungsrost dieses Brennkegels K besteht aus Roststäben 4 aus warmfestem Guß und aus hohlen, radialen Tragarmen 5 und Ringträgern (nicht dargestellt), die die Tragarme 5 miteinander verbinden. Der Brennkegel K ist an seinem Ende kleineren Durchmessers von mehreren hohlen achsparallelen Beinen 6 gehalten, die mit einem Luftsammelkasten 7 verbunden sind, der radiale Zwischenwände aufweist, die pro Tragarm 5 je eine Luftsammelkammer abschließen. Der Luftsammelkasten 7 ist mit einem Laufring 8 fest verbunden, der von mehreren stationär gelagerten Laufrollen (nicht dargestellt) gelagert ist. Der Laufring 8 weist je eine Öffnung pro Tragarm 5 auf.
    Gegen die dem Brennkegel K abgewandte Seite des Laufrings 8 ist von Federn ein Gleitring 9 gedrückt, der mehrere Anschlußstutzen trägt, die über Schlauchleitungen 10 mit einer gemeinsamen Luftzuführkammer 11 verbunden sind. Die Anzahl der Anschlußstutzen ist vorzugsweise ebenso groß wie die Anzahl der hohlen Tragarme 5.
    Mit dem Laufring 8 ist eine Welle 12 starr verbunden, die sich auf der dem Brennkegel K abgewandten Seite des Laufrings 8 von diesem weg erstreckt und in ihrem freien Endbereich mittels eines Pendelrollenlagers 13 gelagert ist. Man erkennt ferner einen Antriebsmotor 14, der über eine Stirnverzahnung den Laufring 8 und damit den Brennkegel K in Drehung am die Achse O versetzt.
    Im Abstand über dem Ende größeren Durchmessers des Brennkegels K befindet sich der kegelstumpfförmige Nachbrenner N, der koaxial zum Brennkegel K angeordnet ist. Der Nachbrenner N hat eine kegelstumpfförmige Nachbrennkammer 15,die sich in Richtung auf den Brennkegel K erweitert und deren unterer Rand 16 einen größeren Durchmesser hat, als der freie Rand des sich verengenden Abschnitts 3 des Brennkegels K. An das Ende kleineren Durchmessers der Nachbrennkammer 15 schließt sich ein Luftsammelraum 17 an, in dem radial verstellbare Leitschaufeln 18 angeordnet sind. Durch Verstellen der Leitschaufeln 18 ist der wirksame Öffnungsquerschnitt des Luftsammelraums 17 veränderbar. Der Luftsammelraum 17 weist eine Öffnung (nicht dargestellt) auf, durch die hindurch Oberluft tangential in den Luftsammelraum 17 eingeblasen werden kann. Nach außen, also auf der der Nachbrennkammer 15 abgewandten Seite schließt sich an den Luftsammelraum 17 ein verengter Kragen 19 an, der einen Austrittsquerschnitt 20 frei läßt.
    Die kegelstumpfförmige Wand 21 der Nachbrennkammer 15 ist von einem Mantel 22 umgeben, der mit der Wand 21 eine von Kühlmittel durchströmte Kammer begrenzt und Teil des Gehäuses G sein kann. Durch diesen Mantel 22 und die Wand 21 erstreckt sich ein Zuführschacht 23, der vertikal über der Öffnung des Brennkegels K liegt und der Zuführung von Brennstoff in den Brennkegel K dient. In dem Schacht 23 sind geeignete Schließklappen (nicht dargestellt) angeordnet.
    Man erkennt in Fig. 1 ferner im Gehäuse G unterhalb des Brennkegels K eine Förderschneckenanordnung 24, die dem Transport von sich im Gehäuse G ansammelnder Asche in einen Ascheauslaß 25 dient.
    Es sei angemerkt, daß die Achse der Nachbrennkammer 15 gegen die Achse des Brennkegels K geneigt sein kann, insbesondere nach oben, doch sollte dabei der Rand 16 der Nachbrennkammer 15 parallel zum gegenüberstehenden Rand des Brennkegels K verbleiben, um das unkontrollierte Austreten von Flammgasen zu vermeiden oder wenigstens zu vermindern.
    Fig. 2 zeigt einen Schnitt durch den konischen Abschnitt des Brennkegels K. Man erkennt die Tragarme 5, die hohl ausgebildet sind und in gleichmäßigen Winkelabständen angeordnet sind. Die Bezugszeichen der einzelnen Tragarme 5 sind hier zur späteren Erläuterung des Betriebsablaufs mit Suffixen a bis 1 versehen. Zwischen den Tragarmen 5 befinden sich die Roststäbe 4 aus warmfestem Gruß, die im Querschnitt im wesentlichen T-förmig sind, wobei der breite Schenkel des T die Auflagefläche für den Brennstoff B bildet, während die davon hochstehende Rippe nicht nur der Aussteifung, sondern auch der Abführung von Wärme dient. Die Roststäbe 4 haben einen gegenseitigen Abstand, der so gewählt ist, daß Asche, nicht aber zu große Brennstoffstücke durch den vom Abstand gebildeten Zwischenraum hindurchfallen kann. Der Abstand liegt zweckmäßigerweise in der Größenordnung von 4mm.
    In Fig. 3 ist einer der Tragarme 5 im Querschnitt vergrößert dargestellt. Man erkennt, daß aus dem hohlen Innenraum desselben oben schrägstehende Öffnungen 26 in den von dem Brennkegel K umschlossenen Brennraum führen. Eine weitere Öffnung 27 kann auf der entgegengesetzten Seite ausgebildet sein. Deren Zweck wird noch erläutert.
    Im Betrieb läuft der Brennkegel K um seine Achse O um. Diese Umlaufbewegung ist in Fig. 2 mit dem Pfeil dargestellt. Der im Brennkegel K befindliche Brennstoff B wird dadurch vom Brennkegel mitgenommen, so daß sich eine schrägverlaufende Böschung ergibt, wie Fig. 2 andeutet. Diese Böschung wird beim Umlauf des Brennkegels K immer steiler und bricht dann zusammen, was zur Folge hat, daß der Brennstoff B im Brennkegel ständig umgewälzt wird.
    Der Brennstoff B wird zu Beginn des Verbrennungsvorgangs durch eine Zündflamme, die von einer Lanze (nicht dargestellt) zugeführt wird, gezündet. Wenn der Brennstoff B ausreichend brennt, kann auf die Unterstützung der Verbrennung durch die Zündflamme verzichtet werden. Unter ständiger Umwälzung aufgrund der Brennkegelbewegung brennt der Brennstoff B im Brennkegel K ab. Durch den Schacht 23 kann zum geeigneten Zeitpunkt Brennstoff neu zugegeben werden. Die Dosierung des Brennstoffs pro Zeiteinheit erfolgt zweckmäßigerweise durch Überwachung des in den Verbrennungsabgasen enthaltenen O2-Anteils.
    Die vom Brennkegel K ausgehenden Flammgase werden durch den von der Oberwindströmung hervorgerufenen Unterdruck in die Nachbrennkammer 15 hineingesaugt, wobei sie mit dem dort intensiv wirbelnden Oberwind durchmischt werden. Noch brennbare Bestandteile der Flammgase werden dadurch vollständig ausgebrannt. Ascheteilchen werden in die Richtung der Wand 21 ausgeschleudert und fallen am Rand 16 nach unten in das Gehäuse G.
    Für den Betrieb ist es zweckmäßig, wenn nur die in der Verbrennungszone befindlichen Tragarme 5 mit Unterwind versorgt sind.
    Das sind in Fig. 2 die Tragarme 5k, 5lund 5a bis 5d. Dieses kann in der Weise gesteuert werden, daß nur jene Anschlußstutzen mit Unterluft versorgt werden, die an den Positionen angeordnet sind, die augenblicklich die vorgenannten Tragarme einnehmen. Bei weiterer Drehung des Brennkegels in Fig. 2 entgegen dem Uhrzeigersinn tritt dann der Tragarm 5j in die Verbrennungszone ein, während der Tragarm 5d sie verläßt. Später gelangt dann der Tragarm 5i in die Verbrennungszone, während der Tragarm 5c sie verläßt, usw.. Die übrigen, nicht in der Verbrennungszone befindlichen Tragarme, das sind in der in Fig. 2 dargestellten Situation die Tragarme 5d bis 5h, werden nicht oder nur schwach mit Luft versorgt, beispielsweise über entsprechende Drosselstellen. Diese schwache Versorgung dient einerseits einer gewissen Kühlung, hauptsächlich aber der Verhinderung, daß Partikel durch die Öffnungen 26 in sie eindringen.
    Durch die dargestellte Gestaltung und Anordnung des Brennkegels K ergibt sich, daß die Schichtdicke des Brennstoffs über dem Verbrennungsrost unterschiedlich ist. Sie ist beispielsweise am Übergang zwischen dem kegeligen Abschnitt 1 und dem zylindrischen Abschnitt 2 am größten und nahe dem Zentrum des kegeligen Abschnitts 1, d.h. an dessen kleinsten Durchmesser am geringsten. Um dem beim Verbrennungsvorgang Rechnung zu tragen, können die Öffnungen 26, die längs jedes Tragarms 5 angeordnet sind, in Durchmesser und/oder Längsverteilung derart ausgebildet sein, daß die Summe der Öffnungsquerschnitte pro Längeneinheit jedes Tragarms näherungsweise proportional der Schichtdicke der auf der jeweiligen Längeneinheit des Tragarms liegenden Brennstoffmenge ist. Der sich in den unterschiedlichen Höhenlagen der Tragarme während des Umlaufs des Brennkegels ergebende unterschiedliche Bedeckungsgrad der Tragarme kann durch entsprechende Drosselung der Unterwindzufuhr an den etwas höher gelegenen Anschlußstutzen berücksichtigt werden.
    Vorzugsweise sind die Öffnungen 26 und 27 in den Tragarmen 5 so bemessen, daß bei Vollast die Geschwindigkeit des aus ihnen austretenden Unterwindes zwischen 20 und 60 m/s, bevorzugt bei 40 m/s liegt.
    Die letztgenannten Öffnungen 27 in den Tragarmen 5 dienen dazu, einerseits etwa in die Tragarme 5 eingedrungene Partikel auszublasen, und andererseits, die in den Ascheaufnahmeraum im Gehäuse G hineingefallenen Partikel, die möglicherweise noch nicht vollständig ausgebrannt sind, mit Brennluft zu versorgen. Daher sind die Öffnungen 27 auf der Außenseite des Brennkegel K in den Tragarmen 5 ausgebildet, und zwar zweckmäßigerweise an derjenigen Stelle, die bei der tiefstliegenden Mantellinie des Brennkegels am tiefsten liegt. Im dargestellten Beispiel wäre das im Bereich des Überganges zwischen dem kegeligen Abschnitt 1 und dem zylindrischen Abschnitt 2 des Brennkegels K.

    Claims (8)

    1. Verfahren zur Zuführung des Windes zur Verbrennung von stückigem Brennstoff, der auf einem rotationssymmetrischen Verbrennungsrost liegt, der einen in einer Verbrennungszone befindlichen, von dem Brennstoff bedeckten Oberflächenbereich und einen von dem Brennstoff nicht bedeckten Oberflächenbereich aufweist und eine um seine Achse verlaufende Umlaufbewegung ausführt, die eine wälzende Bewegung des Brennstoffs über die gesamte Oberfläche des Verbrennungsrostes hervorruft, wobei dem Brennstoff in der Verbrennungszone Wind von unten (Unterwind) zugeführt wird und die von der Verbrennungszone ausgehenden Flammgase im Abstand zur Verbrennungszone mit einem Oberwind vermischt werden, der in einer rotierenden Strömung in einer schraubenlinienförmig verlaufenden Bahn, die die von der Verbrennungszone ausgehenden Flammgase einhüllt und sich im Durchmesser erweitert, in Richtung auf die Verbrennungszone geführt wird,
      dadurch gekennzeichnet, daß
      der Unterwind oberhalb des Verbrennungsrostes unter den Brennstoff geblasen wird, und
      der Oberwind in einer die Umlaufachse des Verbrennungsrostes umkreisenden Bahn mit einer Geschwindigkeit von 40 bis 100 m/s zugeführt wird,
      wobei zum vollständigen Ausbrand von Holzabfällen, insbesondere Holzschnitzeln, als Brennstoff der mit dem Unterwind zugeführte Luftmengenanteil etwa 30 bis 40% und der mit dem Oberwind führte Luftmengenanteil etwa 70 bis 60% beträgt.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Unterwind mit einer Geschwindigkeit von 20 bis 60 m/s dem auf dem Verbrennungsrost befindlichen Brennstoff zugeführt wird.
    3. Vorrichtung zur Ausführung des Verfahrens nach einem der Ansprüche 1 und 2, enthaltend
      einen beweglichen, rotationssymmetrischen Verbrennungsrost (K) mit sich teilweise radial erstreckenden Armen (4,5), einer Verbrennungszone, die einen Teilbereich des Verbrennungsrostes (K) erfaßt, und einer Antriebseinrichtung (14), die den Verbrennungsrost (K) in eine Umlaufbewegung um seine Achse (O) versetzt, die nacheinander alle Teilbereiche des Verbrennungsrostes (K) durch die Verbrennungszone führt,
      eine Luftquelle, die der Verbrennungszone Unterwind zuführt,
      und eine Nachverbrennungskammer (N), die über dem Verbrennungsrost (K) angeordnet ist, die von dem Verbrennungsrost (K) aufsteigenden Flammgase entgegennimmt und sie mit als Oberwind frisch zugeführter Verbrennungsluft vermischt und ausbrennt,
      dadurch gekennzeichnet, daß
      ein Teil der Arme des Verbrennungsrosts hohle Tragarme (5) sind, die über den Verbrennungsrost (K) gleichmäßig verteilt sind und jeweils mehrere an der den Brennstoff tragenden Oberfläche des Verbrennungsrostes (K) liegende, gegen den Brennstoff gerichtete Blasöffnungen (26) aufweisen,
      eine bewegliche Kupplungseinrichtung (7,8) vorgesehen ist, über die die Luftquelle wenigstens mit den jeweils in der Verbrennungszone befindlichen hohlen Tragarmen (5) zur Zuführung von Unterwind pneumatisch verbunden ist, und
      die Nachverbrennungskammer (15) rotationssymmetrisch ausgebildet und koaxial zu dem Verbrennungsrost (K) angeordnet ist.
    4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die nicht in der Verbrennungszone befindlichen hohlen Tragarme (5) über eine Drosselungseinrichtung mit der Luftquelle pneumatisch verbunden sind.
    5. Vorrichtung nach einem der Ansprüche 3 und 4, dadurch gekennzeichnet, daß die gegen den Brennstoff gerichteten Blasöffnungen (26) an den hohlen Tragarmen (5) so verteilt und bemessen sind, daß die Summe der Öffnungsquerschnitte pro Längeneinheit jedes Tragarms (5) näherungsweise proportional der nominalen Schichtdicke des auf dem betreffenden Längenabschnitt des Tragarms (5) liegende Brennstoffmenge ist.
    6. Vorrichtung nach einem der Ansprüche 3 bis 5, bei der der Verbrennungsrost der Mantel eines Kegels (K) mit gegen die Horizontale schräg verlaufender Umlaufachse (O) ist und die hohlen Tragarme (5) radial verlaufen, dadurch gekennzeichnet, daß wenigstens eine von der Brennstofftragfläche des Verbrennungsrostes weg gerichtete Blasöffnung (27) an derjenigen Stelle jedes hohlen Tragarms (5) ausgebildet ist, die am tiefsten liegt, wenn die Mantellinie, in der der Tragarm (5) liegt, die unterste Stellung während der Rotation des Kegels (K) einnimmt.
    7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß der Öffnung des Kegels (K) an dessen Basis als Nachverbrennungskammer (N) eine zylindrisch oder sich in Durchsatzrichtung konisch verengend ausgebildete Nachbrennkammer (15) gegenübersteht, deren dem Kegel (K) zugewandte Eintrittsöffnung (16) einen größeren Durchmesser aufweist, als die Öffnung des Kegels (K), und die im Bereich des dem Kegel (K) abgewandten Austrittsendes eine Einrichtung (17,18) zum tangentialen Zuführen von Oberwind aufweist, und daß sich in Richtung auf das Austrittsende an diese Einrichtung (17,18) ein Kragen (19) anschließt, der eine Öffnung kleineren Durchmessers als der engste Querschnitt der Nachbrennkammer (15) umschließt.
    8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Einrichtung (17,18) zum tangentialen Zuführen des Oberwindes einen veränderbaren Öffnungsquerschnitt aufweist.
    EP99107650A 1998-04-17 1999-04-16 Verfahren und Vorrichtung zur Zuführung des Windes zur Verbrennung von stückigem Brennstoff Expired - Lifetime EP0952398B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19817121 1998-04-17
    DE19817121A DE19817121A1 (de) 1998-04-17 1998-04-17 Verfahren und Vorrichtung zur Zuführung des Windes zur Verbrennung von stückigem Brennstoff

    Publications (3)

    Publication Number Publication Date
    EP0952398A2 EP0952398A2 (de) 1999-10-27
    EP0952398A3 EP0952398A3 (de) 2000-03-08
    EP0952398B1 true EP0952398B1 (de) 2003-08-20

    Family

    ID=7864880

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99107650A Expired - Lifetime EP0952398B1 (de) 1998-04-17 1999-04-16 Verfahren und Vorrichtung zur Zuführung des Windes zur Verbrennung von stückigem Brennstoff

    Country Status (4)

    Country Link
    EP (1) EP0952398B1 (de)
    AT (1) ATE247800T1 (de)
    DE (2) DE19817121A1 (de)
    DK (1) DK0952398T3 (de)

    Families Citing this family (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10160415A1 (de) 2001-12-10 2003-06-18 Fritz Schoppe Feststoffverbrennungsanlage und Verfahren zum Zuführen von Luft zu einer solchen

    Family Cites Families (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR1327662A (fr) * 1962-07-04 1963-05-17 Dispositif permettant de brûler des charbons maigres ou autres applications
    FR1487371A (fr) * 1966-05-09 1967-07-07 Gen Thermique Incinérateur d'ordures ménagères ou industrielles
    US3599581A (en) * 1969-05-20 1971-08-17 Fritz Schoppe Incinerator
    AT402965B (de) * 1993-09-02 1997-10-27 List Guenther Ing Vorrichtung zur nachverbrennung für einen gebläsekessel oder herd
    ES2161798T3 (es) * 1995-05-05 2001-12-16 Bbp Environment Gmbh Procedimiento e instalacion de combustion para quemar basuras.
    DK172248B1 (da) * 1995-07-18 1998-02-02 Burmeister & Wains Energi Fremgangsmåde til styring af forbrændingen i en kedel med en vibrationsrist

    Also Published As

    Publication number Publication date
    DK0952398T3 (da) 2003-12-15
    DE19817121A1 (de) 1999-10-21
    ATE247800T1 (de) 2003-09-15
    EP0952398A2 (de) 1999-10-27
    DE59906632D1 (de) 2003-09-25
    EP0952398A3 (de) 2000-03-08

    Similar Documents

    Publication Publication Date Title
    DE60209759T2 (de) Verbrennungsvorrichtung
    DE2929056C2 (de)
    DE2412927C3 (de) Verfahren zum Regeln der Verbrennungsluftzufuhr bei einem Abfallverbrennungsofen mit vertikalem Verbrennungsschacht
    DE2619316C2 (de) Müllverbrennungsvorrichtung
    EP0111874A1 (de) Einrichtung zum Verbrennen insbesondere von reaktionsträgem Kohlenstaub
    DE2615369B2 (de) Verfahren zur Rauchgaskonditionierung in Abfallverbrennungsanlagen mit Wärmeverwertung, insbesondere für kommunalen und industriellen Müll, und Vorrichtung zur Durchführung des Verfahrens
    DE69833204T2 (de) Verbrennungsanlage zur entfernung von schadstoffen
    DE2601626A1 (de) Abfallverbrennungsofen
    DE3133696A1 (de) Ofen zur verbrennung von schalen
    DE19528422C1 (de) Abfallverbrennungsofen
    DE2745756C3 (de) Verbrennungsofen
    EP0952396B1 (de) Vorrichtung zum Verbrennen von stückigem Brenngut
    EP0952398B1 (de) Verfahren und Vorrichtung zur Zuführung des Windes zur Verbrennung von stückigem Brennstoff
    EP0473618B1 (de) Vorrichtung zum verbrennen von bio- und feststoffmassen
    DE69202444T2 (de) Anlage zur Abfallverbrennung.
    AT397551B (de) Verbrennungsofen
    DE3727006C2 (de)
    DE3105099A1 (de) Verbrennungsvorrichtung
    EP0097153B1 (de) Feuerungseinrichtung für kessel
    DE2816282C2 (de) Müllverbrennungsofen mit einem Wirbelbett
    AT265494B (de) Müllverbrennungsofen
    DE4007581A1 (de) Brenneranordnung
    DE4106136C1 (en) Converting granular ion-exchange resins into combustible gas - where resin in reactor passes by gravity through drying zone and then through low-temp. carbonisation zone
    AT263188B (de) Müllverbrennungsofen
    EP1318351B1 (de) Feststoffverbrennungsanlage und Verfahren zum Zuführen von Luft zu einer solchen

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    RIC1 Information provided on ipc code assigned before grant

    Free format text: 7F 23L 1/02 A, 7F 23L 9/02 B, 7F 23G 5/14 B, 7F 23G 5/22 B, 7F 23G 7/10 B, 7F 23B 1/24 B

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20000905

    AKX Designation fees paid

    Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU NL PT SE

    AXX Extension fees paid

    Free format text: AL PAYMENT 20000905;LT PAYMENT 20000905;LV PAYMENT 20000905;MK PAYMENT 20000905;RO PAYMENT 20000905;SI PAYMENT 20000905

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU NL PT SE

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030820

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20030820

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030820

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030820

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 59906632

    Country of ref document: DE

    Date of ref document: 20030925

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20031120

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20031201

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20031112

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040120

    LTIE Lt: invalidation of european patent or patent extension

    Effective date: 20030820

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20040329

    Year of fee payment: 6

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040416

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20040421

    Year of fee payment: 6

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20040426

    Year of fee payment: 6

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FI

    Payment date: 20040427

    Year of fee payment: 6

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20040428

    Year of fee payment: 6

    Ref country code: DK

    Payment date: 20040428

    Year of fee payment: 6

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20040429

    Year of fee payment: 6

    Ref country code: CH

    Payment date: 20040429

    Year of fee payment: 6

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040430

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040524

    BERE Be: lapsed

    Owner name: *SCHOPPE TECHNOLOGIE G.M.B.H.

    Effective date: 20040430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050416

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050416

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050416

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050417

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050430

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050502

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051101

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    EUG Se: european patent has lapsed
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20050416

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051230

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20051230